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What can we learn about twist-2 GPDs through

quasi-distributions?
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E-mail: tug23108@temple.edu

Abstract. Studying light-cone PDFs through Euclidean correlators is currently of high
interest. In particular, quasi parton distribution functions (quasi-PDFs) have attracted a lot
of attention. Quasi-PDFs converge to their respective standard distributions if the hadron
momentum goes to infinity. We explore the quasi-distribution approach for twist-2 generalized
parton distributions (GPDs) in the conventional diquark spectator model. Our analytical
expressions of the quasi-GPDs reduce to their corresponding standard ones in the large-
momentum limit, substantiating them to be practical tools to predict features of standard
GPDs. We illustrate numerical results of quasi-GPDs and of quasi-PDFs. Our focus is to
test how well the quasi distributions agree with their standard counterparts for finite hadron
momenta. By discussing the sensitivity of our results to model parameters, we highlight robust
features of the quasi-GPDs and quasi-PDFs that one may extract from this model study. We
also consider moments of quasi distributions.

1. Introduction
Quasi parton distributions (quasi-PDFs) put forward by Ji [1] are at the forefront of numerical
calculation of the partonic structure of strongly interacting systems in lattice QCD. They are
defined through purely spatial correlation functions and are thus readily calculable on lattices.
Quasi-PDFs approach their corresponding light-cone counterparts (standard PDFs) in the limit
that the hadron momentum goes to infinity. Here we investigate this new approach to calculate
(eight) twist-2 GPDs in a scalar diquark model (SDM) [2, 3]. In this short write-up of the talk,
we focus on the unpolarized quasi-GPD HQ corresponding to the standard GPD H. All the
features discussed subsequently are robust and not specific to this distribution function.

2. Definition of Quasi-GPDs
Analogous to the standard GPDs [4], quasi-GPDs are defined through an equal-time spatial
correlation function [1],

F
[Γ]
Q (x,∆;λ, λ′;P 3) =

1

2

∫
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(
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, (1)

where WQ denotes a Wilson line. The unpolarized quasi-GPDs HQ(0/3) and EQ(0/3) are defined

through the choice Γ = γ0/3, the longitudinally polarized quasi-GPDs H̃Q(0/3) and ẼQ(0/3)

through Γ = γ0/3γ5, and the transversely polarized quasi-GPDs HT,Q(0/3), ET,Q(0/3), H̃T,Q(0/3),

and ẼT,Q(0/3) through Γ = iσj0/3γ5. See Ref. [3] for more details on the definition of quasi-GPDs.
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Quasi-GPDs are functions of four kinematical variables: x = k3P 3, ξ, t (or |~∆⊥|) and
P 3 (the average 3-momentum of the hadron). Note that the momentum fraction x differs
from k+P+ that appears for standard GPDs. Unlike the standard GPDs which extend from
−1 < x < 1, the support for the quasi-GPDs is given by −∞ < x <∞. We also use the quantity

δ =

√
1 + M2−t/4

(P 3)2
which shows up in the relation P 0 = δP 3.

3. Analytical Results of Quasi-GPDs in Scalar Diquark Model
The quasi-GPD correlator in the SDM reads

F
[Γ]
Q (x,∆;λ, λ′;P 3) =
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2(2π)4

∫
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here the example of the unpolarized quasi-GPD HQ, defined with Γ = γ0. By using Gordon
identities and before carrying out the

∫
dk0 one obtains

HQ(0)(x, ξ, t;P
3) =

i g2P 3

(2π)4

∫
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where the numerator reads
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While performing
∫
dk0 via contour integration, one can verify that the position of the k0-poles

never switch half planes. One therefore has the same functional form for the quasi-GPDs for
any x, which implies that all quasi-GPDs and their derivatives are continuous functions of x,
unlike the standard GPDs which have discontinuous derivatives at the cross-over points x = ±ξ
in the SDM. (See Ref. [3] for results of all the quasi-GPDs corresponding to the twist-2 standard
GPDs.)

4. Numerical Results in Scalar Diquark Model
Details regarding the choice of model parameters can be found in Ref. [2]. Our results discussed
below are largely insensitive to variations of the model parameters [2, 3]. Since most of
the features exhibited by the quasi-GPDs become easier to grasp once one understands the
qualitative behavior of the quasi-PDFs, we begin with discussing the PDFs first.

4.1. Results for Quasi-PDFs
Fig.1 shows the unpolarized quasi-PDF f1,Q(0), which is the forward limit of HQ(0). One observes

that for larger values of P 3, there is a good agreement between the quasi and standard PDFs over
a wide range of x. However, considerable discrepancies appear as x→ 0 and x→ 1. As pointed
out in [2], the discrepancy at small x can be expected since, contrary to the continuous nature
of the quasi-PDFs, the standard PDFs are discontinuous at x = 0 in the SDM. The relative

difference, defined as Rf1(0)(x;P 3) =
f1(x)−f1,Q(0)(x;P 3)

f1(x) , better illustrates the discrepancies at
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Figure 1. Quasi-PDF f1,Q(0) as
a function of x for different values
of P 3. Black curve represents the
standard PDF f1.
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Figure 2. Deviations at large x
made clearer through a relative-
difference plot between f1,Q(0) and
f1 as a function of x for different
values of P 3.
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Figure 3. Momentum fraction x̃ as
a function of x as given in Eq. (5)
in cut-graph approach, for different
values of ms.
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Figure 4. Impact of difference
between x and x̃ as given in Eq. (5)
in cut-graph approach for f1,Q(0).
Note that the curves for x̃ 6= x go
to 0 for x → 1, like the standard
distributions do.

large x and is shown in Fig.2. At P 3 = 2 GeV, for instance, one can hardly go above x = 0.8
for the relative difference to stay below 50%.

We repeat that the two momentum fractions k3P 3 and k+P+ are different and that they
cannot be related in a model-independent way. (For the rest of this sub-section we denote the
former by x̃.) However, by considering the cut-graph approximation in the SDM, one arrives at
the relation

x̃ = x+
1

4(P 3)2

(~k2
⊥ +m2

s

1− x
− (1− x)M2

)
+O

(
1

(P 3)4

)
. (5)

Eq. (5) shows that the difference between x̃ and x is a higher-twist effect. But most importantly,
due to the 1/(1−x) factor, one finds that x̃→∞ as x→ 1, which implies very large differences
between the two momentum fractions at large x. This fact is highlighted in Fig.3. One can
therefore speculate that the considerable discrepancies between the quasi-distributions and the
corresponding standard distributions at large x are mostly caused by the (huge) discrepancy
between x̃ and x. The plot in Fig.4 shows that by accounting for such a higher-twist “correction”
in the cut-graph analysis, f1,Q(0) indeed provides, at (very) large x, a better agreement with the
standard PDF.
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Figure 5. Quasi-GPD HQ(0)

as a function of x for ξ =
0.1 and different values of
P 3. Black curve represents
the standard GPD H. The
limits of the ERBL region are
indicated by vertical dashed
lines.
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Figure 6. HQ(0) as a function
of x in the ERBL region for
different values of P 3 and
for ξ = 0.01. Black curve
represents the standard GPD
H.
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Figure 7. HQ(0) as a function
of x in the ERBL region for
different values of P 3 and
for ξ = 0.4. Black curve
represents the standard GPD
H.
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Figure 8. Comparison of the
skewness variables ξ, ξ̃3 and ξ̃0

for P 3 = 2 GeV and |~∆⊥| =
0 GeV.
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Figure 9. Majority’s trend
reflected through a relative-
difference plot between HQ(0)

and H for three different
definitions of the skewness
variable.
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Figure 10. Outlier’s trend
reflected through a relative-
difference plot between EQ(0)

and E for three different
definitions of the skewness
variable.

4.2. Results for Quasi-GPDs
Fig.5 shows the unpolarized HQ(0) for ξ = 0.1. For the skewness variable we have explored the
range 0.01 ≤ ξ ≤ 0.4, and below we briefly comment on the ξ-dependence. The convergence
problem at large x persists for all the quasi-GPDs whether or not they have a forward
counterpart. In general, there is a tendency of the discrepancies at large x to increase when ξ
gets larger. The significance of this feature depends on the GPD under consideration, and it
is most pronounced for the quasi-GPDs ẼQ and ẼT,Q. Fig.6 and Fig.7 show HQ(0) for just the
ERBL region for ξ = 0.01 and ξ = 0.4 respectively. Generally, for small ξ one finds significant
deviations between the quasi-GPDs and the corresponding standard GPDs. This situation is the
GPD counterpart of the problem for quasi-PDFs around x = 0. For small ξ, the standard GPDs
rapidly approach zero at x = − ξ in a very narrow x-range, whereas the quasi-GPDs are much
smoother in that range. Once ξ is increased, we observe a (much) better agreement between
quasi-GPDs and the standard GPDs for a large fraction of the ERBL region. This outcome
suggests that lattice calculations could provide very valuable information in the ERBL region,
provided that the skewness is not too small.

So far we have used the same skewness variable ξ for both the standard GPDs and the
quasi-GPDs. However, for the quasi-GPDs one could in principle consider different variables
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to describe the longitudinal momentum transfer to the hadron. Examples in this context are

ξ̃3 = − ∆3

2P 3 and ξ̃0 = − ∆0

2P 0 . These “quasi skewness” variables are related to the standard

skewness via a higher-twist effect encoded in the model-independent relations ξ̃3 = δξ and
ξ̃0 = ξ

δ . Fig.8 shows considerable differences between ξ, ξ̃3, and ξ̃0 when P 3 is small. We
explored the impact of the difference between these variables on the quasi-GPDs. Through the
specific example of HQ(0), the plot of Fig.9 shows that ignoring the higher-twist effect and using

ξ̃3 leads to a better convergence of the majority of the quasi-GPDs for most of the DGLAP
region. The only outliers in that regard are EQ(0), ẼQ(0/3) and ET,Q(0), where EQ(0) is shown

as a representative case in Fig.10. Also, using the variable ξ̃0 typically gives poorer convergence
for the quasi-GPDs. Our conclusions also hold for even larger values of ξ, where the numerical
discrepancy between the three skewness variables increases further — see Fig.8.

5. Moments
We first consider the lowest moment of the quasi-GPD HQ. Including a flavor index ‘q’ one finds
the model-independent relation

1∫
−1

dxHq(x, ξ, t) =

∞∫
−∞

dx
1

δ
Hq

Q(0)(x, ξ, t;P
3) =

∞∫
−∞

dxHq
Q(3)(x, ξ, t;P

3) = F q1 (t) , (6)

where F1 is the well-known Dirac form factor. The lowest moment of standard GPDs depends
on t, but does not depend on ξ. The quasi-GPDs also depend on P 3, but remarkably this
dependence also drops out in the lowest moment. However one must divide half of the quasi-
GPDs by the kinematical factor δ in order to arrive at this result. Since δ describes a higher-twist
effect, including this factor is in principle a matter of taste. But the moment analysis suggests
that taking into account δ like in (6) appears natural.

We now turn our attention to the second moment of quasi-GPDs considering again only the
vector operator ψ̄qγµψq. In close analogy to the celebrated expression for the second moment

of H +E, namely
1∫
−1
dxx (Hq(x, ξ, t) +Eq(x, ξ, t)) = Aq(t) +Bq(t) where Aq(0) +Bq(0) = Jq is

the total angular momentum for the quark flavor ‘q’, one then finds for the quasi-GPDs

∞∫
−∞

dxx
1

δ
(Hq

Q(0)(x, ξ, t;P
3) + EqQ(0)(x, ξ, t;P

3)) =
1

2
(δ2 + 1)(Aq(t) +Bq(t))

+
1

2
(δ2 − 1)Dq(t) , (7)

∞∫
−∞

dxx (Hq
Q(3)(x, ξ, t;P

3) + EqQ(3)(x, ξ, t;P
3)) = Aq(t) +Bq(t) . (8)

Note that in Eq. (7) the form factor Dq of the anti-symmetric part of the EMT enters. One can
conclude that the second moment of HQ(3)+EQ(3) is directly related to the angular momentum of
quarks, while for HQ(0)+EQ(0) this relation contains a higher-twist “contamination.” The model-
independent expressions for the moments of the quasi distributions are potentially significant
as they may be useful for studying the systematic uncertainties of results from lattice QCD,
especially due to the fact that the P 3-dependence of the moments is either computable or
nonexistent.
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6. Summary and Conclusions
We have studied twist-2 GPDs through parton quasi-distributions in the SDM. Our analytical
expressions for the quasi-GPDs reduce to the respective standard GPDs for P 3 → ∞ further
validating that quasi-GPDs could be a viable tool for getting information about standard GPDs.
For finite P 3 and large ξ, quasi-GPDs agree well with the standard distributions in the ERBL
region. This agreement gets poorer if ξ gets smaller. We have provided a model-independent
analysis of moments of quasi-GPDs including the relation to Ji’s spin-sum rule. The moment
analysis may assist in the study of systematic uncertainties in lattice QCD.
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