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1. Introduction

The matrix elements of the energy-momentum tensor (EMT)
embody fundamental information about a system [1,2]. They can
be parametrized in terms of gravitational form factors (GFFs) that
allow one to access the distributions of energy, momentum, or-
bital angular momentum and internal forces. Among them, the
GFF D(t), with t indicating the squared momentum transfer to
the target, is very intriguing as it appears in the parametrization
of the matrix elements of the stress tensor and as such defines
the “mechanical properties” of a system. This becomes particularly
appealing when applied to hadrons [3-7], since it opens a new
avenue to unravel their underlying quark and gluon structure as
explored in various models [8-30], lattice QCD [31-33], and ex-
perimental analysis [34-37].

The GFFs are also of fundamental importance for the electron,
as is the case for the electromagnetic form factors. We recall that
radiative corrections in quantum electrodynamics (QED) generate
a nonzero Pauli form factor F,(t) for the electron, where F,(0) =
o /2m is Schwinger’s famous one-loop result for the anomalous
magnetic moment of the electron [38]. Likewise, a nonzero D(t)
for the electron is generated by QED loop corrections, with the
one-loop calculation first reported in Ref. [39] — see also Ref. [40].
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However, the long-range nature of QED leads to the interesting
result that D = D(t = 0), the so-called D-term [41], is divergent,
while D(t # 0) is finite [39,40]. The form factor D(t), and its
Fourier transform in position space, have also been studied using
effective field theory by focusing on the region of small |t| (or large
distances) [42]. The potential impact of the QED long-distance con-
tribution on D(t) of the proton has been highlighted recently [43].
Furthermore, the QED GFFs of the electron have attracted new in-
terest in order to explore its angular momentum [44,45] and mass
structure [46]. In this work, we extend the previous one-loop QED
calculations of D(t) by considering the separate contributions aris-
ing from the electron and the photon parts of the EMT. We also
explore the case of a nonzero photon mass which, in particular,
leads to a finite D-term. Moreover, we transform the results to po-
sition space which provides the distribution of pressure and shear
forces in the electron. We also point out similarities and differ-
ences between the one-loop QED results for D(t) of the electron
and (strongly interacting) bound states. Finally, we discuss the so-
called mechanical radius of the electron.

The paper is organized as follows: In Sec. 2, we introduce the
EMT in QED, including the extension to a nonzero photon mass,
along with the GFFs which parametrize the EMT matrix elements
between electron states. In this section, we also briefly describe
the one-loop QED Feynman diagrams entering the calculation of
the GFFs. We present the (numerical) results for D(t) in Sec. 3,
while in Sect 4 we examine the distributions of the pressure and
shear forces. In Sec. 5, we summarize our main findings.
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2. Definitions

We begin by recalling the (symmetric) Belinfante-Rosenfeld
EMT in QED [47-49]:

Téep =Te" + T,/ with 1)
- i <~ Zz -
Te' =2l gyWatly — St Wey y Ay, )

yny

T = —Z3 FFFY, 4 73 &

J F*’Fug, 3)

where the labels e and y refer to the electron and photon contri-
butions, respectively, and al#b"} = a*b” +a"b*. In Egs. (2) and (3),
all the fields and the elementary charge e are renormalized, with
contributions proportional to (Z 3 — 1) representing standard La-
grangian counterterms. To deal with the ultraviolet divergences we
have used dimensional regularization in d =4 — 2 eyy dimensions
with the mass scale pu.

For the calculation with a nonzero photon mass m, we must
go beyond Tggy, in Eq. (1). There exist several extensions of QED
in order to incorporate a massive photon. The two most impor-
tant ones are the Stueckelberg Lagrangian and the spontaneous
breaking of the U(1) gauge symmetry, that is, the so-called Abelian
Higgs model. (For a review of both of them see Ref. [50].) In gen-
eral, the two approaches describe different theories, but they are
equivalent for the purpose of an O(«) calculation of the EMT elec-
tron matrix elements. In fact, both extensions lead to a EMT of the
form

Y
Ty +m? (A”A" - gTA2> S TR (4)
and provide identical results since the contribution from Tl
(which differs in the two cases) vanishes at O(«). The same holds
for any QED extension with a nonzero my,.

We have worked with the Abelian Higgs model which is de-
fined through the Lagrangian

2\ 2
u@ v
EHi(gés:‘CQED+DM®TDM<D_g<|q)|2_7) . (5)
In Eq. (5), Dy, is the covariant derivative and @ the complex scalar
(Higgs) field with the nonzero vacuum expectation value

v
(0] @ |0) = 5 (6)

The EMT for the spontaneously broken theory can be written as

Y

uv 2.2 g 2 uy
Toep + v (A“A” -A ) + Thiges * (7)
where Tl’_l‘ivggs is the EMT for the Higgs sector, which contains also
the interaction terms between the Higgs field and the gauge field.
In the following, we interpret ev as the photon mass. Since in this
simple model the Higgs field is not coupled directly to the matter

part of the QED Lagrangian, all the contributions from Tgi‘;gs to the

matrix elements of the EMT between electron states are O (x2) or
higher. Therefore, Tﬁiggs does not contribute in our calculation. For
v — 0, one obtains the massless-photon limit. More precisely, in
this limit one recovers the standard QED for an electron, plus a
scalar charged massless particle with a quartic self-interaction —
see Eq. (5) for v=0.

The EMT of interest for our calculation is therefore given by

T =T + 13", with (8)
Y
Ty =1/ +m], (A”A” - gTA2> , 9)
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where we have ignored the Lagrangian counterterms. All the cal-
culations are performed in the so-called Rq-gauge, in which the
gauge-fixing term of the Lagrangian takes the form

1
Lg.f.z—i(a-A—mmz)z, (10)

where ¢; is the imaginary component of the Higgs field. In this
gauge, the photon propagator reads (see, e.g., Ch. 3 of Ref. [51] and
Ref. [52])

iDMV (k) = T (11)

The general parametrization of the electron and photon EMT
matrix element between electron states can be written as [1,2,53]

e . sHT! le(p, s))
PHPY iPHg VP A
+ Ji(t) ———2
me 2me
AMAV _ gpLVAZ
4m,

=u(p’, S’)<A1(t)

+ Dj(t) +me Ci(t) g’”)ﬂ(p,S),

(12)

with i =e, y and m, the electron mass. In Eq. (12), we use P =
Ip+p) A=p —p, t=A% and o*’ = L(yty” — y"yH). The
Ai, Ji, Di and C; are the GFFs, which depend on t and, in general,
on the renormalization scale. (The latter dependence is suppressed
to ease the notation.) Below we will show results as a function of
the dimensionless variable
2= —iz >0. (13)
mg
Furthermore, the electron state in Eq. (12) obeys the covariant nor-
malization

(e(p',s)le(p,s)) =2p° (27)* 8.5 6(p' — p), (14)

and the Dirac spinor satisfies u(p, s) u(p, s) = 2me.

We are interested in the form factors D;(t) in Eq. (12) as
obtained in perturbation theory. To this aim, we review the ba-
sic steps of the calculation that have been already presented in
Ref. [46] in the context of considering the forward matrix elements
of the EMT. We start by computing the Green function with the in-
sertion of the EMT operator, that is,

(e(p’,sHIT [T,-’”(m exp (i / d“x.c,(x))] le(p, s)),
with £ = —e YV Ay, (15)

where T indicates time ordering and the EMT is evaluated at the
origin. (Choosing a different space-time point for the EMT would
just lead to an irrelevant overall phase.)

The Feynman diagrams from the expansion of Eq. (15) up to
O(«) are shown in Fig. 1. The diagram L is the tree-level contri-
bution, while §;Lg is the overall vertex counterterm. This countert-
erm coincides with the counterterm for the electron field because
the total EMT is fully renormalized by means of Lagrangian renor-
malization and we are considering the matrix elements for the
electron state only. The diagrams L;, and thz are the leg-loop
corrections and the corresponding counterterm contributions, re-
spectively. We performed the calculations in the on-shell scheme,
in which the sum Ly +L§* 4 L + LS" vanishes. However, the total
leg contribution Lo(1482) + L1 + L§™ + Ly + LS™ does not depend,
at one-loop, on the renormalization scheme. This has been verified
by performing the calculation also in the MS scheme. Furthermore,
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82 Ly

Fig. 1. Feynman diagrams contributing to the electron EMT at O(w). The solid black dot represents the insertion of the EMT into the Green function, whereas a crossed dot

indicates contributions from counterterms.

the diagrams Vi arise from the interaction term in TX', and
V3 is the one-loop electron vertex correction associated with the
derivative term in T'". Finally, V4 represents the one-loop vertex
correction where the photon is coupled to the external operator.
We note in passing that, at one loop, the extra term in the pho-
ton EMT in Eq. (9) proportional to mf, contributes to all the GFFs
in Eq. (12), except the form factors D;(t).

3. Results for the form factor D(t)

Since the EMT is conserved, the total form factor D(t) is not
renormalized, but the individual photon and electron contribu-
tions, generally, must be renormalized. However, at tree level the
D;(t) vanish and, hence, they do not require any renormalization
at one loop. On the other hand, the one-loop D-term has a diver-
gence for vanishing momentum transfer in (standard) QED with
massless photons [39,40,42]. More precisely, the origin of the di-
vergence can be traced back to the photon contribution to the EMT.
Here we also show explicitly how a nonzero photon mass regulates
this divergence.

The results for the form factors read

—X

1 1—
Di(TZ,AZ):fdx/d V=3 +f;(’(<xy; Ok (16)
0 0

where A =m,) /me, and

a (x—2)(1—x—2y)?
fe(X»J’)—; y(.l_x_y) ) (17)
al—x—1+x1—x—2y)?
Y =— , 18
frxy) = ya—x—7) (18)
02 2
ae(x, v, )L2) — (1")7“* , (19)
yad—-x-1y)
2 X+ (1—x)2?
ay (X, y, A )_7}/(]_)(_)}) . (20)

We have found complete numerical agreement between our result
for the total form factor D(t2,12 = 0) and the one reported in
Refs. [39,40]. The analytical result for the electron contribution in
Eq. (16) is given by
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Fig. 2. The total D-term of the electron as a function of A2.
10« K. k+1 4
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In general, the value of the D-term is basically unconstrained.
It has been argued though that for any bound state the D-term
should be negative — see [4] and references therein. One finds
that for the electron in QED (with massless photons) the D-term
is actually positive and infinite. We repeat that this is due to the
photon contribution to the EMT which, for 72 — 0, behaves as

De(72,22=0) =

(21)

Dy (t? <« 1,22 =0)~ (22)

4/ 12
In contrast, the electron contribution in Eq. (21) at vanishing mo-
mentum transfer is finite,

De(t?2=0,2=0)=———. (23)

For finite values of the photon mass we find

D,(12=0,32 )~ 2, 24

y( <1 Wiri (24)
that is, a nonzero photon mass indeed leads to a finite D-term. Ob-
viously, the divergence (4 oco) is recovered in the limit A — 0. The
sum of the photon and electron contributions in Eqs. (22) and (23)
reproduces the limit for T2 — 0 of the total form factor D(t2) ob-
tained in Refs. [39,40]. We also notice that for finite values of 72

the form factors D;(t2,?) are infrared safe. In Fig. 2, we show
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Fig. 3. The form factor D(r2,12) as a function of 72, for 12 =

0 (left) and for A2 =22
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(b)

(right). The blue dotted curves are the photon contributions and the red dash-dotted

curves correspond to the negative of the electron contributions. The solid purple curves represent the total form factor in absolute value.

the D-term as a function of A2. It has a node at small values of
A2, going from positive to negative values with increasing A2. In
particular, there is a minimum at Afmn ~ 8.5. For small values of
the photon mass, the system behaves essentially as if the pho-
ton is massless: the D-term is positive and large as a result of
the long-range photon-electron interaction. For very high values of
the photon mass, the loop diagrams in Fig. 1 are extremely sup-
pressed, and the coupling of the (physical) electron to the EMT
reduces to a contact interaction that behaves like the coupling at
the tree-level where the D-term vanishes. But for moderate val-
ues of A2, the photon mass gives rise to a short-range interaction
and the response of the physical electron to the coupling with the
EMT mimics the behaviour of a bound state. However, this simi-
larity does not imply that the electron-photon system becomes a
bound state for a specific value/range of the photon mass.

In Fig. 3, we show the form factor D(t%,1?) as functions of
72, for a massless photon (panel (a)) and for A% = A2. (panel
(b)), by separating the terms due to the electron and the photon
contributions to the EMT. For both values of A, the photon con-
tribution is always positive and the electron contribution always
negative. In the massless-photon case, the long-range electromag-
netic interaction dominates at low 72, whereas at intermediate 72
the negative electron contribution takes over so that the total form
factor changes sign from positive to negative values. The large-72
behaviour of the total form factor is given by [39]

—Int?

o 4
D(T?®>1,A2=0)= — >
T

, (25)
whereas from Eq. (21) we can obtain the asymptotic behaviour of

the electron contribution,

) 5 « 10—5Int?
De(r">»> 1, =0)=—- ———.
372

By subtracting the electron contribution in Eq. (26) from the total
result in Eq. (25), we find for the photon contribution

(26)

o 2+2Int?
D,(t2>1,22=0)=— "—"——— 27
This leads to the result
De(T%,32=0 5
lim e( ) (28)

200 Dy (12,22 =0) T

which means that the photon and electron contributions van-
ish asymptotically with the same falloff, and the total form fac-
tor D(72) approaches zero from negative values. In the case of

A= Amm, the negative electron contribution prevails over the pos-
itive photon contribution in the full range of the momentum trans-
fer, and the two terms vanish asymptotically with the same falloff.
The total form factor therefore resembles the features of a hadronic
bound state, for which D(t) is negative in the entire t-range [4].

4. Results for the pressure and shear-force distributions

The distributions in the coordinate space of the pressure and
shear forces can be obtained by Fourier transforming the form fac-
tors Dj(72, 2?) [3,4]. Working in the Breit frame where P = (E, 0),
and A = (0,A), we use T = A/m, and its conjugate variable
p =rme to define the Fourier transform as

. 2 Pt i 2,2
Di(p. %) = @3¢ PDi(t%,2%)

— (T2 12).
= 522, BT (20122 7. ). (29)
S d3-[ . _
Ci(p, 22 = | ——=e TPCi(12, 22 30
i(p, A% f(zm3e i(T7, A7), (30)
where the Fourier sine transform is defined as
o0
FST(f (x); x, y)z/dxsin(xy)f(x). 31)
0

Using the expressions for the form factors in Eq. (16), we find

1
0
We can then obtain the dimensionless pressure and shear distri-
butions as [4]

. (0, 2%) 1 d ,d
p:-(p,xz):% *5,0 Di(p.2?) — Ci(p. 22)
e

—_

—X

fl(xPy) —pV/aixy 27 (32)

o\

602 dp
———215( )+liD( 22) — Ci(p, 22),
"~ 6dp? 3pdp P p:
(33)
. si(p,2Y)  pd 1
sipany= et P a1 lp 5
' me 4dppdp
2
~ 1 ~
Di(o.22) + =L bip.a2). (34)

S 4dp? ! 4pdp
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The contributions from the é,- are proportional to 8(p)/p?,
since it can be shown that the form factors C;(72, A2) do not de-
pend on 72 (for any value of 12). Specifically, we can write

Ci(p.22) = §i(32) 5 ;" )| with Pe(A?) = —¢, (1), (35)
where we have used
LT ivo oL s (36)
2n) = ot P

Note that for the purpose of the present work one could use
8'(p) = —8(p)/p, with the understanding that f0°° dpd(p) =5
general, these two distributions are of course not identical.

Before presenting the numerical results in position space, we
discuss some consistency checks that are mostly related to the
conservation of the EMT. From the definitions in Eq. (29) and
Egs. (33)-(34) we obtain

0%Dp(p, 2% = p*(Pe(p, 2 + Py (p, 12))

x

_ P : 3 2 52

=~ 1on2 /drsm(t,o)r D(t°,1%). (37)
0

By integrating this relation over p and interchanging the order of
integration between p and t, we find

oo o0

/dppzf)(p,kz) = é/dnw(rz,ﬁ)s/(r) =0, (38)
0 0

where the last equality holds because, in the limit of T — 0,
Di(t%,1?) goes like 1/t and therefore the derivative d(73D;(7?,
Az))/d‘r is proportional to 7 — see Ref. [39]. Equation (38) rep-
resents one form of the von Laue condition, which follows from
Ehe conservation of the EMT [4,5]. If we neglect the form factors
Ci(p, 2%), which are responsible for the fact that the individual
“parton” EMTs are not conserved, then this condition holds for
both the electron and photon contributions [4], i.e.,

o0 o0

R 1
[ao*binp30 = oo [ e s @ =0, (9)
0 0

where ﬁi,D(p,kz) indicates the term in Eq. (33) coming solely
from the D;(p, A?). For the pressure and the shear distributions
we can write

1 1—x
Pifin. (0, 2%) =f / Py 1)
0 0
ai(x, y, A%)
x fi(x, y)'ZTp’ (40)
5’( ) 1 1—x
Pib.sing.(0) = T2 ; / dx / dy fi(x. y). (41)
0 0

1 1—x
$ifin. (0, 1) z—/dX/ dy e PYUXYA fi(x y)

3+3\/a * ¥, A% p +aix, y, kz)p

167[,0

R 38(p) — p&’ s
$1sing (0) = L= L2 0) / i [ dyfix ). (43)
0

(42)

8mp
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where we have isolated the finite (fin.) and the singular (sing.)
contributions. Therefore, not only the form factors C;(t%, %) do
give rise to singular terms at the origin but also the form factors
Di(t?%, A%). The von Laue condition in Eq. (39) is the result of an
exact cancellation of the contributions of the finite and the singu-
lar terms. A more general consequence of the conservation of the
EMT is the relation [4]

2d5i(p, A% 2. dpi p(p, 22
2dsi(p )+—si(p,k2)+ pi.p(p, 1)

_— =0, 44
3 dp P dp (49
which is satisfied separately for the finite terms in Egs. (40), (42)
and the singular terms in Eqs. (41), (43). Finally, for A = 0 the
long-distance behaviour of the pressure and shear distributions is

known [42] — see also the discussion in Ref. [43]. Specifically, one
has
( W2=0)~p,( 2=0)=-2 , (45)
— 00, A" = — 00, A" =
p(p by(p 24 7r,04
8 A2=0)~3 A2=0 46
(p— 00 ) =Sy (p— 00 ) = 4ﬂp4 - (46)

We reproduce these results which are determined by the photon
contribution to the EMT. Numerically we find that the asymptotic
limits are reached for p ~ 10°.

In Fig. 4, we show the results for the finite contributions to
the pressure and shear distributions as a function of p. Panels (a)
and (b) are for a vanishing photon mass (A% = 0), while panels (c)
and (d) contain the comparison between A2 =0 and 1? = A2, .
The total (finite) pressure distributions are always negative, due to
the negative contributions from the electron part of the EMT. In
the case of hadrons, the pressure distributions are also negative
(attractive) at large distances but positive (repulsive) at small dis-
tances — see [4] and references therein. For the electron in QED
a positive contribution to the pressure comes only in the form of
a singular term at the origin. This difference between a hadronic
bound state and the electron is caused by the different behaviour
of the GFFs at large momentum transfer. In our calculation, the fi-
nite contribution to the distribution of the shear force is negative,
regardless of the value of the photon mass, while a singular con-
tribution is located at the origin. In contrast, for hadrons the shear
distributions tend to be positive for any finite distance. Because of
the finite interaction range, both the pressure and shear distribu-
tions for finite photon masses vanish faster at large distances than
for L =0.

The pressure and shear distributions allow one to define normal
and tangential forces inside a system [4]. Specifically, the forces
experienced by a spherical shell of radius p are given by

2. .
Fn = 47p? <§s(,0, 22+ b (p, /\2)> : (47)

. 1.
Fe= 4np2(p(p, A2y — 350, ﬁ)) : (48)

and the corresponding numerical results (without the factor 4r)
are shown in Fig. 5. We find that for nonzero p the normal force
Fp is negative and the tangential force F; is positive, while both
forces have a singular contribution at the origin. For comparison,
the normal force in hadrons is positive, and the tangential force
distribution typically switches sign.



A. Metz, B. Pasquini and S. Rodini

1x10°° \ \

5x107*F e 1

0F

-5x1074

A2=0
Electron - —--

Photon ------- i
10 ‘ Total

107! 10° 10'
p

A
p? Pi,ﬁn(P,KZ)

-1x1078

2x103}

(a)

2x10

210 ]
ax10* 1
-6x107 | ]

A
02 Prin(PA?)

-8x10 1

-1x107°3

-3
-1x10 -
107! 10° 10°

©

Physics Letters B 820 (2021) 136501

-5.0x10°

1.0102F

A5x102}
22=0 1
Electron - —-- |
Photon ------- |
Total

107! 10° 10°
p

= 2ox102)/

A
P2 S fin(p:}"z)

-2.5x102

-3.0x102

-3.5x1072

-5.0x10°3
-1.0x102
-1.5x102 '
2.0x102/

A
P2 sﬁn(p,k2)

2.5x102

-3.0x102

-3.5x1072

(d

Fig. 4. Finite contributions to the pressure and shear distributions as a function of p. Panels (a) and (b) show, respectively, the distributions in Egs. (40) and (42) multiplied by
p2, for 22 = 0. The blue dotted curves are the photon contributions and the red dash-dotted curves are the electron contributions, while the solid purple curves represent the

total results. Panels (c) and (d) show, respectively, the comparison of the pressure and shear distributions for 22 = 0 (solid purple curves) and 12 = A2

curves).

The normal force in Eq. (47) was used to define the so-called
mechanical radius of a system according to [4]

e JdPrr2[35() +p()]
T T dBr[25m) + ()]

This can be re-expressed through the form factor D(t) [4], where
for the electron (with the dimensionless variable t2) one has

(49)

6D(0, A%)

. 50
m3 [°dT2D(12,22) (50)

<1‘2 (A‘Z))mech =

For A2 =0, the numerator as well as the denominator in Eq. (50)
are undefined: As discussed above, the D-term is infinite, while the
integral in the denominator diverges at both the lower and the up-
per integration limits. The same conclusion follows from the defi-
nition of the mechanical radius in Eq. (49) based on distributions
in position space. In that case the numerator diverges due to the
1/p*-behaviour of the integrand at large distances (see Egs. (45)
and (46)), whereas the denominator diverges due to a singularity
for p — 0 in the integral of the shear distribution. On the other
hand, for any A% # 0, Eq. (50) provides (r>(A? # 0))mech = 0, since
the D-term is finite but the denominator (still) diverges because
of a singularity for p — 0. (In this context see also Fig. 6 which
shows the integrand for the numerator in Eq. (49) for both 12 =0
and A% = Aﬁnin. In the latter case, the pressure and shear distribu-
tions fall off much faster at large p, leading to a finite value for the
numerator in Eq. (49).) These results should also hold for arbitrary
order in perturbation theory. It is therefore tempting to define the
mechanical radius of the electron in QED (with a massless pho-

ton) according to (r2)¢ . =1lim;_o(r?(A? # 0))mech = 0. However,

(black dash-dotted

min

we do not assign much significance to this result. We rather con-
clude that the concept of the mechanical radius cannot be applied
for systems whose form factor D(t) does not drop fast enough at
large momentum transfer — see also the corresponding discussion
in Ref. [4].

5. Conclusions

The off-forward matrix elements of the EMT, which are para-
metrized through several GFFs, encode a wealth of information
about the energy, spin, pressure and shear distributions inside a
particle. We focused our attention on the one-loop QED calcula-
tion of the GFF D(t) for an electron, by separately evaluating the
contributions from the electron and the photon parts of the EMT.
The form factor D(t), which represents a fundamental quantity of
the (physical) electron, contains the information about the (total)
pressure and shear distributions. The D-term, that is D(t = 0), is
infinite, where the infinity is caused by the photon contribution
to the EMT in combination with the long-range Coulomb interac-
tion — see also Ref. [42]. On the other hand, for a nonzero (and
sufficiently large) photon mass one finds that the D-term becomes
negative and, in fact, the form factor D(t) is negative for the en-
tire t-range. The same qualitative results hold for hadronic bound
states [4]. Therefore the “physical” electron, which is composed of
a bare electron and a massive photon, mimics a bound state. How-
ever, there is one crucial difference: For both a zero and nonzero
photon mass the form factor D(t) essentially drops like 1/|t| at
large momentum transfer. This is (considerably) slower than for a
hadronic bound state [4,5]. When making this comparison between
the electron and hadrons, we do not consider electromagnetic con-
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in the pressure and shear distributions do not contribute to this integral.) The blue dotted curve shows the photon contribution, the red dash-dotted curve the electron

contribution, the solid purple curves the total result for A2 =0, and the black dash-dotted curve the total result for A% = A2

tributions to D(t) for a hadron, which do actually also lead to a
1/|t] behaviour at large |t| as discussed recently in Ref. [43]. As a
result, the pressure and shear distributions in position space show
significant qualitative differences in the two cases. In particular,
for the electron in QED both distributions exhibit a delta function
singularity at the origin r = 0, which is not known for hadrons.
We repeat that the GFFs, including D(t), are fundamental quanti-
ties and, in general, differences between the electron and hadronic

min*®

bound states are due to the long-range QED effects and the be-
haviour of the GFFs at large momentum transfer.
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