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The electron-graviton interaction can be described in terms of the gravitational form factors of the QED 
energy-momentum tensor. Here we focus on the form factor D(t), and we examine its properties and 
its interpretation in terms of internal forces at one-loop accuracy in QED. We perform the calculation by 
keeping separate the contributions due to the electron and the photon parts of the energy-momentum 
tensor. We also study the case of a nonzero photon mass. Furthermore, we discuss similarities with and 
differences to the form factor D(t) of hadronic bound states.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The matrix elements of the energy-momentum tensor (EMT) 
embody fundamental information about a system [1,2]. They can 
be parametrized in terms of gravitational form factors (GFFs) that 
allow one to access the distributions of energy, momentum, or-
bital angular momentum and internal forces. Among them, the 
GFF D(t), with t indicating the squared momentum transfer to 
the target, is very intriguing as it appears in the parametrization 
of the matrix elements of the stress tensor and as such defines 
the “mechanical properties” of a system. This becomes particularly 
appealing when applied to hadrons [3–7], since it opens a new 
avenue to unravel their underlying quark and gluon structure as 
explored in various models [8–30], lattice QCD [31–33], and ex-
perimental analysis [34–37].

The GFFs are also of fundamental importance for the electron, 
as is the case for the electromagnetic form factors. We recall that 
radiative corrections in quantum electrodynamics (QED) generate 
a nonzero Pauli form factor F2(t) for the electron, where F2(0) =
α/2π is Schwinger’s famous one-loop result for the anomalous 
magnetic moment of the electron [38]. Likewise, a nonzero D(t)
for the electron is generated by QED loop corrections, with the 
one-loop calculation first reported in Ref. [39] — see also Ref. [40]. 
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However, the long-range nature of QED leads to the interesting 
result that D ≡ D(t = 0), the so-called D-term [41], is divergent, 
while D(t �= 0) is finite [39,40]. The form factor D(t), and its 
Fourier transform in position space, have also been studied using 
effective field theory by focusing on the region of small |t| (or large 
distances) [42]. The potential impact of the QED long-distance con-
tribution on D(t) of the proton has been highlighted recently [43]. 
Furthermore, the QED GFFs of the electron have attracted new in-
terest in order to explore its angular momentum [44,45] and mass 
structure [46]. In this work, we extend the previous one-loop QED 
calculations of D(t) by considering the separate contributions aris-
ing from the electron and the photon parts of the EMT. We also 
explore the case of a nonzero photon mass which, in particular, 
leads to a finite D-term. Moreover, we transform the results to po-
sition space which provides the distribution of pressure and shear 
forces in the electron. We also point out similarities and differ-
ences between the one-loop QED results for D(t) of the electron 
and (strongly interacting) bound states. Finally, we discuss the so-
called mechanical radius of the electron.

The paper is organized as follows: In Sec. 2, we introduce the 
EMT in QED, including the extension to a nonzero photon mass, 
along with the GFFs which parametrize the EMT matrix elements 
between electron states. In this section, we also briefly describe 
the one-loop QED Feynman diagrams entering the calculation of 
the GFFs. We present the (numerical) results for D(t) in Sec. 3, 
while in Sect 4 we examine the distributions of the pressure and 
shear forces. In Sec. 5, we summarize our main findings.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Definitions

We begin by recalling the (symmetric) Belinfante-Rosenfeld 
EMT in QED [47–49]:

Tμν
QED = Tμν

e + T ′μν
γ , with (1)

Tμν
e = Z2 ψ̄

i

4
γ {μ↔

∂ ν}ψ − Z2

2
μ2εUV e ψ̄ γ {μAν}ψ , (2)

T ′μν
γ = −Z3 Fμα F ν

α + Z3
gμν

4
Fαβ Fαβ , (3)

where the labels e and γ refer to the electron and photon contri-
butions, respectively, and a{μbν} ≡ aμbν +aνbμ . In Eqs. (2) and (3), 
all the fields and the elementary charge e are renormalized, with 
contributions proportional to (Z2,3 − 1) representing standard La-
grangian counterterms. To deal with the ultraviolet divergences we 
have used dimensional regularization in d = 4 − 2 εUV dimensions 
with the mass scale μ.

For the calculation with a nonzero photon mass mγ we must 
go beyond Tμν

QED in Eq. (1). There exist several extensions of QED 
in order to incorporate a massive photon. The two most impor-
tant ones are the Stueckelberg Lagrangian and the spontaneous 
breaking of the U(1) gauge symmetry, that is, the so-called Abelian 
Higgs model. (For a review of both of them see Ref. [50].) In gen-
eral, the two approaches describe different theories, but they are 
equivalent for the purpose of an O (α) calculation of the EMT elec-
tron matrix elements. In fact, both extensions lead to a EMT of the 
form

Tμν
QED +m2

γ

(
AμAν − gμν

2
A2

)
+ Tμν

extra , (4)

and provide identical results since the contribution from Tμν
extra

(which differs in the two cases) vanishes at O (α). The same holds 
for any QED extension with a nonzero mγ .

We have worked with the Abelian Higgs model which is de-
fined through the Lagrangian

LU(1)
Higgs = LQED + Dμ
†Dμ
 − g

(
|
|2 − v2

2

)2

. (5)

In Eq. (5), Dμ is the covariant derivative and 
 the complex scalar 
(Higgs) field with the nonzero vacuum expectation value

〈0|
 |0〉 = v√
2

. (6)

The EMT for the spontaneously broken theory can be written as

Tμν
QED + e2v2

(
AμAν − gμν

2
A2

)
+ Tμν

Higgs , (7)

where Tμν
Higgs is the EMT for the Higgs sector, which contains also 

the interaction terms between the Higgs field and the gauge field. 
In the following, we interpret ev as the photon mass. Since in this 
simple model the Higgs field is not coupled directly to the matter 
part of the QED Lagrangian, all the contributions from Tμν

Higgs to the 
matrix elements of the EMT between electron states are O (α2) or 
higher. Therefore, Tμν

Higgs does not contribute in our calculation. For 
v → 0, one obtains the massless-photon limit. More precisely, in 
this limit one recovers the standard QED for an electron, plus a 
scalar charged massless particle with a quartic self-interaction — 
see Eq. (5) for v = 0.

The EMT of interest for our calculation is therefore given by

Tμν = Tμν
e + Tμν

γ , with (8)

Tμν
γ = T ′μν

γ +m2
γ

(
AμAν − gμν

2
A2

)
, (9)
2

where we have ignored the Lagrangian counterterms. All the cal-
culations are performed in the so-called R1-gauge, in which the 
gauge-fixing term of the Lagrangian takes the form

Lg.f. = −1

2

(
∂ · A −mγ φ2

)2
, (10)

where φ2 is the imaginary component of the Higgs field. In this 
gauge, the photon propagator reads (see, e.g., Ch. 3 of Ref. [51] and 
Ref. [52])

iDμν(k) = −igμν

k2 −m2
γ + iε

. (11)

The general parametrization of the electron and photon EMT 
matrix element between electron states can be written as [1,2,53]

〈e(p′, s′)| Tμν
i |e(p, s)〉

= ū(p′, s′)
(
Ai(t)

PμPν

me
+ J i(t)

i P {μσν}ρ�ρ

2me

+ Di(t)
�μ�ν − gμν�2

4me
+me C̄i(t) g

μν

)
u(p, s) ,

(12)

with i = e, γ and me the electron mass. In Eq. (12), we use P =
1
2 (p + p′), � = p′ − p, t = �2, and σμν = i

2 (γ μγ ν − γ νγ μ). The 
Ai , J i , Di and C̄i are the GFFs, which depend on t and, in general, 
on the renormalization scale. (The latter dependence is suppressed 
to ease the notation.) Below we will show results as a function of 
the dimensionless variable

τ 2 = − t

m2
e

> 0 . (13)

Furthermore, the electron state in Eq. (12) obeys the covariant nor-
malization

〈e(p′, s′)|e(p, s)〉 = 2p0 (2π)3 δs,s′ δ(p
′ − p) , (14)

and the Dirac spinor satisfies ū(p, s) u(p, s) = 2me .
We are interested in the form factors Di(t) in Eq. (12) as 

obtained in perturbation theory. To this aim, we review the ba-
sic steps of the calculation that have been already presented in 
Ref. [46] in the context of considering the forward matrix elements 
of the EMT. We start by computing the Green function with the in-
sertion of the EMT operator, that is,

〈e(p′, s′)|T
[
Tμν
i (0)exp

(
i

∫
d4xLI (x)

)]
|e(p, s)〉 ,

with LI = −e ψ̄/Aψ , (15)

where T indicates time ordering and the EMT is evaluated at the 
origin. (Choosing a different space-time point for the EMT would 
just lead to an irrelevant overall phase.)

The Feynman diagrams from the expansion of Eq. (15) up to 
O (α) are shown in Fig. 1. The diagram L0 is the tree-level contri-
bution, while δ2L0 is the overall vertex counterterm. This countert-
erm coincides with the counterterm for the electron field because 
the total EMT is fully renormalized by means of Lagrangian renor-
malization and we are considering the matrix elements for the 
electron state only. The diagrams L1,2 and Lc.t.1,2 are the leg-loop 
corrections and the corresponding counterterm contributions, re-
spectively. We performed the calculations in the on-shell scheme, 
in which the sum L1 + Lc.t.1 + L2 + Lc.t.2 vanishes. However, the total 
leg contribution L0(1 + δ2) + L1 + Lc.t.1 + L2 + Lc.t.2 does not depend, 
at one-loop, on the renormalization scheme. This has been verified 
by performing the calculation also in the MS scheme. Furthermore, 
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Fig. 1. Feynman diagrams contributing to the electron EMT at O (α). The solid black dot represents the insertion of the EMT into the Green function, whereas a crossed dot 
indicates contributions from counterterms.
the diagrams V1,2 arise from the interaction term in Tμν
e , and 

V3 is the one-loop electron vertex correction associated with the 
derivative term in Tμν

e . Finally, V4 represents the one-loop vertex 
correction where the photon is coupled to the external operator. 
We note in passing that, at one loop, the extra term in the pho-
ton EMT in Eq. (9) proportional to m2

γ contributes to all the GFFs 
in Eq. (12), except the form factors Di(t).

3. Results for the form factor D(t)

Since the EMT is conserved, the total form factor D(t) is not 
renormalized, but the individual photon and electron contribu-
tions, generally, must be renormalized. However, at tree level the 
Di(t) vanish and, hence, they do not require any renormalization 
at one loop. On the other hand, the one-loop D-term has a diver-
gence for vanishing momentum transfer in (standard) QED with 
massless photons [39,40,42]. More precisely, the origin of the di-
vergence can be traced back to the photon contribution to the EMT. 
Here we also show explicitly how a nonzero photon mass regulates 
this divergence.

The results for the form factors read

Di(τ
2, λ2) =

1∫
0

dx

1−x∫
0

dy
fi(x, y)

τ 2 + ai(x, y, λ2)
, (16)

where λ =mγ /me , and

fe(x, y) = α

π

(x− 2)(1 − x− 2y)2

y(1− x− y)
, (17)

fγ (x, y) = α

π

1− x− (1+ x)(1 − x− 2y)2

y(1− x− y)
, (18)

ae(x, y, λ
2) = (1− x)2 + xλ2

y(1− x− y)
, (19)

aγ (x, y, λ2) = x2 + (1 − x)λ2

y(1− x− y)
. (20)

We have found complete numerical agreement between our result 
for the total form factor D(τ 2, λ2 = 0) and the one reported in 
Refs. [39,40]. The analytical result for the electron contribution in 
Eq. (16) is given by
3

Fig. 2. The total D-term of the electron as a function of λ2.

De(τ
2, λ2 = 0) = 10α

3πτ 2

(
1− κ

2
ln

κ + 1

κ − 1

)
, κ =

√
1+ 4

τ 2
.

(21)

In general, the value of the D-term is basically unconstrained. 
It has been argued though that for any bound state the D-term 
should be negative — see [4] and references therein. One finds 
that for the electron in QED (with massless photons) the D-term 
is actually positive and infinite. We repeat that this is due to the 
photon contribution to the EMT which, for τ 2 → 0, behaves as

Dγ (τ 2 � 1, λ2 = 0) � απ

4
√

τ 2
. (22)

In contrast, the electron contribution in Eq. (21) at vanishing mo-
mentum transfer is finite,

De(τ
2 = 0, λ2 = 0) = − 5α

18π
. (23)

For finite values of the photon mass we find

Dγ (τ 2 = 0, λ2 � 1) � α

3
√

λ2
, (24)

that is, a nonzero photon mass indeed leads to a finite D-term. Ob-
viously, the divergence (+ ∞) is recovered in the limit λ → 0. The 
sum of the photon and electron contributions in Eqs. (22) and (23)
reproduces the limit for τ 2 → 0 of the total form factor D(τ 2) ob-
tained in Refs. [39,40]. We also notice that for finite values of τ 2

the form factors Di(τ
2, λ2) are infrared safe. In Fig. 2, we show 
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Fig. 3. The form factor D(τ 2, λ2) as a function of τ 2, for λ2 = 0 (left) and for λ2 = λ2
min (right). The blue dotted curves are the photon contributions and the red dash-dotted 

curves correspond to the negative of the electron contributions. The solid purple curves represent the total form factor in absolute value.
the D-term as a function of λ2. It has a node at small values of 
λ2, going from positive to negative values with increasing λ2. In 
particular, there is a minimum at λ2

min � 8.5. For small values of 
the photon mass, the system behaves essentially as if the pho-
ton is massless: the D-term is positive and large as a result of 
the long-range photon-electron interaction. For very high values of 
the photon mass, the loop diagrams in Fig. 1 are extremely sup-
pressed, and the coupling of the (physical) electron to the EMT 
reduces to a contact interaction that behaves like the coupling at 
the tree-level where the D-term vanishes. But for moderate val-
ues of λ2, the photon mass gives rise to a short-range interaction 
and the response of the physical electron to the coupling with the 
EMT mimics the behaviour of a bound state. However, this simi-
larity does not imply that the electron-photon system becomes a 
bound state for a specific value/range of the photon mass.

In Fig. 3, we show the form factor D(τ 2, λ2) as functions of 
τ 2, for a massless photon (panel (a)) and for λ2 = λ2

min (panel 
(b)), by separating the terms due to the electron and the photon 
contributions to the EMT. For both values of λ, the photon con-
tribution is always positive and the electron contribution always 
negative. In the massless-photon case, the long-range electromag-
netic interaction dominates at low τ 2, whereas at intermediate τ 2

the negative electron contribution takes over so that the total form 
factor changes sign from positive to negative values. The large-τ 2

behaviour of the total form factor is given by [39]

D(τ 2 � 1, λ2 = 0) = α

π

4− lnτ 2

τ 2
, (25)

whereas from Eq. (21) we can obtain the asymptotic behaviour of 
the electron contribution,

De(τ
2 � 1, λ2 = 0) = α

π

10− 5 lnτ 2

3τ 2
. (26)

By subtracting the electron contribution in Eq. (26) from the total 
result in Eq. (25), we find for the photon contribution

Dγ (τ 2 � 1, λ2 = 0) = α

π

2+ 2 lnτ 2

3τ 2
. (27)

This leads to the result

lim
τ 2→∞

De(τ
2, λ2 = 0)

Dγ (τ 2, λ2 = 0)
= −5

2
, (28)

which means that the photon and electron contributions van-
ish asymptotically with the same falloff, and the total form fac-
tor D(τ 2) approaches zero from negative values. In the case of 
4

λ2 = λ2
min, the negative electron contribution prevails over the pos-

itive photon contribution in the full range of the momentum trans-
fer, and the two terms vanish asymptotically with the same falloff. 
The total form factor therefore resembles the features of a hadronic 
bound state, for which D(t) is negative in the entire t-range [4].

4. Results for the pressure and shear-force distributions

The distributions in the coordinate space of the pressure and 
shear forces can be obtained by Fourier transforming the form fac-
tors Di(τ

2, λ2) [3,4]. Working in the Breit frame where P = (E, 0), 
and � = (0, �), we use τ = �/me and its conjugate variable 
ρ = rme to define the Fourier transform as

D̂i(ρ,λ2) =
∫

d3τ

(2π)3
e−iτ ·ρDi(τ

2, λ2)

= 1

2π2ρ
FST

(
τ Di(τ

2, λ2);τ ,ρ
)

, (29)

ˆ̄Ci(ρ,λ2) =
∫

d3τ

(2π)3
e−iτ ·ρ C̄i(τ

2, λ2) , (30)

where the Fourier sine transform is defined as

FST( f (x); x, y) ≡
∞∫
0

dx sin(xy) f (x) . (31)

Using the expressions for the form factors in Eq. (16), we find

D̂i(ρ,λ2) =
1∫

0

dx

1−x∫
0

dy
fi(x, y)

4πρ
e−ρ

√
ai(x,y,λ2) . (32)

We can then obtain the dimensionless pressure and shear distri-
butions as [4]

p̂i(ρ,λ2) = pi(ρ,λ2)

m4
e

= 1

6ρ2

d

dρ
ρ2 d

dρ
D̂i(ρ,λ2) − ˆ̄Ci(ρ,λ2)

= 1

6

d2

dρ2
D̂i(ρ,λ2) + 1

3ρ

d

dρ
D̂i(ρ,λ2) − ˆ̄Ci(ρ,λ2) ,

(33)

ŝi(ρ,λ2) = si(ρ,λ2)

m4
e

= −ρ

4

d

dρ

1

ρ

d

dρ
D̂i(ρ,λ2)

= −1

4

d2

dρ2
D̂i(ρ,λ2) + 1

4ρ

d

dρ
D̂i(ρ,λ2) . (34)
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The contributions from the ˆ̄Ci are proportional to δ(ρ)/ρ2, 
since it can be shown that the form factors C̄i(τ

2, λ2) do not de-
pend on τ 2 (for any value of λ2). Specifically, we can write

ˆ̄Ci(ρ,λ2) = φi(λ
2)

δ′(ρ)

ρ
, with φe(λ

2) = −φγ (λ2) , (35)

where we have used∫
d3τ

(2π)3
e−iτ ·ρ = − 1

2πρ
δ′(ρ) . (36)

Note that for the purpose of the present work one could use 
δ′(ρ) = −δ(ρ)/ρ , with the understanding that 

∫ ∞
0 dρ δ(ρ) = 1

2 . In 
general, these two distributions are of course not identical.

Before presenting the numerical results in position space, we 
discuss some consistency checks that are mostly related to the 
conservation of the EMT. From the definitions in Eq. (29) and 
Eqs. (33)–(34) we obtain

ρ2 p̂(ρ,λ2) = ρ2(p̂e(ρ,λ2) + p̂γ (ρ,λ2))

= − ρ

12π2

∞∫
0

dτ sin (τρ) τ 3D(τ 2, λ2) . (37)

By integrating this relation over ρ and interchanging the order of 
integration between ρ and τ , we find
∞∫
0

dρρ2 p̂(ρ,λ2) = 1

12π

∞∫
0

dττ 3D(τ 2, λ2)δ′(τ ) = 0 , (38)

where the last equality holds because, in the limit of τ → 0, 
Di(τ

2, λ2) goes like 1/τ and therefore the derivative d
(
τ 3Di(τ

2,

λ2)
)
/dτ is proportional to τ — see Ref. [39]. Equation (38) rep-

resents one form of the von Laue condition, which follows from 
the conservation of the EMT [4,5]. If we neglect the form factors 
ˆ̄Ci(ρ, λ2), which are responsible for the fact that the individual 
“parton” EMTs are not conserved, then this condition holds for 
both the electron and photon contributions [4], i.e.,
∞∫
0

dρρ2 p̂i,D(ρ,λ2) = 1

12π

∞∫
0

dττ 3Di(τ
2, λ2)δ′(τ ) = 0 , (39)

where p̂i,D(ρ, λ2) indicates the term in Eq. (33) coming solely 
from the D̂i(ρ, λ2). For the pressure and the shear distributions 
we can write

p̂i,fin.(ρ,λ2) =
1∫

0

dx

1−x∫
0

dy e−ρ
√
ai(x,y,λ2)

× f i(x, y)
ai(x, y, λ2)

24πρ
, (40)

p̂i,D,sing.(ρ) = δ′(ρ)

12πρ

1∫
0

dx

1−x∫
0

dy fi(x, y) , (41)

ŝi,fin.(ρ,λ2) = −
1∫

0

dx

1−x∫
0

dy e−ρ
√
ai(x,y,λ2) f i(x, y)

× 3+ 3
√
ai(x, y, λ2)ρ + ai(x, y, λ2)ρ2

16πρ3
, (42)

ŝi,sing.(ρ) = 3δ(ρ) − ρδ′(ρ)

8πρ2

1∫
0

dx

1−x∫
0

dyfi(x, y) , (43)
5

where we have isolated the finite (fin.) and the singular (sing.) 
contributions. Therefore, not only the form factors C̄i(τ

2, λ2) do 
give rise to singular terms at the origin but also the form factors 
Di(τ

2, λ2). The von Laue condition in Eq. (39) is the result of an 
exact cancellation of the contributions of the finite and the singu-
lar terms. A more general consequence of the conservation of the 
EMT is the relation [4]

2

3

dŝi(ρ,λ2)

dρ
+ 2

ρ
ŝi(ρ,λ2) + dp̂i,D(ρ,λ2)

dρ
= 0 , (44)

which is satisfied separately for the finite terms in Eqs. (40), (42)
and the singular terms in Eqs. (41), (43). Finally, for λ = 0 the 
long-distance behaviour of the pressure and shear distributions is 
known [42] — see also the discussion in Ref. [43]. Specifically, one 
has

p̂(ρ → ∞, λ2 = 0) � p̂γ (ρ → ∞, λ2 = 0) = α

24πρ4
+ . . . , (45)

ŝ(ρ → ∞, λ2 = 0) � ŝγ (ρ → ∞, λ2 = 0) = − α

4πρ4
+ . . . . (46)

We reproduce these results which are determined by the photon 
contribution to the EMT. Numerically we find that the asymptotic 
limits are reached for ρ � 105.

In Fig. 4, we show the results for the finite contributions to 
the pressure and shear distributions as a function of ρ . Panels (a) 
and (b) are for a vanishing photon mass (λ2 = 0), while panels (c) 
and (d) contain the comparison between λ2 = 0 and λ2 = λ2

min. 
The total (finite) pressure distributions are always negative, due to 
the negative contributions from the electron part of the EMT. In 
the case of hadrons, the pressure distributions are also negative 
(attractive) at large distances but positive (repulsive) at small dis-
tances — see [4] and references therein. For the electron in QED 
a positive contribution to the pressure comes only in the form of 
a singular term at the origin. This difference between a hadronic 
bound state and the electron is caused by the different behaviour 
of the GFFs at large momentum transfer. In our calculation, the fi-
nite contribution to the distribution of the shear force is negative, 
regardless of the value of the photon mass, while a singular con-
tribution is located at the origin. In contrast, for hadrons the shear 
distributions tend to be positive for any finite distance. Because of 
the finite interaction range, both the pressure and shear distribu-
tions for finite photon masses vanish faster at large distances than 
for λ = 0.

The pressure and shear distributions allow one to define normal 
and tangential forces inside a system [4]. Specifically, the forces 
experienced by a spherical shell of radius ρ are given by

Fn = 4πρ2
(
2

3
ŝ(ρ,λ2) + p̂(ρ,λ2)

)
, (47)

Ft = 4πρ2
(
p̂(ρ,λ2) − 1

3
ŝ(ρ,λ2)

)
, (48)

and the corresponding numerical results (without the factor 4π ) 
are shown in Fig. 5. We find that for nonzero ρ the normal force 
Fn is negative and the tangential force Ft is positive, while both 
forces have a singular contribution at the origin. For comparison, 
the normal force in hadrons is positive, and the tangential force 
distribution typically switches sign.
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Fig. 4. Finite contributions to the pressure and shear distributions as a function of ρ . Panels (a) and (b) show, respectively, the distributions in Eqs. (40) and (42) multiplied by 
ρ2, for λ2 = 0. The blue dotted curves are the photon contributions and the red dash-dotted curves are the electron contributions, while the solid purple curves represent the 
total results. Panels (c) and (d) show, respectively, the comparison of the pressure and shear distributions for λ2 = 0 (solid purple curves) and λ2 = λ2

min (black dash-dotted 
curves).
The normal force in Eq. (47) was used to define the so-called 
mechanical radius of a system according to [4]

〈r2〉mech ≡
∫
d3r r2

[ 2
3 ŝ(r) + p̂(r)

]
∫
d3r

[ 2
3 ŝ(r) + p̂(r)

] . (49)

This can be re-expressed through the form factor D(t) [4], where 
for the electron (with the dimensionless variable τ 2) one has

〈r2(λ2)〉mech = 6 D(0, λ2)

m2
e
∫ ∞
0 dτ 2D(τ 2, λ2)

. (50)

For λ2 = 0, the numerator as well as the denominator in Eq. (50)
are undefined: As discussed above, the D-term is infinite, while the 
integral in the denominator diverges at both the lower and the up-
per integration limits. The same conclusion follows from the defi-
nition of the mechanical radius in Eq. (49) based on distributions 
in position space. In that case the numerator diverges due to the 
1/ρ4-behaviour of the integrand at large distances (see Eqs. (45)
and (46)), whereas the denominator diverges due to a singularity 
for ρ → 0 in the integral of the shear distribution. On the other 
hand, for any λ2 �= 0, Eq. (50) provides 〈r2(λ2 �= 0)〉mech = 0, since 
the D-term is finite but the denominator (still) diverges because 
of a singularity for ρ → 0. (In this context see also Fig. 6 which 
shows the integrand for the numerator in Eq. (49) for both λ2 = 0
and λ2 = λ2

min. In the latter case, the pressure and shear distribu-
tions fall off much faster at large ρ , leading to a finite value for the 
numerator in Eq. (49).) These results should also hold for arbitrary 
order in perturbation theory. It is therefore tempting to define the 
mechanical radius of the electron in QED (with a massless pho-
ton) according to 〈r2〉e− ≡ limλ→0〈r2(λ2 �= 0)〉mech = 0. However, 
mech

6

we do not assign much significance to this result. We rather con-
clude that the concept of the mechanical radius cannot be applied 
for systems whose form factor D(t) does not drop fast enough at 
large momentum transfer — see also the corresponding discussion 
in Ref. [4].

5. Conclusions

The off-forward matrix elements of the EMT, which are para-
metrized through several GFFs, encode a wealth of information 
about the energy, spin, pressure and shear distributions inside a 
particle. We focused our attention on the one-loop QED calcula-
tion of the GFF D(t) for an electron, by separately evaluating the 
contributions from the electron and the photon parts of the EMT. 
The form factor D(t), which represents a fundamental quantity of 
the (physical) electron, contains the information about the (total) 
pressure and shear distributions. The D-term, that is D(t = 0), is 
infinite, where the infinity is caused by the photon contribution 
to the EMT in combination with the long-range Coulomb interac-
tion — see also Ref. [42]. On the other hand, for a nonzero (and 
sufficiently large) photon mass one finds that the D-term becomes 
negative and, in fact, the form factor D(t) is negative for the en-
tire t-range. The same qualitative results hold for hadronic bound 
states [4]. Therefore the “physical” electron, which is composed of 
a bare electron and a massive photon, mimics a bound state. How-
ever, there is one crucial difference: For both a zero and nonzero 
photon mass the form factor D(t) essentially drops like 1/|t| at 
large momentum transfer. This is (considerably) slower than for a 
hadronic bound state [4,5]. When making this comparison between 
the electron and hadrons, we do not consider electromagnetic con-
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Fig. 5. Finite contributions to the normal and tangential forces in Eqs. (47), (48) as a function of ρ . The blue dotted curves are the photon contributions and the red dash-
dotted curves are the electron contributions, while the solid purple curves represent the total results. Panels (b) and (d) compare the total forces for λ2 = 0 (solid purple 
curves) and for λ2 = λ2

min (black dash-dotted curves).

Fig. 6. Integrand for numerator of the mechanical radius in Eq. (49) as a function of ρ , for both λ2 = 0 (panel (a)) and λ2 = λ2
min (panel (b)). (Note that the singular terms 

in the pressure and shear distributions do not contribute to this integral.) The blue dotted curve shows the photon contribution, the red dash-dotted curve the electron 
contribution, the solid purple curves the total result for λ2 = 0, and the black dash-dotted curve the total result for λ2 = λ2

min.
tributions to D(t) for a hadron, which do actually also lead to a 
1/|t| behaviour at large |t| as discussed recently in Ref. [43]. As a 
result, the pressure and shear distributions in position space show 
significant qualitative differences in the two cases. In particular, 
for the electron in QED both distributions exhibit a delta function 
singularity at the origin r = 0, which is not known for hadrons. 
We repeat that the GFFs, including D(t), are fundamental quanti-
ties and, in general, differences between the electron and hadronic 
7

bound states are due to the long-range QED effects and the be-
haviour of the GFFs at large momentum transfer.
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[35] K. Kumerički, Nature 570 (2019) E1–E2, https://doi .org /10 .1038 /s41586 -019 -

1211 -6.
[36] H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder, A. Trawiński, J. Wagner, Eur. 
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