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SAMPLE COMPLEXITY OF SAMPLE AVERAGE APPROXIMATION
FOR CONDITIONAL STOCHASTIC OPTIMIZATION*
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Abstract. In this paper, we study a class of stochastic optimization problems, referred to as
the conditional stochastic optimization (CSO), in the form of mingex B¢ fe(Ey¢lgn(z,£)]), which
finds a wide spectrum of applications including portfolio selection, reinforcement learning, robust
learning, and causal inference. Assuming availability of samples from the distribution P(¢) and
samples from the conditional distribution P(n|€), we establish the sample complexity of the sample
average approximation (SAA) for CSO, under a variety of structural assumptions, such as Lipschitz
continuity, smoothness, and error bound conditions. We show that the total sample complexity
improves from O(d/e*) to O(d/e®) when assuming smoothness of the outer function, and further to
O(1/€%) when the empirical function satisfies the quadratic growth condition. We also establish the
sample complexity of a modified SAA when £ and 7 are independent. Several numerical experiments
further support our theoretical findings.
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1. Introduction. Decision-making in the presence of uncertainty has been a
fundamental and long-standing challenge in many fields of science and engineering.
In recent years, extensive research efforts have been devoted to the design and theory
of efficient algorithms for solving the classical stochastic optimization (SO) in the
form of
(L.1) min F(z) = Belf (2, €)),
ranging from convex to nonconvex objectives, from first-order to second-order meth-
ods, and from sublinear to linear convergent algorithms; see, e.g., [5] and references
therein for a comprehensive survey. Here X C R? is the decision set and f(z,¢) is
some cost function dependent on the random vector . In general, (1.1) cannot be
computed analytically or solved exactly, even when the underlying distribution of the
random vector £ is known, and one has to resort to Monte Carlo sampling techniques.

An important Monte Carlo method—the sample average approximation (SAA),
also known as the empirical risk minimization in the machine learning community—
is widely used to solve (1.1), assuming availability of samples from the underlying
distribution. SAA works by solving the approximation of the original problem:

. 1 <
1.2 in F, = — NS
(12 iy Fole) = 36
where 1, ..., &, are independent and identically distributed (i.i.d.) samples generated
from the distribution of £. Note that F,,(z) converges pointwise to F(z) with proba-
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bility 1 as n goes to infinity. Finite-sample convergence of SAA for SO has been well
established. The seminal work by [20] proved that for general Lipschitz continuous
objectives, SAA requires a sample complexity of O(d/€?) to obtain an e-optimal so-
lution to the SO problem. The authors of [36] proved that for strongly convex and
Lipschitz continuous objectives, the sample complexity of SAA is O(1/¢). Detailed
results can be found in the books [38] and [35].

More generally, SAA is also a popular computational tool for solving multistage
stochastic programming (MSP) problems. In its general form, an MSP finds a se-
quence of decisions {x;}}_, that minimizes the nested expectation in the following
form:

(1.3) min fo(zo) +Ee, | inf fl(‘rl’gl)+E’§2‘§1|:'”+E5T‘EI:T—1[Echf fT(fUTvﬁT)H]v

where T is the number of decision periods, &1, ...,&r can be considered as a random
process, and the decision z; is a function of the history of the process up to time t.
Similarly, the SAA approach works by first generating a large scenario tree with condi-
tional sampling and then processing with stage-based or scenario-based decomposition
methods [31, 33, 34]. When extended to the multistage case, the finite-sample analy-
sis indicates that the total number of samples, or scenarios, to achieve an e-optimal
solution to the original problem (1.3) grows exponentially as the number of stages in-
creases [39, 38]. In particular, for general three-stage stochastic problems, the sample
complexity of SAA cannot be smaller than O(d?/e*); this holds true even if the cost
functions in all stages are linear and the random vectors are stagewise independent
as discussed in [37].

In this paper, we study an intermediate class of problems, referred to as the
conditional stochastic optimization (CSO), that sits in between the classical SO and
the MSP. The problem of interest takes the following general form:

(1.4) min F(z) := Ee [f& (Enli[gn(x7§)])]

Here X is the domain of the decision variable z € R% fe(-) : R¥ — R is a con-
tinuous cost function dependent on the random vector &; and gy(-,§) : R? — RF is
a vector-valued continuous cost function dependent on both random vectors £ and
7. The inner expectation is with respect to 1 given &, and the outer expectation is
with respect to . Similar to the classical SO, we do not assume any knowledge of
the underlying distribution of P(¢) or the conditional distribution P(n|£). Instead,
we assume availability of samples from the distribution P(¢) and samples from the
conditional distribution P(n|¢) for any given &.

CSO is more general than the classical SO as it captures dynamic randomness
and involves conditional expectation. It takes the SO as a special case when g,(z, )
is an identical function. On the other hand, it is less complicated than the MSP (in
particular the three-stage case with 7" = 3) as it seeks a static decision and is not
subject to nonanticipativity constraints.

The goal of this paper is to analyze the sample complexity of SAA for solving
CSO, which can be constructed as follows based on conditional sampling:

- 1< 1
(1'5> ?él;l an(l') = nggl (m ngj(wvgi)>7
i=1 j=1

where {;}]"; are i.i.d. samples generated from P(§) and {n;;}2; are i.i.d. samples
generated from the conditional distribution P(n|¢;) for a given outer sample ;. We
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would like to examine the total number of samples T' = nm +n required for SAA (1.5)
to achieve an e-optimal solution to the original CSO problem (1.4).

We also consider a special case of the CSO problem (1.4) when the random vectors
¢ and 7 are independent:

(1.6) min F(2) = Ee | fe (Eylgy(2,9)]) |
zeX

One could still approximate (1.6) by the SAA (1.5), mimicking the conditional sam-

pling scheme and using different samples {7;1,...,7;m} from the distribution of 7 for

each &;. However, since the inner expectation is no longer a conditional expectation,

there is no necessity to estimate the inner expectation with different realizations of

7 for each ;. Hence, an alternative way to approximate (1.6) is through a modified

SAA:
. on 1O 1 &
(1.7 iy Fone) =1 > 1o > (@.6))

where {¢;};-; are ii.d. samples generated from the distribution of £ and {n;}7L,
are i.i.d. samples generated from the distribution of 7. As a result, the component
functions fe, (L 27:1 gn; (2,&;)),i=1,...,n, become dependent since they share the
same {7;}7",, making it very different from (1.5). In this case, the total number
of samples becomes T = n + m. We refer to this sampling scheme as independent
sampling.

1.1. Motivating applications. Notably, CSO can be used to model a vari-
ety of applications, including portfolio selection [16], robust supervised learning [7],
reinforcement learning [7, 8], personalized medical treatment [45], and instrumental
variable regression [27]. We discuss some of these examples in detail below.

Robust supervised learning. Incorporation of priors on invariance and robustness
into the supervised learning procedures is crucial for computer vision and speech
recognition [28, 3]. Taking image classification as an example, we would like to build
a classifier that is both accurate and invariant to certain kinds of data transformation,
such as rotation and perturbation. Let & = (a1,b1),...,& = (an,by) be a set
of input data, where a; is the feature vector and b; is the label. A plausible way
to achieve such consistency is to consider the class of robust linear classifiers, say
f(7,20,8) = Epjemp(o(a)) [2Tn+m0) for given image data &, by averaging the prediction
over all possible transformations o(a), and then finding the best fit by minimizing the
expected risk:

min Eg:(a,b) [f(b, ]Emg[nTﬂf + xo])} + KHJZH%
(z,x0) 2

Here £(-,-) is some loss function, v > 0 is a regularization parameter, and u(-) is a
given distribution (e.g., uniform) over the transformations. Clearly, such problems
belong to the category of CSO.

Reinforcement learning. Policy evaluation is a fundamental task in Markov de-
cision processes and reinforcement learning. Consider a discounted Markov decision
process characterized by the tuple M := (S, A, P,r, ), where S is a finite state space,
A is a finite action space, P(s,a, s’) represents the (unknown) state transition proba-
bility from state s to s’ given action a, 7(s,a) : S x A — R is a reward function, and
v € (0,1) is a discount factor. Given a stochastic policy 7(als), the goal of the policy
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evaluation is to estimate the value function V7™ (s) := E [ Y52 v*r(sk, ax)| so = ]
under the policy. It is well known that V™(+) is a fixed point of the Bellman equa-
tion [1]

V™ (s) = Ega,s[r(s,a) + 7V (s")].

To estimate the value function V™ (s), one could resort to minimizing the mean squared
Bellman error [41, 7], namely

! 2
R Eevu)anatls) [(r(s,0) = Egjas[V(s) =7V (s)])7].

Here p(-) is the stationary distribution. This minimization problem can be viewed
as a special case of CSO. Recently, [8] showed that finding the optimal policy can
also be formulated into an optimization problem in a similar form by exploiting the
smoothed Bellman optimality equation. Again, the resulting problem falls under the
category of CSO.

Uplift modeling. Uplift modeling aims at estimating individual treatment effects,
and it has been widely studied in causal inference literature and used for personalized
medicine treatment and targeted marketing [18, 45]. In an individual uplift model,
the goal is to estimate the effect of a treatment on an individual with feature vector z,
which could be represented by u(z) := E[y|z,t = 1] — Ely|z,t = —1]. Here ¢t € {£1}
represents whether a treatment has been given to an individual, and y € Y C R
represents the outcome. In practice, obtaining joint labels (y,t) can be difficult,
whereas obtaining one label (either ¢ or y) of the individual is relatively easier. The
authors of [45] considered an individual uplift model that assumes availability of
only one label from the joint labels and estimates the unknown label with p(y|z) =
> i—{+1y P(ylz,t)p(t|z). They showed that the individual uplift u(z) is equivalent to
the optimal solution to the following least-squares problem:

i E ~p(z sz ) _QEza: 2 9
Wi Eop(a) [(Eue[w] - u(z) 2[2)%]

where L?(p) = {f : X = R| Epp() [f(2)?] < 00} is a function space, and w and z are
two auxiliary random variables whose conditional densities are given by p (z = zp|x) =
ip(y = zolz)+ 3p (y = —20|x), p(w = wolz) = Lp (t = wolz) + 3p (t = —wolz). If we
further restrict u(-) to a finite dimensional parameterization, then the above problem
becomes a special case of CSO.

For these applications, there are many settings in which samples can be generated
according to our assumptions. For instance, in robust supervised learning and uplift
modeling, there are multiple samples from P(n|¢) available for any given &.

1.2. Related work. A closely related class of problems, called stochastic com-
position optimization, has been extensively studied in the literature; see, e.g., [46, 32,
12, 42], to name just a few. This class of problems takes the following form:

(1.8) min £ 0 g(z) := Ee| fe (B, lg,(2)]) |
where f(u) := E¢[fe(u)], and g(z) := E,[g,(z)]. Although the two problems, (1.8)
and (1.4), share some similarities in that both objectives are represented by nested
expectations, they are fundamentally different in two aspects: (i) the inner random-
ness 7 in (1.4) is conditionally dependent on the outer randomness £, while the inner
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expectation in (1.8) is taken over the marginal distribution of n; (ii) the inner random
function g, (z,&) in (1.4) depends on both ¢ and 7. As a result, unlike (1.8), the CSO
problem (1.4) cannot be formulated as a composition of two deterministic functions
due to the dependence between the inner and outer functions. Another key distinction
from (1.8) is that we assume availability of samples from the distributions P(¢) and
P(n|€), rather than samples from the joint distribution P(£, 7). These two distinctions
further lead to a drastic difference in the SAA construction and the sample complexity
analysis of these two types of problems, as we will show in the rest of the paper.

When solving either (1.8) or (1.4), most of the existing work is devoted to de-
veloping stochastic oracle-based algorithms and their convergence analysis for solving
these problems. Related work includes two-timescale [32, 46, 42, 43] and single-
timescale [13] stochastic approximation algorithms for solving the problem (1.8),
variance-reduced algorithms for solving the SAA counterpart of (1.8) [22, 17, 40], and
a primal-dual functional stochastic approximation algorithm for solving the problem
(1.4) [7]. These methods usually require convexity of the objective in order to obtain
an e-optimal solution. Our work differs from the works listed above in that we mainly
focus on establishing the sample complexity of SAA itself rather than designing effi-
cient algorithms to solve the resulting SAA.

We point out that our paper is in the same vein as a series of papers [20, 39, 37,
30,12, 9, 2, 23], centered at the sample average approximation approach for stochastic
programs. In particular, [9] derived a central limit theorem result for the SAA of the
stochastic composition optimization problem (1.8), and [12, 29] established the rate
of convergence. Despite these developments, the study of the basic SAA approach
and its finite-sample complexity analysis remains unexplored for solving the general
CSO problem (1.4) and even the special case (1.6). We aim to close this gap in this

paper.

1.3. Contributions. In this paper, we formally analyze the sample complexity
of the corresponding SAA approach for solving CSO. Our contributions are summa-
rized as follows and in Table 1.1.

(a) We establish the first sample complexity results of the SAA in (1.5) for the CSO
problem (1.4) under several structural assumptions:

(i) Both f¢ and g, are Lipschitz continuous.

(ii) In addition to (i), fe is Lipschitz smooth.

(iii) In addition to (i), the empirical function satisfies the Holderian error bound
condition.
(iv) In addition to (i), fe is Lipschitz smooth, and the empirical function satisfies
the Holderian error bound condition.
None of these assumptions require convexity' of the underlying objective function.
Note that the Holderian error bound condition [4], which includes the quadratic
growth (QG) condition [19] as a special case, is a much weaker assumption than
strong convexity and holds for many nonconvex problems in machine learning ap-
plications [6]. We show that, for general Lipschitz continuous problems, the sample
complexity of SAA improves from O(d/e*) to O(d/€*) when assuming smoothness;
for problems satisfying the QG condition, the sample complexity of SAA improves
from O(1/€3) to O(1/€?) when assuming smoothness. This is very different from
the classical results on the SO and the MSP, where Lipschitz smoothness plays
no essential role in the sample complexity [20, 37]. Our results are built on the

1However, when solving the SAA problem itself, convexity conditions are often necessary for
obtaining a global minimizer.
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TABLE 1.1
Sample complexity of SAA methods.

Assumptions Sample complexity
Problem — —
fe() Fy or Fum Conditional | Independent
SO [20] - . O(d/e?) .
SO [36] - strongly convex O(1/e€) -
MSP (T = 3) [37] - - O(d?/et) O(d?/e*)
CSO - - O(d/e*
(d/e*) 0(d/e2)
CSsO smooth - O(d/e?)
CSO - quadratic growth O(1/€3) 0(d/e2)
CSsO smooth | quadratic growth O(1/€%)

Fy, or Fn, = empirical objective; e = accuracy; d = dimension;

Conditional = conditional sampling; Independent = independent sampling

traditional large deviation theory and stability arguments, while leveraging sev-
eral bias-variance decomposition techniques, in order to fully exploit the specific
structure of CSO and other structural assumptions.

We analyze the sample complexity of the modified SAA in (1.7) for the special case
(1.6), where £ and 7 are independent. We show that the total sample complexity of
the modified SAA is O(d/e?) for the general Lipschitz continuous problems. The
existence of the QG condition only improves the complexity of the outer samples
from O(d/e?) to O(1/¢), yet the overall complexity is dominated by the complexity
of the inner samples, which is O(d/e?). Our complexity result matches with the
asymptotic rate established in [9], even without assuming smoothness of outer and
inner functions, and is unimprovable.

We conduct some simulations of the SAA approach on several examples, including
the logistic regression, least absolute value (LAV) regression, and its smoothed
counterpart, under some modifications. Our simulation results indicate that solv-
ing the nonsmooth LAV regression requires more samples than solving its smooth
counterpart to achieve the same accuracy. We also observe that when the variance
of the inner randomness is relatively large, for a fixed budget T', setting n = O(v/T)
samples seems to perform best for logistic regression, which matches with our the-
ory. Although both conditional sampling and independent sampling schemes can
be applied to solving the special case (1.6), with nearly matching sample complex-
ity in situation (iv) (see the last row in Table 1.1), our simulations show that using
the independent sampling scheme exhibits better performance in practice.

1.4. Paper organization. The remainder of this paper is organized as follows.

In section 2, we introduce some notation and preliminaries. In section 3, we give the
basic assumptions and analyze the mean squared error (MSE) of the Monte Carlo
estimation. In section 4, we present the main results on the sample complexity of
SAA for CSO under different structural assumptions. In section 5, we provide results
for the special case when £ and 7 are independent. Numerical results are given in
section 6.

2. Preliminaries. For convenience, we collect here some notation that will be

used throughout the paper. We also introduce some mathematical tools and proposi-
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tions that are necessary for future discussion. For simplicity, we restrict our attention
to the lo-norm, denoted as || - ||2. Similar results on sample complexity with respect
to different norms can be obtained with minor modification of the analysis.

Let X C R be the decision set. We say X has a finite diameter Dy if |21 —z2||2 <
Dy Vx1,29 € X. For v € (0,1), {xl}lel is said to be a v-net of X if z; € X VI =
1,...,Q, and the following holds: Vz € &, 3l(z) € {1,...,Q} such that ||z —x)|l2 <
v. If X has a finite diameter Dy, for any v € (0, 1), there exists a v-net of X, and the
size of the v-net is bounded, Q < O((Dx /v)?) [38].

A function f : X — R is said to be L-Lipschitz continuous if there exists a
constant L > 0 such that |f(z1) — f(z2)| < L||z1 — z2]]2 Vo1, 22 € X. The function
f X — R is said to be S-Lipschitz smooth if it is continuously differentiable and
its gradient is S-Lipschitz continuous. This also implies that Vzq,29 € X @ |f(21) —
f(x2) = Vf(z2) (21 — 22)| < Z||z1 — 22]|3. If a continuously differentiable function
[ X = Rsatisfies that Vay, 20 € X, f(21)—f(22) =V f(22) T (21 —22) > £||lz1—22]|3,
then f is called p-strongly convex when p > 0, convex when p = 0, and p-weakly
convex when p < 0.

DEFINITION 2.1 (Holderian error bound condition). Let f : X — R be a function
with compact domain X and the optimal solution set X* is nonempty. f(-) satisfies
the (u,d)-Hélderian error bound condition if there exist 6 > 0 and p > 0 such that

Vre X, fz)—minf() = p inf [lo— 2|5,

In particular, when § =1, we say f satisfies the quadratic growth (QG) condition.

The Holderian error bound condition is also known as the Lojasiewicz inequal-
ity [4]. When 6 = 1, the condition implies a quadratic growth of the function value
near any local minima. The QG condition is a weaker assumption than strong con-
vexity and does not need to be convex. When f(-) is convex, the QG condition is also
referred to as optimal strong convexity [24] and semistrong convexity [14].

Cramér’s large deviation theorem will be frequently used, so we list it as a lemma
below based on the result in [20]. We extend the result to random vectors and provide
the proof in Appendix A.

LEmMMA 2.1. Let Xq,...,X,, be i.i.d. samples of zero-mean random variable X
with finite variance 0. For any € > 0, it holds that

1 n
P(=S"X, > € < exp(—nl(e)),
(n 1:21 > 6) < exp(—nl(e))
where I(€) := sup,cp{te — log M(t)} is the rate function of random variable X, and
M(t) := Ee!X is the moment generating function of X. For any § > 0, there exists
€1 > 0, for any € € (0,€1), I(e) > ﬁ. If X is a zero-mean sub-Gaussian, then
P(LY" | X; > €) < exp(—25) Ve > 0.

If X is a zero-mean random vector in R¥ such that E|| X |3 = 02 < oo, then for
any 0 > 0, there exists €1 > 0, for any € € (0,¢€1),

P lfx > ) <2 _ne
- il 2€) < xp | — .
n - , = P T 21002
i=1
We will also use the simple fact that for any random variables Y and Z, if random
variable W < X :=Y + Z, then for any € > 0, P(W > ¢) < P(X > ¢) < P(Y >
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5) +P(Z > §). Lastly, throughout the paper, we call z. € X' an e-optimal solution
to the problem min,cy F(z) if F(z.) — mingex F(x) <e.

3. Mean squared error of SAA estimator for CSO. In this section, we
make the basic assumptions and analyze the MSE of the Monte Carlo estimate of the
function value f(z) at a given point.

3.1. Problem formulation and assumptions. Recall the problem (1.4),

min F(2) = Ee| fe (Eyielgn (,9)]) |
where fe(-) : R* — R, g,(-,€) : R? — R* are random functions. Recall its SAA
counterpart (1.5):

m

. 1 — 1
g}:_i;(l an(m) = g ZZ:; ffz‘ (m j;gmj (.Z‘, 51)) )

We denote z* and &, the optimal solutions to the CSO and the SAA problems, re-
spectively. We are interested in estimating the probability of Z,,, being an e-optimal
solution to the CSO problem, namely P (F(Zym) — F(2*) < €), for an arbitrary accu-
racy € > 0.

Throughout the paper, we assume availability of i.i.d. samples generated from
distribution P(¢) and conditional distribution P(n|¢) for any given £, and we make
the following basic assumptions.

ASsUMPTION 3.1. We assume the following:

(a) The decision set X C R? has a finite diameter Dx > 0.

(b) fe(+) is Ly-Lipschitz continuous and gy, (-, &) is Lg-Lipschitz continuous for
any given & and n.

(c) Forallxz € X, f(x,&) is Borel measurable in & and g, (x, &) is Borel measur-
able in n for all €.

d) 0? ‘= maxzex Ve (fg(Emg[gn(x,f)])) < o0.
e) UZ = maXgex ¢ Enli”Qn(maf) - Emggn(ﬂi,f)\@ < 00.
) 1fe()] < My, llgn(-,§)ll2 < My for any & and n.

The assumption (f) on the boundedness of function values is implied by assump-
tions (a) and (b). The assumptions (d) and (e) on boundedness of variances are
commonly used for sample complexity analysis in the literature. The assumptions (b)
and (c) together suggest that the functions fe and g,(x,&) are Carathéodory func-
tions [21]. Although the parameters Ly, Ly, o, and o4 could depend on dimensions
d and k, we treat these parameters as given constants throughout the paper.

—~—

3.2. Mean squared error of SAA objective. In this subsection, we analyze
the MSE of the estimator F},,,(z), i.e., the SAA objective (or the empirical objective),
for estimating the true objective function F'(z), at a given x. The MSE can be
decomposed into the sum of squared bias and variance of the estimator:

(3.1)  MSE(Epm(x)) := E|Fpm(z) — F(2)]? = (BEum(z) — F(2))? + V(Eup ().

We have the following lemmas on bounding the bias and variance.

LEMMA 3.1. Let {n;}L, be conditional samples from P(n|§) given & ~ P(§).
Under Assumption 3.1, for any fixred x € X that is independent of £ and {771'};‘”:1: it
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holds that

Lyo,

62 [Eemn | ngxs) Je(Enean(z.©)|| < 2222

If, additionally, fe(-) is S-Lipschitz smooth, we have

(3:3) ‘E{s,{m};"l}[k( ngm) fe(Byiggn(, O)H < 5%

- 2m

Proof. Define X := gy, (z,&) —Epegy(z,€) and X = Z;ﬂ:l X /m. It follows that
IE{m |§[X] = 0 by definition, and that Ey, ym 1|§[||XH ] < ag/m by Assumption

3.1(d). ]E{nj}}-"'zllévfi( n|5gn(:z:,§)) (L ijl X;(z)) = 0 since z is independent of
{n; };7"':1. The results then follow directly by invoking the Lipschitz continuity or the
Lipschitz smoothness and taking expectations. ]

4MysLyo,
ny/m

Proof. We first introduce F),(z) := 1 ) 1f51( nie: lgn (2, &)]). Tt follows from
the independence among {&;}7, that V(F,(z)) < 2L L. By definition we have

V(an(x)) _ V(Fn(x))
= [E(Fin@?) - BFRin(@)] - [EF@) - @R @)]

[E(Fin(@)?) - B @) + - [BR @) - ERn@)?],

A o2
LEMMA 3.2. Under Assumption 3.1, it holds that V(Fy,,(x)) < -+ +

_1
n
where Fy,,(z) := fe (& Z;nzl g, (2,&1)) and Fy(x) := fe, (Epje, gn(2,&1)). From As-
sumption 3.1(b) and Lemma 3.1, we have E(Fy,,,(z)?) —E(Fi(z)?) < 2ME|Fy,,(z) —

Fi(z)| < 2M;Lso,/+/m. In addition, (EF}(z))? — (EFy,,(2))? < 2M;Lso,//m.
Hence, we obtain the desired result. 0

The following result on the MSE follows naturally by (3.1).

THEOREM 3.1. Under Assumption 3.1, we have

R L3io2 1 AM¢Lyo
4 MSE(F; < Z1% 4 (g2 4 2RI
(3.4) SE(Fum () < m +n(af+ vm

If, additionally, fe(-) is S-Lipschitz smooth, the MSE is further bounded by

R S20t 1 AM¢ Lo
: MSE(F: <04 (g2 ),
(3.5) SE(Fnm(2)) < 4m? + n<0f+ vm

Unlike the classical stochastic optimization, the SAA objective of CSO is no longer
unbiased. The estimation error of the SAA objective therefore comes from both bias
and variance. A key observation from Theorem 3.1 is that Lipschitz smoothness of
fe(+) is essential to reduce the bias and can be potentially exploited to improve the
sample complexity of SAA.

We point out that in [15], the authors also consider the estimation problem of the
expected value of a nonlinear function on a conditional expectation, i.e., E[f(E[(|£])].
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Their setting is slightly different from ours as they restrict f to be one-dimensional
and assume f contains a finite number of discontinuous or nondifferential points and
is thrice differentiable with finite derivatives on all continuous points. They provide
an asymptotic bound O(1/m? + 1/n) of the MSE for their nested estimator based
on Taylor expansion. Here we focus on a general continuous outer function f¢(-) and
show that Lipschitz smoothness of f¢(-) is sufficient to achieve a similar error bound
with finite samples.

Remark 3.1. When the outer function fe(-) is linear, E,,,(z) is an unbiased esti-
mator of F(z). By setting S = 0 in (3.5) and applying a similar analysis, we have

: 1B
MSE(Fm(x) = V(Fum(z)) < A\ +o% |

Note that in this special case, the error of an(x) is dominated by the number of
outer samples used, which is quite different from the general case.

4. Sample complexity of SAA for conditional stochastic optimization.
In this section, we analyze the number of samples required for the solution to the
SAA (1.5) to be e-optimal of the CSO problem (1.4), with high probability.

We consider two general cases: (i) when the objective is Lipschitz continuous and
(ii) when the empirical objective satisfies the Holderian error bound condition. In
the former case, we establish a uniform convergence analysis based on concentration
inequalities to bound P(F(Z,m,) — F(x*) > €), and in the latter case, we provide a
stability analysis. In both cases, we further take into account two scenarios, with and
without the Lipschitz smoothness assumption of the outer function f¢(-).

4.1. Sample complexity for general Lipschitz continuous functions. We
first consider the case when the objective is Lipschitz continuous and prove the uniform
convergence.

THEOREM 4.1 (uniform convergence). Under Assumption 3.1, for any § > 0,
there exists €1 > 0 such that for € € (0,€1), when m > Lio? /€*, we have

(4.1)

. AL;L,Dx\* ne
P( sup |Epp(z)—F <Oo(1)( LR x - :
(s3p o)) <O e (~ oo

If, additionally, fe(-) is S-Lipschitz smooth, then (4.1) holds as long as m > 250’3/6,

Proof. We construct a v-net to get rid of the supreme over x and use a concentra-

tion inequality to bound the probability. First, we pick a v-net {a:l}lel on the decision
: d

set X, such that LyL,v = €/4; thus Q < (9(1)(%) . Note that {xl}lQ:l has

no randomness. By definition of the v-net, we have Vx € X, 3 l(z) € {1,2,...,Q},

s.t. ||z —2y(g)[|]2 < v = €/4LyL,. Invoking Lipschitz continuity of f¢ and g,), we obtain

Hence, for any x € X,

(@) = Flog)| <

N
>~ ™

| B () — F ()]

< |an(l‘) - an(xl(w)ﬂ + |an(zl(w)) - F(Ccl(w)” =+ |F(Il(x)) - F(‘T)|
€ ~ € ~

< S (@) — Flagm)| < < Fom (@) — F(a)].

< 5 + | (T1()) (T1(2))] 2 +l€{£§'?§’Q}| (1) (z1)]
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It follows that

P(Egg | By () — F(x)] > e> <P max | By () — F ()] > 6)
(4.2) )

Define Z;(1) := fe, (% Z;‘n:1 Gni; (21,&:)) — F(y); then Z1(1), Zo(1), ..., Zn(1) are i.id.
random variables. Denote their expectation as EZ(1). Then Z;(l) — EZ(I) is a zero-
mean random variable.

If max; EZ(1) < €/4, by Lemma 2.1, we have

P(an(a:l) ~F(z) > ;) < P(an(xl) ~ F(z) > i + ]EZ(Z))

P(i D _1Z:() —EZ () > i) S exp < " 160 +2§V(Z(l))>'

i=1

Similarly, we could show that if max; EZ(l) > —e/4,

(4.4) ]P’(F(xl) — Fom(@1) > ;) < exp (- 55 +Z§1/(Z(1))>‘

Based on Lemma 3.1, we have, for Lipschitz continuous f¢(-), |EZ(l)| < Lyog/\/m
VI = 1,...,Q; for Lipschitz smooth f¢(-), [EZ(])| < Sa§/2m Vi =1,...,Q. Thus,
max; EZ(l) < €/4 is satisfied when m is sufficiently large. By analysis of Lemma 3.2,
we know that V(Z(l)) < O'J% +4My¢Lsog//m < O'ch +4MyLso,. Plugging this into

4.2) with Q < O(1 4LoLiDx d, we obtain the desired result. 0
(4.2) .

Since an(aﬁnm) — an(:r*) < 0, we have

P
= P ([F(@nm) = Fum(Enm)] + B (Enm) = P (0] + Frum(a) = F(2*)] 2 €)
P (F(@nm) — B () > 6/2) +P (an(x*) _F(z*) > 6/2) .

Invoking Theorem 4.1, we immediately have the following result.

COROLLARY 4.1 (SAA under general Lipschitz continuous condition).  Under
Assumption 3.1, for any § > 0, there exists e > 0 such that for e € (0,€1), when
m > L;U?]/GQ,

(4.6)

]P(F(ﬁ"m) — k@) > 6) =0W) (W)dem <_ 64(2 + 5)(0:%Li 4Mfoag)>'

If, additionally, fe(-) is S-Lipschitz smooth, then (4.6) holds as long as m > 250’3/6.

This further implies the following sample complexity result.
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COROLLARY 4.2. With probability at least 1 — «, the solution to the SAA problem
is e-optimal to the original CSO problem if the sample sizes n and m satisfy that

034+ 4MsLyso L¢L,D 1
n > O<1)f—2m [dlog (W> +log (a) }
€ €

L3252 .
{ S under Assumption 3.1,
m

€ )
2503

€ )

fe(+) is also Lipschitz smooth.

Ignoring the log factors, under Assumption 3.1, the total sample complezity of SAA
for achieving an e-optimal solution is T = mn+n = O(d/e*); when fe(-) is Lipschitz
smooth, the total sample complexity reduces to T = mn +n = O(d/e®).

The above result indicates that in general, the sample complexity of the SAA for
the CSO problem is O(d/e*) when assuming only Lipschitz continuity of the functions
fe and g,. The sample complexity drops to O(d/ €%) assuming additionally Lipschitz
smoothness of the outer function f¢. Notice that the complexity depends only linearly
on the dimension of the decision set. This is quite different from three-stage stochastic
optimization. In [37], for three-stage stochastic programming, the authors showed
the sample sizes for estimating the second and the third stages need to be at least
O(d/€?), leading to a total of O(d?/e*) samples, to guarantee uniform convergence
even for stagewise independent random variables.

Remark 4.1. In the special case when the outer function fe(-) is linear, by a similar
analysis, one could show that for any fixed m, n > O(d(LchS/ercr]%)/e*Q) guarantees

that the optimal solution of an(x) is e-optimal to F'(z) with high probability. In this
case, it makes sense to simply set m = 1, and the total sample complexity becomes

O(d/ée?).

4.2. Sample complexity under error bound conditions. In this subsection,
we consider the case when the empirical function satisfies the Holderian error bound
condition, which includes the QG condition and strong convexity as special cases.
The Holderian error bound condition has been widely studied recently in the context
of (stochastic) oracle-based algorithm for faster convergence; see, e.g., [19, 11, 44]
and references therein. To the best of our knowledge, very few papers have exploited
the Holderian error bound condition for the SAA approach and analyzed the sam-
ple complexity under such a condition. We show that the CSO problem under the
Hoélderian error bound condition yields smaller orders of sample complexity for the
SAA approach. We make the following two assumptions throughout this subsection.

ASSUMPTION 4.1. The empirical function Fy,(z) satisfies the (u,8)-Holderian
error bound condition with u > 0,0 > 0; i.e., it holds that
Vo € X, Fpm(z) — min Fpp,(z) > poinf ||z — 2|[37°,
zeX z oy
where n,m are any positive integers, and Xy is the optimal solution set of the em-
pirical objective function F,(x) over X.

ASSUMPTION 4.2. The empirical function an has a unique minimizer Ty, on
X for any n and m.

An interesting special case of Assumption 4.1 is the quadratic growth (QG) condi-
tion when 6 = 1. The QG condition is actually satisfied by a wide spectrum of objec-
tives, such as strongly convex functions, general strongly convex functions composed
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with piecewise linear functions, and general piecewise convex quadratic functions.
There are also many other specific examples arising in machine learning applications
that satisfy the QG condition, including logistic loss composed with linear functions
and neural networks with linear activation functions; see [6, 19] and references therein.
Another interesting case is the polyhedral error bound condition when § = 0, which is
known to hold true for many piecewise linear loss functions [4]. For both cases, these
functions are not necessarily strongly convex or convex. Relevant problems with SAA
objective Fl,,, satisfying the QG condition are discussed in Appendix D.

Assumption 4.2 could be restrictive and less straightforward to verify. In gen-
eral, for a nonstrictly convex empirical objective function, the optimal solution is not
necessarily unique. Yet, it is not exclusive to strictly convex functions. We illustrate
one such example below. Finally, we point out that when an(x) is strongly convex,
for example, Iy regularized convex empirical objective, the above assumptions hold
naturally. In the following, we give some examples when an(x) satisfies the QG
condition.

Example 1. Consider the following one-dimensional function:

F(z) = E¢[(Epje[n]a)? + 3sin*(Ey¢[n]2)],

where ¢ and 7 can be any random vectors that satisfy n|{ > /z with probability 1.
Denote 7; = % Z;”:l 745, the empirical function is given by

- 1 3~ . 9,
an('r) = n Zn?xZ + n ZSHP(WQL')'
=1 =1

It can be easily verified that an(:g) satisfies the QG condition with parameter p > 0.
Moreover, the empirical function F},,,(x) has a unique minimizer z* = 0 for any m, n.
Ezxample 2. Consider the robust logistic regression problem with the objective

(4.7) F(z) = B (o, [log (1 + exp(—bEy e[n]" 2))],

where a € R? is a random feature vector and b € {1,—1} is the label; = a +
N(0,0%1,) is a perturbed noisy observation of the input feature vector a. The empir-
ical objective function F,,,,(x) is given by

(4.8) Erm(z) = %ilog (1 + exp ( - bi% z:njx))

i=1

F‘nm(x) satisfies the QG condition on any compact convex set in Appendix D. Note
that the minimizer of a general empirical objective function is not necessarily always
unique. However, the Hessian of an(x) shows that an(x) is strictly convex if
1 Z;"Zl niTj # 0 for all 4, which is satisfied with high probability. Thus, E,,(z) has a
unique minimizer with high probability.

Next, we present our main result on the sample complexity of SAA.

THEOREM 4.2 (SAA under error bound condition). Under Assumptions 3.1, 4.1,
and 4.2, for any € > 0, we have

(49)  P(F(ium) — F*) > 6) < i(Lng(ﬁfg)w + 2.
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If, additionally, fe(-) is S-Lipschitz smooth, then we further have

(4.10) P(F () — F(z*) > €) < © (LfL (212:;[/9)1/5 + Sc’g)

m

Differently from the previous section, we use a stability argument to exploit the
error bound condition. As shown in Lemma 3.1, the empirical function is a biased
estimator of the original function due to the composition of f¢(-) and g,(-,&). Intro-
ducing a perturbed set of samples could reduce some dependence in randomness. We
define a bias term which will be used later in the proof:

Liog -} is L ¢-Lipschitz continuous
411)  A(m) ;{ v Jel) is Ly-Lip !

2
59 fe(+) is additionally S-Lipschitz smooth.

2m
Below we provide the detailed proof of Theorem 4.2.

Proof. Recall that #* and Z,,, are the minimizers of F(z) and F),,(z), respec-
tively. It is clear that z* has no randomness, and Z,,,, is a function of {&;}7 1, {n;; };”:1
We decompose the error F(&yy,) — F(x*) into three terms and analyze each term be-
low:

F(Znm)—F(2*)=F(Znm) — Frm (Znm) + Fom (Enm) = Epm (27) 4+ Fom (%) = F(2*) .
=& =& :=E&3

First, we use a stability argument and Lemma 3.1 to bound E& = E[F(&,m) —
Frm(Znm)]- Define

1 & 1 1 &

z#k

as the empirical function by replacing the kth outer sample &, with another i.i.d. outer
sample ¢}, and replacing the corresponding inner samples {Ukj} *, with {77,” T,
which are sampled from the conditional distribution of P(n|¢},) for a given sample &j..
Denote 25), = argmin, ¢ y Fy(llfr)L(m) We decompose EE; = E[F (&nm) — an(fcnm)]
into three terms:

E& =E *ZFxnm _Zf§k< nlﬁkgn nmafk)>:|
(4.13) +E Zfﬁk( n\&kgn nmvfk)) _nszk( Zgnk] nm? >:|
k=1
(1 < 1 «— A

Note that E[F(Zm)] = E[F(xsm)l)] since &, and ¢}, are i.i.d., which implies that &,
and 2%, follow an identical distribution. Since &' is independent of &, E[F (1‘,(1]21)] =
E[fe, (Enmg(i:gl’i,)l,fk))] for any k. Then the first term in (4.13) is 0. As &) s
independent of {ng;}7~,, the second term in (4.13) could be bounded by Lemma 3.1,

j=1s
and it holds that

(4.14) E[fgk(ngkm ms) ffk( Zg% xm,gk)}smfn).
=1
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Next, we upper bound the third term in (4.13). By definition, we have
(4.15)

an(igk%) - an(‘%nm) :F;SQ(A(IC) ) - F(k)(Anm)

1 1
Jrnfgk( ngg nmvfk ) fﬁk(m

gn’w xnm, gk >

gnkj nma >

By Lipschitz continuity of fs and g, and that £ (m%’%) é’fg(inm) < 0, it holds
that

3 om
(5

R - . 2 R .
(4.16) an(xglk;))ﬂ,) = Fom(Znm) < ﬁLngHzgzkn)m = Zom||2-

Since &y, is the unique minimizer of an(x), and ﬁ'nm(x) satisfies the QG condition
with parameter p, we have

(4.17) an(i.giv)z) - F m(Tnm) > M”x(k) - xnm||1+6‘

Combining with (4.16), we obtain

oL L.\ °
(4.18) ||oz;2—:znm|2<(“> .
LT

By Lipschitz continuity of f¢(-) and g, (-,€) and definition of F},,(Znm), We obtain

1< . 2L:L,\"°
w19 B2 s Zg% (68560 = Funlinn)] < L1, (22222)
k=1

Combining (4.13), (4.19), and (4.14), we obtain

2L L
un

1/68
(4.20) EE < Lng( 9) + A(m).

Second, by optimality of &y, of E,,, we have

(4.21) EEy = E[Fpm (Enm) — Frm ()] < 0.

Next, we bound E€s. Define F,(z) := LY fe (B, [gn (2, &)]). Notice that
x* is independent of {n;;}7L; for any i = {1,...,n} and E[F,(z*) — F(z*)] = 0. By
Lemma 3.1, it holds that

(4.22) EE3 = E[Fpm(z*) — Fp(2)] + E[F,(x) — F(z)] < A(m).

Combining (4.20), (4.21), and (4.22) with the Markov inequality, we obtain the desired
result. d

The sample complexity of SAA under the Holderian error bound condition follows
directly.
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COROLLARY 4.3. Under Assumptions 4.1 and 4.2, with probability at least 1 — c,
the solution to the SAA problem is e-optimal to the original CSO problem if the sample
sizes n and m satisfy that

n 2z 25’0§

ae

a?e?
i(ac)?

s11 16L30; .
(2LsLy) 2. under Assumption 3.1,
s o mZz
fe() is also Lipschitz smooth.

Hence, the total sample complexity of SAA for achieving an e-optimal solution is at
most T = mn +n = O(1/e°*2); when fe(-) is Lipschitz smooth, the total sample
complezity reduces to T = mn +n = O(1/2T1).

In particular, when the empirical function is strongly convex or satisfies the QG
condition, i.e., Assumption 4.1 with § = 1, this leads to the total sample complexity of
O(1/€3) for the Lipschitz continuous case and O(1/¢€?) for the Lipschitz smooth case,
respectively. From the above corollary, the error bound condition only affects the
sample complexity of the outer samples, and the sample size decreases as § decreases.
As § gets closer to zero, the sample complexity will essentially be dominated by the
inner sample size.

A key difference between the results in Theorems 4.1 and 4.2 lies in the dependence
on the problem dimension d and confidence level a. While the sample complexity
under the Holderian error bound condition is dimension-free, the dependence on the
confidence level 1 —a grows from O(log(1/a)) to O(1/a%). This is similar to classical
results on SO for strongly convex objectives [36]. Theorem 4.2 could also be used to
derive a dimension-free sample complexity of [5 regularized SAA for a general convex
CSO problem. See Appendix E for more details.

5. Sample complexity of SAA for CSO with independent random vari-
ables. In this section, we consider the special case of CSO when the random variables
& and n are independent. The objective then simplifies to

(5.1) min - F(z) := Be[fe(En[gn(z, )])].

reX

This is similar to yet slightly more general than (1.8), the compositional objective
considered in [43, 42]. Note that the inner cost function we consider here is dependent
on both ¢ and 1 and thus cannot be written as a composition of two deterministic
functions.

The sample complexity of SAA under the conditional sampling setting achieved in
section 4 applies to this setting since it can be viewed as a special case of the former.
However, since the inner expectation is no longer a conditional expectation, we now
consider an alternative modified SAA, using the independent sampling scheme, in
which we use the same set of samples to estimate the inner expectation. The procedure
of the independent sampling scheme for solving (5.1) works as follows: first generate
n iid. samples {{;}7; from the distribution of £ and m i.i.d. samples {n;}}L; from
the distribution of 7, and then solve the following approximation problem:

- 1o 1
(5:2) miy Fun) = 03 e (7 o )
1= J=

As a result, the total sample complexity becomes T = m + n. Recently, in [9],
a central limit theorem result for the SAA (5.2) with m = n was established. The
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authors show that for Lipschitz smooth functions f¢(-) and g, (-,&) = g,(-), the SAA
estimator converges in distribution as follows:

vm <§£}} Erpm () — minF(x)) — Z(W),

zeX

where W () = (W1y(-), Wa(+)) is a zero-mean Brownian process with certain covariance
functions, and Z(-) is a function that depends on the first-order information. This
result only yields an asymptotic convergence rate of order O(1/+/m) for the SAA with
m = n. Below, we will provide a finite-sample analysis for SAA and establish refined
sample complexity results based on concentration inequality techniques.

In the SAA problem (5.2), the component functions fe, (- D0y Gn, (2, &)) share
the same random vectors {n;}2; and are dependent. This is distinct from the SAA
(1.5) considered in the previous section. Because of this key difference, the previous
analysis will no longer apply to this modified SAA. We will resort to a different
analysis for deriving the sample complexity. Similarly, we consider two structural
assumptions, when the empirical objective is only known to be Lipschitz continuous
and when the empirical objective also satisfies the error bound condition.

5.1. Sample complexity for Lipschitz continuous problems. We first con-
sider the case when the objective is Lipschitz continuous. We make the same basic
assumptions on the Lipschitz continuity of f¢(-) and g,(-,£) and boundedness of vari-
ances as described in Assumption 3.1. Our main result is summarized below.

THEOREM 5.1. Under the independent sampling scheme and Assumption 3.1, for
any 0 > 0, there exists an €1 > 0 such that for any € € (0,€1), it holds that
(5.3)

(st [Fon(2) - F0)| > )

reX

4Ly LyDy d ne? me?
SO(”(S) (exp<—16<5+2>a;) +”’“exp<—16((s+m;g; :

Here, d is the dimension of the decision set, and k is the dimension of the range of
function g.

Proof. First, we pick a v-net {l’l}?:l on the decision set X, such that LyLsv =
€/4. Using an argument similar to that in the proof of Theorem 4.1, we obtain

IP’(Sllp | Fom (z) — F(x)] > 6) ZPOF’”” ) = Flz)l > ;>

TeX

ZQ:POFW (1) — B(y)] > ) zQ: <|F 1) (ml)|>i).

=1 =1

(5.4)

By Lipschitz continuity of f¢(x) and Lemma 2.1, we have

(5.5)
(1o (or) — P = ) < S (IIZgn, (2160 ~ By, > 7
m€2
<2nk exp < T 16(6 + 2)L202 )
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By Lemma 2.1, we obtain

~ € n62
Pl |F, - F > <2 - .
(5:6) (12t~ P12 §) <209 (- g7)
d
Combining this with the fact that Q < O(l)(%) , we obtain the desired result.0
Invoking the relation in (4.5), the above theorem implies the following.

COROLLARY 5.1. Under Assumption 3.1, with probability at least 1 — «, the so-
lution to the modified SAA problem (5.2) is e-optimal to the original problem (5.1) if
the sample sizes n and m satisfy

O(1)o?
> ( 2) f [dlog (SLngDX> + log (1> },
€ € e

O(1)L3%02 LsLy,D 1
m > (Lm{dlog <8ng) + log <a) + log (nk)]
€

€

Ignoring the log factors, under Assumption 3.1, the total sample complexity of the
modified SAA for achieving an e-optimal solution is T =m +n = O(d/e?).

Note that this sample complexity is significantly smaller than that for the general
CSO. The O(d/€?) sample complexity also matches the lower bounds on sample com-
plexity of SAA for classical SO with Lipschitz continuous objectives [25]; therefore,
this result is unimprovable without further assumptions.

5.2. Sample complexity under error bound conditions. We now consider
the case when the empirical objective satisfies Assumptions 4.1 and 4.2; i.e., the empir-
ical objective an(x) satisfies the error bound condition and has a unique minimizer
for any integers n, m. Our main result is summarized as follows.

THEOREM 5.2. Under Assumptions 3.1, 4.1, and 4.2, for any € > 0 and v > 0,
we have

P(F(Zpm) — F(x*) > €)

G171 2L:L,\"° LsM,\/dlog(Dx/v) Lo
<= (rLsL, =L 1)~ x 729 4 2uLsLy ).
<t(na(B) o LTI B ot

The solution to the modified SAA problem (5.2) is e-optimal to the problem (5.1) with
probability at least 1 — i, if v = ﬁ, and the sample sizes n and m satisfy that

(5.8)
5+1 2 2
ps CLiL™ { (12Lfag> 00) <6LfMg> dlos (12DXLng> } |
e

= p(ae)d ae e

Similar to Theorem 4.2, the outer sample size is independent of dimension and
decreases as ¢ decreases. As ¢ gets closer to zero, the sample complexity will essentially
be dominated by the inner sample size. In particular, when the empirical function
satisfies the QG condition or is strongly convex, i.e., Assumption 4.1 holds with § = 1,
the outer sample size is reduced from O(d/€?) in the Lipschitz continuous case to
O(1/€). Yet, the total sample complexity remains O(d/e?).

For a CSO problem with independent random vectors (5.1), both SAA approaches,
through conditional sampling, or independent sampling, can be applied to solve the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/21 to 195.176.113.179 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

CONDITIONAL STOCHASTIC OPTIMIZATION 2121

problem. Comparing Theorem 4.2 and Theorem 5.2, when smoothness and the qua-
dratic growth condition are satisfied, the sample complexities of these two SAA ap-
proaches achieve the same order O(1/e?), except for an extra O(d) factor for the
independent sampling. Interestingly, for a given small dimension d and the same sam-
ple budget T, the independent sampling might outperform the conditional sampling
scheme since the constant factor in the sample complexity of conditional sampling
is much larger. The numerical experiment on our testing cases in the next section
further supports the finding.

In contrast to the sample complexity established in section 4 for the conditional
sampling setting, a notable difference here is that the Lipschitz smoothness condition
does not necessarily help reduce the sample complexity. This result aligns with the
central limit theorem established in [9]. One of the reasons arises from the inter-
dependence among the component functions in the modified SAA objective, leading
to extra variance. Because of that, the analysis requires sophisticated arguments to
handle the dependence and is much more involved. We defer the proof to Appendix B.

Remark 5.1. Although the overall O(1/€?) sample complexity cannot be further
improved in general, it is worth pointing out that, for some interesting specific in-
stances, the modified SAA could achieve lower sample complexity than what is de-
scribed from theory. We illustrate this with the following example.

Ezxample 3. For v > 0, consider the following problem:
min F(2) 1= H(Eqlz +1],7) + Bylz +1))%,

where 7 ~ N'(0,07) and H(-,v) is the Huber function, i.e.,

1
ol = 57 for fa] >,

L,
— f < .
2733 or |z| <~

(5.9) H(x,7) =

Note that here fe(x) := f(z) = H(z,7) + 2? is deterministic, and g, (z,&) = = + .
When v > 0, f(z) is 1/y-Lipschitz smooth. When v — 0, f(z) — |z| + 2%, which
is no longer differentiable. In this example, z* = argmin, , F(z) = —En; F* =
mingex F(z) = 0. The empirical objective becomes Fy,(z) = H(z + 7,7) + (z + 7)2,
where 77 = L >oieymj- Thus, &, = argminge y Fy,(z) = —7j. We show that the error
of SAA satisfies

o2 2m\ o2 o2 my?
10) 0 SEF (i) — F(27) = ( o—erf( [ )+ =) <4/ o -
(5:10) 0 < EF(#m) = F(27) (gfymer<\/;)+m>— %mexp( 20%)’

where erf(x) := % fom exp(—x?)dz. As a result, when v — 0,

o %

For completeness, we provide detailed derivation in Appendix C. This example shows
that the SAA error improves from O(1/y/m) to O(1/m) as the objective transitions
from nonsmooth to smooth. When v — 0, the function becomes non-Lipschitz dif-
ferentiable and the O(1/y/m) bound for this setting is indeed tight. It remains an
interesting open problem to identify sufficient conditions for achieving theoretically
better sample complexity under the independent sampling scheme.
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102 102
100 100 N j\
N N H:‘W::
1074 1074 1074
10° 10* 10° 106 10° 10* 10° 106 10° 10* 10° 106
(a) op/0f =0.1 (b) o5/0f =10 (c) op/of =100

—— n=0(T¥) —— n=0(TA) —e— n=0(T"?) —&— n=0(T??)

FiG. 6.1. Logistic regression; conditional sampling; dimension d = 10.

6. Numerical experiments. In this section, we conduct numerical experiments
based on two applications, logistic regression and robust regression, to demonstrate
the performance of SAA for solving CSO problems. For a fixed sample budget T', we
adopt different sample allocation strategies for (m,n) and compute the corresponding
accuracy of the SAA estimators. We repeat 30 runs for each sample allocation and
report the average performance. The SAA problems are solved by CVXPY 1.0.9 [10].

6.1. Robust logistic regression. We consider the robust logistic regression
problem in Example 2. The problem is formulated in (4.7) and its SAA counterpart
is of the form (4.8) with domain X = {z|x € R4, ||z||2 < 100}.

Note that from Example 2, f is Lipschitz smooth, and F},, (z) satisfies QG condi-
tion on any compact convex set and with high probability has a unique minimizer for
large n. Theorem 4.2 implies that the theoretical optimal sample allocation strategy
isn=0(1/VT)and m = O(1/VT).

In the experiment, we set d = 10 and the samples of £ = (a,b) and n are generated
as follows: a; ~ N(0,0’?Id), b; = {1} according to the sign of alz*, and n;; ~
N(ai,afl[d). We set Ug = 1 and consider three cases for o,: 0727 = {0.1, 10,100},
corresponding to low, medium, and high variances from inner randomness. For a
given sample budget T ranging from 10% to 10, four different sample allocation
strategies are considered, i.e., n = [T'V/4], n = [T/3], n = [T'/?], and n = [T?/3]. We
then compute the average estimation error F(Z,,,,) — F* over 30 runs and its standard
deviation. The results are summarized in Figure 6.1, where the z-axis denotes the
sample budget T', and the y-axis shows the estimation error. Each curve represents a
sampling scheme, showing the average error and upper confidence bound.

The trend from Figure 6.1(a)—(c) shows that when the inner variance is relatively
large, setting n = O(Tl/ 2) consistently outperforms the other sampling strategies,
which matches our analysis. The error bar suggests that a larger number of outer
samples results in a smaller deviation of the estimation accuracy.

6.2. Robust regression. We now examine the robust regression problem, where
the objective is no longer Lipschitz differentiable. The problem is as follows:

(6.1) min F(z) = Ec=(a,0) [Eqjen’ « — 0],

where a € R? is a random feature vector, b € R is the label, n = a + N(0,0’%Id) is
a perturbed noisy observation of the input feature vector a, and the domain is X =
{z|r € R% |lz|]2 < 100}. For comparison purposes, we also consider the smoothed
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version of this problem based on the Huber function:

min F(x) = Ee_o,5) H (Eyen' 2 —b,7),

reX

where v > 0 is the smoothness parameter. The empirical functions for these two
objectives are given by

1 n
)= 02|

m X Lo L
ZUU — bil, Fgm(x):nZH(mzniTjﬂf—bi,’y>.
= i=1 i=1

Theorems 4.1 and 4.2 indicate that Lipschitz smoothness of outer function f¢(x) helps
reduce the inner sample size required to achieve the same level of accuracy. For a given
budget T, the theoretical optimal sample allocation strategy for these two problems
is n = O(T"/?) and n = O(T?/?), respectively.

In our experiment, we set d = 20. Samples of £ = (a,b) and 7 are generated as
follows: a; ~ N(O,U?Id), b = a] z*, nij ~ ./\/'(az,a I;). As in the previous experi-
ment, we measure the average error and upper conﬁdence bound for both problems
with sample budget T ranging from 10% to 10° under four different sample alloca-
tion strategies over 30 runs. We also consider two sets of smoothness parameters,
v € {0.1,10}. The results are summarized in Figure 6.2.

10! 10! 10!

10° 100

1071 10°

102 1071

10 io3 10% 10° 108 107 io3 104 10° 106 107 103 104 10° 108

(a) a%/ag = 0.1, absolute value (b) 0727/0? = 10, absolute value (c) a?]/ag = 100, absolute value

10! 10t 10!
10°
100
107! 0
, 10°
10 10-1
10°3
4 2 1
o 103 104 10° 106 107 103 104 10° 106 b 103 104 10° 106

(d) 0',2]/0'2 = 0.1, Huber, vy = 0.1 (e) 0',2]/0'2 = 10, Huber, y = 0.1 (f) 0%/0’2 = 100, Huber, v = 0.1

10° 10° 10°
1072 1072 1072

1074 1074 1074
6 -6 6
1070 104 10° 10° 10705 10* 10° 10° 10703 10* 10° 108

(8) o5/0¢ = 0.1, Huber, v =10 (h) o7 /07 =10, Huber, vy =10 (i) o5 /07 = 100, Huber, v = 10

—— n=0(TY) —— n=0(T) —e— n=0(T"?) —&— n=0(T??)

Fic. 6.2. Error of SAA for absolute value loss and Huber loss; dimension d = 20.
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. 1071
o~ k‘\‘\‘\g\‘

Error of SAA

1072
1073
—— Conditional, d=10
10_3 —#— Independent, d=10
—— Conditional, d=10 —@- Conditional, d=100
—— Independent, d=10 —A— Independent, d=100
1074 1073
0 2500 5000 7500 10000 0 20000 40000 60000

(a) d =10, T = 10*, x-axis: varying batch n (b) Various d, x-axis: varying total samples T

Fia. 6.3. Comparison of conditional sampling and independent sampling schemes.

Figure 6.2 (a)—(c) shows that setting n = O(v/T) indeed yields almost the best
accuracy for absolute value loss minimization, which again matches our analysis. The
overall performance of SAA for the original and that of the smoothed problems be-
haves quite similarly in this case, yet solving the smoothed problem yields much better
accuracy under the same budget. This also supports our theoretical findings that the
sample complexity is lower for smooth problems.

6.3. Comparison of conditional sampling and independent sampling.
In this experiment, we consider a modified logistic regression example that falls into
the special case with independent inner and outer randomness:

min F(2) = Ee—(a,) log(1 + exp(=b(Eyn + a) '2)),
where a ~ N (0, agld) € R? is a random feature vector, b € {£1}, and  ~ N(0, U,?]Id)
is the noise. The empirical function of the two sampling schemes F),,(z) is of the
form

n m T

. 1 1

Fom(x) = - E log (1+exp <bi(m g ijra,-) x))
i=1 j=1

When employing the independent sampling scheme, we generate {nlj};”:l and let
Mi; = m, for all ¢ > 1.

For both sampling schemes, the optimal allocation for n is on the order of O(v/T),
and m is set to m = T/n or m = T —n. In the experiment, d = {10, 100}, ag =1, and
0’% = 10, and the samples are generated accordingly. For any given sample budget T,
we compare the performance of the two sampling schemes under different choices of
outer sample n varying from 0 to 10000.

Figure 6.3(a) illustrates the comparison when d = 10 and 7" = 10000. The bell
shape in Figure 6.3(a) reflects a clear bias-variance tradeoff for different n and m.

In Figure 6.3(b), we report the best performance (by choosing the best n) of
these two sampling schemes with d € {10,100} and T ranging from 1000 to 50000.
Figure 6.3(b) shows that the independent sampling scheme always achieves a smaller
error for the logistic regression problem. The gap between the two schemes decreases
as the dimension increases, which also matches our analysis.

7. Conclusion. In this paper, we introduce the class of conditional stochastic
optimization problems and provide sample complexity analysis of sample average ap-
proximation under different structural assumptions. Our results show that the overall
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sample complexity can be significantly reduced under the Lipschitz smoothness condi-
tion, which is very different from the theory of classical SO and multistage stochastic
programming. By exploiting error bound conditions, the sample complexity could
be further reduced. To the best of our knowledge, these are the first nonasymptotic
sample complexity results established in the context of conditional stochastic opti-
mization. For future work, we will investigate stochastic approximation algorithms
for solving this family of problems and establish their sample complexities.

Appendix A. Proof of propositions.
A.1. Proof of Lemma 2.1.

Proof. The proof of the one-dimensional random variable case was given in [20)]
using the Chernoff bound. Based on that, we consider the case when X is a Zero-mean
random vector in R¥. Denote X; = (X}, X?,...,XF)T fori=1,...,n, a = V(X7),

k 2
zj = # and I;(-) the rate function of the jth coordinate of the random vector
X. We have

k 2
J
P(|X]|]2 > €) = (Z —EXY) ) gZP( Zj)
J=1 J=1

(A1)

B B O (I ))!

By Lemma 2.1 and by definition, we get

P(||X ][> > )<zzk:e ( ne’ ) % e ( ne” >
92>¢€) < xp| — = | =2kexp| — — 5 |-

= (6 +2)z0; (6 +2) ZJ 105
Using the fact that Z?:l 07 < E||X||3, we obtain the desired result. |

Appendix B. Proof of Theorem 5.2.

Convergence analysis. We follow a decomposition similar to the one we followed in
proving Theorem 4.2 and use the same notations, like FT(L’:,%(:L') and :7;51’2, the perturbed
empirical function and its minimizer, except that we replace all the n; with »; for
k =1,...,n and replace the conditional expectation E, ¢ with E,. Unfortunately,
one will immediately notice that Lemma 3.1 is no longer applicable for bounding the
second term in (4.13):

i Xt (Bt ) -3 e (5 L6500 |

Because the minimizer x%% depends on {n; 7=, Lemma 3.1 is not applicable. Below

we provide the detailed proof of Theorem 5.2.
Proof. Define & := F(&nm) — Fom (Zpm) and

1 «— 1 1 —
B (x Z fe, (m > g, &)) + g (m > g, (, §;>>,
j=1 j=1

z;ék
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the empirical function, by replacing the outer sample &, with an ii.d. sample &;.

Denote &) = argmin, ¢ y Fé’f,{(x) Then, E&; could be written as

Egl =E - fok( 7]977 nm7£k)):|
(B~1) +E Zf§k< 77977 anzvgk)) - %fok (;ng(i’gﬁmfk))]
k=1 Jj=1
+E ;Zf§k< ng giv)w >_an(£nm)]~
- k=1

Since & and & are iid., #nm, and 2'n) follow identical distribution. Then
EF (Znm) = EF (& (k)) As i'm% is independent of &, by definition of F'(x), we know

IEF(m,(lk,zl) Efe, (E ngn(xnm,gk)) for any k =1,...,n. As a result, the first term is 0.
To analyze the second term, denote

Hy(x) == fe, (Engn(x7£k ) fgk( Zg’h (2, &k )

We pick a v-net {a:l}lel for the decision set X, such that for any x € X', there exist
loed{l,...,Q}, lx — x| <wv. Then it holds for any s > 0 that

exp (sIEHk( gﬁzl)) <exp (sEl_nllgLf(Q Hyi(z) + 2$ULng>

Rt IRE] [RRRE}

(B.2) <Eexp (Sl r{laxQ Hy(x;) + 25leng) E maXQ exp (sHy(x;) + 2svLy¢Ly)
Q Q
<E Zexp (sHy(z;) +2svLlsLy) = ZEQXP (sHy(x1) +2svLlfLyg) .
=1 1=1

The first inequality holds as s independent of &, and f¢(-) and g,(-,&) are

Lipschitz continuous, which implies
Hi(20)) < sup Hy(z) < max Hy(x;) + 2vL¢Ly,.
zeX =Ly

The second inequality holds by Jensen’s inequality. Next we show that Hy(z;) —
EH(x;) is a sub-Gaussian random variable for any given £. Since Hy(z;) is a func-
tion of {n;}jL,, denote Hy(z;) := H(n1,...,nm). Then for any p € [m], and given
My Mp—1,Tp+1,- - - m, We have

Sup H (01, -+ =1, My M1 - - - ) *i;},fﬁ(mw~,np—1,77;,',np+1,-.-,77m)

P

— s B o 3y 0.6+ g 60)) ~ e Y, (0:80)+ oy 0. 6)

pop J#p J#p
Ly
< sup Egk Qn”(x &k) — gy, (2, k)
T]P’ ]-7
_2MyLy
m
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where M, is the upper bound of g, (-, &) on X. This implies that Hy(z;) = H(n1, ..., %m)
has bounded difference % By McDiarmid’s inequality [26], for any r > 0,

P(Hy () — EHy () > 7) < 2 _rtm
LT k\Z1) =2 T) S 2€eXp 2M92L§ .

This implies that Hy(z;) —EHy(z;) is a sub-Gaussian random variable with zero mean
and variance proxy 2M 5Lfc /m for any given &. By definition it yields

272 .2
2Mqus >

Eexp (s [Hi(z;) — EHg(x;)]) < exp < m

Since ; is independent of random vectors {n; }"*;, by Lemma 3.1, we know EH}(z;) <

Lyog
'm

. This further implies

2M3212%s? L
Eexp(sHg(z;)) < exp < 917 4 s\/fn%g)

With (B.2), we have

2MZ2L2%s? sL,o
A f !
exp (sIEHk(IEfTBL» < Qexp ( gm + \/ﬁg +2svLlsLy | .

Taking the logarithm, dividing s on each side, and minimizing over s yields

21lo M2 T,
EH(2)) <2 B M; TRl 2uLsL,
m
Since Q < O(1)(Dx/v)4, we have
L¢M D L
(B.3) EH,(&0),) < 0(1)ZL=L, [dlog <X) + 299 4 oL, L,.
m v m

For the third term in (B.1), by following the similar steps from (4.15) to (4.18),
we obtain

Lo L o 2L;L,\ "’
(B.4) ]E{n kz::lfgk (m;gnj (xg%vﬁk)) - an(xnm):| < Lng< an 9) :

Combining with (B.1), (B.3), and (B.4), we have
(B.5)

2L¢L,\"/° LM, 12Dy LsL Lo
E& < LyL ¥ o1 24 /dl 4 g +20uL¢Ly,.
1> Lf g( un ) + () \/ﬁ 0g e + \/ﬁ +2vlyly

Similarly to the steps from (4.21) and (4.22), by optimality of &, of F and Lemma
3.1, we obtain

7 7 _F * . f ) — F(z* Lyo,
(B.6) E[Fpm(@nm) — Fam(z)] < 05 E[Fpm(2*) — F(z*)] < T

Finally, combining (B.5) and (B.6) with the Markov inequality, we obtain (5.7).
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Let
1/6
LI, 2LsL, < 37 (’)(I)LfMg J1 & < g7 2L;o, < a
,une5 2 vV me2 v 6 me2 6
We obtain the desired sample complexity (5.8). |

Appendix C. Example of Huber loss minimization.  To show (5.10),
2
denote Y = En — 7j; then Y ~ N(0, Z2). Then the error of SAA is

’m

EF(fim) - F(‘T*> = EH(EU - ﬁv 7) + ]E(ﬁ - EW)Q

(C.1) 1 +oo 1
=/ ~y*p(y)dy + 2/ (y - 27)p(y)dy +EY?,
o 7 o
r 2 0,2
where p(y) = \/2:173] exp (— glgy% ) is the PDF of Y, and EY? = -2 Denote erf(z) :=
% Jy exp(—a?)dx, y1 ==y % The first term in (C.1) is

i

/'y 1 2 ( )d 20’% /’y 202 9 ( 2)d
—yply)ay = Y1 exXpl—y71)ay1
oY mVﬁ 0 ! !

o 72m o 7m
= erf 5 | — exp| — - |-
2ym 205 2mm 205

We use the fact that
© 9 2 1 1 2
x® exp(—z)dx = Z\/Eerf(z) - iexp(—z )z.
0

The second term in (C.1) is bounded by

02 m,y2 “+oo +oo 1 “+oo
Ui - = <2 —= <2 .
5 OXP ( 207 ) /W yp(y)dy < L (y 27)p(y)dy < / yp(y)dy

v

Combining them together, we have (5.10). For a given v > 0, erf( 722?) — 1 as
m — oco. By (5.10), we have

When v — 0, (C.1) becomes

1
lim EF (&) — F(z*) = lim [ —y?p(y)dy + 2/
v—0 =0 Jo ¥
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Appendix D. Empirical objectives satisfying quadratic growth condi-
tion.

Strongly convex function composed with linear function. The empirical objective

function is Fy,(z) = 1 L3 fe,(Aix), where fe(-) is p-strongly convex, A;x :=
1 > it Gy (2, &), and the average of linear inner function g, (z,&) = A,,,z. To

show that an(x) satisfies the QG condition, denote u; = A;y, v; = A;x. Since fe(-)
is strongly convex,

Jes(ws) = fe (00) = Ve, (0) T (s = ) 2 Glus = wil 3

Taking the average over n such inequalities, we obtain

1
*Zf@ u) = Je(00) = Ve (o) T (s =) = 3 Gl — w3

Replacing u; and v; with A;y and A;x, we have
1 n
-~ > fe(Aiy) = fe,(Aiw) = Ve, (Aiw) T Ai(y — 2) >
i=1

Since VEup(2)" = 230 (A Ve, (Aix))T = L0 Ve, (Aix) T A;, we get

. . A 1 = u R
i=1 i=1
Let z be a point in X'*; we have
- - 10 2oy As)
Eom(2) = Fum *II*ZA (x—2)[13> Sl = =ll3
(D.1) )
opf(5 i Ad)
erreggflllx—dl%-

Here 0(A) is the smallest nonzero singular of A. Thus E,,, () satisfies the quadratic
growth (QG) condition for any n and m. A special case is when n = m =1, i.e., a
strongly convex objective composed with a linear function satisfies the QG condition.

Some strictly convex functions composed with linear function on a compact set.
Consider Example 2, the logistic regression problem with the objective

F(x) = E¢_(q,) log(1 + exp(—bE,c[n]" z)),

where a € R? is a random feature vector and b € {1,—1} is the label, and n =
a+ N(0,0%1,) is a perturbed noisy observation of the input feature vector a. Its
empirical objective function Fy,,,(z) is given by

. 1 n 1 m
Fom(z) = - Zlog <1 + exp ( - b% Zn£x>>,
i=1 j=1

where En;; = a;. Here fe,(u) = log (1 + exp(bjw)). Fm(z) =1/n> " f(u;), where
flu) =log (1 + exp(u)) is strictly convex, and u; = % Z;n:l ngz is bounded for any
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x € X and realization 7;;. It is easy to verify that on any compact set, f(u) is strongly
convex. The strong convexity parameter is related to the compact set. With (D.1),
Fm(z) satisfies the QG condition.

Note that the result is not necessarily true for all strictly convex functions. For
instance, ||x||3 is strictly convex, but ||Az||3 does not satisfy the QG condition on any
compact set containing x = 0.

Appendix E. Other results on regularized SAA. Theorem 4.2 discusses
the sample complexity of SAA for strongly convex and QG condition cases. We show
that the result obtained in Theorem 4.2 can be used to obtain dimension-free sample
complexity for general convex objective by adding ly-regularization.

LEMmMA E.1 ([36]). Consider a stochastic convex optimization problem,

inG
min G(z),
where G(x) is the expectation over some convex random function. Suppose that the
decision set X € R has bounded diameter Dy. Denote G,(z) := G(z) + 4|z|[3,

where p > 0 is a strongly convex parameter. Denote G’(m) as the SAA counterpart of
G(v), ** € argmin,cy G(z), T € argmin,cy G(z), v, = argmin,cy G, (z), and 2,
the minimizer of SAA of the regularized objective, namely &, = argmin, ¢ y éu (z) :=

Gla) + Blal3- I EIGu(En) — Culal)] < B(w), then

E[G(du) ~ G(a")] < B(u) + 5D}

Remark E.1. This theorem shows that the minimum point &, to a l>-regularized
empirical function éu could be a good solution to the original convex function G(x)
as long as one selects p properly. Note that £, might not be a minimum point of
the empirical function G(z). In the CSO case, according to Theorem 4.2, if F(z) is

convex, the expected error of the SAA method for mingex F(z) + 4||2]|3 is bounded

4L L} . X ALFLY | 42
by B(pn) = =5+ 4+ 2A(m). Then, EF(Zn,) — F(z*) < == + 5§Dy + 2A(m).
Minimizing over u, and by the Markov inequality, we obtain

- 2v2L;LyDy N 2A(m).

- ne2 €

We notice that the outer sample size, n = O(1/¢€?), is dimension-free, while in Theorem
4.1, n = O(d/e?) depends linearly on dimension; the inner sample size m is not
affected. For high-dimensional problems, adding regularization is sometimes more
favorable as it lowers the sample complexity by d and also helps boost the convergence
when solving the SAA.
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