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Studies of large proteins, protein complexes, and membrane
protein complexes pose new challenges, most notably the need
for increased ion mobility (IM) and mass spectrometry (MS)
resolution. This review covers evolutionary developments in
IM‐MS in the authors' and key collaborators' laboratories with
specific focus on developments that enhance the utility of
IM‐MS for structural analysis. IM‐MS measurements are
performed on gas phase ions, thus “structural IM‐MS” appears
paradoxical—do gas phase ions retain their solution phase
structure? There is growing evidence to support the notion that
solution phase structure(s) can be retained by the gas phase
ions. It should not go unnoticed that we use “structures” in this
statement because an important feature of IM‐MS is the ability
to deal with conformationally heterogeneous systems, thus
providing a direct measure of conformational entropy. The
extension of this work to large proteins and protein complexes
has motivated our development of Fourier‐transform IM‐MS
instruments, a strategy first described by Hill and coworkers in
1985 (Anal Chem, 1985, 57, pp. 402–406) that has proved to be
a game‐changer in our quest to merge drift tube (DT) and ion
mobility and the high mass resolution orbitrap MS instruments.
DT‐IMS is the only method that allows first‐principles
determinations of rotationally averaged collision cross sections
(CSS), which is essential for studies of biomolecules where the
conformational diversities of the molecule precludes the use of
CCS calibration approaches. The Fourier transform‐IM‐
orbitrap instrument described here also incorporates the full
suite of native MS/IM‐MS capabilities that are currently
employed in the most advanced native MS/IM‐MS instruments.
© 2020 John Wiley & Sons Ltd. Mass Spec Rev
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I. INTRODUCTION

Structural mass spectrometry (MS) has evolved from the early art
form of interpreting bonding configurations of atoms/functional
groups of small molecules ionized by electron impact ionization
(Turecek & Mclafferty, 1993) to the method of choice for
determining the amino acid sequences of proteins, to studies of
higher‐order protein structure (2°, 3°, and 4°). These evolutionary
developments have expanded the experimental versatility, mass

range, and resolution of MS instruments, thereby opening new
vistas for studies of large biomolecules (Dyachenko et al., 2013),
membrane protein complexes (Laganowsky et al., 2014), and even
viruses (Lutomski et al., 2018). These more advanced instruments
incorporate multiple MS‐based techniques, for example, MS/MS,
ion mobility mass spectrometry (IM‐MS), and MS‐IM‐MS, that
facilitate more integrative approaches as well as substantial gains in
terms of sensitivity and resolution, for both IM and MS (Zinnel, Pai,
& Russell, 2012). More importantly, the versatility of these new
technologies allows users to design and implement novel experi-
mental strategies that can then be employed to carry out new
untested measurement strategies which oftentimes provide solutions
to previously intractable problems (Chen, Chen, & Russell, 2014).
These modern instruments are increasingly used for characterizing
the structure, stabilities, and dynamics of proteins (Dixit, Polasky, &
Ruotolo, 2018) as well as the stoichiometry and topology (4°) of
biomolecular complexes (Zhou & Wysocki, 2014), including
membrane protein complexes (Vimer et al., 2020) as illustrated
by the following reports. Tian and Ruotolo (2018) have described
comprehensive integrated MS strategies, viz. proteomics, chemical
labeling MS, native MS and IM‐MS, and their use in the discovery
and development of therapeutic antibodies. Similar strategies are
now providing new insights related to protein structure and function,
including allostery associated with lipid binding to membrane
proteins (Patrick et al., 2018). Variable‐temperature high‐resolution
native MS has been used to determine the thermodynamics of
individual lipid binding events to the ammonia channel membrane
(AmtB), which revealed characteristic thermodynamic signatures
for the binding of different lipids as well as distinct changes in these
signatures for AmtB mutants (Cong et al., 2016). In a similar study,
the kinetics and thermodynamics of the intrinsic hydrolysis of
K‐RAS and its oncogenic mutants were investigated by high‐
resolution native MS, and native IM‐MS measurements of K‐RAS
and its oncogenic mutants indicated that a native‐like conformation
is preserved in the IM‐MS instrument (Moghadamchargari
et al., 2019). Native IM‐MS has also been used to directly monitor
small molecule (toxin tertiapin Q) binding to the mammalian
potassium channel GIRK2. This study revealed that phosphatidy-
linositides enhance the binding selectivity relative to other
phospholipids, and CIU IM‐MS was used to show a similar
increase in binding affinities (Liu et al., 2019). It is interesting to
consider areas of structural biology on which native MS and native
IM‐MS will be the most impactful. The traditional structural
analysis techniques, that is, nuclear magnetic resonance (NMR),
X‐ray diffraction (XRD) crystallography, cryogenic electron
microscopy (cryo‐EM), and optical spectroscopy, are well‐
established and broadly used by the structural biology community.
However, MS‐based approaches are only slowly being accepted by
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this community owing to questions related to the “IMS Paradox”
(vide infra)…do gas‐phase ions retain their solution‐phase
structure? It is important to realize, however, that not all
structure‐based MS methods are based solely on the native MS
data. The structural information obtained by hydrogen/deuterium
exchange (Masson et al., 2019), hydroxyl radical footprinting
(Kiselar & Chance, 2018; Niu & Gross, 2019), and covalent
labeling (Rajabi, Ashcroft, & Radford, 2015) samples the solution‐
phase ion structure. Gross (Mass spectrometry‐based structural
proteomics solves problems in biochemistry and bio‐therapeutics.
Award Address (ACS Award in Analytical Chemistry sponsored by
the Battelle Memorial Institute). Abstracts of Papers, 255th ACS
National Meeting and Exposition, New Orleans, LA, United States,
March 18–22, 2018, ANYL‐368) addressed this question using the
diagram shown in Figure 1, where the major structure analysis
techniques are compared in terms of “ease of use” and
“information‐richness.” NMR, XRD, and cryo‐EM are capable of
providing the highest resolution structural information; but when the
complete suite of native MS/IM‐MS structural tools, for example,
collision‐induced unfolding (CIU; Polasky et al., 2019), collisional‐
induced dissociation (CID; Donor, Shepherd, & Prell, 2020),
surface‐induced dissociation (SID; Zhou & Wysocki, 2014),
ultraviolet photodissociation (UVPD; Sipe & Brodbelt, 2019), and
infraredmultiphoton dissociation (Pagel et al., 2009; Seo et al., 2017),
are factored into the equation, native‐MS offers an unprecedented
advantage in the field of structural biology.

This review focuses on the development of native MS with
conditions allowing for retention of solution phase structure, which
when combined with MS‐MS and IMS, open new paradigms for
studies of chemical processes that occur in solution. Here, we
focus on protein folding‐unfolding, changes in structure, stability
and dynamics, and aggregation as the solution conditions (i.e., pH,
temperature, mutations and/or post‐translational modification,
presence of ligands, metal ions (Dong, Wagner, & Russell, 2018),
small molecules (Gault et al., 2018), and even other peptide/

proteins (Yewdall et al., 2018)), change. There are, however, two
salient issues that remain questionable: (i) Buffers and sample
preparation used for native MS are designed to produce low charge
states, but whether low charge states are better correlated to
solution‐phase structure(s)/conformations is still debated. (ii) There
also exists an “IMS Paradox,” “…for how long, under what
conditions, and to what extent is (solution) structure retained in the
absence of solvent” (Breuker & McLafferty, 2008; Hewitt
et al., 2014; Rolland & Prell, 2019). This question refers to issues
related to how both hydrophobic and hydrophilic solute/solvent
interactions influence the conformational preferences of the ions as
they transition from bulk solution, to nanodroplets, and then to
solvent‐free (SF) gas phase ions.

It is important to note, however, that a similar paradox exists
for all structural characterization techniques. Crystallography
requires high quality crystals, NMR requires relatively high
concentrations of high purity samples, and both report ensemble‐
averaged responses, which limit their utility for studies of
conformationally heterogeneous samples. Pochapsky and Po-
chapsky (2019) specifically noted that “…crystallization only
captures conformers that fit into the growing (crystal) lattice…,”
thus crystallization is a purification step. Meisburger and Ando
(2017) noted in their review that “the quality of diffraction cannot
correlate with the visual appearance of crystals,” whereas small‐
angle X‐ray scattering better reveals “…what is hidden…,” noting
the “next holy grail of crystallography is to embrace imperfection
toward a dynamic picture of enzymes.” Pricer et al. note that
conformational heterogeneity enables the “context‐specific func-
tion to emerge in response to changing cellular conditions…” that
ultimately gives rise to a greater diversity of function for single
structural motifs (Pricer, Gestwicki, & Mapp, 2017). There is a
greater realization that dynamics or “conformational entropy” are
fundamental to biological processes including cellular signaling,
molecular recognition, and protein‐ligand interactions (Frederick
et al., 2007; Wand & Sharp, 2018).

In the following sections, studies are described that illustrate
the unique capabilities of IM‐MS for investigations of conforma-
tionally heterogeneous systems, whether the heterogeneity is
inherent to chemical species or due to changes in the solution
environment. While it is challenging to design experiments to
unequivocally address the “IMS Paradox,” the studies that are
discussed herein all produce ions under conditions that involve
rapid evaporative cooling of charged nanodroplets. Beauchamp
and coworkers described this evaporative drying process as
“freeze‐drying” (Lee et al., 1998) owing to the effects of
evaporative cooling where temperatures of the dehydrated ions
are estimated at 130–150K. Cryogenic ion mobility‐mass spectro-
metry (cryo‐IM‐MS) (vida infra), takes advantage of “freeze‐
drying” to generate cold‐hydrated ions that are then cooled further
(80K), thereby preserving a relatively high level of hydration. It is
interesting to compare the freeze‐drying and cryo‐IM‐MS
experiments with cryo‐EM. Cryo‐EM structures of large mole-
cules/complexes are obtained from water droplets that are rapidly
cooled to cryogenic temperatures (186 K in liquid ethane or 230 K
in propane), thereby trapping the sample molecules in vitreous ice.
There exist important parallels between cryo‐EM and freeze‐
drying electrospray ionization (ESI)‐MS/cryo‐IM‐MS (vide infra)
in that both techniques take advantage of kinetic‐trapping of
molecules as they exist in solution.

A holy grail of structural biology lies in structural
characterization of the peptides/proteins that comprise the
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FIGURE 1. Comparison of native IM‐MS to other the more conventional
structural biology techniques used for structural studies. First presented by
M. L. Gross as part of 2018 Symposium to honor his ACS Award in
Analytical Chemistry. IM, ion mobility; MS, mass spectrometry. [Color
figure can be viewed at wileyonlinelibrary.com]
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proteome, including identification of structural changes introduced
by modifications, changes in concentration, or presence of
osmolytes (Clemmer, Russell, & Williams, 2017). While such
objectives may seem intractable, recent advances in technologies
for native MS/IM‐MS are now poised to establish feasible
strategies. The following sections of this review describe selected
IM‐MS studies aimed at determining conformational preferences
of relatively simple peptides to more complex soluble proteins, and
finally to protein complexes. Emphasis is placed on results
obtained using IM‐MS, but in nearly all cases these studies
integrate molecular dynamics (MD) simulations (Jarrold, 2000),
bottom‐up and/or top‐down proteomics strategies, and techniques
such as CIU.

Moreover, despite several studies attempting to correlate
the ion mobility measurements to exact shape of ions
(Kaldmaee et al., 2019; Landreh et al., 2020), a priori
assignment of detailed structure on the basis of rotationally
averaged collision cross section (CCS) is not possible; there-
fore, it is common practice to compare the measured CCS to
calculated CCS for structures obtained from NMR, circular
dichroism (CD), crystallography, and/or MD simulations.

II. CONFORMATIONAL HETEROGENEITY OF
MODEL PEPTIDES

Initial developments in IM‐MS occurred in parallel with proteomic
MS and tandem MS; consequently, much of our early IM‐MS
work focused on peptides and small protein ions generated by
matrix‐assisted laser desorption ionization (MALDI; Ruotolo
et al., 2002a). MALDI is readily compatible with IM‐TOF‐MS,
and cocrystallization of the peptides with MALDI matrix formed
inclusion complexes (Lehmann et al., 2000) that might yield
structures that are similar to those obtained by crystallography.
While size/shape‐to‐charge and mass‐to‐charge (m/z) ratios are not
highly orthogonal, separations based on these metrics do provide
information on ion structure/conformation as well as compound
class (Fig. 2A; McLean et al., 2005). Note that mobility (plotted as
CCS or drift time) vs m/z plots can be used to distinguish different
classes of compounds as well as conformers that have different
shapes and/or sizes. As an example, Figure 2B contains well‐
resolved signals for two peptides, one a random coil and the other
a helix, that differ by only ~9Da, but these ions separate on the
basis of their different CCS (>10%) (Ruotolo et al., 2002a). Later
studies showed that posttranslational modifications (PTMs) that
alter the conformations of the ion can also be separated from the
native peptides (Ruotolo et al., 2002b, 2004), and cyclic
conformers can be separated from their linear analogs when
complexed with alkali metal ions (Ruotolo, Tate, & Russell, 2004).

III. SOLVENT‐DEPENDENT CONFORMATIONAL
PREFERENCES OF MODEL PEPTIDES

Ion mobility complements other structural MS approaches, but
quite possibly the most important figures‐of‐merit are sensi-
tivity, large dynamic range for measurements of ion abundance,
and the ability to measure the conformational heterogeneity of
states at equilibrium under different solution environment
conditions. Structure and dynamics regulate functions of
peptides and proteins, and interaction with the solvent is

intrinsic to stabilization of protein structure. In addition to
solvent, there are many parameters associated with IM‐MS that
may also affect the conformational preferences of the ions under
investigation. McLean et al. (2010) showed that multiple
potential charge sites have significant effects on the helical
preferences of singly charged peptide ions and a study by Xiao
et al. (2015) observed that charge state, charge site, and side‐
chain interactions also affect conformational preference of
peptide ions. More recently, the effects of solvent composition
(mixtures of methanol/water and dioxane/water) on the
conformational preferences of the nonapeptide bradykinin
(BK) provided evidence for 10 independent populations of
conformers (Pierson et al., 2011). In some solutions (90:10
dioxane/water) as many as eight different conformers were
found to coexist (Fig. 3). Later studies showed these
conformational preferences are strongly linked to cis/trans
configurations of the proline residues at positions 2, 3, and 7
(RPPGFSPFR) (Fuller et al., 2018); similar behavior had been
observed for BK fragments 1–5 (RPPGF), 1–7 (RPPGFSP), and
1–8 (RPPGFSPF) (Sawyer et al., 2005; Fernandez‐Lima
et al., 2009). The Clemmer and Russell groups have extended
these solution manipulation methods to monitor conformational
entropy using kinetics and equilibrium measurements as a
function of both solvent and solution temperature, respectively.
A series of papers describe in great detail the effects of solvent
(propanol/water) on cis‐trans configuration changes for a series
of polyprolines (Shi et al., 2014, 2016; El‐Baba et al., 2016). A
particularly interesting configurationally coupled proton transfer
reaction was observed for polyproline‐7 (PPPPPPP, denoted
Pro7) (Shi et al., 2015). It is now well established from this
study as well as prior work that cis configurations of proline are
preferred in less polar solvents, whereas trans configurations are
preferred in polar solvents. For example, Pro7 is initially
observed as the all‐cis [PPI+H]+ ion in propanol, and when
transferred to 40:60 propanol/water under acidic conditions, a
very slow protonation reaction coupled with configuration
conversion of the PPI helix to the PPII helix is observed to
produce all‐trans [PPII+ 2H]2+ ions. Kinetic and equilibrium
measurements as a function of temperature were used to
determine the thermochemistry of the proton transfer reaction,
which provided evidence that the configurationally coupled
reaction is subject to large entropic effects, ~190 J·mol−1·K−1.
Two potential mechanisms were considered to rationalize the
observed reaction: (i) a mechanism wherein the second proton
adds to the C‐terminus of the PPI chain to produce [PPI+ 2H]2+

ions, or (ii) a mechanism involving migration of the proton
initially located on the N‐terminus down the peptide chain,
possibly as H3O

+. Presumably this reaction would occur in
concert with the cis‐to‐trans configurational change of each
proline. As this migration of the proton proceeds, the N‐
terminus can accept a second proton to form the [PPII+ 2H]2+

ions. It was also noted that the pore size (~3–4Å) of the PPI
helix is sufficiently large and hydrophilic to allow for H3O

+

ions to migrate through the pore (Fig. 4).
Pro13 was also found to fold through a number (est. ~6) of

sequential long‐lived intermediate states as it converts from an
all‐cis configuration to an all‐trans configuration upon transfer
from propanol to water. It was also found that the induction
period for this reaction is shifted to longer times at lower
temperatures (Shi et al., 2014). HisPro13, however, behaves
quite differently from Pro13 in that the intermediate conformers
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are no longer observed and folding occurs by a cooperative two‐
state transition having a long temperature‐dependent induction
period (El‐Baba et al., 2016). It appears that the overall reaction
occurs by an entropically favored endothermic mechanism that
involves 13–17 long‐lived intermediate states. It was proposed
that the reaction is initiated by hydration of the protonated N‐
terminus followed by hydration along the peptide backbone.
The fact that intermediates are not observed for the reaction
PPIPrOH→PPIIaq is attributed to the weakening of the helix
dipole, thereby promoting the intermediate structure to revert to
the dipole stabilized PPI conformation. An alternative explana-
tion that may be linked to the kinetic trapping effects of “freeze‐
drying” has not yet been fully explored. Both explanations point
to the potential importance of developing better understanding
of the role of the confined environments of cold nanodroplets.

A similar conformationally coupled reaction was observed
for bradykinin (BK; RPPGFSPFR) and the neuropeptide
substance P (SP; RPKPQQFFGLM). At elevated temperatures
(65°C) BK undergoes a proton transfer reaction [BK+ 2H]2+ +

H+→[BK+ 3H]3+ that is coupled with trans→cis configuration
change that then leads to cleavage of the Pro2‐Pro3 bond (Fuller
et al., 2018). Interestingly, Pro2‐Pro3 bond cleavage does not
occur by any human enzyme. Similar reactions were also
observed for the neuropeptide SP (RPKPQQFFGLM) (Conant
et al., 2019). In this case however, the product of the
penultimate proline reaction is observed for both the intact SP
precursor as well as the formed product ions, viz.
[KPQQFFGLM+ 2H]2+→[QQFFGLM+ 2H]2+.

All of the above reactions occur in solution, but it is
interesting to consider a specific example where solution‐ and
gas‐phase chemistries are compared. The cis/trans configuration
preferences for “wet” and “dry” PPI/PPII were examined for
Pro13 using tandem IMS‐IMS‐MS (Shi et al., 2014). In these
experiments, all‐trans PPII or the all‐cis PPI conformer were
formed from water or propanol:water solutions, and specific
conformers were selected by IMS‐1. The ions were then
subjected to mild collisional activation (CA), and the products
of CA were then analyzed by IMS‐2. For example, SF PPII
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FIGURE 2. (A) 2‐D plots of mobility (arrival‐time distributions or CCS) vs m/z illustrating of separation on the
basis of compound class and “conformation space.” (B) Mobility (ATD) vs m/z plots for the hemoglobin tryptic
peptide fragment ions (residues 104–115, LLGNVLVVVLAR (m/z 1275.5) and residues 30–39,
LLVVYPWTQR m/z 1284.5). Reproduced from McLean et al. (2005) and Ruotolo et al. (2002a). ATD, arrival
time distributions; CCS, collision cross section. [Color figure can be viewed at wileyonlinelibrary.com]
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intermediates efficiently (>90%) refold to form the all cis PPI
upon CA, and these refolding reactions follow a similar
pathway, that is, the CCS of the intermediates in the reactions
PPII→PPI transitions are similar to those observed using the
mixed solvent (propanol;water) experiment. A later study
showed that SF environments strongly favor the cis (PPI)
conformer (Shi et al., 2016b). In addition, the intermediates
involved in the PPIISF→PPISF transitions are similar, in terms of
CCS, to those observed in solution, thus some transitions
observed in water, that is, wet folding conditions, are accessible
in vacuo. Conversely, the SF PPI→PPII transition does not
occur, which underscores the role of water as the major factor
promoting trans proline.

IV. EFFECTS OF HYDRATION ON CONFORMER
PREFERENCES: TRACKING HYDRATION DURING
THE TRANSITION FROM SOLUTION TO THE GAS
PHASE

Experimental and theoretical studies underscore the importance
of both long‐ and short‐range interactions between ligands/
solutes and biological molecules (Ladbury, 1996; Bogan &

Thorn, 1998; Levy & Onuchic, 2004; Papoian et al., 2004; Levy
& Onuchic, 2006). However, a detailed understanding of the
effects of water on protein structures, stabilities, dynamics, and
functions is largely confined to the effects of bulk solvent and
specific cases where a limited number of localized water
molecules, referred to as “biological water” (Nandi &
Bagchi, 1997; Pal, Peon, & Zewail, 2002), interact with the
protein backbone and/or specific amino acid side chains
(Halle, 2004; Rodier et al., 2005; Nucci, Pometun, &
Wand, 2011; Duboue‐Dijon & Laage, 2014). The ability to
experimentally probe the effects of solvation on peptide and
protein structure across the range of “bulk‐like” water (where
species are hydrated beyond the first solvent shell) to a small
number of water molecules has the potential to provide new
insights as to the role water plays in biological structure and
functionality. Cryo‐IM‐MS is uniquely suited to explore these
considerations as the “kinetically‐trapped” structures which
have been evaporatively “freeze‐dried” in various hydration
states by ESI are preserved by its 80 K drift tube (DT; Fig. 5),
allowing the analysis of hydrated ions (May & Russell, 2011;
Silveira et al., 2013a, 2013b; Servage et al., 2015c), including
the determination of their CCS from their arrival time
distributions (ATD) after traveling through the DT.
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FIGURE 3. Solvent‐dependent CCS profiles and examples of four low‐energy structures for bradykinin 3+ ions
in solution phase and “dehydrated” states. The solvent composition used for each solvent system is shown to the
right of each plot. Reproduced from Pierson et al., 2011. CCS, collision cross section. [Color figure can be
viewed at wileyonlinelibrary.com]
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Recent studies bring to the forefront two key roles water
plays in affecting ions in confined nanodroplets. First, water has
been shown to play a stabilizing role in forming like‐charged
ion complexes. Scheraga et al. (Magalhaes et al., 1994; No,
Nam, & Scheraga, 1997) showed that protonated guanidine
(GdmH+) side‐chains of surface arginine residues were
interacting, implying water plays a role in stabilizing like‐
charge ion pairing; Vazdar et al. (2011) showed with MD that as
few as 12 water molecules were required to stabilize the ion
pair. Cryo‐IM‐MS shows a distinct fall‐off in relative
abundance of the like‐charged GdmH+‐GdmH+(H2O)n ion
pairs with decreasing numbers (below ~n= 55) of water
molecules adducted, highlighted by the red box in Figure 6A,
suggesting that water plays a stabilizing role (Hebert &
Russell, 2019) likely by screening the excess charge and
supplying vital H‐bonding to stabilize the clusters, as suggested

by Vazdar et al. (2011). These results imply that water can
mitigate coulombic repulsions, suggesting a mechanism for the
stabilization of highly charged, albeit covalently bound peptides
and proteins seen in previous cryo‐IM‐MS experiments, which
would support the long‐held belief that coulombic repulsion
causes biomolecules to unfold (Servage et al., 2016). For
instance, stepwise dehydration of hydrated SP (RPKPQQGLM)
[SP+ 3H]3+ ions produces a compact conformer, denoted A,
that has been shown to unfold to a more extended conformer
only after complete dehydration of its highly charged (NH3‐
RPK)3+ region to form the extended B conformer (Silveira
et al., 2013a). Likewise, noncovalent ubiquitin (Ubq) dimers
dissociate only after near‐active complete dehydration (vide
infra) (Servage et al., 2015b). The second role water plays,
which is related to the first, is the facilitation of charge
delocalization. A recent investigation of hydrated 4‐
aminobenzoic acid (4‐ABAH+) hydrated ions revealed that
water plays a key role in transferring the proton originally
located on the –NH3

+ to the –COHOH+ group in sparsely
hydrated systems, as shown in Figure 6B and C (Hebert &
Russell, 2020). The proton transfer through the water bridge can
be inhibited by the presence of polar molecules (such as
acetonitrile) that directly interact with the charged region to
block the water bridge. In the absence of water, biomolecules
must rely only on rearrangement of charge carriers, which can
introduce very high charge transfer barriers for sterically
hindered regions. Intramolecular proton transfer reactions
negatively impact the formation of native‐like structures (via
different salt bridges, hydration structures, and intramolecular
charge solvation) formed by ESI, altering observed gas‐phase
structures (Wyttenbach, Liu, & Bowers, 2005; Wyttenbach &
Bowers, 2009; Xiao, Perez, & Russell, 2015). The following
section displays results from cryo‐IM‐MS experiments that
further illustrate these points; these examples demonstrate the
utility of kinetic trapping using freeze‐drying ESI and cryo‐IM‐
MS to study peptide and protein ions.

Hydration‐dependent conformer preferences of model
peptides illustrate the unique capabilities of ESI‐cryo‐IM‐MS
for studies of water and its effects on conformational
preferences of biomolecules. Such studies also complement
results obtained by cold‐ion spectroscopy (Papadopoulos
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FIGURE 4. A qualitative folding landscape for PPI/PPII transitions for
Pro13 in vacuo. system. The barrier height is estimated from collision
voltages rather than more accurate solution phase measurements or well‐
defined single collision energies. Note that the reaction D→C varies with
H2O and is highest for a “dry” environment. Adapted from Shi et al.
(2016b).

FIGURE 5. Solidworks rendering of (A) the cryo‐IM‐MS source and (B) instrument with major components
labeled. Ions generated by electrospray ionization are transferred to the heated capillary (red), which is heated to
control the degree of hydration. Ions are then passed through the DC ion guide (green) and into the cryogenic IM
drift tube (light blue). The kinetically trapped, hydrated ions are preserved as they pass through the drift tube by
using drift gas precooled by liquid nitrogen circulating through the Dewar jacket (dark blue). After leaving the
drift tube, the ions are detected by TOF mass analyzer. Instrument details are described in further detail
elsewhere (Silveira et al., 2013b). TOF, time‐of‐flight. [Color figure can be viewed at wileyonlinelibrary.com]
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et al., 2012; Nagornova, Rizzo, & Boyarkin, 2012). Cold‐ion
spectroscopy measures spectroscopic signatures of the solute,
whereas cryo‐IM‐MS provides direct measurements of the 3‐D
shapes as well as conformational heterogeneity of the ion
population. The various effects of hydration on such conforma-
tional heterogeneity are illustrated in Figure 7 which contains
hydration data for BK (RPPGFSPFR) and gramicidin S (GS;
cyclic‐(VOLFP)2) (Silveira et al., 2013b; Servage et al., 2016).
Although both peptides are detected as [M+ 2H]2+ ions, BK2+

hydrates are observed for n> ~60 whereas the GS2+ hydrate
ions drop off sharply at n= ~26 (Rodriguez‐Cruz, Klassen, &
Williams, 1997). ATDs increase monotonically for BK2+ ions,
suggesting the structure of BK2+ does not change as a function
of n. However, the ATD for GS2+ ions shows significant
variations that are correlated with the previously reported
“magic numbers” (n= 8, 11, 14) ions, which are likely affected
by the structures formed with the charged ammonium groups
(Rodriguez‐Cruz, Klassen, & Williams, 1997; Nagornova,
Rizzo, & Boyarkin, 2012). These magic number clusters for
GS2+ have also been reported by Beauchamp and coworkers
(Lee et al., 1998). The n= 14 may represent the maximum
water:charge ratio of 7, as indicated by gas‐phase peptide
hydrations reported by Liu et al. (2003). Several decreases in
ATD suggest reoccurring linkages of the cyclic peptide,
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FIGURE 6. (A) ATD is plotted as a function of m/z for a mixture of
GdmH+(H2O)n (denoted 1+) with GdmH+(H2O)n and GdmH+‐
GdmH+(H2O)n (denoted 2+). The red box highlights where the ion abundance
begins to decrease with decreasing hydration numbers. The inset shows a
proposed structure of GdmH+‐GdmH+(H2O)12. (B) ATD vs m/z plot of
4‐ABAH+(H2O)n sprayed from 0.1% formic acid in H2O showing the change
in the trendline at the n= 6 proton transfer from –NH3

+ to –COHOH+. (C)
ATD vs m/z plot of a mixture of H+(H2O)n, 4‐ABAH+(H2O)n, and
NH3

+C6H5(ACN)1(H2O)n clusters labelled in blue, black, and red, respec-
tively, sprayed from 0.1% formic acid in 1:1 ACN/H2O. This plot shows no
clear change in the trendline suggesting the –COHOH+ conformer persists.
*denotes 94 m/z (CO2 loss) and **denotes 120 m/z (H2O loss). Adapted from
Hebert and Russell (2019) and Hebert and Russell (2020). ATD, arrival time
distribution. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7. Cryo‐IM‐MS plots of (A) bradykinin peptide and (B) gramicidin
S. BK displays a typical example of the linear desolvation patterns of larger
molecules, whereas GS shows distinct shifts in the mobility and magic number
clusters. Adapted from Servage et al. (2016) and Silveira et al. (2013b). BK,
bradykinin; Cryo‐IM‐MS, cryogenic ion mobility‐mass spectrometry; GS,
gramicidin S. [Color figure can be viewed at wileyonlinelibrary.com]
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probably through water bridging of the ornithine groups first
(n= ~4–6) followed by other functional groups (n= ~10–11).
CCS characterization of this region will enable a better
understanding of the currently circumstantial evidence of magic
number cluster formation (Silveira et al., 2013b; Hebert &
Russell, 2020). BK2+ ions can have a more complex charge
distribution, viz. a protonated N‐terminus, two arginine ions
(RH+), and a deprotonated C‐terminus, or two charges may
reside on the two RH+ groups owing to high proton affinities of
the guanidine groups (Strittmatter & Williams, 2000). The extra
charge sites may lead to formation of a stable structure,
although the charge distribution might shift as a result of
hydration. In contrast, the charges on GS2+ ion reside
exclusively on ornithine (O) side chains. Since the –NH3

+

ions of GS2+ are small and the solvent shell is expected to be
well ordered, variations in ATD vs m/z plots are attributed to
different structures for the water molecules solvating the –NH3

+

ions (vide infra).

V. Water‐mediated conformer preferences of
hydrated SP3+ and SP3+ mutant ions

It is interesting to compare hydration of BK2+ and GS2+ with that
observed for SP3+ ions (amino acid sequence RPKPQQFFGLM)
owing to differences in the numbers of hydrophilic side chains.
The N‐terminus of SP3+ is quite hydrophilic (RPKPQQ) whereas
the C‐terminus (FFGLM) is hydrophobic. Figure 8A contains the
first experimental data that trace ion formation from a bulk‐like
solvent environment to a “solvent‐free” gas‐phase ion (Silveira
et al., 2013a). SP3+ ions are detected as [M+ 3H]3+(H2O)n, where
n> ~30, and the hydrated ions undergo stepwise loss of H2O
monomer to yield a compact [M+ 3H]3+ ion, denoted conformer
A, which upon collisional heating rearranges to conformer B (see
Fig. 8B). Thus, conformer A is a “kinetically‐trapped” solution‐
like state of SP, and conformer B is the thermodynamically
favored gas‐phase conformer (Silveira et al., 2013a; Fort
et al., 2014) MD simulations and IM‐MS ATDs of SP mutant
ions (SPM) show that intramolecular interactions involving the N‐
terminal charge sites (N‐terminus, R and K side chains) and side
chains of Q at position 5 and 6, and to a lesser degree F at position
7 and 8 (pi‐cation interactions), facilitate “kinetic trapping” of
conformer A (Fort et al., 2014).

The hydration data for SP Q5A and Q5,6A mutants are
quite different from that for SP3+ ions seen in Figure 8A which
closely resemble the data from BK2+. In Figure 7C, while the
ATD for hydrated SPM

3+ Q5A ions is relatively narrow for
n> ~12, the ATD for SP Q5A with n< ~12 are scattered,
indicating a more heterogeneous conformer population, com-
parable to what is observed for the GS2+ hydration trendline. A
similar change in the ATDs is observed for the Q5,6A mutant
for n< ~23 in Figure 7A (Servage et al., 2015a). These results
are interpreted as an “order” to “disorder” transition that occurs
at a specific number of water molecules, which is taken as
evidence that the conformation of the hydrated peptide is
dictated by solute/solvent interactions. The dependence on the
numbers of H2O molecules is attributed to restrictions on
the motion of the peptide backbone imposed by hydration of the
hydrophilic peptide side chains, viz. the N‐terminus, side chains
of R and K as well as stabilizing interactions of Q at position 5
and Q at position 6 (Halle, 2004; Mattea, Qvist, & Halle, 2008;

Halle & Nilsson, 2009). In addition, the narrowness of the ATD
for the hydrated ions in the range n< 12 of Q5A and n< 23 of
Q5,6A suggest that these ions may also have ordered
conformers.

Unpublished data from the Russell group for retro‐
sequence SP (rSP; MLGFFQQPKPR‐NH2) shown in Figure 9A
is compared to SP, where influences of coulombic repulsion are
quite different; the protonated N‐terminus is well separated
from the protonated side chains of R and K. The shift in the
ATD of the hydrated rSP3+ ion that is observed at n ~ 30 is
indicative of a significant change in the conformation of this
system (Fig. 9B).

Results from MD simulations are consistent with the solvation
and water bridging of the charge centers rather than the backbone
(Fig. 9A). In the case of the diammonium alkyl cation, a similar
phenomenon is seen with both ammonium ions contained in a
single water droplet for n> 18, but at n< 18 the two –NH3

+ groups
are contained in individual droplets (Servage et al., 2015a). This
transition, seen in Figure 9C, is driven by coulombic repulsion,
analogous to the case of GdnH+‐GdnH+(H2O)n. Here, however,
since the charge centers are connected, a resultant shift in the ATD
vs m/z for [rSP+ 3H+]3+ hydrated ions is observed. This is
indicative of a transition from a more compact state to a more
extended conformer, that is, from a single water network hydrating
the charged N‐terminus and the charged K and R residues to
separate water networks hydrating each charged region.

Kim et al. (2017) used MD simulations to model changes
in the conformational preferences of SP3+ ions during ESI,
specifically conformational changes that occur during the
transition from a charged nanodroplet to the SF gas phase ion
as shown in Figure 10. The initial charged droplet contained
~2,400 water molecules, 22 hydronium ion, 10 chloride ions,
and a single SP peptide. Droplet shrinkage involved water
evaporation and loss of excess charge by the ejection of
hydronium ions. Further droplet shrinkage occurred by
evaporation followed by fission events as well as the loss of
Cl− ions. The conformation of the SP3+ ions responded to
changes in droplet size by small changes in conformation and
migration of the hydrophobic C‐terminus to regions of the
droplet near the surface. The hydrophilic N‐terminus remained
buried in the droplet interior by water‐mediated interactions
with the H3O

+ and Cl− ions. The final conformations obtained
from the simulations are shown in Figure 10A‐iii and B‐iii. The
simulations suggest that interactions between SP3+ and Cl− are
retained until the final stages of ESI droplet evaporation;
however, evidences of these adduct ions are not observed in the
mass spectra. Presumably, Cl− is lost owing to mild collisional
heating or by elimination of neutral HCl, that is, charge‐
reduction reactions (Mirza & Chait, 1994). Subsequent studies
present additional evidence that Cl− is involved in preserving
compact conformers. Although CCS profiles for both proto-
nated SP and melittin electrosprayed from water and water/
0.1% HCl solution are indistinguishable, the abundances of
more compact conformers are higher for melittin‐Cl adduct ions
(Servage et al., 2015a; Kim et al., 2017).

Insight into the interactions of hydrated proteins with Cl−

may be gleaned from a follow‐up study by Wagner et al. which
showed that ESI of Ubq from acidified (HCl) solutions
produced abundant ions having the general formula, [M+ nH+
xCl](n− x)+, and these ions eliminate HCl when subjected to
mild CA, Figure 11A‐C (Wagner, Kim, & Russell, 2016; Kim
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et al., 2017; Oh & Consta, 2017). Moreover, increased
activation energy was required to unfold anion‐protein com-
plexes to their more stable gas‐phase structures. This suggested
that introducing anion interactions may cause solution‐phase
structures to be more easily trapped in the gas phase due to
reduced coulombic repulsion. More importantly, the CCS of the
product ions of chloride adduction are similar to those of the
“native state” of the protein. Another prominent series of adduct
ions, viz. [M+ nH+ xCl+ yH2O]

(n− x)+, was also observed.
While the relative abundances of these ions increased with
increasing numbers of Cl− anions, the water adducts had no

measurable effect on the CCS profiles. Thus, it was proposed
that the water molecules interact with the anions rather than the
protein.

Ignoring the electrostatic role of anions has vastly
simplified positive‐ESI‐IM‐MS spectra, but anions interact
directly with proton sites, playing a key role in reducing the
activation of proteins/protein complexes. These studies are most
relevant to contemporary issues frequently encountered in
native MS, most notably peak broadening associated with large
proteins and protein complexes where the high m/z tails of the
peaks can be trimmed by CA (Benesch, 2009). The results noted
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FIGURE 8. (A) ATD vs m/z for SP3+ ions (RPKPQ5Q6FFGLM). (B) Plot of CCS as a function of the electric
field strength of two [SP+ 3H]3+ conformers CCS, illustrating the conversion of species A to B under collision
induced unfolding conditions. The theoretical random coil trendline (321Å2) is shown with a dashed line. (C)
and ATD vs m/z for SP mutant Q5A and (D) Q5,6A. All peaks labeled with an asterisk correspond to fragment
ions observed at higher capillary temperatures. The upper panels contain extracted ATD for specific m/z ranges
as indicated by the arrows. The black ATD lines are the result of plotting every other data point while the full
data set is plotted in gray. Note that the differences in the peak widths of the extracted ATDs reveal
conformational heterogeneity for the ions at each m/z ratio. While the plots of ATD vs m/z were collected using
an 80 K drift tube, the plot of ion funnel electric field strength versus CCS was collected under ambient
conditions. Adapted from Servage et al. (2015a) and Silveira et al. (2013b). ATD, arrival time distributions;
CCS, collision cross section. [Color figure can be viewed at wileyonlinelibrary.com]
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above potentially explain why the CCS for these signals are not
sensitive to the presence of adducted species, that is, salts and
water. Additional studies addressing these issues are needed,
especially studies utilizing high‐resolution IM and MS mea-
surements (vide infra).

VI. WATER‐MEDIATED DIMERIZATION OF Ubq

The extent of hydration of model peptides described above
shows a dependence on the number of charged functional
groups, and it is expected that larger peptides and proteins
would have a greater capacity for hydration. The question is
raised whether ESI‐cryo‐IM‐MS can be used to directly
measure, or at a minimum provide a more accurate estimate,

of the solvent‐accessible surface area (SASA; Servage
et al., 2015b). Results from MD simulations on Ubq
(~8 kDa) estimated that the first solvation shell is composed
of ~187 water molecules (Tompa et al., 2009). Surprisingly,
cryo‐IM‐MS detected relatively few water molecules (~10)
associated with Ubq [M + 7H]7+ monomer ions, whereas
hydrated Ubq dimer ions ([2 M + 14H]14+(H2O)n) with
n ~ 285 were detected, which is considerably less than 374
assuming the SASA of two monomers. The decreased
numbers of water molecules observed for the dimer versus
the number of water molecules based on the SASA of two
monomers is consistent with a dimer formed by face‐to‐face
contacts involving the hydrophobic patch (Nucci, Pometun,
& Wand, 2011).

The formation of the Ubq dimer has been described as
water‐mediated, meaning that water plays a key role in this
process. The hydrophobic patch of Ubq formed by the side
chains of Leu‐8, Ile‐44, and Val‐70 (shown in orange in
Fig. 12) meet the necessary criteria for a protein‐protein
binding “hot spot,” including the required occlusion of
water to nearby hydrophilic sites (R42, K48, H68, R72, and
R74; see Fig. 12). A similar rationale was described by Liu
et al. (2012) and Wand and coworkers have shown that the
water molecules solvating these hydrophobic sites exhibit
restricted hydration dynamics (Nucci, Pometun, &
Wand, 2011). Further evidence supporting the proposed
mechanism for water‐mediated formation of the Ubq dimer
comes from studies on the CIU of the noncovalent dimer and
the K‐6, K‐11, K‐48, and K‐63 covalent dimers. The K‐48
dimer is known to contain strong interactions involving the
I‐44 hydrophobic patch, and the CIU heat maps for the K‐48
and noncovalent dimer are almost identical (Wagner &
Russell, 2016).

Invoking formation of an occlusion complex to explain
water‐mediated dimers of Ubq raises questions about possible
coulombic repulsion within confined regions where a sub-
stantial fraction of the hydrophilic side chains (R42, K48, H68,
R72, and R74) are charged. As described, this is an archetypal
model for a protein “hot spot” in which a hydrophobic core is
surrounded by a hydrophilic, charged peripheral region. A
similar “hot spot” also appears in the GdmH+‐GdmH+(H2O)n
complex described earlier. Loss of hydration is what causes
dissociation in both cases; the occlusion of water forms the
thermodynamic impetus for dimerization (hydrophobic effect),
but the hydrophilic peripheral regions appear necessary to
maintain these dimers.

Cryo‐IM‐MS excels at probing the effects of solvation
on the structure of ions. This unique approach reveals the
crucial role of water in the regulation of structure, and thus
function. However, many other physiological factors, for
example, crowding, mutation, temperature, protein interac-
tion, and ligand can influence the structure which is the
main focus of the following section. Thermal changes, as
well as interactions with and between these solutes, can not
only define adduction but also affect whether the bound
protein undergoes structural and thus functional change.
The CIU technique is uniquely suited to investigations of
these phenomena. In the following section, this technique is
used to investigate structural changes based on metal
binding interactions and the effects of tagging and
dimerization linkages.
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FIGURE 9. (A) MDS of hydrated rSP. (B) m/z vs ATD plot of rSP showing
the conformational change undergone by increased desolvation. MDS of
solvated rSP ion (C) m/z vs ATD plot of 1,7‐diammoniumheptane
demonstrates the impact water has on structure on solvated ions, with inset
schematic of changes in solvation motif with dehydration. Adapted from Kim
et al. (2017); Servage et al. (2015a). ATD, arrival time distributions; rSP, retro‐
sequence substance P. [Color figure can be viewed at wileyonlinelibrary.com]
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VII. STUDIES OF NATIVE AND NON‐NATIVE
PROTEIN FOLDING: TRACKING INTERMEDIATES
DURING THE UNFOLDING PROCESS

In recent years, there has been growing interest in the
development of MS‐based methods for studies on the folding/
unfolding of biomolecules and biomolecular ions. In the
following subsections, two MS approaches for probing protein
folding are discussed: (i) CIU (Ruotolo et al., 2007; Dixit,

Polasky, & Ruotolo, 2018) and (ii) thermal melting of proteins
in solution through variable‐temperature electrospray ionization
(VT‐ESI; Benesch, Sobott, & Robinson, 2003). CIU reports on
the energies required to unfold gas‐phase ions as reported in a
recent paper that found quantitative barriers for CIU can be
obtained using approaches previously developed for blackbody
infrared radiative dissociation (Donor, Shepherd, & Prell, 2020).
On the other hand, thermal melting of a protein in solution is
better described as a “folding/refolding” equilibrium reaction
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FIGURE 10. (A, B) Plots of the evolution of two fully elongated structures showing the (raw data, black line;
smoothed, yellow line) CCS of SP3+ ions and (blue points) numbers of water molecules vs time extracted from
selected simulations. The experimentally determined CCS of SP3+ (316 Å2 orange dash and 368 Å2, green dash)
is also shown for reference. Structures labeled as (i−iii) depict representative snapshots of the simulations (A, B):
(i) the post‐fission compact structures observed at 2000 ps, (ii) the elongated structures observed later in the
simulation, and (iii) the final frame of the desolvation simulation. Blue dots represent water molecules, purple
spheres represent Cl−, and H3O

+ are shown in green. Figure is from Kim et al. (2017). CCS, collision cross
section. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 11. (A–C) Heat maps showing the effect of collisional activation on the CCS profiles of
[M+ nH+ xCl](n− x)+ ubiquitin ions, with a total charge of 5+, 6+, and 7+ (A–C, respectively). The CCS profiles
observed using a collision voltage of 5 V is shown to the left of each map. Adapted from Wagner et al. (2016).
CCS, collision cross section. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 12. ATD vs m/z plot for ubiquitin at heated capillary temperatures of (A) 363K and (B) 378K, and (C) an
annotated structure of the native state of ubiquitin. The hydrophobic patch (orange) and surrounding basic (blue), acidic
(red), and glutamine (purple) residues are shown. The hydrophobic patch (L8, I44, V70) is surrounded by K6, K11 (not
visible), R42, K48, H68, R72, and R74 residues, which are more solvent accessible and may serve as initiators of dimer
formation. Adapted from Servage et al. (2015b). [Color figure can be viewed at wileyonlinelibrary.com]
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that occurs upon changes in the chemical potential that serve as
driving forces for thermal unfolding/refolding reactions. For
solution‐phase melting the driving forces for refolding are the
changes in the dielectric constant, ranging from ~78 at 25°C to
56 at 100°C for water (Malmberg & Maryott, 1956) as
compared to ~33 at 25°C for methanol (Cunningham, Vidulich,
& Kay, 1967; Shirke et al., 2001). As the protein responds to
these changing forces, the new state formed under these
conditions is the native state. For CIU studies, the folding/
unfolding terminology is correct as the products sampled in this
reaction are under kinetic control; thus they are not in
equilibrium with the local environment and cannot refold. The
CIU results provide a means for determining the energetics of
the unfolding reactions limited by the time frame on which the
measurements are sampled. Combining results of VT‐ESI and
CIU studies provides information regarding the behavior of
protein structure in non‐native states which are thermodynami-
cally unfolded/refolded into equilibrium states and/or collision-
ally excited in kinetically trapped states.

VIII. STABILITIES OF GAS‐PHASE PROTEIN
IONS: CIU

A major aim for native IM‐MS is to characterize biomolecules
and biomolecular ions based on conformational preferences,
that is, secondary and tertiary structure. CIU, which measures
changes in CCS of the ions as a function of collisional heating,
can be used to compare the stabilities of the gas‐phase ions
(Dong et al., 2020). Ubiquitylation, a posttranslational mod-
ification, is an important cellular process that encodes an array
of cellular functions (Komander & Rape, 2012). Native IM‐MS

and CIU were employed to better understand differences in
subunit interfacial interactions for noncovalent Ubq dimers by
studying conformational preferences for K6‐, K11‐, K48‐, and
K63‐linked covalent ubiquitin dimers (diUbq; Wagner,
Clemmer, & Russell, 2017). The four diUbq are not easily
differentiated based on IM CCS as they all have strong IM
features with CCS of ~1,700Å2 when sampled under minimally
activating instrument conditions (Chen & Russell, 2015a).
However, the CIU heat maps for the diUbq ions show distinct
differences (Fig. 13B‐F) and unfolding pathways with unique
linkage‐dependent features. Comparison of the CIU heat map of
noncovalent ubiquitin dimers (Ubq2

9+; Fig. 13B) to those of the
lysine‐linked covalent ubiquitin dimers (diUbq9+; Fig. 13C‐F)
revealed similarities between unfolding of noncovalent Ubq
dimer and K48‐linked diUbq (Fig. 13A), suggesting similar gas‐
phase structures and dimer interfacial interactions.

IX. FOLDING/REFOLDING PROTEINS IN
SOLUTION USING VT‐ESI

Protein melting (El‐Baba et al., 2018) or thermal heating of the
solution (Wang, Bondarenko, & Kaltashov, 2018; Kohler
et al., 2019) within the ESI emitter provide new approaches
for determining the thermal stabilities of peptides, proteins, and
even protein complexes. The combination of VT‐ESI with IM‐
MS affords the ability to investigate structural transitions
(refolded states) of biomolecules by kinetically trapping folding
intermediates in the gas phase. VT‐ESI‐IM‐MS has been used
primarily to study soluble proteins and protein complexes but
has also been used for thermodynamic studies of lipid binding
to membrane protein complexes (Cong et al., 2016).
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FIGURE 13. CIU heatmaps of ubiquitin dimers [2M+ 9H]9+ from acidified solutions (0.1% formic acid). (A)
NMR structure of K48‐linked ubiquitin dimer (PDB 2PEA). (B) CIU of the noncovalent ubiquitin dimer shows
unfolding from a from ~1,750 A2 to ~2,300 A2 before dissociation at a collision voltage of 25 V. CIU heatmaps
of (C) K6‐, (D) K11‐, (E) K48‐, and (F) K63‐linked covalent ubiquitin dimers show similar conformer
distributions at low collision voltages yet distinct linkage‐dependent unfolding. Similarities between the
unfolding pathways of noncovalent and K48‐linked ubiquitin dimers (B and E, respectively) suggest the
noncovalent dimer adopts similar subunit interfacial interactions to the K48‐linked covalent ubiquitin dimer. CIU
heatmaps are reproduced from references Wagner and Russell (2016); Wagner et al. (2017). CIU, collision‐
induced unfolding; NMR, nuclear magnetic resonance. [Color figure can be viewed at wileyonlinelibrary.com]
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The utility of VT‐ESI for studies of protein folding/
refolding was initially illustrated using monomeric ubiquitin
(Ubq; El‐Baba et al., 2017). Melting curves shown in Figure 14
are consistent with a two‐state, cooperative unfolding transition
having a melting temperature of ~71°C (Wintrode, Makhatadze,
& Privalov, 1994) however, the IM‐MS data shown in Figure 15
reveal the presence of several intermediate states (i.e.,
conformers) involved in the thermal melting reaction. As
examples, [Ubq+ 9H]9+ ions form two conformers, labeled as

P1 (blue trace) and P2 (brown trace), with P2 increasing in
abundance as the temperature is increased from 26°C to 96°C.
For the [Ubq+ 11H]11+ state, the broad signal for the P1 (blue
trace) is still observed, but more importantly, a new conformer
is observed that is assigned to a different configuration of the
proline at position 19 (P3, red trace); consistent with cis/trans
Pro19 previously assigned by Pagel and von Helden (Warnke
et al., 2014). Careful analysis of all the IM‐MS data, showed
that thermal unfolding of the various charge states of Ubq
occurs by “refolding” reactions involving at least nine unique
conformer states: three native or native‐like states, four states at
higher temperatures, and two states that differ based on cis/trans
configuration about the Glu18‐Pro19 peptide bond.

Melting curves for myohemerythrin obtained with VT‐ESI
(shown in Fig. 16) are very different from any other system. The
native state favors a four‐helix bundle motif and a bridging
diiron oxo cofactor that binds oxygen, and at ~35°C some
bound oxygen dissociates. A melting transition (loss of
cofactor) is observed at ~66°C giving rise to both folded and
unfolded apoprotein. At ~85°C the folded apoprotein dominates
and the IM‐MS data reveal evidence (shift in the CCS profile
and a mass loss of 2 Da) of the formation of a non‐native
disulfide bond at high temperatures. The Tm values obtained by
VT‐ESI are in excellent agreement with those obtained by CD
spectroscopy (64.5 and 67.0°C at λ222nm and λ209nm, respec-
tively) (Woodall et al., 2019). This example illustrates the
increased chemical information obtained from VT‐ESI coupled
with IM‐MS: (i) the thermally induced loss of oxygen and the
cofactor were not observed using CD spectroscopy, and (ii) the
stabilization of the final product results from the formation of a
non‐native disulfide bond.

While VT‐ESI methods have been used to explore
monomeric protein folding/unfolding and infer details regarding
2° and 3° structure dynamics, recent reports have shifted focus
towards VT‐ESI of protein complexes to study the effects of
temperature on the quaternary structure using hemoglobin and
concanavalin A as examples. In the case of hemoglobin,
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FIGURE 14. The average charge state z(¯) for ubiquitin (10 µM in acetic
acid, pH 3.0) was determined from the spectra shown in the upper left by
taking the weighted average of charge state as function of solution
temperature. The midpoint at Tm= 71°C is in excellent agreement with
71± 2°C reported by Wintrode et al. (1994). Reproduced from El‐Baba
et al. (2017).

FIGURE 15. (A) CCS distributions for [M+ 9H]9+‐[M+ 13H]13+ions of ubiquitin at various temperatures.
Traces are shown in different colors when IMS peaks for different charge states show indistinguishable
temperature profiles. (B) Relative abundance profiles as a function of temperature for each configuration reveal
three distinct solution products (P1, P2, P3) and one high‐temperature equilibrium intermediate (I2). Relative
abundances of these identified conformers show distinct freezing curves as these conformers form from the
unfolding/refolding of the compact, native ubiquitin ions at elevated temperatures. Reproduced from El‐Baba
et al. (2017). CCS, collision‐induced unfolding. [Color figure can be viewed at wileyonlinelibrary.com]
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VT‐ESI‐IM‐MS was used to track the melting transition of the
heterotetramer (α2β2) to the heterodimer (αβ), which ultimately
forms aggregates at temperatures above 60°C. New insights for
the melting were observed by VT‐ESI‐IM‐MS, viz. both the
tetramers and dimers form less compact conformers at elevated
temperatures before temperatures where dissociation dominates
(Woodall et al., 2020). VT‐ESI‐IM‐MS was also used to study
the folding/unfolding of concanavalin A, a homotetrameric
protein complex. The use of VT‐ESI‐IM‐MS to study the effects
of thermal unfolding of concanavalin A revealed four
conformers of the tetrameric complex with distinct melting
temperatures, a detail that could not be observed by conven-
tional, solution‐averaged melting measurements (El‐Baba &
Clemmer, 2019). In addition to the expected shifts in charge
states and tetramer dissociation at elevated temperature, Gibbs‐
Helmholtz analyses of VT‐ESI‐IM‐MS results suggest that
changes in specific heat (ΔCp) of identified concanavalin A
tetrameric conformers result from solvation of nonpolar amino
acids (positive ΔCp) found in conformers stable at low
temperature or solvation of hydrophilic residues (negative
ΔCp) found in conformers stable at high temperature (El‐Baba
& Clemmer, 2019). These results suggest that amino acid
hydration and changes in SASA are driving forces for protein
folding even for protein complexes and provide a means for
deeper fundamental thermodynamic analyses of structural
dynamics and conformer preference of proteins and protein
complexes.

X. COMBINING CIU AND VT‐ESI‐IM‐MS TO PROBE
STABILITIES OF PROTEIN COMPLEX: THE EFFECTS
OF SEQUENCE TAGS

The breadth of the studies described above clearly illustrate the
unique potential for CIU, VT‐ESI‐IM‐MS, and MS/MS for studies
of complex protein systems; however, incorporating additional
MS‐based structural approaches adds to the biophysical character-
ization of proteins and protein complexes and their labeling with
covalent and/or noncovalent modifiers. As examples, our current

level of understanding of the structure(s) of partially metalated
metallothionein comes from combining covalent labeling of the
cysteine side chains with N‐ethylmaleimide (Kohler et al., 2019)
with top‐down and bottom‐up proteomics approaches (Chen,
Russell, & Russell, 2013; Chen & Russell, 2015b).

A similar case exists for our studies on transthyretin (TTR),
a homotetrameric protein complex whose subunits (when
partially unfolded) are implicated in fibril formation. TTR
aggregation has been shown to be involved in several diseases
(Gertz et al., 2019) but the detailed mechanism(s) for
aggregation have been elusive (Dunn, 2005), owing to the
instrumental inabilities to identify and structurally characterize
the transient intermediates (kinetic and/or thermodynamic) that
are involved. While X‐ray crystallography and NMR have
provided an atomistic‐level structure for TTR and even the TTR
complexes with bound thyroxine (T4), these structural techni-
ques are not well‐suited for studies of structurally hetero-
geneous samples, especially those where low abundance
transient intermediates are responsible for misfunction (Woods,
Radford, & Ashcroft, 2013).

Another factor that complicates studies of TTR is related to
the presence of endogenous metals. For example, TTR is
complexed by Zn(II) and functions as a metallopeptidase where
three distinct sites have been determined (de C. Palmieri
et al., 2010) and prior studies have shown that excess Zn(II)
binding decreases retinol transport function and increased rates
of fibril formation (Castro‐Rodrigues et al., 2011). Moreover,
changes in structure/stability occur upon Zn(II) binding which
might ultimately influence T4 and/or retinol‐binding. New
evidence for metal‐induced oxidation observed using native
IM‐MS underscores the importance of rigorous analytical
measurements to understand protein behavior (vide infra)
(Poltash et al., 2019).

Recombinant TTR is routinely used to study physiological
function and structure, a common practice for many other proteins
and antibodies. This practice has revolutionized the field of
biochemistry, and massive production of recombinant proteins
paved the way for the development and commercialization
of many protein‐based therapeutics. However, despite their
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FIGURE 16. (A) Melting curves for myohemerythrin (20 µM in 30 mM ammonium acetate, pH 6.8) show a
unique unfolding and refolding pathway dictated by a structural rearrangement and formation of a non‐native
disulfide bond. Inset mass spectra show shifts towards higher charge and transition from holoprotein (filled
circles) to apoprotein (open circles) with increasing temperature, followed by a shift towards lower charge state
following the formation of the nonnative disulfide bond at high temperature. (B) Structures of the products
formed by melting are shown along with respective CCS profiles and MS spectra. Reproduced from Woodall
et al. (2019). [Color figure can be viewed at wileyonlinelibrary.com]
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invaluable contribution to science and biology to achieve the
desired sample quality, the purification requires specific tags that
can impact the structure and function of the expressed protein.
Cleavage of covalent tags is often time consuming thus the
necessity of tag removal remains a challenge for many
laboratories. Recently, CIU experiments were utilized to analyze
the conformation space the gas‐phase stability of two sequence‐
based tags, C‐terminal tag (CT) and dual FLAG‐tag (FT2)
(Shirzadeh et al., 2020) used in previous TTR subunit exchange
studies (Shirzadeh et al., 2019). CT‐TTR exhibited similar
unfolding energetics to wild type (WT) as well as gas‐phase
unfolding pathway (two intermediates), whereas FT2‐TTR showed
a third intermediate and higher gas‐phase stability (Fig. 17A–C)
(Shirzadeh et al., 2020).

Top‐down experiments also confirmed a backbone clea-
vage (Lys9‐Cys10) in FT2‐TTR at ambient temperature which
increased in abundance with temperature (Shirzadeh et al., 2020).
Previous studies have shown high thermostability of TTR
(Tm> 98°C) (Shnyrov et al., 2000); thus, the secondary and
tertiary structure of TTR cannot be responsible for observed

cleavage. To dissect the effect of temperature on the quaternary
structure of TTR, CID of the tetrameric complex was performed
at various solution temperatures using VT‐ESI (Fig. 17D).
These results revealed a decrease in the stability of FT2 tag with
increasing temperature (Figure 17E) but not significant enough
to justify the observed cleavage. Detailed analysis of these
variants linked the origin of backbone degradation to the
metalloprotease activity of TTR which can be inhibited by
removing metals. Both CIU and VT‐ESI‐CID experiments point
to structural impact of FT2 tag on TTR which was hidden
in previous studies (Rappley et al., 2014; Robinson &
Reixach, 2014).

All together, these unfolding studies point to potential
applications of native IM‐MS and tandem MS to interrogate
conformation space and stability of biomolecules. The example
provided for backbone cleavage of FT2‐TTR further emphasizes
that this detailed information cannot be achieved with other
traditional techniques such as differential scanning calorimetry,
which measures stability analysis indirectly by the heat change
in response to protein unfolding.
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FIGURE 17. CIU and melting data for WT‐, CT‐, and FT2‐TTR. CIU heatmaps of (A) WT, (B) C‐terminal tagged
(CT), and (C) dual flag tagged (FT2) show that FT2 tag increases gas‐ and solution‐phase stability of TTR and alters
its unfolding pathway in the gas phase as a third intermediate was observed in CIU plot. (D) Solution stability was
measured using I50 values corresponding to the energy required to dissociate 50 percent of the tetramer. T4 was used
as a control as it is known that it enhances the solution stability of TTR. (E) I50 values for WT‐, CT‐, and FT2‐TTR
were plotted as a function of temperature, demonstrating slightly higher stability of FT2‐TTR at room temperature
which diminishes at higher temperatures. Reproduced from Shirzadeh et al. (2020). CIU, collision‐induced unfolding;
TTR, transthyretin; WT, wild‐type. [Color figure can be viewed at wileyonlinelibrary.com]

THE IMS PARADOX ▪

http://wileyonlinelibrary.com


XI. NEXT‐GENERATION IM‐MS TECHNOLOGIES
FOR STUDIES OF LARGE PROTEINS AND PROTEIN
COMPLEXES

Instrument development for native‐MS is largely driven by needs
to understand the structural details of large protein complexes, viz.
solvent manipulation (Shi et al., 2014), effects of protein‐protein
interactions (Cong et al., 2016), PTMs (Fornelli et al., 2020),
stoichiometry (Kaltashov & Mohimen, 2005; Zhou & Wysocki,
2014; Shirzadeh et al., 2019; Stiving et al., 2019; VanAernum
et al., 2019), and ligand binding events (Hyung, Robinson, &
Ruotolo, 2009; Allison et al., 2015; Cong et al., 2016; Marchand
et al., 2018), investigations of which are made possible by recent
advances in MS instrumentation (Giles et al., 2019 Poltash
et al., 2020). Advances in IM‐MS technology and experiments
were accelerated by the readily adopted Waters SYNAPT
platform. The versatile SYNAPT platform allows for pre‐IM
ion mass selection allowing for tandem MS experiments that can
be further interrogated by the novel traveling‐wave IM with
additional fragmentation, that is, CID (Mitchell Wells &
McLuckey, 2005), SID (Zhou & Wysocki, 2014; Stiving
et al., 2019; VanAernum et al., 2019), and electron transfer/
capture dissociation (Zhurov et al., 2013). However, perturbations
in the structure of native proteins are difficult to study, because the
changes in structure may lead to small changes in CCS that are
unresolvable on commercial instrumentation (Poltash et al., 2020).
To understand the relatively minute structural perturbations for
large proteins and protein complexes, new instrumentation needs
to be developed to overcome the limitations of commercial
instrumentation in terms of insufficient resolving power (RP), that
is, peak centroid/separation of two closely spaced peaks) in the IM
and m/z domains (RPIM and RPm/z, respectively; Poltash
et al., 2020). For example, as shown for TTR, a RPm/z of 840 is
needed to resolve Zn binding to the intact tetrameric protein that
was previously hidden. Traditional uniform‐field drift‐tube
(UF‐DT) IMS systems lack the necessary radial confinement of
ions as they traverse the DT (Silveira et al., 2010). This poor
confinement results in the diffusional broadening of the ion beam
during IM analysis resulting in decreased sensitivity and signal
loss. Increased ion transmission has been achieved namely by
radially focusing the ions, viz. post‐IMS focusing funnels (Bush
et al., 2010; Allen & Bush, 2016; Garimella et al., 2017; Ibrahim
et al., 2017; Stiving et al., 2020), magnetic fields (Bluhm, Gillig,
& Russell, 2000; Bluhm, Gillig, & Russell, 2000; Bluhm, North,
& Russell, 2001), segmented quadrupoles (Javahery &
Thomson, 1997), and/or periodic‐focusing (PF)‐DT (Gillig
et al., 2004; Verbeck et al., 2004; Silveira et al., 2010; Blase
et al., 2011; Gamage et al., 2011; Silveira et al., 2012). Periodic
focusing drift tube (PF‐DT) radially focuses ions using a distance‐
dependent waveform (~pseudo kHz) as ions traverse axially
through the DT (Gillig et al., 2004; Verbeck et al., 2004; Silveira
et al., 2010; Blase et al., 2011; Gamage et al., 2011; Silveira
et al., 2012). The distance‐dependent electric field leads to an
oscillatory ion trajectory increasing the drift times relative to
UF‐DT for ions of the same size and shape (Verbeck et al., 2004;
Gillig et al., 2004; Silveira et al., 2010; Blase et al., 2011; Gamage
et al., 2011; Silveira et al., 2012). PF‐DT drift times deviate from
typical UF‐DT, but the mobility term, K, can be accurately
accounted for by applying a calculated mobility dampening term,
α, from first‐principles measurements, as shown by Silveira
et al. (2012).

Typically, IMS is coupled to time‐of‐flight (TOF) MS
because the duty cycle of the TOF operates on the microsecond
time scale, and the typical mobility separation occurs on the
millisecond time scale, allowing for nested MS analysis of ions
as they exit the DT. Current commercial IM‐MS instruments
suffer from low MS resolution (Rm/z) in the TOF with only
recent implementations of high‐resolution TOFs (e.g., Waters
SELECT Series Cyclic IMS or Agilent 6545XT Q‐TOF MS, but
the latter lacks IM capabilities) (Giles et al., 2019). Alter-
natively, IM can be coupled to a high‐resolution orbitrap
platform, but this introduces a duty‐cycle mismatch since the
orbitrap operates on a timescale of hundreds of milliseconds
(Clowers & Hill, 2005; Szumlas, Ray, & Hieftje, 2006;
Morrison, Siems, & Clowers, 2016; Poltash et al., 2018). This
problem may be mitigated by supplementing the gate at the
entrance of the DT with a second gate implemented post‐IM to
isolate a single drift time of interest to be transferred for mass
analysis; this process is then iterated over the entire drift time
window. Alternatively, Fourier transform IM (FT‐IM) uses a
linear chirp waveform to modulate both gates by the same pulse
which sweeps a user‐defined frequency range over a designated
period (Knorr et al., 1985; Morrison, Siems, & Clowers, 2016;
Poltash et al., 2018; Poltash et al., 2019). Applying the same
pulse pattern to both gates converts the DT into a frequency
filter outputting to the orbitrap mass analyzer. FT‐IM thus
overcomes the duty cycle mismatch by synchronizing the period
of the IM frequency sweep with a multiple of the orbitrap duty
cycle. The frequency of modulation the ions experience via the
FT‐IM mode is encoded into their respective time‐dependent m/
z signals which can be deconvoluted into an ATD.

The combination of the aforementioned PF‐DT coupled to
the high‐resolution capabilities of an orbitrap MS allows for the
interrogation of protein structure to a level that has not been
previously achieved. The first‐generation native FT‐IM‐PF‐DT
orbitrap EMR (Fig. 18A), has sufficient RPm/z to resolve apo‐
TTR ions from the Zn‐ and thyroxine‐containing ions, m/z
differences of 4.5 and 55.4, respectively, for TTR (~56 kDa
tetrameric protein complex (Fig. 18B‐a). Studies performed
using low mass resolution instruments report composite IM
profiles for all three species (apo, Zn‐bound, and T4‐bound),
whereas IM data obtained using high mass RP yields IM
profiles for each species (Fig. 18B‐b and B‐c). In addition, the
high‐resolution ion mobility capability of the FT‐IM‐PF‐DT
orbitrap EMR provides evidence for structural perturbation of
TTR upon metal‐induced oxidation (Poltash et al., 2019). As
shown in Figure 19A, time‐dependent oxidation of TTR can be
resolved on EMR indicated by several stepwise mass shifts of
64 Da. The utility of ion mobility coupled to high‐resolution
mass analyzer allows the detection of two extended conformers
of TTR upon oxidation (Fig. 19B). While the mass resolution
offered by this platform is superior compared to that of a
commercial IM‐TOF instrument (Fig. 20C), the resolution, in
both mass and mobility domains, is not sufficient to resolve the
sequential oxidation of subunits for the intact tetramer, as they
are evident on ejected monomers produced from SID of TTR
(Fig. 19D and E).

IM‐MS results are augmented by techniques such as
SID (Ma, Loo, & Wysocki, 2015; Quintyn, Harvey, &
Wysocki, 2015; Quintyn et al., 2015; Song et al., 2015) which
yields folded subunits which preserve ligand binding and
reports on the topology of the complex (Fig. 20A, B) (Shirzadeh
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et al., 2019). In the case of ligand binding, SID of TTR reveals
zinc‐binding (Fig. 19E) while it is obscured in the CID
experiment (Poltash et al., 2019). Recent native MS‐SID‐IM‐
MS studies on TTR using commercial instruments illustrate the
diversity and wealth of information that can be gleaned using
SID for topology analysis (Shirzadeh et al., 2019). The SID
results show definitive data that TTR disassembly in solution
occurs by a two‐step reaction, tetramer→dimer→monomer
(Foss, Wiseman, & Kelly, 2005), followed by self‐assembly
of the monomers (Fig. 20C); however, there remain open

questions as to the conditions in which the monomers are
properly folded, partially folded, or unfolded (Palhano
et al., 2009).

One challenging aspect of any gas‐phase analysis is
conformational rearrangement upon transition from solution to
the gas phase as discussed earlier. Thus, CCS of gas‐phase ions
is routinely compared with solution‐phase structures to ensure
the validity of data obtained by native IM‐MS. Recently, first‐
principles CCS values of proteins and protein complexes,
ranging from 8 to 810 kDa, were calculated and benchmarked
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FIGURE 18. (A) Solidworks schematic of first generation FT‐IM‐PF‐DT coupled to a Thermo Scientific
Exactive Plus orbitrap MS with EMR that was used for the following section of experimentation Briefly, ion is
generated via static‐spray nano‐ESI into a heated capillary at ~100°C. Ions are then transmitted into an RF ion
funnel at (250 Vpp). The ion beam is modulated at both the Gate 1 and Gate 2 by a linear frequency chirp of
5–5,005 Hz over 8 min to overcome the duty‐cycle mismatch of IM separation and MS analysis. (B) Resolved
peaks for T4 and endogenous zinc binding to TTR and corresponding ATDs obtained from instrument shown in
panel A. Figure is adapted from Poltash et al. (2018). ATD, arrival time distributions; DT, drift‐tube; EMR,
extended mass range; ESI, electrospray ionization; FT, Fourier‐transform; IM, ion‐mobility; PF, periodic‐
focusing; TTR, transthyretin. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 19. (A) Stepwise increase in the mass of TTR upon electrospray ionization. (B) ATDs of TTR14+ (a)
just loaded and (b) after 20 hr continuous ESI showing the unfolding of TTR due to oxidation (multiple extended
conformers shown with green and purple peaks). (C) Repeated experiment as panel (A) but using Synapt G2
(Waters) without sufficient resolving power to detect stepwise 64 Da mass shift on tetramer, and (D)
corresponding SID spectra showing ejected monomers. (E) SID spectra for M4+ showing several oxidations on
monomeric TTR as well as zinc binding. Reproduced from Poltash et al. (2019). ESI, electrospray ionization;
SID, surface‐induced dissociation; TTR, transthyretin. [Color figure can be viewed at wileyonlinelibrary.com]
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against previously reported literature values using the FT‐IM‐
PF‐DT orbitrap EMR. The CCS was calculated via a Mason‐
Schamp equation modified by incorporating the mobility
dampening term, α, determined for native complexes at varying

reduce electric field strengths. The resulting CCS values fall
within 5.5% difference of previous literature values with
increasing deviation as the molecular weight (MW) of the
proteins increase (McCabe et al., 2020, Anal Chem, submitted).
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FIGURE 20. SID dissects topology of TTR products of SUE and provides a detailed mechanism of TTR disassembly
in solution. (A) SID of 2:2 heterotetramer consisting of light/light and heavy/heavy dimers yields a mass spectrum for
two homodimers with equal ion abundance. (B) For SID of an equimolar mixture of 2:2 heterotetramers, a ratio of 1:4:1
(LL/LH/HH) is obtained for dimers. (C) TTR disassembly mechanism supported by SID of SUE exchange products.
After mixing the reactants, dissociation to dimers results in the production of the first product, shown in purple box and
panel (A). Following dissociation of dimers to monomers yields all three topologies of 2:2 heterotetramer at equilibrium,
shown in green box and panel (B). Reproduced from Shirzadeh et al. (2019). HH, light/light; LL, heavy/heavy; SUE,
subunit exchange; TTR, transthyretin. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 21. (A) Mass spectra, (B) ATD vs m/z plots, and (C) CCS vs CSD of native GroEL (810 kDa) with
comparisons to PF‐DT, TWIMS, RF‐UF in 200 mM ammonium acetate. ATD, arrival time distributions; CCS,
collision cross section; RF‐UF, radio‐frequency confining uniform field; PF‐DT, periodic focusing drift tube;
TWIMS, traveling‐wave ion mobility. [Color figure can be viewed at wileyonlinelibrary.com]
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GroEL, a homotetradecameric chaperonin protein complex,
was analyzed under native conditions to evaluate the perfor-
mance of the FT‐IM‐PF‐DT orbitrap platform for large protein
complexes (Weaver et al., 2017). Figure 21 contains the IM‐MS
data for GroEL obtained via the FT‐IM‐PF‐DT orbitrap EMR
together with literature values of traveling wave ion mobility
spectrometry (TWIMS; van Duijn et al., 2009) and of radio‐
frequency confining uniform field (Bush et al., 2010) for
comparison. CCS obtained via the FT‐IM‐PF‐DT orbitrap
EMR, is well bracketed by both TWIMS, and RF‐confining UF
shows that the FT‐IM‐PF‐DT orbitrap platform is capable of
determining first‐principles CCS measurements of proteins that
approach 1MDa. The utility of the FT‐IM‐PF‐DT orbitrap is the
ability to determine CCS values for protein and protein
complexes over large MW range while exploiting the high‐
resolution capabilities of the IM and orbitrap mass analyzer.

While the current instrumentation shown in Figure 18A
allows for high‐resolution measurements of ions in the gas
phase, additional instrument development is needed to gain
sufficient RP to distinguish the signals contributing to peak
heterogeneity. The current iteration of the FT‐IM‐PF‐DT
orbitrap EMR lacks the capabilities to do various pre‐IM
experiments, such as previously mentioned CIU, CID, VT‐ESI,
and SID. To increase the utility of the current instrument, CA is
needed to clean up ions, for example, adduct removal from
membrane proteins or inherently heterogeneous analytes.
Soluble proteins typically do not require activation to remove
the nonspecific adducts to the protein, whereas membrane
proteins are solubilized in detergents to prevent precipitation in
the solution (Laganowsky et al., 2014). The current FT‐IM‐PF‐
DT technology is adaptable to the Thermo Fisher Scientific Q
Exactive Ultra‐High Mass Resolution (UHMR) orbitrap MS,
allowing for faster MS scan speeds and a m/z range of up to
80,000 Thomson (Th), where the previous upper m/z limit on
the EMR platform was 20,000 Th (Fort et al., 2018), by
increasing the scan frequency to 12 Hz (at a resolution of
12.5 k). With the commercial UHMR ion optics and software,
the user has more control of various potentials and timing
events, allowing for further optimization of the sensitivity of the
instrument at a level was previously unavailable to users.

A modular vacuum chamber can be implemented pre‐IM to
exploit the abilities of IM as a size to charge separations
technique, as shown in Figure 22. This platform allows for the

implementation of two quadrupoles and SID to trap, isolate,
fragment, dissociate, unfold, and/or manipulate ions before
entering the PF‐DT for IM separation. In the proposed design,
the first quadrupole will be used as an activation quadrupole
(denoted q), while the second quadrupole will be used as an
isolation quadrupole (denoted Q) before SID. Development of
SID modules in TOFs, orbitraps, and ion cyclotron resonance
MS has been mainly driven by the Wysocki Group. While IMS
is standard on commercial TOFs, commercially, this is not the
case for oribtraps and to confirm that native structures are
obtained opens an avenue for IM development on these
platforms.

XII. CONCLUSION

Structural IM‐MS has evolved from a technique developed by
chemical physicists and physical chemists through various stages
with uncertain potential for analytical applications, but now it is
poised to take a lead role in areas of protein biophysical chemistry
and structural biology. A major step in the evolutionary develop-
ment of structural IM‐MS was the introduction of the traveling‐
wave IM‐MS SYNAPT series, an instrument that was geared for
applications and fundamental studies. More important, the TWIMS
SYNAPT was user friendly and adaptable to a broad range of
studies. The major limitation of this technology is the limited IMS
resolution and the limitations of CCS to the use of calibration
standards. The limitations of using calibration standards is clearly
illustrated in Figure 2A; the range of “conformation space” for large
biomolecules which varies for different structural motifs, that is,
disordered regions, random coils, sheets and helices, necessitates
CCS determinations based on first‐principles determinations.

The increased resolution and ion transmission for large,
multiply charged ions afforded by the PF‐DT combined with
increased sample throughput of FT‐IM‐EMR orbitrap instrument
(Fig. 18A) is already advancing our structural biology and native
MS studies. The ability to incorporate ancillary MS techniques,
specifically VT‐ESI, CIU, SID, and native IM‐MS on a single
instrument is a game changer for MS‐based structural studies. The
qQ‐SID‐FT‐IM‐PF‐DT UHMR orbitrap instrument (Fig. 22) creates
an unrivaled advantage for studies of conformational diversity of
proteins, protein complexes, and membrane protein complexes with
the ancillary structural tools in the biophysical toolbox.
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FIGURE 22. Solidworks schematic of the implementation of a modular qQ‐SID platform with FT‐IM‐PF‐DT
on the UHMR platform. The design of the SID cell is similar to that described by Zhou and Wysocki (2014).
SID, surface‐induced dissociation; UHRM, ultra‐high mass resolution. [Color figure can be viewed at
wileyonlinelibrary.com]
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ABBREVIATIONS

ATD arrival time distributions
CA collisional activation
CCS collision cross section
CD circular dichroism
CID/CIU collision‐induced dissociation/unfolding
Cryo‐EM cryogenic electron microscopy
Cryo‐IM
‐MS cryogenic ion mobility‐mass spectrometry
DT drift tube
ESI electrospray ionization
ETD/ECD electron transfer/capture dissociation
FT Fourier transform
ICR ion cyclotron resonance
IM‐MS ion mobility mass spectrometry
m/z mass‐to‐charge ratio
MALDI matrix‐assisted laser desorption ionization
MD molecular dynamic simulations
NMR nuclear magnetic resonance
PF‐DT periodic focusing drift tube
PTM posttranslational modification
R resolution
RP resolving power
SASA solvent‐accessible surface area
SAXS small angle X‐ray scattering
SID surface induced dissociation
TOF time‐of‐flight
TTR transthyretin
TWIMS traveling‐wave ion mobility
UF‐DT uniform‐field drift‐tube
UVPD ultraviolet photodissociation
VT‐ESI variable‐temperature electrospray ionization
XRD X‐ray diffraction crystallography
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