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Abstract—We propose a new information-theoretic bound
on generalization error based on a combination of the error
decomposition technique of Bu et al. and the conditional mutual
information (CMI) construction of Steinke and Zakynthinou. In
a previous work, Haghifam et al. proposed a different bound
combining the two aforementioned techniques, which we refer to
as the conditional individual mutual information (CIMI) bound.
However, in a simple Gaussian setting, both the CMI and the
CIMI bounds are order-wise worse than that by Bu et al..
This observation motivated us to propose the new bound, which
overcomes this issue by reducing the conditioning terms in the
conditional mutual information. In the process of establishing
this bound, a conditional decoupling lemma is established, which
also leads to a meaningful dichotomy and comparison among
these information-theoretic bounds.

I. INTRODUCTION

Bounding the generalization error of learning algorithms is
of fundamental importance in statistical machine learning. The
conventional approach is to bound it using a quantity related
to the hypothesis class, such as the VC-dimension [1], and
such bounds are therefore oblivious to the learning algorithm
and data distribution. The obtained results are usually rather
conservative, and cannot fully explain the recent success
of deep learning. Recently, information theoretic approaches
that jointly take into consideration the hypothesis class, the
learning algorithm, and the data distribution, has drawn con-
siderable attention [2]–[13].

The effort of deriving generalization error bounds using
information theoretic approaches was perhaps first initiated
in [2] and [8]. The bound was further tightened in [9], by
decomposing the error, and bounding each term individu-
ally. Steinke and Zakynthinou [10] proposed a conditional
mutual information (CMI) based bound, by introducing a
dependence structure which resembles that in the analysis of
the Rademacher complexity [1]. Combining the idea of error
decomposition [9] and the CMI bound in [10], Haghifam et
al. [11] subsequently provided a sharpened bound based on
conditional individual mutual information (CIMI).

In this work, we propose a new generalization error bound,
which is also based on a combination of the error decomposi-
tion technique and the CMI construction. This new bound is
motivated by the observation that in a simple Gaussian setting,
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the CIMI bound in [11] (as well as the CMI bound in [10]) is
of constant order, while the bound in [9] is of order Θ( 1√

n
),

where n is the number of training samples. We further observe
that the conditioning term in CIMI is the same as CMI, and it
tends to reveal too much information which makes the bounds
loose. The proposed new bound is thus obtained by making the
mutual information conditioned on an individual sample (pair),
which we refer to as the individually conditional individual
mutual information (ICIMI) bound. In order to establish the
new bound, we introduce a new conditional decoupling lemma.
This lemma allows us to view the bounds in [8]–[11] and
the new bound in a unified manner, which not only yields
a dichotomy of these bounds, but also makes possible a
meaningful comparison among them. Finally, we show that
in the Gaussian setting mentioned earlier, the proposed new
bound is also able to provide a bound of the same order as,
but with an improved leading constant than, that in [9].

After our initial preprint was posted on Arxiv, we were
made aware of an independent work by Rodríguez-Gálvez et
al. [14], where a similar ICIMI-based generalization bound
was proposed under the restricted assumption of bounded loss.
In contrast, our result applies under more general conditions.
Our work was mainly motivated by the looseness of the CIMI
bound in the Gaussian setting, for which the restricted assump-
tion in [14] makes their result not applicable. Furthermore, the
proposed conditional decoupling lemma, which we believe is
of fundamental importance, was not present in [14].

II. PRELIMINARY

We study the classic supervised learning setting. Denote
the data domain as Z := X × Y , where X is the feature
domain and Y is the label set. The parametric hypothesis
class is denoted as HW = {hW : W ∈ W} ⊆ YX , where
W is the parameter space. During the training, the learning
algorithm (learner) has access to a sequence of training
samples Z[n] = (Z1, Z2, . . . , Zn), where each Zi is drawn
independently from Z following some unknown probability
distribution ξ. The learner can be represented by PW |Z[n]

,
which is a kernel (channel) that (randomly) maps Zn to W .

To complete the classification or regression task, the learner
in principle would choose a hypothesis w ∈ W to minimize
the following population loss, under a given loss function ` :
W ×Z → R,

Lξ(w) = EZ∼ξ[`(w,Z)]. (1)
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However, since only a training data vector Z[n] is available,
the empirical loss of w is usually computed (and minimized
during training), which is given as

LZ[n]
(w) =

1

n

n∑
i=1

`(w,Zi). (2)

The expected generalization error of the learner PW |Z[n]
is

gen(ξ, PW |Z[n]
) := E

[
Lξ(W )− LZ[n]

(W )
]
, (3)

where the expectation is taken over the joint distribution
P (W,Z[n]) = ξn ⊗ PW |Z[n]

. This quantity captures the
effect of the learner’s expected overfitting error due to limited
training data, which we shall study in this work.

III. REVIEW OF RELATED RESULTS

In this section, we briefly review a few information theoretic
bounds on the generalization error relevant to this work.
A more thorough discussion of their relation is deferred to
Section IV-D and IV-E, after a unified framework is given.

A. Mutual information based bounds

Xu and Raginsky, motivated by a previous work by Russo
and Zou [2], provided a mutual information (MI) based bound
on the expected generalization error [8].

Theorem 1 (MI Bound [8]). Suppose `(w,Z) is σ2-sub-
Gaussian under ξ for all w ∈ W , then

gen(ξ, PW |Z[n]
) ≤

√
2σ2

n
I
(
W ;Z[n]

)
. (4)

The generalization can be written in two ways

gen(ξ, PW |Z[n]
) = E

[
LZ̃[n]

(W̃ )
]
− E

[
LZ[n]

(W )
]

(5)

=
1

n

n∑
i=1

E
[
(`(W̃ , Z̃i)− `(W,Zi))

]
, (6)

where W̃ and Z̃i are independent random variables that have
the same marginal distributions as W and Zi, respectively.
Instead of bounding the difference (5) as in [8], Bu et al. [9]
bounded each individual difference in (6) and derived an in-
dividual mutual information (IMI) based bound. Furthermore,
the following inverse Fenchel conjugate function was utilized
to obtain a tightened bound. For any random variables F , its
cumulant generating function is

ψF (λ) := lnE
[
eλ(F−E[F ])

]
, (7)

and the inverse of its Fenchel conjugate is given as

ψ∗−1
F (η) := inf

λ>0

η + ψF (λ)

λ
, η ∈ [0,∞). (8)

The tightened bound is summarized in the following theorem.

Theorem 2 (IMI Bound [9]). Suppose ψ− is an upper bound
of ψ−`(W̃ ,Z̃i)

, then

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

ψ∗−1
− (I (W ;Zi)) , (9)

where W̃ and Z̃i are independent random variables that have
the same marginal distributions as W and Zi, respectively.

B. Conditional mutual information based bounds
Steinke and Zakynthinou [10] recently introduced a

novel bounding approach. In their approach, Z±
[n] :=

(Z±1
1 , Z±1

2 , . . . , Z±1
n ) is a 2×n table of samples that each Zs

i ,
for s = −1, 1 and i = 1, . . . , n is independently drawn fol-
lowing ξ. The training vector (ZR1

1 , ZR2
2 , . . . , ZRn

n ) is selected
from the table Z±

[n], where Ri’s are independent Rademacher
random variables, i.e., Ri takes 1 or −1 equally likely. The
vector R[n] = (R1, . . . , Rn) ∈ {−1, 1}n essentially selects
one sample from each column in the table, which partition
Z±
[n] into a training vector and a testing vector. For simplicity,

we shall write Z−1
i and Z+1

i as Z−
i and Z+

i , when the meaning
is clear from the context.

With the structure given above, the expected generalization
error of the algorithm can be written as

gen(ξ, PW |Z[n]
) =

EZ±
[n]

[
E

[
1

n

n∑
i=1

Ri

(
`(W,Z−

i )− `(W,Z+
i )

) ∣∣∣Z±
[n]

]]
. (10)

Steinke and Zakynthinou obtained the following conditional
mutual information (CMI) based result.

Theorem 3 (CMI Bound [10]). Suppose supw∈W |`(w, z1)−
`(w, z2)| ≤ ∆(z1, z2) for any z1, z2 ∈ Z , then

gen(ξ, PW |Z[n]
) ≤

√
2

n
E[∆(Z1, Z2)2]I

(
W ;R[n]|Z±

[n]

)
,

(11)
where Z1, Z2 are independent samples distributed as ξ.

Since Ri is binary, the conditional mutual information is
always bounded; in contrast, mutual information based bounds
(i.e., MI and IMI bounds) can be unbounded, particularly when
the random variables W,Zi are both continuous.

Motivated by the results in [9], Haghifam et al. [11] pro-
posed a sharpened bound by similarly bounding each term in
(10). Moreover, they provided a conditional individual mutual
information (CIMI) based bound represented by the sample-
conditioned mutual information, which is defined as

Iu(X;Y ) := I(X;Y |U = u). (12)
Clearly IU (X;Y ) is a function of the random variable U , thus
also a random variable, and E[IU (X;Y )] = I(X;Y |U). These
sharpened bounds are summarized in the following theorem.

Theorem 4 (CIMI Bound [11]). Suppose ` ∈ [0, 1], then

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E
[√

2IZ±
[n]

(W ;Ri)

]
(13)

≤ 1

n

n∑
i=1

√
2I

(
W ;Ri|Z±

[n]

)
. (14)

IV. NEW RESULT

A. A motivating example
Let us consider the simple setting of estimating the

mean from samples generated from a Gaussian distribution
N(µ, σ2), by averaging the i.i.d. training samples under the
squared loss.
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Example 1 (Estimating the Gaussian mean). The training
samples Z[n] are drawn i.i.d. following N(µ, σ2) for some
unknown µ. The learner deterministically estimates µ by
averaging the training samples, i.e., W = 1

n

∑n
i=1 Zi, whose

empirical error is

LZ[n]
(W ) =

1

n

n∑
i=1

(W − Zi)
2. (15)

Bu et al. [9] showed that the mutual information term in
the IMI bound is

I(W ;Zi) =
1

2
log

n

n− 1
=

1

2(n− 1)
+ o

(
1

n

)
, (16)

and obtained the following IMI based bound

σ2

√
2(n+ 1)2

n2
log

n

n− 1
= σ2

√
2

n− 1
+ o

(
1√
n

)
. (17)

For this simple setting, the generalization error can in fact be
calculated exactly to be 2σ2

n . Though the error bound above
does not have the same order as the true generalization error,
it is consistent with the VC dimension-based bound and is
the best known for this case. Note that the MI bound will be
unbounded, since I(W ;Z[n]) is unbounded.

Next consider the CMI and CIMI bounds, and let us focus
on the mutual information terms in these bounds, which give

I(W ;R[n]|Z±
[n]) = n/ log2 e, (18)

IZ±
[n]
(W ;Ri) = 1/ log2 e, a.s.. (19)

It is seen that they are order-wise worse than (16), which
suggests that the bounds obtained from the CMI and CIMI
bounds would be order-wise worse than (17).

Theorem 3 and Theorem 4 in fact do not apply directly
in this setting, since their required conditions do not hold.
In Theorem 3, the function ∆(z1, z2) does not exist (i.e.,
unbounded); even if it existed, the term E[∆(Z1, Z2)

2] would
be a constant, thus the CMI bound would be of constant order.
Similarly, if the condition ` ∈ [0, 1] held, the CIMI bound
would also be of constant order. As we shall show shortly, the
CMI and CIMI bounds can be generalized and strengthened,
yet the resultant strengthened bounds in this setting still do
not diminish as n→ ∞, and thus would be order-wise worse
than the IMI bound.

A question arises naturally: Is the looseness of the CMI and
CIMI bounds here due to the introduction of the conditioning
terms? As we shall show next, it is in fact caused by too much
information being revealed in the conditioning terms, and there
is indeed a natural way to resolve this issue.

B. A conditional decoupling lemma

Our main result relies on a key lemma. A few more
definitions are first introduced in order to present this lemma
and the main result.

For any random variables F and U , define the sample-
conditioned cumulant generating function (CGF) for any re-
alization U = u,

ΛF |U (λ, u) := lnE
[
eλF

∣∣∣U = u
]
, λ ∈ R. (20)

Similar to the regular CGF, ΛF |U (λ, u) may not exist for some
λ ∈ R. Define the extended-value centered sample-conditioned
CGF as ψF |U (λ, u) := ∞ for such λ that ΛF |U (λ, u) does
not exist, and ψF |U (λ, u) := ΛF |U (λ, u) − λE[F |U = u]
otherwise. It is straightforward to verify that for any realization
U = u, ψF |U (0, u) = ψ′

F |U (0, u) = 0 and ψ′′
F |U (0, u) > 0.

Hence the inverse of its Fenchel conjugate

ψ∗−1
F |U (η, u) := inf

λ>0

η + ψF |U (λ, u)

λ
, η ∈ [0,∞) (21)

is concave and non-decreasing; see e.g., [9] and [15]. The
unconditioned version of this function was introduced earlier
by Asadi et al. [3] and Bu et al. [9]. When it is clear from
context, we will write
ΨF |U (λ) := ψF |U (λ, U), Ψ∗−1

F |U (η) := ψ∗−1
F |U (η, U), (22)

which are functions of U , thus random. Next define the
conditional cumulant generating function

ψ̄F |U = E
[
ΨF |U

]
, (23)

and similarly its inverse Fenchel conjugate as ψ̄∗−1
F |U .

For a pair of random variables (X,Y ), its decoupled pair
conditioned on a third random variable U is a pair of random
variables (X̃, Ỹ ) , such that

(X̃, U)
D
= (X,U), (Ỹ , U)

D
= (Y,U), (24)

i.e., (X̃, U) and (X,U) are identically distributed, and (Ỹ , U)
and (Y,U) are identically distributed, and moreover

X̃ ↔ U ↔ Ỹ (25)
forms a Markov string. It follows from this definition that

IU (X;Y ) = D(PX,Y |U ||PX̃,Ỹ |U ). (26)

We next introduce a conditional decoupling (CD) lemma,
which serves an instrumental role in our work. The uncondi-
tioned version was presented in [9].

Lemma 1 (The CD lemma). For any three random variables
X,Y, U , let X̃, Ỹ be the decoupled pair of X,Y conditioned
on U . Let F := f(X,Y ) and F̃ := f(X̃, Ỹ ), for some real-
valued measurable function f . The following inequalities hold

E[F ]− E[F̃ ] ≤ E
[
Ψ∗−1

F̃ |U (IU (X;Y ))
]

≤ ψ̄∗−1

F̃ |U (I(X;Y |U)) . (27)

This lemma is proved by utilizing the Donsker–Varadhan
variational representation of KL divergence and the concavity
of the inverse Fenchel conjugate function. The proof details
can be found in [16].

C. The ICIMI bound

Let (W,Z±
[n], R[n]) be as given previously in Section III-B.

For each i = 1, . . . , n, let (W̃i, R̃i) be a decoupled pair of
(W,Ri) conditioned on Z±

i . The new bound we propose is
presented in Theorem 5.

Theorem 5. (ICIMI Bound) Given an algorithm PW |Z[n]
, the

following bounds on the generalization hold

gen(ξ, PW |Z[n]
) ≤ 1

n

n∑
i=1

E
[
Ψ∗−1

G̃i|Z±
i

(IZ±
i
(W ;Ri))

]
(28)
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≤ 1

n

n∑
i=1

ψ̄∗−1

G̃i|Z±
i

(I(W ;Ri|Z±
i )), (29)

where G̃i = R̃i

(
`(W̃i, Z

−
i )− `(W̃i, Z

+
i )

)
.

There are two bounds in this theorem. The stronger bound is
in terms of the sample-conditioned mutual information, which
is different from the conventional notion of conditional mutual
information and may be more difficult to evaluate. The weaker
bound is in terms of the conventional mutual information.

In the proposed bounds, the mutual information is con-
ditioned on the individual data pair Z±

i , instead of the full
data pair set Z±

[n]. Intuitively, revealing only Z±
i makes it

more difficult, than revealing all data pairs Z±
[n], to deduce

information regarding Ri from W . As a consequence, the
mutual information I(W ;Ri|Z±

i ) is less than I(W ;Ri|Z±
[n]),

yielding a potentially tighter bound.

Proof of Theorem 5. We can rewrite the generalization error
given in (10) as

gen(ξ, PW |Z[n]
) =

1

n

n∑
i=1

E
[
E
[
Ri

(
`(W,Z−

i )− `(W,Z+
i )

)
|Z±

i

]]
. (30)

Now apply the CD lemma on each individual term in (30)
by letting X = W , Yi = Ri, Ui = Z±

i , and Fi =
Ri

(
`(W,Z−

i )− `(W,Z+
i )

)
. Since

E[G̃i] = E[F̃i] = E
[
R̃i

(
`(W̃i, Z

−
i )− `(W̃i, Z

+
i )

)]
= 0,

we have

gen(ξ, PW |Z[n]
) =

1

n

n∑
i=1

E[Fi] =
1

n

n∑
i=1

E[Fi]− E[F̃i]

≤ 1

n

n∑
i=1

E
[
Ψ∗−1

G̃i|Z±
i

(IZ±
i
(W ;Ri))

]
(31)

≤ 1

n

n∑
i=1

ψ̄∗−1

G̃i|Z±
i

(I(W ;Ri|Z±
i )), (32)

which completes the proof.

We call this bound the individually conditional individual
mutual information (ICIMI) bound, since it is derived by
applying the CD lemma on the individual conditional terms in
(30).

We note that Theorem 5 implies Proposition 3 in [14], which
we state below as a corollary.

Corollary 1. Suppose ` ∈ [a, b] with a < b, then

gen(ξ, PW |Z[n]
) ≤ b− a

n

n∑
i=1

EZ±
[n]

[√
2IZ±

i
(W ;Ri)

]
(33)

≤ b− a

n

n∑
i=1

√
2I(W ;Ri|Z±

i ). (34)

Proof of Corollary 1. When ` ∈ [a, b] and F̃i ∈ [a− b, b− a],
it is straightforward to verify that F̃i is (b−a)2

2 -sub-Gaussian.
The definition of the sub-Gaussian distribution in fact gives

ICIMI (new)

IMI CIMI

MI CMI≥
≤

≥

≥

≤

Fig. 1. Relations among generalization bounds, when the inverse Fenchel
conjugate functions are assumed to be the same.

ΨF̃i|Z±
i
(λ) ≤ (b−a)2

2 λ2, and thus Ψ∗−1

F̃i|Z±
i

(η) ≤ (b − a)
√
2η,

from which the corollary follows.

D. Dichotomy and generalizations of existing bounds

The CD lemma allows us to view the existing MI, IMI, CMI,
and CIMI bounds in a unified framework. By applying the CD
lemma in different manners, these bounds can be obtained
almost directly. The technical conditions under which the
bound hold can also be generalized, and the bounds themselves
can be strengthened using the inverse Fenchel conjugate. These
results are summarized in Table I. We also provide the bounds
for bounded loss function, which eliminate the ψ̄∗−1 functions.

The CMI and CIMI results can be further strengthened by
utilizing the inverse Fenchel conjugate function together with
the sample-conditioned mutual information. More precisely,
let (R̃[n], W̃ ) be the decoupled pair of (R[n],W ) conditioned
on Z±

[n]. Further define

Ẽi = R̃i

(
`(W̃ , Z−

i )− `(W̃ , Z+
i )

)
, Ẽ =

1

n

n∑
i=1

Ẽi, (35)

then we have the strengthened CMI and CIMI bounds:

gen
(
ξ, PW |Z[n]

)
≤ E

[
Ψ∗−1

Ẽ|Z±
[n]

(
IZ±

[n]

(
W ;R[n]

))]
, (36)

gen
(
ξ, PW |Z[n]

)
≤ 1

n

n∑
i=1

E
[
Ψ∗−1

Ẽi|Z±
[n]

(IZ±
[n]
(W ;Ri))

]
.

(37)

E. Comparison of the bounds

We first consider the special case where the loss function
is bounded, i.e., ` ∈ [0, 1]. For this case, it was shown in [11]
that the CIMI bound (14) is tighter than the CMI bound (11).
We next show that the proposed bound (34) is tighter than the
CIMI bound (14) when ` ∈ [0, 1].

Lemma 2. For any i = 1, . . . , n, we have
I(W ;Ri|Z±

i ) ≤ I(W ;Ri|Z±
[n]).

Proof of Lemma 2. By the independence of Ri and Z±
[n], we

have
I(W ;Ri|Z±

[n]) = H(Ri)−H(Ri|W,Z±
[n]),

I(W ;Ri|Z±
i ) = H(Ri)−H(Ri|W,Z±

i ).

It follows that
I(W ;Ri|Z±

[n])− I(W ;Ri|Z±
i ) = I(Ri;Z

±
[n]|W,Z

±
i ) ≥ 0,

which concludes the proof.

To further understand the relation among these bounds
under more general conditions when the loss function may
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TABLE I
A DICHOTOMY OF SEVERAL GENERALIZATION BOUNDS USING THE CD LEMMA

Approach X Y U F Generalization bound Special case ` ∈ [0, 1]

MI [8] W Z[n] − 1
n

∑n
i=1 `(W,Zi) + Lξ(W ) ψ̄∗−1

F̃

(
I
(
W ;Z[n]

)) √
1
2n
I(W ;Z[n])

IMI [9] W Zi Fi = −`(W,Zi)
1
n

∑n
i=1 ψ̄

∗−1

F̃i
(I (W ;Zi))

1
n

∑n
i=1

√
1
2
I(W ;Zi)

CMI [10] W R[n] Z±
[n]

1
n

∑n
i=1Ri

(
`(W,Z−

i )− `(W,Z+
i )

)
ψ̄∗−1

F̃ |Z±
[n]

(
I
(
W ;R[n]|Z±

[n]

)) √
2I(W ;R[n]|Z±

[n]
)

CIMI [11] W Ri Z±
[n]

Fi = Ri

(
`(W,Z−

i )− `(W,Z+
i )

)
1
n

∑n
i=1 ψ̄

∗−1

F̃i|Z
±
[n]

(
I
(
W ;Ri|Z±

[n]

))
1
n

∑n
i=1

√
2I(W ;Ri|Z±

[n]
)

ICIMI (new) W Ri Z±
i Fi = Ri

(
`(W,Z−

i )− `(W,Z+
i )

)
1
n

∑n
i=1 ψ̄

∗−1

F̃i|Z
±
i

(
I
(
W ;Ri|Z±

i

))
1
n

∑n
i=1

√
2I(W ;Ri|Z±

i )

not be bounded, let us assume the inverse Fenchel conjugate
functions, which roughly capture the geometry induced by the
expected loss, are the same (denoted as ψ̄∗−1) for all the five
approaches, i.e.,
ψ̄∗−1 = ψ̄∗−1

−F̃
= ψ̄∗−1

−F̃i
= ψ̄∗−1

F̃ |Z±
[n]

= ψ̄∗−1

F̃i|Z±
[n]

= ψ̄∗−1

F̃i|Z±
i

.

Then we can focus on the information measure quantities, and
compare these bounds as shown in Fig. 1. Here the inequalities
given in black were proved previously (see [9] and [11]). Since
the common function ψ̄∗−1 is non-decreasing, the inequality
"CIMI ≥ ICIMI" follows from Lemma 2. The inequality "IMI
≥ ICIMI" is implied by the following lemma for the same
reason.

Lemma 3. For any i = 1, . . . , n, we have
I(W ;Ri|Z±

i ) ≤ I(W ;Zi).

Proof of Lemma 3. First Zi and ZRi
i are both the ith training

sample for the input of the algorithm, thus
I(W ;Zi) = I(W ;ZRi

i ). (38)

Then since Z−Ri
i , Ri and W are independent given ZRi

i ,
I(W ;Z±

i , Ri) = I(W ;ZRi
i , Z−Ri

i , Ri) (39)

= I(W ;ZRi
i ) + I(W ;Z−Ri

i , Ri|ZRi
i ) = I(W ;ZRi

i ). (40)
It follows that

I(W ;Zi) = I(W ;Z±
i , Ri) ≥ I(W ;Ri|Z±

i ), (41)
which concludes the proof.

The inverse Fenchel conjugate functions may indeed be
different for different bounds, thus although the above com-
parison suggests certain dominant relations, it is not clear for
any specific problem, whether any particular bound is tighter
than the other. This is particularly true if we use the bounds
based on the inverse Fenchel conjugate, however, even for the
special case of ` ∈ [0, 1], the different multiplicative factors
and the sum-square-root forms imply that the relation can be
less clear.

F. Revisiting the example

We now return to the problem of estimating the Gaus-
sian mean, and show that the proposed ICIMI bound can
provide scaling behavior similar to that of IMI, thus order-
wise stronger than the CMI and CIMI bounds. In fact, the
bound is also strictly better than the IMI bound given in [9]
asymptotically in this setting.

We first formally establish, as suspected previously, that the
CMI and CIMI bounds are at least of constant order for this
setting.

Proposition 1. The strengthened CMI and CIMI bounds, i.e.,
(36) and (37), are at least σ2

π
√
log e

in the problem of estimating
the Gaussian mean.

The proof of this proposition can be found in [16]. The next
proposition establishes a generalization error bound based on
the ICIMI bound in this setting.

Proposition 2. For the the problem of estimating the mean of
the Gaussian distribution, the ICIMI bound gives

gen
(
ξ, PW |Z[n]

)
≤ 2σ2

√
π

√
1

n− 1
+ o

(
1√
n

)
. (42)

Remark: This bound scales as Θ(
√

1
n ). Compared to the IMI

bound in (17), the new ICIMI based bound is asymptotically
tighter by a factor of

√
π
2 ≈ 1.25.

Proposition 2 is proved by studying separately the sample-
conditioned individual mutual information IZ±

i
(W ;Ri) and

the inverse Fenchel conjugate functions Ψ∗−1

G̃i|Z± . For the
former, since the algorithm here is averaging the samples
without any prior of the Gaussian distribution, without loss of
generality, we can assume the mean of the Gaussian distribu-
tion to be 0, i.e., µ = 0. Therefore, given Z±

i = z± ∈ R2, W
is mixed-Gaussian distributed, which follows N( z+n ,

n−1
n2 σ

2)
when Ri = 1 and follows N( z−n ,

n−1
n2 σ

2) when Ri = −1.
The term IZ±

i
(W ;Ri) is thus related to the scaling behavior

of the differential entropy of a mixed Gaussian distribution.
The proof of the proposition relies on a detailed analysis of
this behavior, which can be found in [16].

V. CONCLUSION

We propose a new information theoretic generalization error
bound, referred to as the ICIMI bound, based on a combination
of the error decomposition technique and the conditional
mutual information structure. Due to the reduced information
content in the conditioning term, the proposed bound can be
significantly tighter than several existing bounds. Particularly,
when the loss function is bounded, it can be shown that the
proposed bound is always tighter than the CMI and the CIMI
bounds. A conditional decoupling lemma is provided which
leads to a unified framework to study and compare these
bounds, and it may be of independent interest.

674



REFERENCES

[1] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[2] D. Russo and J. Zou, “Controlling bias in adaptive data analysis using
information theory,” in Artificial Intelligence and Statistics, 2016, pp.
1232–1240.

[3] A. Asadi, E. Abbe, and S. Verdú, “Chaining mutual information and
tightening generalization bounds,” in Advances in Neural Information
Processing Systems, 2018, pp. 7234–7243.

[4] I. Issa, A. R. Esposito, and M. Gastpar, “Strengthened information-
theoretic bounds on the generalization error,” in 2019 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2019, pp. 582–586.

[5] J. Negrea, M. Haghifam, G. K. Dziugaite, A. Khisti, and D. M.
Roy, “Information-theoretic generalization bounds for SGLD via data-
dependent estimates,” in Advances in Neural Information Processing
Systems, 2019, pp. 11 015–11 025.

[6] S. T. Jose and O. Simeone, “Information-theoretic generalization bounds
for meta-learning and applications,” arXiv preprint arXiv:2005.04372,
2020.

[7] X. Wu, J. H. Manton, U. Aickelin, and J. Zhu, “Information-theoretic
analysis for transfer learning,” arXiv preprint arXiv:2005.08697, 2020.

[8] A. Xu and M. Raginsky, “Information-theoretic analysis of gener-
alization capability of learning algorithms,” in Advances in Neural
Information Processing Systems, 2017, pp. 2524–2533.

[9] Y. Bu, S. Zou, and V. V. Veeravalli, “Tightening mutual information
based bounds on generalization error,” IEEE Journal on Selected Areas
in Information Theory, vol. 1, no. 1, pp. 121–130, 2020.

[10] T. Steinke and L. Zakynthinou, “Reasoning about generalization via con-
ditional mutual information,” arXiv preprint arXiv:2001.09122, 2020.

[11] M. Haghifam, J. Negrea, A. Khisti, D. M. Roy, and G. K. Dziugaite,
“Sharpened generalization bounds based on conditional mutual infor-
mation and an application to noisy, iterative algorithms,” arXiv preprint
arXiv:2004.12983, 2020.

[12] H. Hafez-Kolahi, Z. Golgooni, S. Kasaei, and M. Soleymani, “Con-
ditioning and processing: Techniques to improve information-theoretic
generalization bounds," in Advances in Neural Information Processing
Systems, 33, 2020.

[13] F. Hellström and G. Durisi, “Generalization bounds via information den-
sity and conditional information density," in IEEE Journal on Selected
Areas in Information Theory, 2020.

[14] B. Rodríguez-Gálvez, G. Bassi, R. Thobaben, and M. Skoglund, “On
random subset generalization error bounds and the stochastic gradient
Langevin dynamics algorithm,” arXiv preprint arXiv:2010.10994, 2020.

[15] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[16] R. Zhou, C. Tian, and T. Liu, “Individually conditional individual
mutual information bound on generalization error," arXiv preprint
arXiv:2012.09922, 2020.

675




