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Abstract. We present a reduced basis (RB) method for parametrized linear elliptic partial4
di↵erential equations (PDEs) in a least-squares finite element framework. A rigorous and reliable5
error estimate is developed, and is shown to bound the error with respect to the exact solution of the6
PDE, in contrast to estimates that measure error with respect to a finite-dimensional (high-fidelity)7
approximation. It is shown that the first-order formulation of the least-squares finite element is a8
key ingredient. The method is demonstrated using numerical examples.9
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1. Introduction. In this work, we formulate a reduced basis method for the12

solution of linear elliptic partial di↵erential equations (PDEs) based on the least-13

squares finite element method (LSFEM). In many engineering and scientific applica-14

tions, PDEs often depend on one or more parameters, which reflect either physical15

properties (e.g., the viscosity of a fluid, the heat conductivity of a medium), source16

terms and boundary conditions, or the geometry of the domain in which the problem17

is posed. In the case of parametrized geometry, transformation techniques [17, 39, 44]18

are used to obtain a PDE on a parameter-independent reference domain ⌦. Letting19

µ be a vector containing the relevant parameters, we study linear elliptic PDEs of the20

form:21

(1.1) Lµuµ = fµ, x 2 ⌦,22

where ⌦ is a bounded subset of Rd, d = 2, 3. The subscript µ conveys the fact that the23

operator Lµ and the functions uµ and fµ depend on the value of the parameter(s)24

contained in µ. In this work, we consider elliptic problems in (1.1) — e.g., the25

Poisson’s Equation with di↵erent values for the thermal conductivity of a medium, or26

the Stokes Equations with a varying Reynolds number.27

LSFEMs are widely used for the solution of PDEs arising in many applications28

in science and engineering like fluid flow, transport, hyperbolic equations, quantum29

chromodynamics, magnetohydrodynamics, biomolecular simulation, plasma, elastic-30

ity, liquid crystals etc. [1, 2, 5, 6, 9, 12, 14, 20, 21, 29, 34, 35, 38]. LSFEMs are31

based on minimizing the residual of the PDE in an appropriate norm, and have a32

number of attractive properties. The finite element discretization of the weak form33

yields symmetric positive definite linear systems that are often suitable for optimal34

multigrid solvers. Moreover, the bilinear form arising from LSFEM is coercive and35

continuous, thus allowing flexibility in the choice of finite element (FE) spaces. This36

is in contrast to a mixed method which requires that the FE spaces satisfy the inf-sup37

or the Ladyzhenskaya-Babuška-Brezzi condition [8]. An additional advantage of LS-38

FEMs is that complex boundary conditions may be handled weakly by incorporating39
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2 J. H. CHAUDHRY, L. N. OLSON, AND P. SENTZ

them into the definition of the least-squares residual.40

Least-squares finite element methods provide a robust and inexpensive a posteriori41

error estimate. This is a crucial ingredient in our approach to constructing a reduced42

basis method for LSFEMs. Moreover, while the additional auxiliary variables and43

resulting large linear systems is a potential drawback to LSFEMs, a reduced basis44

approach which preserves the accuracy of the full finite element discretization while45

being inexpensive to compute is especially appealing for this class of discretizations.46

In many applications, solutions are computed for a wide range of parameter values47

(many-query context), or must be computed cheaply following a parameter measure-48

ment or estimation (real-time context) [10, 24, 40, 48, 54]. In the case of a finite49

element discretization, a system of linear equations is obtained that involves a large50

number of unknowns. If solutions must be obtained quickly or for many parameter51

sets, the solution of these linear systems is prohibitively expensive. Reduced basis52

methods are a form of model order reduction that o↵ers the potential to decrease the53

dimension of the problem, exploiting the low dimensionality of the solution manifold54

through parametric dependence [43]. As a result, solutions based on the low order55

representation are constructed with low computational cost.56

RB methods are separated into two stages: “o✏ine” and “online” [22, 28, 44, 48].57

During the o✏ine stage, a set of representative solutions is constructed by sampling58

the parameter domain and computing high dimensional finite element solutions called59

full-order model (FOM) solutions or snapshots. Two standard approaches for the60

o✏ine basis construction include Proper Orthogonal Decomposition (POD) [36, 55]61

and greedy sampling methods [28]. Greedy sampling methods often lead to a more62

computationally e�cient o✏ine stage and are used in numerous applications [22, 25,63

28, 31, 44]. This work is thus restricted to reduced basis methods with a greedy64

sampling procedure. Details of POD applied to parametrized elliptic systems is found65

in [33].66

During the online stage, the previously constructed reduced basis is used to gen-67

erate an inexpensive yet accurate solution for an estimated or measured set of param-68

eters. The accuracy of this solution strongly depends on the sampling strategy and69

as well as the selection criteria for choosing the reduced basis.70

The accuracy of a reduced basis solution is typically measured in reference to a71

full-order finite element solution [23, 25, 31, 49]. The error kuh
µ � u

RB
µ k under an72

appropriate norm is heuristically minimized, where u
h
µ and u

RB
µ are the full-order and73

reduced basis solutions, respectively. In essence, the full-order FE solution is treated74

as the exact solution for every parameter value; it is used as the benchmark for ac-75

curacy of the reduced order solution. However, the accuracy of the full order finite76

element solution is itself heavily dependent on the value of parameters for certain77

problems, resulting in an error estimate for the reduced basis solution that is often78

overly optimistic. In this article, a sharp error estimate with respect to the exact79

solution of the PDE is used in the construction of the reduced basis during the o↵-80

line stage. This error estimate is provided by the relaxed smoothness requirements81

a↵orded by a first-order formulation, as well as a posteriori error estimate provided82

naturally by the LSFEM, and is inexpensive to compute, and provides an attractive83

feature of a LSFEM-based RB method.84

To demonstrate the utility of measuring the accuracy of the reduced basis solution85

in terms of the exact solution, we consider a variable coe�cient Poisson’s problem,86

see § 6.1 for the detailed setup. The problem is dependent on a single parameter µ 287

[10�1
, 101], which represents the thermal conductivity of one-half of an inhomogeneous88
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LEAST-SQUARES REDUCED BASIS 3

material. The solution is benign for µ = 1, but features a discontinuous gradient for89

all other values. Thus, high accuracy requires a very fine mesh.90

The left plot of Figure 1 shows the error1 between a discrete solution and an91

“true” solution for di↵erent values of the parameter µ. The discrete solution u
h
µ is92

computed on a mesh with 1,065 degrees of freedom and a reference or “true” solution93

u
e
µ is computed on a mesh with 122,497 degrees of freedom. The error is particularly94

large for µ = 10�1. A reduced basis solution u
RB
µ is constructed on the same mesh95

as u
h
µ; the right plot of Figure 1 shows the error of this reduced-order solution with96

respect to both the reference solution and the full-order solution.

10�1 100 101

µ

10�6

10�5

10�4

10�3

10�2

10�1

E
rr

or
in

H
(d

iv
)⇥

H
1

kue
µ � uh

µk

(a) Full-order error.
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(b) Reduced basis error.

Fig. 1: The H(div)⇥H1-norm of the error between a full-order solution and a reference
solution (left), and the error in the reduced-basis solution with respect to both the
full-order solution and the reference (right).

97
In Figure 1, the error between the reduced-basis solution and the reference solu-98

tion is four orders of magnitude greater than the error with respect to the discrete99

solution. Thus, a sharp, rigorous error bound based on kuRB
µ �u

h
µk would significantly100

underestimate the error with respect to the true solution. For this reason, an error101

estimate is not reliable without first ensuring that the full-order solution is su�ciently102

accurate.103

The paper is organized as follows. In § 2, we describe parametrized equations104

in a Hilbert space setting, and describe a rigorous error estimate for approximate105

solutions. In § 3, we introduce least-squares finite element methods and how they106

fit into the abstract Hilbert space context. In § 4, we review standard reduced basis107

methods, in particular, those based on residual error indicators and greedy-sampling.108

In § 5, we propose a LSFEM-based reduced basis method and in § 6 we provide several109

numerical examples. § 7 consists of conclusions and possibilities for future work.110

2. Parameterized Equations and Error Bounds. In this section we set up111

the parameterized equations in a Hilbert space setting. In § 2.1 we discuss error112

bounds in this context and in § 2.2 we detail issues that arise when considering elliptic113

problems in a standard Galerkin setting.114

Let X and Y be Hilbert spaces, and let D be a compact subset of RP , with P � 1.115

1The error is measured in the H(div) ⇥ H
1-norm, which is the appropriate norm for the least-

squares setup for the Poisson’s problem. See § 6.1 for details.
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4 J. H. CHAUDHRY, L. N. OLSON, AND P. SENTZ

For any µ 2 D, we assume the existence of a linear operator116

(2.1) Lµ : X ! Y.117

For a fixed fµ 2 Y , we seek uµ 2 X that satisfies118

(2.2) Lµuµ = fµ.119

We further assume that for any µ 2 D there exists a parameter dependent coer-120

civity constant ↵(µ) and a continuity constant �(µ) with 0 < ↵(µ)  �(µ) <1 such121

that122

(2.3) ↵(µ)kvk2X  kLµvk
2
Y  �(µ)kvk2X , 8v 2 X.123

That is, Lµ and its inverse are bounded.124

In order to approximate uµ, we introduce a finite-dimensional subspace X
h
⇢ X125

and seek a function u
h
µ 2 X

h. The subspace X
h may correspond to any general126

discretization procedure, e.g., finite di↵erences, finite elements, or from a reduced127

order model.128

For a particular parameter µ, we define the error to be129

(2.4) e
h
µ := uµ � u

h
µ,130

which is a measure of the quality of this approximation. Developing a rigorous and131

strict upper bound for the norm of the error kehµkX is important for assessing the132

quality of the numerical approximation. Likewise, the residual is defined as133

(2.5) r
h
µ := fµ � Lµu

h
µ,134

and we see that e
h
µ satisfies the error equation135

(2.6) Lµe
h
µ = r

h
µ.136

2.1. Error Bounds. Our approach to developing rigorous upper bounds on the137

error is to begin with (2.3) and (2.6), which leads to138

↵(µ)kehµk
2
X  kLµe

h
µk

2
Y = krhµk

2
Y ,

) ke
h
µkX 

kr
h
µkYp
↵(µ)

.
(2.7)139

140

Unfortunately, this upper bound proves to be extremely pessimistic, especially for141

problems for which the coercivity constant ↵(µ) is relatively small, a common scenario.142

This is illustrated with a simple finite dimensional example.143

Let X = Y = Rn under the standard Euclidean norm. Consider the operator144

A : X ! Y represented by the matrix145

(2.8) A =

2

666666664

2 �1
�1 2 �1

�1 2 �1
. . .

. . .
. . .

�1 2 �1
�1 2

3

777777775

,146
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LEAST-SQUARES REDUCED BASIS 5

which is positive-definite with smallest eigenvalue �1 = 4 sin2
⇣

⇡
2(n+1)

⌘
. In addition147

consider the right-hand side f = [1, 0, . . . , 0, 1]T , which yields a solution to Au = f of148

u = [1, 1, . . . , 1]T . Then, consider the perturbation û 2 Rn given by149

(2.9) ûi = 1 +
(�1)i

n
.150

The error in this case is given by ku � ûkX = 1p
n

and the residual by krkX =151

kf �AukX =
p
16n�14

n . Thus, both the error and residual converge to zero as n!1.152

However, the ratio153

(2.10)
krkX
p
↵

=
krkX
p
�1

=

p
16n� 14

2n sin
⇣

⇡
2(n+1)

⌘ >
4
p
n� 1

⇡
154

is unbounded for large n. The error u � û has no component in the span of the155

eigenvector of A corresponding to �1. Thus, reflecting on (2.7), the ratio of the156

residual to the square root of the coercivity constant is not an accurate predictor of157

the norm of the error.158

As a consequence, our goal is to improve the error bound in (2.7). We do so by159

computing an approximation to the error in a finite-dimensional subspace Z
h
⇢ X160

(we do not exclude the possibility that Zh = X
h or X

h
\Z

h = {0}), and denote this161

approximation by ê
h
µ.162

We introduce the auxiliary or error residual163

(2.11) ⇢
h
µ := r

h
µ � Lµê

h
µ.164

Analogous to the previous bound (2.7), with this form we arrive at165

↵(µ)kehµ � ê
h
µk

2
X 

����Lµ

⇣
e
h
µ � ê

h
µ

⌘����
2

Y

= krhµ � Lµê
h
µk

2
Y = k⇢hµk

2
Y ,

) ke
h
µ � ê

h
µkX 

k⇢
h
µkYp
↵(µ)

.

(2.12)166

167

In the case that the approximation to the error is simply taken to be ê
h
µ = 0, then168

k⇢
h
µkY = krhµkY . However, if a reasonable approximation to the error is computed, it169

is often the case that k⇢hµkY ⌧ kr
h
µkY , resulting is less sensitivity to a small coercivity170

constant.171

We use (2.12) and the triangle inequality to develop an alternative upper bound172

for kehµkX :173

(2.13) ke
h
µkX  kê

h
µkX + kehµ � ê

h
µkX  kê

h
µkX +

k⇢
h
µkYp
↵(µ)

=: Mh(µ).174

With this form of the error bound we monitor its e↵ectiveness with the so-called175

e↵ectivity ratio, defined as176

(2.14)
M

h(µ)

kehµkX
,177

which we seek as close to one as possible. The e↵ectivity ratio is bounded in the178

following, which is adapted from [50]:179
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6 J. H. CHAUDHRY, L. N. OLSON, AND P. SENTZ

Theorem 2.1. Fix � 2 [0, 1) and µ 2 D. Let uµ be the solution to (2.2), and let180

u
h
µ be its discrete approximation in X

h, with residual rhµ as defined in (2.5). Denote181

the error as e
h
µ (cf. (2.4)) and consider ê

h
µ to be any approximation of this error.182

Finally, let ⇢hµ denote the auxiliary residual (cf. (2.11)). If183

(2.15)
k⇢

h
µkYp

↵(µ) kêhµkX
 �,184

then the e↵ectivity satisfies the following bound:185

(2.16)
M

h(µ)

kehµkX


1 + �

1� �
186

Proof. Assume (2.15) holds. By the reverse triangle inequality, (2.12), and (2.15),187

we have188

(2.17)

�����
ke

h
µkX � kê

h
µkX

kêhµkX

����� 
kê

h
µ � e

h
µkX

kêhµkX


k⇢
h
µkYp

↵(µ) kêhµkX
 �.189

If kêhµkX > ke
h
µkX , then it follows from (2.17) that190

(2.18) kê
h
µkX � ke

h
µkX  �kê

h
µkX =) (1� �)kêhµkX  ke

h
µkX .191

If kêhµkX  ke
h
µkX , then (1 � �)kêhµkX  ke

h
µkX follows immediately since � � 0. In192

either case,193

(2.19) (1� �)kêhµkX  ke
h
µkX ,194

holds. Using (2.19), (2.12), and (2.15), it follows that195

(2.20)
kê

h
µ � e

h
µkX

kehµkX

kê

h
µ � e

h
µkX

(1� �)kêhµkX


k⇢
h
µkYp

↵(µ)(1� �)kêhµkX


�

1� �
.196

Finally, using the triangle inequality, (2.15), (2.19), and (2.20), we have197

M
h(µ) = kêhµkX +

k⇢
h
µkYp
↵(µ)

 ke
h
µkX + kêhµ � e

h
µkX +

k⇢
h
µkYp
↵(µ)

 ke
h
µkX + kêhµ � e

h
µkX + �kê

h
µk

=

 
1 +
kê

h
µ � e

h
µkX

kehµkX
+ �
kê

h
µkX

kehµkX

!
ke

h
µkX



✓
1 +

�

1� �
+

�

1� �

◆
ke

h
µkX

=

✓
1 + �

1� �

◆
ke

h
µkX ,

(2.21)198

199

which completes the proof.200
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LEAST-SQUARES REDUCED BASIS 7

2.2. Application to Poisson’s equation: Galerkin setting. Bound (2.13)201

is only useful if the inner products associated with the spaces X and Y are com-202

putable, and if there are easily constructed conforming subspaces X
h
, Z

h
⇢ X. We203

will demonstrate possible consequences by considering an example of the parameter-204

independent Poisson’s equation with homogeneous boundary conditions:205

��u = f, x 2 ⌦,

u = 0, x 2 @⌦,
(2.22)206

207

with L := ��. From here, we have a number of di↵erent choices for the domain208

and range. One option is X = H
2(⌦) \ H

1
0 (⌦), and Y = L

2(⌦); both norms are209

easily computable. However, to compute discrete approximations uh and ê
h, we must210

construct finite element spaces Xh and Z
h that contain functions that are class C1(⌦)211

across element boundaries, which are di�cult to construct [8], and are not usually used212

in the numerical approximation of Poisson’s equation.213

Alternatively, consider X = H
1
0 (⌦) and Y = H

�1(⌦) =
�
H

1
0 (⌦)

�0
. In this set-214

ting, the Poisson equation is often solved using variational methods, resulting in the215

Galerkin weak form of the equation:216

(2.23) a(u, v) :=

Z

⌦
ru ·rv dx =

Z

⌦
fv dx =: F (v), 8v 2 H

1
0 (⌦).217

Using the language of duality pairings (see for example [11]), it is possible to express218

this through a mapping L : X ! Y , with X = H
1
0 (⌦) and Y = H

�1(⌦), via219

(2.24) Lu [·] :=

Z

⌦
ru ·r [·] dx.220

That is, Lu = F 2 H
�1(⌦). Standard conforming finite element spaces are221

readily constructed for X, and the norm on X is easily computable. However, the222

Y = H
�1(⌦) norm requires inversion of the Laplacian operator [6]:223

(2.25) kFkY =
⇣
(��)�1/2

F, (��)�1/2
F

⌘1/2
0

.224

Consequently, to compute the Y -norm of the auxiliary residual ⇢hµ = fµ+�u
h
µ+�ê

h
µ,225

we would need to compute (��)�1
f , which is exactly the equation for which we seek226

an error bound.227

In the finite element setting, the infinite dimensional space H1
0 (⌦) is not dealt with228

directly, but instead a finite dimensional test subspace V
h
⇢ H

1
0 (⌦) is introduced.229

The restriction of F to the subspace V
h is a bounded linear functional on V

h, so230

that F is identified with an element in
�
V

h
�0

. Thus, Lu = F 2
�
V

h
�0

, allowing us to231

associate Y with
�
V

h
�0

. While the norm for Y =
�
V

h
�0

is more complex than either232

the L
2 or H

1 norms, it is still computable due to its finite dimension [48].233

Unfortunately, the operator fails to be coercive in this case, which is seen either234

by using the fact that X is infinite dimensional and Y is finite dimensional, or by235

observing the standard Galerkin orthogonality condition:236

(2.26) a(u� u
h
, v

h) = 0, 8v
h
2 V

h
.237

This implies that238

(2.27) L(u� u
h) = 0 2

⇣
V

h
⌘0

.239
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8 J. H. CHAUDHRY, L. N. OLSON, AND P. SENTZ

That is, even if u�u
h
6= 0, the image L(u�u

h) is zero when considered as an element240

of the space
�
V

h
�0

.241

Defining a finite-dimensional trial subspace W
h
⇢ H

1
0 (⌦) (where W

h coincides242

with V
h in the standard Galerkin method), standard ellipticity results [11] show that243

L in (2.24) is coercive on X = W
h. However, the exact solution to (2.2) does not244

belong to W
h in general. For this reason, reduced basis approximations for standard245

Galerkin methods typically consider the “true” solution as a discrete solution in the246

finite dimensional subspace W
h
⇢ X. As a result, it is not possible to apply the error247

bounds to an exact solution u /2 W
h in the Ritz-Galerkin finite element setting. In248

the next section, we show that this problem does not arise in a LSFEM context.249

3. The Least-Squares Finite Element Method. The least-squares finite el-250

ement method (LSFEM) reformulates the PDE as a system of first-order equations251

and then defines the solution as the minimizer of a functional in an appropriate252

norm. See [6, 32] for a complete description; a brief overview, with application to253

parametrized equations, is presented in this section.254

3.1. Abstract Formulation. In addition to the assumptions of the previous255

section, we consider Lµ to be a bounded, linear first-order di↵erential operator. We256

wish to solve (2.2). Under the assumptions given by (2.3), any solution to (2.2) is the257

unique minimizer of the following problem:258

(3.1) arg min
v2X

Jµ(v; fµ) := kLµv � fµk
2
Y .259

Conversely, (3.1) is guaranteed to have a unique minimizer uµ 2 X, and if fµ belongs260

to the range of Lµ, this minimizer also solves (2.2). uµ necessarily satisfies the first-261

order optimality condition:262

(3.2) (Lµuµ,Lµv)Y = (fµ,Lµv)Y , 8v 2 X.263

For the remainder of the paper, we denote uµ as the unique solution to (3.1) and (3.2);264

i.e., Lµ is surjective.265

A LSFEM is defined by choosing a finite element subspace X
h
⇢ X, and seeking266

the minimum to (3.1) over this subspace instead. The first-order optimality condition267

is now: find u
h
µ 2 X

h such that268

(3.3) (Lµu
h
µ,Lµv

h)Y = (fµ,Lµv
h)Y , 8v

h
2 X

h
.269

Since X
h
⇢ X, coercivity of the bilinear form a(·, ·; µ) := (Lµu

h
µ,Lµv

h)Y and conti-270

nuity of F (·) := (fµ,Lµv
h)Y on X

h follow immediately. Thus, (3.3) admits a unique271

solution u
h
µ 2 X

h.272

The corresponding linear system of algebraic equations273

(3.4) A
h
µuh

µ = bh
µ274

that is solved for the unknown vector of degrees of freedom uh
µ, is also symmetric275

positive-definite. This follows from the symmetry and coercivity of a(·, ·; µ).276

3.2. Error Approximation. To approximate the error e
h
µ = uµ � u

h
µ for the277

LSFEM, first an approximation u
h
µ 2 X

h
⇢ X is computed via (3.3), and then the278

residual rhµ = fµ�Lµu
h
µ is computed. Because of the form of (3.3), the corresponding279

error satisfies280

(3.5) (Lµe
h
µ,Lµv

h)Y = 0, 8v
h
2 X

h
.281
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LEAST-SQUARES REDUCED BASIS 9

As a result, if we attempt to compute an approximate error êhµ 2 X
h, we obtain zero.282

To alleviate this, we introduce an additional subspace Zh that satisfies Xh
⇢ Z

h
⇢ X.283

In the context of a finite element method, Zh may represent a refinement of the mesh,284

an increase in the polynomial order of the elements, or both. We then solve for an285

approximation Z
h
3 ê

h
µ ⇡ e

h
µ through the variational problem:286

(3.6) (Lµê
h
µ,Lµw

h)Y = (rhµ,Lµw
h)Y , 8w

h
2 Z

h
.287

Given the refinement of the space with X
h
⇢ Z

h, the auxiliary residual is expected288

to satisfy k⇢hµkY ⌧ kr
h
µkY . Thus, the rigorous error bound M

h(µ) is applicable,289

and if the hypotheses of Theorem 2.1 hold, then the bounds on the e↵ectivity are290

computable as well.291

It is the first-order formulation of the PDE that allows us to extend the theory292

from § 2 to form a practical method. Any first-order formulation that leads to a293

practical LSFEM will lead to a space X that is approximated by easily constructed294

finite element spaces, and a space Y with an easily computable inner product. This295

leads to practical and computable norms k · kX and k · kY . We demonstrate this by296

continuing the example of the Poisson equation from § 2.2. An equivalent first-order297

system of PDEs is given by298

q +ru = 0, x 2 ⌦,

r · q = 0, x 2 ⌦,

u = 0, x 2 @⌦.

(3.7)299

300

The corresponding first-order di↵erential operator is301

L : H(div)⇥H
1(⌦)!

h
L
2(⌦)

id
⇥ L

2(⌦),

L
⇥
(q, u)

⇤
:=

✓
q +ru
r · q

◆
.

(3.8)302

303

The operator L satisfies (2.3) on the Hilbert spaces X = H(div)⇥H1, Y =
�
L
2
�d
⇥L

2304

[42], so the theory of § 2 applies. The norm of Y =
�
L
2
�d
⇥ L

2 is easily computable;305

moreover, simple conforming finite element spaces exist for X = H(div)⇥H
1 [8, 47].306

Thus, the computational di�culties associated with the pairings X = H
1
0 , Y = H

�1307

and X = H
2
\H

1
0 , Y = L

2 from § 2.2 are not present.308

Furthermore, the LSFEM method minimizes the norm of the auxiliary residual309

k⇢
h
µkY by design. This is a desirable property in light of the discussion in § 2.1.310

4. Reduced Basis Methods. In this section, we provide a brief overview of311

reduced basis (RB) methods for elliptic equations. See [48] for an extensive overview.312

As described in (3.4), the LSFEM discretization of a linear elliptic PDE leads to a313

parameter-dependent system of linear equations. A Galerkin finite element method314

will also lead to a system of linear equations of the same form. Thus, the algebraic315

considerations of reduced basis methods carry over from Galerkin methods to LSFEMs316

in a straightforward way.317

While we restrict our attention to steady-state problems, LSFEMs have also been318

successfully applied to time-dependent parabolic problems [6, 53, 56]. Thus, for these319

two classes of problems, standard projection-based reduced order modeling approaches320

(e.g., Galerkin and Petrov-Galerkin [13, 15, 16]) can be applied. Hyperbolic problems321

have proved to be more challenging for LSFEMs, although work has been done in this322

area [4, 20, 41].323

This manuscript is for review purposes only.



10 J. H. CHAUDHRY, L. N. OLSON, AND P. SENTZ

4.1. Galerkin Projection. A parametrized elliptic PDE solved by a Galerkin324

variational method (e.g., a finite element method), leads to the equation:325

(4.1) a(uh
µ, v

h; µ) = F (vh; µ), 8v
h
2 X

h
.326

Here, a(·, ·; µ) : X ⇥ X ! R is a continuous and coercive bilinear form for all µ 2327

D ⇢ Rd, and F (·; µ) : X ! R is a bounded linear functional for all µ.328

Let N
h := dim(Xh) and consider {⌘j}

Nh

j=1 to be a basis for X
h. For any µ, the329

discrete solution has a representation u
h
µ =

PNh

j=1 uj(µ)⌘j , where uj(µ) denotes the330

coe�cient to basis function ⌘j and depending on µ. Substitution into (4.1), results331

in a linear system of the form332

(4.2)
NhX

j=1

a(⌘j , ⌘i; µ)uj(µ) = F (⌘i; µ) i = 1, . . . , Nh
.333

In a many query or real-time context, (4.2) must be solved repeatedly or very quickly.334

Even more, a large linear system must be assembled for each parameter instance,335

which is prohibitively expensive for discretizations with many degrees of freedom.336

Reduced basis methods are intended to help alleviate this cost. By introducing a337

subspace X
N
⇢ X with dimension N ⌧ N

h and basis {⇠j}
N
j=1, a reduced solution338

u
N
µ =

PN
j=1 cj(µ)⇠j is sought instead. This leads to the much smaller linear system339

(4.3)
NX

j=1

a(⇠j , ⇠i; µ)cj(µ) = F (⇠i; µ) i = 1, . . . , N.340

There are a number of features that distinguish a RB method. First, an RB341

method must specify how the reduced basis {⇠j} is constructed, which is part of342

the “o✏ine” stage. This “o✏ine-online” decomposition is found throughout the re-343

duced basis literature [44, 48]. Typically, the basis functions are linear combinations344

of the high-fidelity basis functions ⌘j . We review the greedy sampling strategy for345

constructing the reduced basis in § 4.4.346

Second, a RB method requires the construction of an e�cient error indicator347
fMN (µ) that quantifies the quality of the RB solution u

N
µ in some manner. This348

is used both to assess the quality of the computed RB solution in the online stage,349

and to guide the construction of the reduced basis when using a greedy sampling350

strategy in the o✏ine stage. We review the standard error indicator used in reduced351

basis literature in § 4.3 and discuss our improved error indicator for the least-squares352

reduced basis method in § 5.353

Finally, a RB method is distinguished by the handling of the resulting reduced354

system (4.3), which still requires considerable cost in the assembly process, despite355

the reduction, because each new value of µ requires a new linear system and right-356

hand side. The cost of this assembly is, in general, dependent on the dimension N
h,357

which is unacceptable for the many-query or real-time context. Either additional358

assumptions on a(·, ·; µ) and F (·; µ) must be made, or an algorithm to remove this359

N
h dependency must be specified. This issue is addressed by considering a�nely360

parametrized equations.361

4.2. A�nely Parametrized Equations. A critical feature of an e↵ective RB362

method is that the assembly of (4.3) should be independent of the dimension of363
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the full-order problem N
h to be useful in a many-query or real-time context. A364

certain class of variational problems exist where an N
h-independent assembly process365

is readily obtained. A variational problem is said to be a�nely parametrized if it can366

be expressed in the form367

a(u, v; µ) =
QaX

k=1

✓
a
k(µ)ak(u, v),

F (v; µ) =
QFX

k=1

✓
F
k (µ)Fk(v).

(4.4)368

369

Here, {✓
a
k}

Qa

k=1 and {✓
F
k }

QF

k=1 are a set of Qa (respectively QF ) scalar functions of370

µ, the {ak(u, v)}
Qa

k=1 are continuous, parameter-independent, bilinear forms, and the371

{Fk}
QF

k=1 are continuous, parameter-independent, linear functionals. When this is372

satisfied, equation (4.3) takes the form:373

(4.5)
NX

j=1

0

@
QaX

k=1

✓
a
k(µ)ak(⇠j , ⇠i)

1

A cj(µ) =
QFX

`=1

✓
F
` (µ)F`(⇠i) i = 1, 2, . . . , N.374

That is, the system matrix and right hand side are simply linear combinations of the375

matrices and vectors376

(Ak)ij := ak(⇠j , ⇠i)

(bk)i := Fk(⇠i).
(4.6)377

378

These are assembled in the o✏ine stage, leading to an online stage that is independent379

of the problem size Nh. While there there are RB methods that do not satisfy this380

property — e.g., using the empirical interpolation method [3] — the work here is381

restricted to a�nely parametrized problems as in a host of other works [22, 23, 25,382

27, 31, 37, 51, 57].383

The requirement for a�nely parametrized equations is no more restrictive for the384

least-squares method than it is for the Galerkin case. An example is in the case of the385

time-harmonic Maxwell’s equation for the calculation of the electric field, E [27]. Let386

J be a known source term, µ the permeability, � the conductivity, ✏ the permittivity,387

! the frequency, and � = i!� � !
2
✏, where i =

p
�1. The vector of parameters is388

thus µ = (µ,�, ✏,!). Introducing a test function v, the variational equation becomes389

1

µ
(r⇥E,r⇥ v)0 + �(E,v)0 = i!(J ,v)0, 8v 2 H(curl).(4.7)390

391

where (·, ·)0 is the L
2(⌦) inner-product for vector valued functions. The resulting392

weak equation is a�nely parametrized.393

A least-squares discretization is be obtained by introducing the variable q =394

µ
�1
r⇥E. Introducing test functions r and v, one obtains the weak formulation395

⇥
(r⇥ q,r⇥ r)0 + (q, r)0

⇤
+ �

⇥
(r⇥ q,v)0 + (E,r⇥ r)0

⇤
+ �

2(E,v)0

�
1

µ

⇥
(q,r⇥ v)0 + (r⇥E, r)0

⇤
+

1

µ2
(r⇥E,r⇥ v)0

= i!(J ,r⇥ r)0 + i�!(J ,v)0.

(4.8)396

397

We see that the least-squares discretization also leads to an a�nely parametrized398

variational equation.399
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4.3. Error Indicator. For a reduced basis of dimension N and for every µ,400

there is a corresponding RB solution u
N
µ and a corresponding weak residual RN (·; µ) 2401 �

X
h
�0

defined as402

(4.9) R
N (vh; µ) := F (vh; µ)� a(uN

µ , v
h; µ), 8v

h
2 X

h
.403

Reduced basis methods typically construct error indicators of the form404

(4.10) fMN (µ) :=
kR

N (·; µ)k(Xh)0

�LB
µ

,405

where �LB
µ is a lower bound of a coercivity or stability constant, which is computed via406

the Successive Constraint Method (SCM) [18, 19, 30, 31, 48, 49, 52]. SCM constructs407

a linear program of complexity independent of the problem size in the o✏ine stage,408

similar to the construction of the reduced basis itself.409

The indicator in (4.10) is an analogous quantity to410

(4.11)
k⇢

h
µkYp
↵(µ)

.411

In [50], the error indicator was improved upon by introducing an auxiliary error412

residual as in § 2. However, as shown in § 2.2, an indicator based on the residual413

in (4.9) cannot be applied to the error with respect to an arbitrary function in H
1. We414

refer to [44] for a detailed explanation on the construction of RN and its corresponding415

dual norm.416

4.4. O✏ine and Online Stages using a Greedy Sampling Strategy. The417

task of the o✏ine stage in the reduced basis method is to construct the actual basis418

{⇠i}. A finite subset Dtrain ⇢ D is chosen to represent the space of possible parameter419

values. A parameter vector µ1 2 Dtrain is chosen arbitrarily.420

Define ⇠̃1 2 X
h to be the solution of421

(4.12) a(⇠̃1, v
h; µ1) = F (vh; µ1), 8v

h
2 X

h
.422

Then the first reduced basis function is423

(4.13) ⇠1 =
⇠̃1

k⇠̃1kX

.424

Suppose for N � 1, an orthonormal basis {⇠1, . . . , ⇠N} has been constructed425

corresponding to parameters µ1, . . . ,µN 2 Dtrain. For each µ 2 Dtrain\{µ1, . . . ,µN},426

let u
N
µ be the solution to the projected variational problem427

(4.14) a(uN
µ , ⇠i; µ) = F (⇠i; µ), i = 1, . . . , N.428

Using the expression for R
N
2 (Xh)0 given by (4.9), the next parameter value is429

chosen through430

(4.15) µN+1 = arg max
µ2Dtrain\{µ1,...,µN}

fMN (µ),431

where fMN (µ) is defined in (4.10). The next basis function ⇠N+1 is found after com-432

puting the full-order solution u
h
µN+1

to equation (4.14), and orthonormalizing against433

the existing basis functions in the appropriate inner product.434
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The algorithm terminates after either the dimension of the basis has reached an435

upper bound or fMN (µ) is smaller than a preset tolerance. At this point, the matrices436

and vectors from (4.6) are computed.437

In the subsequent online stage, having constructed a basis {⇠1, . . . , ⇠N}, a reduced-438

order solution is easily obtained by solving the N ⇥N linear system corresponding to439

the projected variational problem. The computational cost is thus independent of the440

dimension of Xh, an essential component of a computationally e�cient online stage.441

5. A Least-Squares Finite Element Method with Reduced Basis. We442

now develop a least-squares based reduced basis method, which we label LSFEM-RB.443

First, recall the improved error estimate444

(5.1) ke
h
µkX  kê

h
µkX +

k⇢
h
µkYp
↵(µ)

= M
h(µ),445

which is a rigorous upper bound for the error; its e↵ectivity is also bounded by446

Theorem 2.1.447

Next, we make use of two finite-dimensional finite element spaces, Xh
⇢ Z

h
⇢ X,448

to compute the numerical approximation to the PDE and to the error equation. To449

this end, we define450

a(u, v; µ) :=
�
Lµu,Lµv

�
,

F (v; µ) :=
�
fµ,Lµv

�
,

R(w, u; µ) := F (w; µ)� a(u,w; µ).

(5.2)451

452

Recall the assumption of a�ne parametric dependence from § 4.2,453

a(u, v; µ) =
QaX

k=1

✓
a
k(µ)ak(u, v),

F (v; µ) =

QfX

k=1

✓
F
k (µ)Fk(v),

(5.3)454

455

which is key for a computationally e�cient online stage.456

Finally, using the error estimate (5.1) requires knowledge of the coercivity con-457

stant ↵(µ); replacing this by a lower bound 0 < ↵LB(µ)  ↵(µ) also results in a458

rigorous upper bound for the error. Computationally, we make use of a lower bound459

computed via the Successive Constraint Method [18]. While this method guarantees460

a rigorous lower bound for the coercivity constant of a finite-dimensional subspace, it461

is still possible that it returns a value that is larger than the true coercivity constant462

↵(µ). This is addressed in more detail in § 5.3.463

Remark. For the solution of the approximate error ê
h
µ, we use a space Z

h that464

contains the original finite element space X
h; this is obtained through refinement465

of the mesh or increasing the polynomial order. As an alternative it is tempting to466

build the error approximation on a subspace Z
h
⇢ X

h; however, this will lead to467

the approximation ê
h
µ = 0 because of Galerkin orthogonality. It is still possible to468

compute the error on a space Z
h
6⇢ X

h, with Z
h having fewer degrees of freedom469

than X
h, as long as it is possible to transfer the solution u

h
µ 2 X

h onto the new grid.470

However, if the grid corresponding to Z
h is too coarse, the auxiliary residual k⇢hµkY471

will be too large, making the error estimate less e↵ective.472
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5.1. O✏ine Algorithm. With an initial µ1 2 Dtrain we compute the solution473

u
h
µ1

to the equation474

(5.4) a(uh
µ1
, v

h; µ1) = F (vh; µ1), v
h
2 X

h
.475

followed by the error approximation via the equation476

(5.5) a(êhµ1
, w

h; µ1) = R(wh
, ⇠̃1; µ1) w

h
2 Z

h
.477

We then normalize u
h
µ1

and ê
h
µ1

to have unit X-norm and obtain our first pair of basis478

functions ⇠1 2 X
h and �1 2 Z

h.479

Assume then that we we have constructed two orthonormal bases {⇠1, . . . , ⇠N} ⇢480

X
h and {�1, . . . ,�N} ⇢ Z

h corresponding to parameters {µ1, . . . ,µN}. For each481

µ 2 Dtrain, we compute the solution to the projected problem482

(5.6) a(uN
µ , ⇠i; µ) = F (⇠i; µ), i = 1, . . . , N,483

and the corresponding projected error from484

(5.7) a(êNµ ,�i; µ) = R(�i, u
N
µ ; µ), i = 1, . . . N.485

Defining the reduced residual by r
N
µ = fµ � Lµu

N
µ , and the corresponding reduced486

auxiliary residual ⇢Nµ = r
N
µ �Lµê

N
µ , the next parameter value is then selected through487

(5.8) µN+1 = arg max
µ2Dtrain\{µ1,...,µN}

M
N (µ) := kêNµ kX +

k⇢
N
µ kYp

↵LB(µ)
.488

Here, we denote M
N (µ) as error estimate M

h(µ) when restricted to approximations489

in the N -dimensional subspaces span{⇠1, . . . , ⇠N} and span{�1, . . . ,�N}. The basis490

functions ⇠N+1 and �N+1 are obtained from the full-order solutions uh
µN+1

and ê
h
µN+1

491

by orthonormalizing against the existing basis functions in the X-inner product.492

The algorithm terminates whenever493

(5.9)
k⇢

N
µ kYp

↵(µ)kêNµ kX
 �, 8µ 2 Dtrain.494

for a prescribed tolerance � 2 (0, 1). During the course of the o✏ine algorithm, � is495

increased if a full-order error estimate is encountered that exceeds the current value;496

if the full-order error indicator for a given µ value is not bounded by �, then we497

cannot expect a reduced-order analogue to be bounded by this quantity either. If �498

is too large at the end of the algorithm, mesh or polynomial refinement of the space499

is needed to increase accuracy.500

Once the basis functions have been constructed, the reduced basis matrices with501

entries ak(⇠i, ⇠j), ak(�i,�j), ak(�i, ⇠j) and reduced basis vectors with entries Fk(⇠i)502

and Fk(�i) are assembled. The algorithm for the o✏ine stage is given in Algorithm 5.1.503

If the algorithm terminates with N < Nmax, and � < 1 then (5.9) and Theorem 2.1504

imply505

(5.10)
M

N (µ)

kuµ � uN
µ kX


1 + �

1� �
, 8µ 2 Dtrain.506

Thus, we obtain an upper bound for the e↵ectivity ratio in Dtrain, in addition to507

the error itself.508
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Algorithm 5.1 Least Squares Reduced Basis O✏ine Algorithm

Choose µ1 2 Dtrain

Compute full-order solutions u
h
µ1

and ê
h
µ1

. . (5.4), (5.5)
Normalize to obtain primal basis {⇠1}, and error basis {�1}.
for n = 1, . . . , Nmax do

if
k⇢n

µkY
p

↵LB(µ)kênµkX

 � for all µ 2 Dtrain then . (5.9)

Break
end if
µn+1 = arg maxMn(µ) . (5.8)
Compute full-order solutions u

h
µn+1

and ê
h
µn+1

.

If full-order estimate
k⇢h

µn+1
kY

p
↵LB(µn+1)kêhµn+1

kX
> �, set � =

k⇢h
µn+1

kY
p

↵LB(µn+1)kêhµn+1
kX

.

Orthonormalize u
h
µn+1

against {⇠1, . . . , ⇠n} to obtain ⇠n+1, and append.

Orthonormalize ê
h
µn+1

against {�1, . . . ,�n} to obtain �n+1, and append.
end for
Assemble matrices ak(⇠i, ⇠j), ak(�i,�j), and ak(�i, ⇠j). . (5.3)
Assemble vectors Fk(⇠i) and Fk(�i). . (5.3)

5.2. Online Algorithm. In the online stage, for a new parameter µ, the cor-509

responding RB approximation and error bound is computed as follows. First, the510

N ⇥N projected problem is assembled via511

AN (µ) =
QaX

k=1

✓
a
k(µ)ak(⇠j , ⇠i),

bN (µ) =

QfX

m=1

✓
F
m(µ)Fm(⇠i).

(5.11)512

513

Since the parameter-independent terms in (5.11) are assembled in the o✏ine stage,514

assembly in the online stage incurs a cost of O(QaN
2 + QfN). The resulting dense515

system AN (µ)cN = bN (µ) is solved directly, incurring a cost of O(N3). Here cN 2516

RN are the the RB coe�cients, that is, uN (µ) =
PN

n=1[cN ]n⇠n.517

To compute the approximation of the error, the N ⇥N matrix518

bAN (µ) =
QaX

k=1

✓
a
k(µ)ak(�j ,�i)(5.12)519

520

is assembled, which is once again the linear combination of pre-assembled matrices;521

the cost is O(QaN
2). To compute the right-hand side of the error equation, the522

following computations are performed:523

Gk(�i) =
NX

j=1

ak(⇠j ,�i)[cN ]j

bbN (µ) =

QfX

m=1

✓
F
m(µ)Fm(�i)�

QaX

k=1

✓
a
k(µ)Gk(�i).

(5.13)524

525
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This requires O(QaN
2) operations to perform the matrix vector multiplications for526

Gk, and O
�
(Qa + Qf )N

�
cost to form the necessary linear combination of vectors.527

Finally, the solution of this system is also O(N3), which determines the RB error528

coe�cients bcN 2 RN , that is, êN =
PN

n=1[ĉN ]n�n.529

To form the error bound, the quantities kêNµ kX and k⇢Nµ kY must be computed.530

Since the error basis functions {�j}
N
j=1 were orthonormalized in the (computable)531

X-norm, the first quantity is easily computed by532

kê
N
µ kX =

q
bcTN bcN .(5.14)533

534

To compute the norm of the auxiliary residual, we compute535

k⇢
N
µ k

2
Y = kfµ � Lµu

N
µ � Lµê

N
µ k

2
Y

= (fµ, fµ)Y +
h
(Lµu

N
µ ,Lµu

N
µ )Y � (fµ,Lµu

N
µ )Y

i

+
h
(Lµê

N
µ ,Lµê

N
µ )Y + (Lµu

N
µ ,Lµê

N
µ )Y � (fµ,Lµê

N
µ )Y

i

� (fµ,Lµu
N
µ )Y �

h
(fµ,Lµê

N
µ )Y � (Lµu

N
µ ,Lµê

N
µ )Y

i

= (fµ, fµ)Y � (fµ,Lµu
N
µ )Y �

h
(fµ,Lµê

N
µ )Y � (Lµu

N
µ ,Lµê

N
µ )Y

i

= (fµ, fµ)Y � bTNcN � bbT bcN .

(5.15)536

537

Thus, the auxiliary residual is computed through inner products between vectors in538

RN and the computation of (fµ, fµ)Y . For LSFEM, the Y -norm usually corresponds539

to the L
2-inner product, the a�ne parametric dependence of the problem ensures540

the quantity (fµ, fµ)Y is computed at a cost independent of the problem size, either541

analytically or through quadrature.542

If a method such as SCM is used to compute ↵LB(µ) at a cost independent of543

problem size, every necessary computation of the online stage is performed at a cost544

that is independent of the size of the high-fidelity problem. Finally, the error estimate545

is computed via546

(5.16) M
N (µ) = kêNµ kX +

k⇢
N
µ kYp

↵LB(µ)
547

These steps are collected in Algorithm 5.2.548

5.3. The Coercivity Constant and the Rigor of the Error Estimate. We549

make use of a lower bound ↵LB in Algorithm 5.1 to the coercivity constant ↵. In550

practice, this lower bound is approximated via the SCM, which computes a lower551

bound to the discrete coercivity constant ↵
h(µ). We now examine the implication of552

this approximation.553

The coercivity constant ↵(µ) is the infimum of a Rayleigh Quotient554

↵(µ) = inf
u2X

kLµuk
2
Y

kuk2X

.(5.17)555
556

The discrete coercivity constant ↵h(µ) is the infimum of the same Rayleigh Quotient,557

but u is restricted to be in the finite-dimensional approximation space:558

↵
h(µ) = inf

uh2Xh

kLµu
h
k
2
Y

kuhk2X

.(5.18)559
560
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Algorithm 5.2 Least Squares Reduced Basis Online Algorithm

Input: parameter µ 2 RP

Assemble RB system: AN (µ) and bN (µ) . (5.11)
Solve RB system AN (µ)cN = bN (µ)

Assemble RB error system: bAN (µ), Gk(�i) and bbN (µ) . (5.12),(5.13)

Solve RB error system bAN (µ)bcN = bbN (µ)

Compute error norm kêNµ kX =
q
bcTN bcN . (5.14)

Compute auxiliary residual k⇢Nµ k
2
Y = (fµ, fµ)Y � bTNcN � bbT bcN . (5.15)

Compute ↵LB(µ) (e.g. through online phase of SCM)

Compute error estimate M
N (µ) = kêNµ kX +

k⇢N
µ kY

p
↵LB(µ)

. (5.16)

In a conforming discretization, since X
h
⇢ X, it follows that ↵(µ)  ↵

h(µ). Thus561

there is a possibility that562

↵(µ) < ↵LB(µ)  ↵
h(µ).(5.19)563564

This leads to a potential underestimation of the error in M
h(µ) or MN (µ). However,565

extensive research has been done with respect to the convergence of finite element566

approximations of eigenvalue problems; see [7] for a thorough overview.567

If the problem568

(Lµu,Lµv)Y = (f, v)X , 8v 2 X,(5.20)569570

has a compact solution operator Tµ : X ! X, where Tµf = u is the solution to the571

variational problem (5.20), then the error ↵
h(µ)� ↵(µ) is bounded by the square of572

the approximation error of the finite dimensional space X
h. Thus, if a LSFEM with573

order of convergence r is used, we would expect574

(5.21) ↵
h(µ)  ↵(µ) + O(h2r),575

where h is the mesh size. That is, the error in the approximation of the coercivity576

constant is much lower than the error in the LSFEM solution. Thus, in the worst577

case, a non-rigorous lower bound ↵LB computed by the successive constraint method578

would still be bounded by ↵(µ) + O(h2r) and thus for su�ciently small h,579

1p
↵(µ)


1p

↵LB(µ)�O(h2r)
=

1p
↵LB(µ)

(1 + O(h2r)).(5.22)580
581

If this estimate holds, the lower bound built by SCM is asymptotically rigorous, and582

so is the corresponding error estimate M
N (µ).583

Showing the compactness of the solution operator of (5.20) will be the focus of584

future research, but numerical experiments have shown evidence of the higher order585

convergence rate. In Figure 2, convergence to the exact coercivity constant of an586

LSFEM applied to the ordinary di↵erential equation �u00 = f with homogeneous587

Dirichlet boundary conditions is shown. In this case, the first-order reformulation588

leads to the operator L : H1(⌦)⇥H
1
0 (⌦)! L

2(⌦)⇥ L
2(⌦) defined as589

(5.23) L
⇥
(q, u)

⇤
=

✓
q + u

0

q
0

◆
,590
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18 J. H. CHAUDHRY, L. N. OLSON, AND P. SENTZ

with coercivity constant ↵ = 1 � (1 +
p

1 + 4⇡2)/2(1 + ⇡
2). Using piecewise linear591

finite elements with 1st order convergence, we see the expected 2nd order convergence592

of the discrete coercivity constant.

10�3 10�2 10�1

h

10�6

10�5

10�4

10�3

10�2

�
h
�

�

�h � �

h2

Fig. 2: Convergence of the discrete coercivity constant for the operator defined in
(5.23). A piecewise linear finite element space with mesh spacing h is used.

593

6. Numerical Evidence. In this section we present numerical numerical evi-594

dence in support of the LSFEM-RB method introduced in § 5. A single parameter595

study is given in § 6.1 in order to detail the bounds on the error, while a three-596

parameter study is discussed in § 6.2. Finally, in § 6.3, the method is applied to597

an elasticity problem to highlight robustness. The software library Firedrake [46] is598

used in the following tests. Moreover, it is easy to check that the numerical examples599

considered below are a�nely parametrized in the least-squares setting.600

6.1. Thermal Block — 1 Parameter. We first apply the LSFEM-RB frame-601

work to a standard test problem in the reduced basis community, the “thermal block”602

problem [26, 48, 50]. The governing partial di↵erential equation is a variable coe�-603

cient Poisson problem:604

�r · (x)ru = 0 in ⌦,

u = 0 on �D,

(x)ru · n = g, on @⌦ \ �D.

(6.1)605

606

Here, ⌦ is the unit square, �D = {(x, y) 2 @⌦ | y = 1}, g(x, y) is a function satisfying607

g(0, y) = g(1, y) = 0 and g(x, 0) = 1, and (x) is a piecewise constant function taking608

two di↵erent values in subdomains ⌦1,⌦2; see Figure 3. Specifically,609

(6.2) (x) =

(
µ x 2 ⌦1

1 x 2 ⌦2,
610

with µ 2 [10�1
, 101].611

By introducing a constant lifting function q` = (0,�1)T , and defining the flux612

variable613

(6.3) q = �ru + q`,614
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(x) = µ

⌦1

(x) = 1

⌦2

Fig. 3: Variable Poisson problem with conductivity in two subdomains.

the following equivalent first order system is obtained:615


�1/2q + 

1/2
ru = 

�1/2q` in ⌦,

r · q = 0 in ⌦,

u = 0 on �D,

q · n = 0 on @⌦ \ �D.

(6.4)616

617

The first order system (6.4) defines an operator Lµ with domain X ⇢ H(div)⇥H1(⌦)618

and range Y = (L2(⌦))2⇥L
2(⌦); here X is the subspace of functions that satisfy the619

homogeneous boundary conditions. It is shown in [6, 42] that the resulting operator620

Lµ satisfies (2.3) — i.e., is continuous and has a bounded inverse — with respect to621

the H(div)⇥H
1 norm. Using this norm on X leads to a well-posed problem and the622

applicability of the error estimate (2.13).623

We compute an approximation using the subspace X
h = (RT0) ⇥ P1, approxi-624

mating q by the lowest order Raviart-Thomas space [47] and u by piecewise linear625

polynomials. The approximations qh and u
h are computed on a mesh corresponding626

to 1,016 degrees of freedom.627

The reduced basis is constructed using a sample of 50 logarithmically spaced628

samples µ 2 [0.1, 10.]. The auxiliary error equation is solved on the same mesh using629

(RT1)⇥ P2 elements, corresponding to 3,556 degrees of freedom.630

The o✏ine algorithm consists of two stages: the o✏ine SCM portion and the631

construction of the reduced basis. The SCM requires the solution of 11 generalized632

eigenvalue problems of size 1, 016⇥ 1, 016. For the construction of the reduced basis,633

the algorithm terminates after computing only N = 3 full-order solutions are required.634

The final tolerance upon termination is approximately � ⇡ 0.3984. Thus, the error635

estimate is guaranteed to satisfy the e↵ectivity bound636

M
N (µ)

keNµ kX


1 + �

1� �
⇡ 2.3244.(6.5)637

638

Thus, our error bound overestimates the true error by at worst a factor of approxi-639

mately 2.3244.640

To test the reduced basis, we generate 100 randomly sampled parameter values641

µ 2 [0.1, 10.0] and compute a reference solution using (RT2) ⇥ P3 elements after642

performing two uniform mesh refinements. This corresponds to 121,920 degrees of643

freedom. We then compute the reduced basis approximation for these parameter644
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20 J. H. CHAUDHRY, L. N. OLSON, AND P. SENTZ

values and the corresponding RB error estimate. For each parameter value, the lower645

bound for the coercivity constant is computed through the online SCM algorithm; the646

resulting linear program has 3 variables and 16 inequality constraints. The reduced647

basis solution and approximate error requires the solution of two 3⇥3 linear systems.648

The true error and the corresponding error estimate are shown for the test set in649

Figure 4a. The error bound is rigorous and resolves the di↵erence in error throughout650

the parameter domain.651
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µ
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10�1

E
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in

H
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Fig. 4: (a) The error between the RB solution and the reference solution, along with
the corresponding RB error bound over the testing set of parameter values of µ. (b)
The e↵ectivity of the RB error estimate in (6.5) over the testing set of parameter
values.

In Figure 4b, we plot the e↵ectivity of the error estimate over the same testing652

set of data. The error bound overestimates the error by a small factor, less than 1.40,653

which outperforms the e↵ectivity bound in (6.5).654

Finally, we plot the run-time for each new parameter value encountered in the655

online phase for both the reduced basis method, and solutions computed using only656

full-order solutions in Figure 5.2 The reduced basis method incurs an o✏ine cost of657

approximately 4 seconds; thus, for 16 parameter values or fewer, the reduced basis658

approach is more expensive. However, because the size of the linear system is only659

3⇥ 3, total run-time grows extremely slowly for additional parameters. Thus after 17660

parameter values, the reduced basis approach becomes more computationally e�cient,661

with rapidly increasing computational gains as the number of online parameters grows.662

6.2. Thermal Block — 3 Parameters. We repeat the same variable coe�-663

cient Poisson problem, now with four subdomains, and consequently, three di↵erent664

parameter values µ = (µ1, µ2, µ3)T .665

The flux reaches a singularity (1/2, 1/2), where all four subdomains meet, which666

necessitates a finer grid and requires computing the auxiliary error equation by per-667

forming a mesh refinement in addition to the increase in polynomial order. Our ap-668

proximation is again computed on X
h = (RT0)⇥ P1, with 1,456 degrees of freedom.669

The auxiliary error equation is computed after one mesh refinement using (RT1)⇥P2670

elements, which corresponds to 20,384 degrees of freedom.671

2The compute node uses two Intel Xeon E5-2630 processors.
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Fig. 5: The total run-time (o✏ine and online) of the reduced basis method for each
new parameter value encountered in the online stage compared to the use of full-order
models. The reduced basis method incurs an o✏ine cost of approximately 4 seconds,
but quickly becomes an extremely e�cient alternative over the use of full-order models.

(x) = µ1 (x) = µ2

(x) = µ3 (x) = 1

Fig. 6: Conductivity for the variable coe�cient Poisson equation with four subdo-
mains. The parameter µ takes values in the interval [5�1

, 51].

The reduced basis is constructed using a sample of 75 randomly generated sam-672

ples µ 2 [0.2, 5.]3 using Latin hypercube sampling. We also include the vertices of673

the parameter domain cube. The SCM method requires the solution of 45 general-674

ized eigenvalue problems of size 1, 456 ⇥ 1, 456, and the reduced basis construction675

terminates after the computation of N = 13 basis functions with a final tolerance of676

� ⇡ 0.7557. Thus, the error estimate is guaranteed to satisfy the e↵ectivity bound677

M
N (µ)

keNµ kX


1 + �

1� �
⇡ 7.1877.(6.6)678

679

To test the reduced basis, we generate 100 randomly sampled parameter values680

µ 2 [0.2, 5.0]3 using Latin hypercube sampling and compute a reference solution using681

(RT2)⇥P3 elements after performing two uniform mesh refinements. This corresponds682

to 174,720 degrees of freedom. We then compute the reduced basis approximation683
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for these parameter values and the corresponding RB error estimate. For each pa-684

rameter, ↵LB(µ) is computed through the online SCM algorithm; the resulting linear685

program has 7 variables and 39 inequality constraints. The reduced basis solution686

and approximate error requires the solution of two 13 ⇥ 13 linear systems. The true687

error and the corresponding error estimate are shown for the test set in Figure 7a.688

Once again, we see a rigorous upper bound of the error over the testing set.689
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Fig. 7: (a) The error between the RB solution and the reference solution, along with
the corresponding RB error bound over the testing set of parameter values of µ for the
three parameter thermal block. (b) The e↵ectivity of the RB error estimate in (6.5)
over the testing set of parameter values in the three parameter thermal block.

Plotting the e↵ectivity of the parameter set in Figure 7b, we see that the e↵ectivity690

is bounded by 1.5 over much of the testing set, and the error bound overestimates691

the true error by no more than a factor < 2.4. In this case the guaranteed e↵ectivity692

bound (6.6) is a slightly pessimistic prediction on the tightness of the error bound.693

We also examine the convergence of the reduced solution as the dimension of694

the basis increases. We choose the parameter value in the testing set with the largest695

e↵ectivity, i.e. the one corresponding to the largest over-estimation of the error via the696

reduced basis method with N = 13. In this case, µ ⇡ (.223, .244, .746) and the error697

is overestimated by a factor of approximately 2.26. The true error and corresponding698

error estimate is shown in Figure 8 as a function of basis dimension. The error699

estimate remains rigorous and reliable for all sizes of basis; the worst e↵ectivity is700

approximately 3.76 corresponding to N = 3.701

In terms of run-time, the online algorithm takes considerably longer than the 1702

parameter thermal block problem; approximately 43.5 seconds. However, the average703

run-time per parameter for the RB solution and error estimate in the online stage704

is only around 5.4 ⇥ 10�3 seconds. In comparison, the full-order solution and error705

estimate takes 1.4 seconds per parameter on average. The speed-up is over 250 times706

faster and the RB approach is more e�cient for 29 or more parameters in the online707

stage.708

6.3. Linear Elasticity. For this experiment we consider linear elasticity and709

the model problem originating from [45]. The setup consists of a two-dimensional710

plate with a circular whole at the center. Given the symmetry of the problem we711

consider only the upper right quarter for ⌦ as in Figure 9a.712
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Fig. 8: Convergence of the error bound and true error for increasing RB basis dimen-
sion N . The parameter value is µ ⇡ (.223, .244, .746), corresponding to the largest
over-estimation of the error.
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Fig. 9: Domain and mesh for the elasticity problem.

We denote the material properties as E (Young’s Modulus) and ⌫ (Poisson’s713

ratio), which are related through the Lamé constants714

(6.7) � =
E⌫

(1 + ⌫)(1� 2⌫)
, µ =

E

2(1 + ⌫)
.715

Then let u = [u1, u2]T be the displacement of the plate, and let � be the 2⇥ 2 stress716

tensor. Using a substitution �  1
µ�, leads to a change in units so that µ = 1. With717
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this we arrive at the following first-order system of PDEs, following [14]:718

A� � ✏(u) = 0,

r · � = 0.
(6.8)719

720

Here, we assumed no body forces, the divergence of a tensor is taken row-wise, and721

the operators A and ✏ are defined as:722

A� =
1

2

✓
� �

�

2(� + 1)
(tr�)I

◆
=

1

2

�
� � ⌫(tr�)I

�

✏(u) =
1

2

⇣
ru +ruT

⌘
.

(6.9)723

724

We apply a (scaled by µ) traction force via the boundary condition �n = Kn, along725

the top boundary y = 10. To enforce this inhomogenous boundary condition, a lifting726

function �` is introduced that satisfies this condition.727

The parameters for this problem are now of the form µ = [µ1, µ2]T = [⌫,K]T .728

We restrict Poisson’s ratio ⌫ to values in [0.1, 0.5], since 0.5 corresponds to an in-729

compressible material. In addition, we limit the scaled traction coe�cient K to the730

interval [�0.25, 0.25].731

Each row of � is viewed as a two-dimensional vector, and we define an oper-732

ator Lµ = L⌫ that maps U = [�,u] 2 X ⇢
⇥
H(div; ⌦)

⇤2
⇥
⇥
H

1(⌦)
⇤2

into Y =733
⇥
L
2(⌦)

⇤2⇥2
⇥
⇥
L
2(⌦)

⇤2
:734

(6.10) L⌫U =

✓
A �✏

r· 0

◆✓
�
u

◆
=

✓
�A�`

�r · �`

◆
735

Here, X is the subspace of functions that satisfy the corresponding homogeneous736

boundary conditions. This form of L⌫ satisfies (2.3) (see [14]) with respect to the737

norm738

(6.11) k(⌧ ,v)k2X = k✏(v)k20 + k⌧k20 + kr · ⌧k20,739

where k · k0 is the L
2(⌦) norm for vector or tensor valued functions, depending on740

context.741

We compute a discrete approximation using the subspace Xh = (RT0)
2
⇥(P1)

2 —742

i.e., approximate the rows of the stress tensor � by functions in the lowest-order743

Raviart-Thomas space [47], and the components of the displacement u by piecewise744

linear polynomials. For the mesh in Figure 9b, this corresponds to 1, 970 degrees of745

freedom.746

For the reference solutions �µ and uµ, we perform one refinement on the original747

mesh, and approximate the solution by functions in (RT2)
2
⇥(P3)

2, which corresponds748

to 56, 546 degrees of freedom. We compute the lower bound to the coercivity constant749

via the SCM method, with a tolerance of 30%. Since the operator L⌫ only depends750

on Poisson’s ratio, the SCM method is performed using 50 uniformly sample values751

of ⌫ 2 [0.1, 0.5].752

For the basis construction, Dtrain consists of a 10 ⇥ 10 uniform grid sampling of753

(⌫,K) 2 [0.1, 0.5] ⇥ [�0.25, 0.25]. Algorithm 5.1 terminates after computing N = 5754

basis functions with a final tolerance of � ⇡ 0.6445. That is, all reduced-order solutions755

�N
µ , uN

µ corresponding to parameters in the sampled grid satisfy756
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k⇢
N
µ k0p

↵LB(µ)kêNµ kX
 � ⇡ 0.6445

M
N (µ)

keNµ kX


1 + �

1� �
⇡ 4.6266

(6.12)757

758

so that our error bound overestimates the true error by at most a factor of 4.6266⇥.759

To test the reduced basis, we generate 100 randomly sampled (⌫,K) pairs in760

[0.1, 0.5]⇥[�0.25, 0.25] that were not involved in the basis construction. In Figure 10a,761

we see that the error bound generated by the reduced basis approximation is a rigorous762

bound for all parameters in the testing set.763
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Fig. 10: (a) Error over 100 samples of (⌫,K), computed with respect to a high-order
representation of smooth solution, labeled “True Error”. The error bounds generated
by reduced basis solution is labeled as “Error Bound”. Note: The x-axis corresponds
to the indices of the test parameters, which are ordered by magnitude of the true

error. (b) The e↵ectivity ratios MN (µ)
keNµ kX

over the test parameter set.

We next examine the bound on the e↵ectivity ratio in (6.12), which is again764

pessimistic. Indeed, the mean e↵ectivity over the test set is approximately 1.501 and765

no error bound has an e↵ectivity larger than 1.558, as shown in Figure 10b.766

7. Conclusions and Future directions. In this paper we have introduced767

a reduced basis method for parametrized elliptic partial di↵erential equations using768

least-squares finite element methods. We demonstrated that the first-order system769

formulation provides an opportunity to construct a rigorous error bound on the exact770

solution by solving an auxiliary error problem. This is in contrast to standard RB771

approaches that estimate the error with respect to a solution from a fixed finite-772

dimensional subspace. Rigorous bounds on the e↵ectivity of this estimate have also773

been established when the auxiliary equation properly resolves the error.774

The least-squares finite element reduced basis method is also applicable to bases775

constructed via POD. In the o✏ine stage, the e↵ectivity of the error bound no longer776

guides the sampling of the parameter domain since the POD algorithm relies on the777

decay of the eigenvalues to form the basis. However, the decay of the eigenvalues does778

not give a quantitative bound on the actual error of reduced basis approximations.779
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The error estimate and the bound on the e↵ectivity developed in this article may be780

used after the POD basis is formed to give an indication of whether the basis was781

truncated too soon. This in turn should provide guidance in determining the number782

of basis functions needed to produce su�ciently accurate reduced basis solutions.783

From the numerical experiments, we see that the bound on the e↵ectivity, while784

not sharp, is still accurate. Since the error of the RB solution is estimated with respect785

to the true solution, there may be regions of the parameter domain that require much786

finer mesh resolution or polynomial orders. Using this reduced basis method as a787

guide to partitioning the parameter domain into separate reduced order models has788

the potential to increase accuracy and develop sharper e↵ectivity bounds.789

In many cases, an output or quantity of interest Q(uµ) is of more interest than790

the solution itself. Future work should extend the least-squares finite element re-791

duced basis method to these situations by developing computable bounds on the792

error |Q(uµ)�Q(uN
µ )|.793

Finally, least-squares finite element methods are not the only variational method794

that re-formulates a PDE into a first-order system. An investigation of other such795

methods, e.g., mixed Galerkin finite element methods, would make the results more796

broadly applicable.797
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