

1 **AN *A POSTERIORI* ERROR ANALYSIS FOR THE EQUATIONS OF
2 STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS ***

3 JEHANZEB H. CHAUDHRY[†], ARI E. RAPPAPORT[‡], AND JOHN N. SHADID[§]

4 **Abstract.** Resistive magnetohydrodynamics (MHD) is a continuum base-level model for con-
5 ducting fluids (e.g. plasmas and liquid metals) subject to external magnetic fields. The efficient and
6 robust solution of the MHD system poses many challenges due to the strongly nonlinear, non self-
7 adjoint, and highly coupled nature of the physics. In this article, we develop a robust and accurate
8 *a posteriori* error estimate for the numerical solution of the resistive MHD equations based on the
9 exact penalty method. The error estimate also isolates particular contributions to the error in a
10 quantity of interest (QoI) to inform discretization choices to arrive at accurate solutions. The tools
11 required for these estimates involve duality arguments and computable residuals.

12 **Key words.** Adjoint-based error estimation, Magnetohydrodynamics, Exact Penalty, finite
13 elements

14 **AMS subject classifications.** 65N15, 65N30, 65N50

15 **1. Introduction.** The resistive magnetohydrodynamics (MHD) equations pro-
16 vide a continuum model for conducting fluids subject to magnetic fields and are often
17 used to model important applications e.g. higher-density, highly collisional plasmas.
18 In this context, MHD calculations aid physicists in understanding both thermonuclear
19 fusion and astrophysical plasmas as well as understanding the behavior of liquid met-
20 als [41, 63]. From a phenomenological perspective, the governing equations of MHD
21 couple Navier-Stokes equations for fluid dynamics with a reduced set of Maxwell's
22 equations for low frequency electromagnetic phenomenon. Structurally, the equations
23 of MHD form a highly coupled, nonlinear, non self-adjoint system of partial differential
24 equations (PDEs). Analytical solutions to the MHD system cannot be obtained for
25 practical configurations; instead numerical solutions are sought. The theoretical and
26 numerical analysis of MHD dates back to the pioneering work of Temam [61]. Finite
27 element formulations of incompressible resistive MHD include stabilization methods
28 based on variational multiscale (VMS) approaches [48, 49, 62], exact and weighted
29 penalty methods [42, 37, 57, 54], first order system least squares (FOSLS) [3, 4, 1, 44]
30 and structure preserving methods [56, 35, 45, 11, 55]. A survey of various numeri-
31 cal techniques for MHD is found in [38]. In this article we restrict ourselves to the

*Submitted to the editors June 5, 2020.

Funding: J. H. Chaudhry's work is supported by the NSF-DMS 1720402. The work of A. E. Rappaport and J. N. Shadid was partially supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics Program and by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of Fusion Energy Sciences, Scientific Discovery through Advanced Computing (SciDAC) program. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

[†]Department of Mathematics and Statistics, University of New Mexico (jehanzeb@unm.edu, <https://math.unm.edu/~jehanzeb>).

[‡]Department of Mathematics and Statistics, University of New Mexico and Center for Computing Research, Sandia National Laboratories, Albuquerque NM (aerappa@sandia.gov).

[§]Center for Computing Research, Sandia National Laboratories, Albuquerque NM and Department of Mathematics and Statistics, University of New Mexico (jnshadi@sandia.gov).

32 stationary MHD equations based on the exact penalty finite element formulation,
 33 originally developed in [42] from a finite element method discretization. We do not
 34 employ specialized solver strategies e.g. block preconditioning as the problem size we
 35 consider does not merit it.

36 The numerical solution of complex equations like the MHD equations often have
 37 a significant discretization error for solution with significant fine scale spatial struc-
 38 tures. This error must be quantified for the reliable use of MHD equations in numerous
 39 science and engineering fields. Accurate error estimation is a key component of pre-
 40 dictive computational science and uncertainty quantification [29, 30, 17]. Moreover,
 41 the error depends on a complex interaction between many contributions. Thus, the
 42 availability of an accurate error estimate and the different sources of error also offers
 43 the potential of optimizing the choice of discretization parameters in order to achieve
 44 desired accuracy in an efficient fashion. In this work we leverage adjoint based *a*
 45 *posteriori* error estimates for a quantity of interest (QoI) related to the solution
 46 of the MHD equations. These estimates provide a concrete error analysis of different
 47 contributions of error, as well as inform solver and discretization strategies.

48 In many scientific and engineering applications, the goal of running a simulation
 49 is to compute a set of specific QoIs of the solution, for example the drag over a
 50 plane wing in the context of the compressible Navier-Stokes equations. Adjoint based
 51 analysis [39, 10, 28, 26, 5, 8] for quantifying the error in a numerically computed QoI
 52 has found success for a wide variety of numerical methods and discretizations ranging
 53 from finite element [16, 29, 33, 21], finite volume [9], time integration [28, 20, 19, 18],
 54 operator splitting techniques [29, 33] and uncertainty quantification [31, 32, 17].

55 Adjoint based *a posteriori* error analysis uses variational analysis and duality to
 56 relate errors to computable residuals. In particular, one solves an adjoint problem
 57 whose solution provides the residual weighting to produce the error in the QoI. The
 58 technique also naturally allows to identify and isolate different components of error
 59 arising from different aspects of discretization and solution methods, by analyzing
 60 different components of the weighted residual separately.

61 This article carries out the first adjoint based *a posteriori* error analysis for the
 62 MHD equations to the best of our knowledge. The definition of the adjoint operator to
 63 the strong form of the MHD system is not obvious since that system is rectangular,
 64 and hence the weak form of the exact penalty method is needed for forming the
 65 appropriate adjoint problem. We further provide theory supporting the well-posedness
 66 of the adjoint weak form. Additionally, the resulting *a posteriori* error estimate is
 67 decomposed to identify various sources of error, and the efficacy of the error estimate
 68 is demonstrated on a set of benchmark MHD problems.

69 The remainder of the article is organized as follows. In §2, we review the equations
 70 of incompressible resistive MHD, present the exact penalty weak form and the finite
 71 element method to numerically solve the problem. In §3 we develop theoretical results
 72 for adjoint based *a posteriori* error analysis for an abstract problem representative
 73 of the exact penalty weak form. We apply these results to the MHD equations in
 74 §4 to develop an *a posteriori* error estimate. In §5 we present numerical results to
 75 demonstrate the accuracy and utility of the error estimates produced by our method.
 76 In §6 we give details of the derivation of the nonlinear operators in the weak adjoint
 77 form as well as a well-posedness argument for the adjoint problem.

78 **2. Exact penalty formulation and discretization.** In this section we de-
 79 scribe the nondimensionalized equations of incompressible stationary MHD, a stabi-
 80 lized weak form of the MHD system and a finite element method for its solution.

81 **2.1. The MHD equations.** Throughout the rest of the paper, let $\Omega \subset \mathbb{R}^d$, $d = 2$
 82 or 3 be a bounded, convex polyhedral domain with boundary $\partial\Omega$. The assumptions
 83 on the domain are necessary for the solution strategy we choose, as elaborated in §2.3.
 84 The nondimensional equations for stationary incompressible MHD in Ω are given by

85 (2.1a) $-\frac{1}{\text{Re}}\Delta\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \kappa(\nabla \times \mathbf{b}) \times \mathbf{b} = \mathbf{f},$

86 (2.1b) $\nabla \cdot \mathbf{u} = 0,$

87 (2.1c) $\frac{\kappa}{\text{Re}_m}\nabla \times (\nabla \times \mathbf{b}) - \kappa\nabla \times (\mathbf{u} \times \mathbf{b}) = \mathbf{0},$

88 (2.1d) $\nabla \cdot \mathbf{b} = 0,$

90 where the unknowns are the velocity \mathbf{u} , the magnetic field \mathbf{b} , and the pressure p . The
 91 nondimensional parameters are the fluid Reynolds number $\text{Re} > 0$, Magnetic Reynolds
 92 number $\text{Re}_m > 0$, and interaction parameter $\kappa = H_a^2/(\text{Re}\text{Re}_m)$, where $H_a > 0$ is the
 93 Hartmann number. We require the source term $\mathbf{f} \in \mathbf{H}^{-1}(\Omega)$. For $x \in \Omega$ we have
 94 $\mathbf{u}(x) \in \mathbb{R}^d$, $\mathbf{b}(x) \in \mathbb{R}^d$, $p(x) \in \mathbb{R}$ and $\mathbf{f}(x) \in \mathbb{R}^d$. We supplement the system (2.1)
 95 with boundary conditions,

96 (2.2a) $\mathbf{u} = \mathbf{g}, \quad \text{on } \partial\Omega,$

97 (2.2b) $\mathbf{b} \times \mathbf{n} = \mathbf{q} \times \mathbf{n}, \quad \text{on } \partial\Omega.$

99

100 Referring to (2.1), we observe there are $2d + 2$ and only $2d + 1$ unknowns [57].
 101 Effectively enforcing the solenoidal constraint (2.1d) (an involution of the transient
 102 MHD system) is an active area of research. Techniques include compatible discretizations
 103 [58, 11], vector potential [2, 59] and divergence cleaning [24, 46] as well as the
 104 exact penalty method [42, 37, 57]. In this article, we consider the exact penalty
 105 method which we further describe in §2.3.

106 **2.2. Function spaces for the MHD system.** We make use of the standard
 107 spaces $L^2(\Omega)$ and $H^m(\Omega)$ as well as their vector counterparts $\mathbf{L}^2(\Omega)$ and $\mathbf{H}^m(\Omega)$. The
 108 $L^2(\Omega)$ (or $\mathbf{L}^2(\Omega)$) inner product is denoted by (\cdot, \cdot) and the norm is denoted by $\|\cdot\|$,
 109 while the $H^1(\Omega)$ (or $\mathbf{H}^1(\Omega)$) norm is denoted by $\|\cdot\|_1$. The norm in \mathbb{R}^d is denoted
 110 by $\|\cdot\|_{\mathbb{R}^d}$. The details of these function spaces are given in Appendix A. Further
 111 useful relations used throughout the text are given in Appendix B and Appendix C.
 112 For $\mathbf{b} \in \mathbf{H}^1(\Omega)$, we define $\nabla\mathbf{b} := [\nabla b_1, \dots, \nabla b_d]^T$ as a matrix whose rows are the
 113 gradients of the components of \mathbf{b} . The relevant subspaces of $\mathbf{H}^1(\Omega)$ needed to satisfy
 114 the boundary conditions (in the sense of the trace operator) are,

115 (2.3) $\mathbf{H}_0^1(\Omega) := \{\mathbf{w} \in \mathbf{H}^1(\Omega) : \mathbf{w}|_{\partial\Omega} \equiv \mathbf{0}\},$

116 (2.4) $\mathbf{H}_\tau^1(\Omega) := \{\mathbf{w} \in \mathbf{H}^1(\Omega) : (\mathbf{w} \times \mathbf{n})|_{\partial\Omega} \equiv \mathbf{0}\}.$

118 Finally, we define the product space,

119 (2.5) $\mathcal{P} := \mathbf{H}_0^1(\Omega) \times \mathbf{H}_\tau^1(\Omega) \times L^2(\Omega).$

121 We also remark that for $d = 2$, we use the natural inclusion of $\mathbb{R}^2 \hookrightarrow \mathbb{R}^3$, $[v_1, v_2]^T \mapsto$
 122 $[v_1, v_2, 0]^T$ to define the operators $\nabla \times$ and \times . Thus for $\mathbf{v}, \mathbf{w} \in \mathbf{H}^1(\Omega)$, we have that

123 (124) $\nabla \times \mathbf{v} = \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) \hat{\mathbf{k}}, \quad \mathbf{v} \times \mathbf{w} = (v_x w_y - v_y w_x) \hat{\mathbf{k}}.$

125 **2.3. Exact penalty formulation.** In this section we present the weak form of
 126 the stationary incompressible MHD system based on the exact penalty formulation
 127 [42]. The exact penalty method requires that the domain Ω is bounded, convex and
 128 polyhedral. This ensures that $\mathbf{H}(\mathbf{curl}, \Omega) \cap \mathbf{H}(\mathbf{div}, \Omega)$ is continuously embedded in
 129 $\mathbf{H}^1(\Omega)$ [56, 38]. We also assume homogeneous Dirichlet boundary conditions i.e. $\mathbf{g} =$
 130 $\mathbf{q} = \mathbf{0}$. Non-homogeneous boundary conditions can be dealt with through standard
 131 lifting arguments as discussed in §4.3. The exact penalty weak problem corresponding
 132 to (2.1) and (2.2) is: find $U = (\mathbf{u}, \mathbf{b}, p) \in \mathcal{P}$ such that

$$133 \quad (2.6) \quad \mathcal{N}_{EP}(U, V) = (\mathbf{f}, \mathbf{v}), \quad \forall V \in \mathcal{P},$$

134 where the nonlinear form \mathcal{N}_{EP} is defined for all $V = (\mathbf{v}, \mathbf{c}, q) \in \mathcal{P}$ by

$$\begin{aligned}\mathcal{N}_{EP}(U, V) := & \frac{1}{\text{Re}}(\nabla \mathbf{u}, \nabla \mathbf{v}) + (\mathcal{C}(\mathbf{u}), \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) + (q, \nabla \cdot \mathbf{u}) \\ & - \kappa(\mathcal{Y}(\mathbf{b}), \mathbf{v}) - \kappa(\mathcal{Z}(\mathbf{u}, \mathbf{b}), \mathbf{c}) \\ & + \frac{\kappa}{\text{Re}_m}(\nabla \times \mathbf{b}, \nabla \times \mathbf{c}) + \frac{\kappa}{\text{Re}_m}(\nabla \cdot \mathbf{b}, \nabla \cdot \mathbf{c}),\end{aligned}$$

136 and the nonlinear operators are defined by

$$137 \quad (2.8a) \quad \mathcal{C}(u) := (u \cdot \nabla)u,$$

$$138 \quad (2.8b) \qquad \qquad \qquad \mathcal{Y}(b) := (\nabla \times b) \times b,$$

$$139 \quad (2.8c) \qquad \qquad \qquad \mathcal{Z}(u, b) := \nabla \times (u \times b).$$

141 All except the last term in the weak form arise from multiplying (2.1a)-(2.1c) by
 142 test functions and performing integration by parts. The last term, $\frac{\kappa}{\text{Re}_m}(\nabla \cdot \mathbf{b}, \nabla \cdot \mathbf{c})$,
 143 effectively enforces the solenoidal involution (2.1d) since, assuming the aforementioned
 144 restrictions on the domain, there exists a function (see [42, 40]) $b_0 \in H^2(\Omega)$ such that

$$145 \quad (2.9) \quad \nabla \cdot \nabla b_0 = \nabla \cdot \mathbf{b}, \text{ and } \nabla b_0 \in \mathbf{H}_\tau^1(\Omega).$$

146 Thus, we choose $V = (\mathbf{0}, \nabla b_0, 0)$ in (2.7) and use (B.1b) so that (2.6) reduces to

$$147 \quad (2.10) \quad (\nabla \cdot \mathbf{b}, \nabla \cdot \nabla b_0) = (\nabla \cdot \mathbf{b}, \nabla \cdot \mathbf{b}) = 0,$$

148 and hence (2.1d) is satisfied almost everywhere in Ω .

REMARK 1. The existence of the solution to the problem (2.6) is proven in [42, Theorem 4.6] as well as in [38, Theorem 3.22], while uniqueness is proven in [42, Theorem 4.7] and also in [38, Theorem 3.22]. Both uniqueness proofs rely on a “small data” assumption, i.e. inequalities bounding the nondimensionalised constants, Re, Re_m and κ , in terms of the data \mathbf{f}, \mathbf{g} and \mathbf{q} .

2.4. Finite element method. We introduce the standard continuous Lagrange finite element spaces. Let \mathcal{T}_h be a simplicial decomposition of Ω , where h denotes the maximum diameter of the elements of \mathcal{T}_h , such that the union of the elements of \mathcal{T}_h is Ω , and the intersection of any two elements is either a common edge, node, or is empty. The standard Lagrange space finite element space of order q is then

$$159 \quad (2.11) \quad \mathbb{P}_h^q := \{v \in C(\Omega) : \forall K \in \mathcal{T}_h, v|_K \in \mathbb{P}^q(K)\},$$

160 where $\mathbb{P}^q(K)$ is the space of polynomials of degree at most q defined on the element
 161 K . Additionally, our finite element space satisfies the Ladyzhenskaya-Babuška-Brezzi

162 condition stability condition [12] for the velocity pressure pair, e.g. $\mathcal{P}_h = \mathbb{P}_h^2(\Omega) \times$
 163 $\mathbb{P}_h^1(\Omega) \times \mathbb{P}_h^1(\Omega)$. Then the discrete problem to find an approximate solution $U_h =$
 164 $(\mathbf{u}_h, \mathbf{b}_h, p_h) \in \mathcal{P}_h$ to (2.7) is,

165 (2.12)
$$\mathcal{N}_{EP}(U_h, V_h) = (\mathbf{f}, \mathbf{v}_h) \quad \forall V_h \in \mathcal{P}_h.$$

166 Note there is no restriction on the finite element space for \mathbf{b}_h , which is an advantage
 167 of this method. The existence and uniqueness of the solution of the discrete problem
 168 (2.12) is also demonstrated in Gunzburger et al. [42] with the same assumptions of
 169 the data as discussed in Remark 1.

170 **2.5. Quantity of interest (QoI).** The goal of a numerical simulation is often
 171 to compute some functional of the solution, that is, the QoI. In particular, QoIs
 172 considered in this article have the generic form,

173 (2.13)
$$\text{QoI} = \int_{\Omega} \Psi \cdot U \, dx = (\Psi, U)$$

174 where U is defined by (2.6) and $\Psi \in \mathbf{L}^2(\Omega) \times \mathbf{L}^2(\Omega) \times \mathbf{L}^2(\Omega) \equiv [L^2(\Omega)]^{2d+1}$. For exam-
 175 ple in two dimensions, to compute the average of the y component of velocity u_y over
 176 a region $\Omega_c \subset \Omega$, set $\Psi = \frac{1}{|\Omega_c|} [0, \mathbb{1}_{\Omega_c}, 0, 0, 0]^T$, where $\mathbb{1}_S$ denotes the characteristic
 177 function over a set S . In the examples presented later, the QoIs physically represent
 178 quantities representative of the average flow rate, or the average induced magnetic
 179 field. We seek to compute error estimates in the QoI using duality arguments as
 180 presented in the following subsection.

181 **3. Abstract *a posteriori* error analysis.** In this section we consider an ab-
 182 stract variational setting for *a posteriori* analysis based on the ideas from [28, 25, 39,
 183 5, 8]. Let \mathcal{W} be a Hilbert space with inner-product $\langle \cdot, \cdot \rangle$ and let \mathcal{V} be a dense subspace
 184 of \mathcal{W} . Throughout this section $u \in \mathcal{V}$ refers to the solution of an abstract variational
 185 problem (e.g. solution of (3.3) or (3.8)). An example of such a variational problem
 186 is the exact penalty problem as described in §2.3. Moreover, we denote $u_h \in \mathcal{V}_h$ as
 187 a numerical approximation to u , where \mathcal{V}_h is a finite dimensional subspace of \mathcal{V} , and
 188 denote the error as $e = u - u_h$. Finally, w and v refer to arbitrary functions, and their
 189 spaces are made clear when we use these functions. For the QoI, consider bounded
 190 linear functionals of the form,

191 (3.1)
$$Q(w) = \langle \psi, w \rangle, \quad \forall w \in \mathcal{W},$$

192 for some fixed $\psi \in \mathcal{W}$. The QoI is then,

193 (3.2)
$$Q(u) = \langle \psi, u \rangle.$$

194 For example, in (2.13), $\langle \psi, u \rangle = (\Psi, U)$, that is the inner-product is the L^2 inner
 195 product. The aim of the *a posteriori* analysis is to compute the error in the QoI,
 196 $Q(u) - Q(u_h) = \langle \psi, u \rangle - \langle \psi, u_h \rangle = \langle \psi, e \rangle$. We briefly describe the analysis for linear
 197 problems in §3.1 and then consider nonlinear problems in §3.2.

198 **3.1. Linear variational problems.** We consider the problem of evaluating
 199 (3.2) where u is the solution to the linear variational problem: find $u \in \mathcal{V}$ such
 200 that

201 (3.3)
$$a(u, v) = \langle f, v \rangle, \quad \forall v \in \mathcal{V},$$

202 where $a : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ is a bilinear form. We then define the adjoint bilinear form
 203 $a^* : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ as the unique bilinear form satisfying

204 (3.4)
$$a^*(w, v) = a(v, w), \quad \forall w, v \in \mathcal{V},$$

205 see [39, 10]. If ϕ solves the dual problem: find $\phi \in \mathcal{V}$ such that

206 (3.5)
$$a^*(\phi, v) = \langle \psi, v \rangle, \quad \forall v \in \mathcal{V},$$

207 then we have the following error representation.

208 THEOREM 3.1. *The error in the QoI (3.2) is represented as $\langle \psi, e \rangle = \langle f, \phi \rangle - a(u_h, \phi)$, where u is the solution to (3.3), u_h is a numerical approximation, $e = u - u_h$ and ϕ is the solution to (3.5).*

211 *Proof.* The proof is a straightforward computation,

212 (3.6)
$$\langle \psi, e \rangle = a^*(\phi, e) = a(e, \phi) = a(u, \phi) - a(u_h, \phi) = \langle f, \phi \rangle - a(u_h, \phi). \quad \square$$

213 Note from the proof above that a simple yet important property of the adjoint bilinear
 214 form $a^*(\cdot, \cdot)$ is,

215 (3.7)
$$a^*(v, e) = a(u, v) - a(u_h, v),$$

216 for $w \in \mathcal{V}$. We will use this property in motivation the analysis for nonlinear problems
 217 in §3.2.

218 **3.2. Nonlinear variational problems.** Again, our goal is to evaluate (3.2)
 219 where now u is the solution to the *nonlinear* variational problem: find u in \mathcal{V} such
 220 that

221 (3.8)
$$\mathcal{N}(u, v) = \langle f, v \rangle, \quad \forall v \in \mathcal{V},$$

222 and $\mathcal{N} : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ is linear in the second argument but may be nonlinear in the first
 223 argument. There is no straightforward definition of an adjoint operator corresponding
 224 to a nonlinear problem. However, a common choice useful for various kinds of analysis
 225 is based on linearization [53, 52, 21, 18, 16, 33]. This choice enables the definition of
 226 an adjoint bilinear form $\bar{\mathcal{N}}^*(\cdot, \cdot)$ which satisfies the useful property,

227 (3.9)
$$\bar{\mathcal{N}}^*(v, e) = \mathcal{N}(u, v) - \mathcal{N}(u_h, v),$$

228 for all $v \in \mathcal{V}$. This property is inspired by (3.7).

229 We now present a specific case of this analysis such the problem (3.8) mimics the
 230 setup of the exact penalty problem in (2.6). Let $\mathcal{V} = \prod_{i=1}^n \mathcal{V}_i$ and $\mathcal{W} = \prod_{i=1}^n \mathcal{W}_i$ be
 231 product spaces of Hilbert spaces such that \mathcal{V}_i is a dense subspace of \mathcal{W}_i for each i .
 232 The left hand side in problem (3.8) is now more specifically given by

233 (3.10)
$$\mathcal{N}(v, w) = \sum_{i=1}^m \langle N_i(v), w_{\ell_i} \rangle + a(v, w),$$

234 where $a(\cdot, \cdot)$ is a bilinear form, $\ell_i \in \{1, \dots, n\}$ and $N_i : \mathcal{V} \rightarrow \mathcal{W}_{\ell_i}$ are nonlinear
 235 operators. For a solution/approximation pair (u/u_h) to (3.8), define the matrix $\bar{\mathcal{J}}$,
 236 where each entry $\bar{\mathcal{J}}_{ij} : \mathcal{V}_j \rightarrow \mathcal{W}_{\ell_i}$ is given by

237 (3.11)
$$\bar{\mathcal{J}}_{ij} v_j = \int_0^1 \frac{\partial N_i}{\partial u_j}(su + (1 - s)u_h) \, ds \, v_j,$$

239 where $v_j \in \mathcal{V}_j$ and $\frac{\partial N_i}{\partial u_j}(\cdot)$ denotes the partial derivative of N_i with respect to the
 240 argument u_j . Define the linearized operator $\bar{N}_i : \mathcal{V} \rightarrow \mathcal{W}_{\ell_i}$ by

$$241 \quad (3.12) \quad \begin{aligned} \bar{N}_i v &= \int_0^1 \frac{\partial N_i}{\partial u} (su + (1-s)u_h) \, ds \cdot v \\ &= \sum_{j=1}^n \int_0^1 \frac{\partial N_i}{\partial u_j} (su + (1-s)u_h) \, ds v_j = \sum_{j=1}^n \bar{\mathcal{J}}_{ij} v_j, \end{aligned}$$

242 for $v \in \mathcal{V}$. Now since each \bar{N}_i is linear, we may define the bilinear forms, $\bar{\nu}_i : \mathcal{V} \times \mathcal{V} \rightarrow$
 243 \mathbb{R} , by

$$244 \quad (3.13) \quad \bar{\nu}_i(v, w) = \langle \bar{N}_i v, w_{\ell_i} \rangle = \left\langle \sum_{j=1}^n \bar{\mathcal{J}}_{ij} v_j, w_{\ell_i} \right\rangle = \sum_{j=1}^n \langle \bar{\mathcal{J}}_{ij} v_j, w_{\ell_i} \rangle,$$

246 for $v, w \in \mathcal{V}$. Define $\bar{\nu}_i^*(v, w) = \bar{\nu}_i(w, v)$, and adjoint operators $\bar{\mathcal{J}}_{ij}^*$ to $\bar{\mathcal{J}}_{ij}$ satisfying

$$247 \quad (3.14) \quad \langle \bar{\mathcal{J}}_{ij} w, v \rangle = \langle w, \bar{\mathcal{J}}_{ij}^* v \rangle$$

248 for $w \in \mathcal{V}_j$ and $v \in \mathcal{V}_{\ell_i}$. Hence, we can also write using the definition (3.13),

$$249 \quad \bar{\nu}_i^*(v, w) = \sum_{j=1}^n \langle w_j, \bar{\mathcal{J}}_{ij}^* v_{\ell_i} \rangle.$$

250 for $v, w \in \mathcal{V}$. Also since $a(\cdot, \cdot)$ in (3.10) is a bilinear form, we have from the definition
 251 (3.4) that $a^*(w, v) = a(v, w)$ for $v, w \in \mathcal{V}$. With these definitions in mind, we further
 252 define a composite adjoint bilinear form, $\bar{\mathcal{N}}^* : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$, as

$$253 \quad (3.15) \quad \bar{\mathcal{N}}^*(v, w) = \sum_{i=1}^m \bar{\nu}_i^*(v, w) + a^*(v, w) = \sum_{i=1}^m \sum_{j=1}^n \langle w_j, \bar{\mathcal{J}}_{ij}^* v_{\ell_i} \rangle + a^*(v, w),$$

254 for $u, v \in \mathcal{V}$. Then if $\phi \in \mathcal{V}$ solves the dual problem,

$$255 \quad (3.16) \quad \bar{\mathcal{N}}^*(\phi, v) = \langle \psi, v \rangle, \quad \forall v \in \mathcal{V},$$

256 we then have the following abstract error representation.

257 **THEOREM 3.2.** *The error in the QoI (3.2) is represented as $\langle \psi, e \rangle = \langle f, \phi \rangle -$
 258 $\mathcal{N}(u_h, \phi)$ where u is the solution to (3.8), u_h is a numerical approximation of u ,
 259 $e = u - u_h$, and ϕ is the solution to (3.16).*

260 *Proof.* We compute, starting by replacing v by e in (3.16),

$$\begin{aligned}
 261 \quad \langle \psi, e \rangle &= \bar{\mathcal{N}}^*(\phi, e) = \sum_{i=1}^m \sum_{j=1}^n \langle e_j, \bar{\mathcal{J}}_{ij}^* \phi_{\ell_i} \rangle + a^*(\phi, e) \\
 262 \quad &= \sum_{i=1}^m \sum_{j=1}^n \langle \bar{\mathcal{J}}_{ij} e_j, \phi_{\ell_i} \rangle + a(e, \phi) \\
 263 \quad &= \sum_{i=1}^m \langle \bar{N}_i e, \phi_{\ell_i} \rangle + a(e, \phi) \\
 264 \quad &= \sum_{i=1}^m \langle N_i(u) - N_i(u_h), \phi_{\ell_i} \rangle + a(u, \phi) - a(u_h, \phi) \\
 265 \quad &= \sum_{i=1}^m \langle N_i(u), \phi_{\ell_i} \rangle + a(u, \phi) - \sum_{i=1}^m \langle N_i(u_h), \phi_{\ell_i} \rangle - a(u_h, \phi) \\
 266 \quad &= \mathcal{N}(u, \phi) - \mathcal{N}(u_h, \phi) = \langle f, \phi \rangle - \mathcal{N}(u_h, \phi). \quad \square
 \end{aligned}$$

268 The main result of this theorem is that computing the adjoint to a nonlinear form is
 269 reduced to computing the adjoint for the averaged entries, $\bar{\mathcal{J}}_{ij}$.

270 **4. A posteriori error estimate for the MHD equations.** The analysis in
 271 §3.2 applies directly to the MHD equations. The inner product $\langle \cdot, \cdot \rangle$ of the last section
 272 is represented by the $[L^2(\Omega)]^{2d+1}$ inner product (\cdot, \cdot) . The linear and nonlinear terms
 273 in the exact penalty weak form (2.6) are mapped to match (3.10). The mapping
 274 between the abstract formulation and MHD equation is shown in Table 1.

Abstract	MHD	Abstract	MHD	Abstract	MHD
$\langle \cdot, \cdot \rangle$	(\cdot, \cdot)	$\langle f, v \rangle$	(\mathbf{f}, \mathbf{v})	v_3	$V_3 \equiv q$
m	3	u_1	$U_1 \equiv \mathbf{u}$	$\bar{\mathcal{J}}_{11}^*$	$\bar{\mathcal{Z}}_{\mathbf{u}}^*$
\mathcal{N}	\mathcal{N}_{EP}	u_2	$U_2 \equiv \mathbf{b}$	$\bar{\mathcal{J}}_{12}^*$	$\bar{\mathcal{Z}}_{\mathbf{b}}^*$
u	U	u_3	$U_3 \equiv p$	$\bar{\mathcal{J}}_{21}^*$	$\bar{\mathcal{Y}}^*$
v	V	v_1	$V_1 \equiv \mathbf{v}$	$\bar{\mathcal{J}}_{31}^*$	$\bar{\mathcal{C}}^*$
N_i	$N_{EP,i}$	v_2	$V_2 \equiv \mathbf{c}$	a	a_{EP}

(a)

(b)

(c)

Table 1: Mapping between the abstract framework in §3 and the MHD equation in §4. \mathcal{N}_{EP} is given in (4.1), $N_{EP,i}$ in (4.2), a_{EP} in (4.3) and $\bar{\mathcal{Z}}_{\mathbf{u}}^*$, $\bar{\mathcal{Z}}_{\mathbf{b}}^*$, $\bar{\mathcal{Y}}^*$, $\bar{\mathcal{C}}^*$ are given in (4.4).

275 For the exact penalty weak form, we have that

$$276 \quad (4.1) \quad \mathcal{N}_{EP}(U, V) = \sum_{i=1}^3 (N_{EP,i}(U), V_{\ell_i}) + a_{EP}(U, V),$$

277 where

$$\begin{aligned}
 278 \quad (4.2) \quad (N_{EP,1}(U), V_2) &= (\mathcal{Z}(\mathbf{u}, \mathbf{b}), \mathbf{c}), \\
 (N_{EP,2}(U), V_1) &= (\mathcal{Y}(\mathbf{b}), \mathbf{v}), \\
 (N_{EP,3}(U), V_1) &= (\mathcal{C}(\mathbf{u}), \mathbf{v}),
 \end{aligned}$$

279 $\mathcal{Z}, \mathcal{Y}, \mathcal{C}$ are in turn defined in (2.8), and

$$280 \quad (4.3) \quad \begin{aligned} a_{EP}(U, V) &= \frac{1}{\text{Re}}(\nabla \mathbf{u}, \nabla \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) + (q, \nabla \cdot \mathbf{u}) \\ &+ \frac{\kappa}{\text{Re}_m}(\nabla \times \mathbf{b}, \nabla \times \mathbf{c}) + \frac{\kappa}{\text{Re}_m}(\nabla \cdot \mathbf{b}, \nabla \cdot \mathbf{c}). \end{aligned}$$

281 The entries $\bar{\mathcal{J}}_{11}^* V_2 = \bar{\mathcal{Z}}_u^* \mathbf{c}$, $\bar{\mathcal{J}}_{12}^* V_2 = \bar{\mathcal{Z}}_b^* \mathbf{c}$, $\bar{\mathcal{J}}_{21}^* V_1 = \bar{\mathcal{Y}}^* \mathbf{v}$ and $\bar{\mathcal{J}}_{31}^* V_1 = \bar{\mathcal{C}}^* \mathbf{v}$ are,

$$282 \quad (4.4) \quad \begin{aligned} \bar{\mathcal{Z}}_u^* \mathbf{c} &= \frac{1}{2}(\mathbf{u} + \mathbf{u}_h) \times (\nabla \times \mathbf{c}), \\ \bar{\mathcal{Z}}_b^* \mathbf{c} &= -\frac{1}{2}(\mathbf{b} + \mathbf{b}_h) \times (\nabla \times \mathbf{c}), \\ \bar{\mathcal{Y}}^* \mathbf{v} &= \frac{1}{2}(-(\nabla \times (\mathbf{b} + \mathbf{b}_h) \times \mathbf{v}) + \nabla \times ((\mathbf{b} + \mathbf{b}_h) \times \mathbf{v})), \\ \bar{\mathcal{C}}^* \mathbf{v} &= \frac{1}{2}((\nabla \mathbf{u} + \nabla \mathbf{u}_h)^T \mathbf{v} - (((\mathbf{u} + \mathbf{u}_h) \cdot \nabla) \mathbf{v}) - (\nabla \cdot (\mathbf{u} + \mathbf{u}_h)) \mathbf{v}), \end{aligned}$$

283 while the remaining $\bar{\mathcal{J}}_{ij}^*$ entries are zero. The details of the derivation are given in
284 §6.1.

285 **4.1. Adjoint problem for incompressible MHD.** We are now prepared to
286 pose a weak adjoint problem corresponding to exact penalty primal problem (2.6).
287 Based on (4.1), (4.4) and (3.16), the weak dual problem is therefore be stated as: find
288 $\Phi = (\phi, \beta, \pi) \in \mathcal{P}$ such that

$$289 \quad (4.5) \quad \bar{\mathcal{N}}_{EP}^*(\Phi, V) = (\Psi, V), \quad \forall V = (\mathbf{v}, \mathbf{c}, q) \in \mathcal{P},$$

290 with

$$291 \quad (4.6) \quad \begin{aligned} \bar{\mathcal{N}}_{EP}^*(\Phi, V) &= \frac{1}{\text{Re}}(\nabla \phi, \nabla \mathbf{v}) + (\bar{\mathcal{C}}^* \phi, \mathbf{v}) + (\nabla \cdot \mathbf{v}, \pi) - (\nabla \cdot \phi, q) \\ &+ \frac{\kappa}{\text{Re}_m}(\nabla \times \beta, \nabla \times \mathbf{c}) + \frac{\kappa}{\text{Re}_m}(\nabla \cdot \beta, \nabla \cdot \mathbf{c}) \\ &- \kappa(\bar{\mathcal{Y}}^* \phi, \mathbf{c}) - \kappa(\bar{\mathcal{Z}}_u^* \beta, \mathbf{v}) - \kappa(\bar{\mathcal{Z}}_b^* \beta, \mathbf{c}). \end{aligned}$$

292 Here recall that Ψ is defined by (2.13). The forms of the linear operators $\bar{\mathcal{C}}^*$, $\bar{\mathcal{Y}}^*$, $\bar{\mathcal{Z}}_u^*$
293 and $\bar{\mathcal{Z}}_b^*$ are given in (4.4). We discuss the well-posedness of the adjoint problem (4.5)
294 in §6.2.

295 **4.2. Error representation.** In order to discuss an error representation we need
296 to make the following definition

297 **DEFINITION 4.1.** Define the monolithic error by $E = [\mathbf{e}_u, \mathbf{e}_b, e_p]^T$ with compo-
298 nent errors

$$299 \quad (4.7) \quad \mathbf{e}_u = \mathbf{u} - \mathbf{u}_h, \mathbf{e}_b = \mathbf{b} - \mathbf{b}_h, e_p = p - p_h.$$

301 where $(\mathbf{u}, \mathbf{b}, p) \in \mathcal{P}$ is the solution to (2.6) and $(\mathbf{u}_h, \mathbf{b}_h, p_h) \in \mathcal{P}_h$ is the solution to
302 (2.12).

303 We then have the following error representation.

304 **THEOREM 4.2** (Error representation for exact penalty). *The error in the numer-*

305 *ical approximation of the QoI (2.13) satisfies*

$$\begin{aligned}
 306 \quad (\Psi, E) = (\mathbf{f}, \phi) - & \left[\frac{1}{\text{Re}} (\nabla \mathbf{u}_h, \nabla \phi) + (\mathbf{u}_h \cdot \nabla \mathbf{u}_h, \phi) \right. \\
 307 \quad & - (p_h, \nabla \cdot \phi) + \kappa((\nabla \times \mathbf{b}_h) \times \mathbf{b}_h, \phi) + (\nabla \cdot \mathbf{u}_h, \pi) \\
 308 \quad & + \frac{\kappa}{\text{Re}_m} (\nabla \times \mathbf{b}_h, \nabla \times \boldsymbol{\beta}) + \kappa(\nabla \times (\mathbf{u}_h \times \mathbf{b}_h), \boldsymbol{\beta}) \\
 309 \quad & \left. + \frac{\kappa}{\text{Re}_m} (\nabla \cdot \mathbf{b}_h, \nabla \cdot \boldsymbol{\beta}) \right], \\
 310
 \end{aligned}$$

311 *where $\Phi = (\phi, \boldsymbol{\beta}, \pi)$ is defined in (4.5).*

312 *Proof.* By Theorem 3.2,

$$313 \quad (\Psi, E) = \bar{\mathcal{N}}_{EP}^*(\Phi, E) = \mathcal{N}_{EP}(U, \Phi) - \mathcal{N}_{EP}(U_h, \Phi) = (\mathbf{f}, \phi) - \mathcal{N}_{EP}(U_h, \Phi). \quad \square$$

315 **4.3. Non-homogeneous boundary conditions for the MHD system.** The
 316 analysis above easily extends to the case of non-homogeneous boundary conditions,
 317 i.e. when \mathbf{g} or \mathbf{q} are not identically zero. First assume that the numerical solution
 318 U_h satisfies the non-homogeneous conditions exactly. That is, $\mathbf{u} = \mathbf{u}_h = \mathbf{g}$ and
 319 $\mathbf{b} \times \mathbf{n} = \mathbf{b}_h \times \mathbf{n} = \mathbf{q} \times \mathbf{n}$ on $\partial\Omega$. Then, although neither the true solution U nor
 320 the numerical solution U_h belong to \mathcal{P} , the error E defined in Definition 4.1 satisfies
 321 homogeneous boundary conditions and hence belongs to \mathcal{P} . Thus, the error analysis
 322 in the previous section applies directly in this case.

323 On the other hand, if U_h belongs to $\mathcal{P}_h \setminus \mathcal{P}$, then in general U_h does not satisfy
 324 the non-homogeneous boundary conditions exactly. Hence we consider the splitting
 325 of the numerical solutions as,

$$326 \quad (4.8) \quad U_h = U_h^0 + U^d,$$

327 where $U_h^0 \in \mathcal{P}_h$ solves,

$$328 \quad (4.9) \quad \mathcal{N}_{EP}(U_h, V_h) = \mathcal{N}_{EP}(U_h^0 + U^d, V_h) = (F, V_h), \quad \forall V_h \in \mathcal{P}_h,$$

329 and U^d is a known function that satisfies the non-homogeneous boundary conditions
 330 accurately. That is, the unknown is now U_h^0 and the numerical solution U_h is formed
 331 through the sum in (4.8). In this article the function U^d is approximated through
 332 a finite element space of much higher dimension than \mathcal{P}_h to capture the boundary
 333 conditions accurately and hence minimize discretization error. An alternate approach
 334 is to represent U^d in the same space as U_h^0 and then quantify the error due to this
 335 approximation, for example see [16].

336 **4.4. Error estimate and contributions.** The error representation in The-
 337 rem 4.2 requires the exact solution $\Phi = (\phi, \boldsymbol{\beta}, \pi) \in \mathcal{P}$ of (4.5). Moreover, the adjoint
 338 form (4.6) is linearized around the true solution U and the approximate solution U_h .
 339 In practice, the adjoint solution itself must be approximated in a finite element space
 340 $\mathcal{W}^h \subset \mathcal{P}$ and is linearized only around the numerical solution. Let this approxima-
 341 tion to the adjoint be denoted by $\Phi_h = (\phi_h, \boldsymbol{\beta}_h, \pi_h) \in \mathcal{W}^h$. This approximation leads
 342 to an error estimate from the error representation in Theorem 4.2. Let this error
 343 estimate be denoted by η . That is, $\eta \approx (\Psi, E)$ such that,

$$344 \quad (4.10) \quad \eta = E_{mom} + E_{con} + E_M,$$

345 where,

$$\begin{aligned}
 346 \quad (4.11) \quad E_{mom} &= (\mathbf{f}, \phi_h) - \left(\frac{1}{\text{Re}} (\nabla \mathbf{u}_h, \nabla \phi_h) + ((\mathbf{u}_h \cdot \nabla) \mathbf{u}_h, \phi_h) - (p_h, \nabla \cdot \phi_h) \right. \\
 &\quad \left. + \kappa((\nabla \times \mathbf{b}_h) \times \mathbf{b}_h, \phi_h) \right), \\
 E_{con} &= -(\nabla \cdot \mathbf{u}_h, \pi_h), \\
 E_M &= -\frac{\kappa}{\text{Re}_m} (\nabla \times \mathbf{b}_h, \nabla \times \boldsymbol{\beta}_h) + \kappa (\nabla \times (\mathbf{u}_h \times \mathbf{b}_h), \boldsymbol{\beta}_h) \\
 &\quad - \frac{\kappa}{\text{Re}_m} (\nabla \cdot \mathbf{b}_h, \nabla \cdot \boldsymbol{\beta}_h).
 \end{aligned}$$

347 Here E_{mom} , E_{con} and E_M represent the momentum error contribution, the continuity
 348 error contribution and the magnetic error contribution respectively.

349 To obtain an accurate error estimate we choose \mathcal{W}^h to be of much higher dimension
 350 than \mathcal{P}_h as is standard in adjoint based *a posteriori* error estimation [34, 28, 25,
 351 20, 19, 34, 22, 15, 9]. Moreover, the inaccuracy caused by substituting the numerical
 352 solution in place of true solution in the adjoint form is of higher order and shown to
 353 decrease in the limit of refined discretization [34, 23].

354 **5. Numerical results.** In this section we present numerical results to verify the
 355 accuracy of the error estimate (4.10) and the and utility of the error contributions in
 356 (4.11). The effectivity ratio, denoted Eff. , characterizes how well the error estimate
 357 approximates the true error,

$$358 \quad (5.1) \quad \text{Eff.} = \frac{\text{Error estimate}}{\text{True error}} = \frac{\eta}{(\Psi, E)}.$$

359 The closer the effectivity is to 1, the better the error estimate provided by our method.

360 We present two numerical examples here, the Hartmann problem in §5.1 which
 361 admits an analytic solution, and the magnetic lid driven cavity §5.2. Since there is
 362 no closed form solution for the magnetic lid driven cavity, we use as reference a high
 363 order/fine mesh solution to provide a high accuracy estimate for the true error. All
 364 the following computations were carried out using the finite element package **Dolfin**
 365 in the **FEniCS** suite [7, 50, 51].

366 For all experiments, we chose different polynomial orders of Lagrange spaces for
 367 the product space \mathcal{P}_h and choose the adjoint space \mathcal{W}^h such that it is one higher
 368 polynomial degree in each variable. The computational domain for all problems is
 369 chosen to be a unit length square, $\Omega := [-\frac{1}{2}, \frac{1}{2}]^2 \subset \mathbb{R}^2$. The mesh is a simplicial
 370 uniform mesh with the total number of elements denoted by $\#\text{Elements}$.

371 **5.1. Hartmann flow in two dimensions.** Our first results concern the so-
 372 called Hartmann problem [63]. This problem models the one-dimensional flow of a
 373 conducting fluid in a channel and forms both a momentum boundary layer (viscous
 374 boundary layer), and a layer formed by the diffusion of the magnetic field that in-
 375 fluences the flow due to the Lorentz force (a Hartmann layer). In this case we take
 376 consider a square channel as the computational domain, however the analytic solution
 377 is only a one-dimensional profile, as described in the beginning of the section. This

378 problem admits an analytic solution [57], $\mathbf{u} = [u_x, 0]^T$, $\mathbf{b} = [b_x, 1]^T$, p where

379 (5.2a)
$$u_x(y) = \frac{G \operatorname{Re}(\cosh(H_a/2) - \cosh(H_a y))}{2H_a \sinh(H_a/2)},$$

380 (5.2b)
$$B_x(y) = \frac{G(\sinh(H_a y) - 2 \sinh(H_a/2)y)}{2\kappa \sinh(H_a/2)},$$

381 (5.2c)
$$p(x) = -Gx - \kappa B_x^2/2,$$

383 and $G = -\frac{dp}{dx}$ is an arbitrary pressure drop that we choose to normalize the maximum
 384 velocity $|u_x(y)|$ to 1.

385 **5.1.1. Problem parameters and QoI.** The values of the nondimensionalized
 386 constants are chosen as follows: $\operatorname{Re} = 16$, $\operatorname{Re}_m = 16$, $\kappa = 1$ which produce a Hartmann
 387 number of $H_a = 16$. The QoI is chosen as the average velocity across the flow over a
 388 slice. To this end, define

389 (5.3)
$$\Omega_c := \left[-\frac{1}{4}, \frac{1}{2}\right] \times \left[-\frac{1}{4}, \frac{1}{4}\right]$$

390 and consequently $\mathbb{1}_{\Omega_c}$ the characteristic function on Ω_c . We choose Ψ to be $\Psi =$
 391 $[\mathbb{1}_{\Omega_c}, 0, 0, 0, 0]^T$ so that the QoI (2.13) thus reduces to

392 (5.4)
$$(\Psi, U) = (\mathbb{1}_{\Omega_c}, u_x).$$

393 This has a physical interpretation of the capturing the flow rate across this slice of
 394 the channel, Ω_c .

395 **5.1.2. Numerical results and discussion.** The error contributions of (4.10)
 396 as well as effectivity ratios using different order polynomial spaces are presented in
 397 Table 2, Table 3, Table 4, and Table 5. The effectivity ratio in tables Table 2 and Table
 398 3 is quite close to 1 indicating the accuracy of the error estimate. The error estimate
 399 in Table 4 is not as accurate due to linearization error incurred by replacing the true
 400 solution by the approximate solution in the definition of the adjoint as discussed in
 401 §4.4. This may be verified by linearizing the adjoint weak form around both the true
 402 (which we know for this example) and the approximate solutions. These results are
 403 shown in Table 5 and now the error estimate is again accurate.

404 In Table 2 we use the lowest order tuple of Lagrange spaces, $(\mathbb{P}^2, \mathbb{P}^1, \mathbb{P}^1)$ for the
 405 variables $(\mathbf{u}, \mathbf{b}, p)$. In this case, the error is largely dominated by the contributions
 406 E_{con} and E_M . We greatly reduce the error in E_M by using a higher degree Lagrange
 407 space, \mathbb{P}^2 , for \mathbf{b} as demonstrated in table Table 3. However, this does not reduce
 408 the magnitude of the total error much (about 5%) which is still dominated by the
 409 contribution E_{con} . The contribution E_{con} is not significantly affected by the finite
 410 dimensional space for \mathbf{b} . Now finally, in Table 4 we use a higher order tuple $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$
 411 for $(\mathbf{u}, \mathbf{b}, p)$ and the total error drops by two orders of magnitude.

412 5.2. Magnetic Lid Driven Cavity.

413 **5.2.1. Regularization and solution method.** The magnetic lid driven cavity
 414 is another common benchmark problem for verifying MHD codes [57, 60]. However,
 415 the standard lid velocity is discontinuous and therefore obtains at most $H^{1/2-\varepsilon}$ reg-
 416 ularity in two dimensions with $\varepsilon > 0$. By the converse of the trace theorem and
 417 the Sobolev inequality [27, 13], the solution u_x cannot obtain H^1 regularity on the
 418 interior. Indeed, in this situation, we do not even have well-posedness of the primal

# Elements	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	2.76e-04	1.00	4.53e-06	-2.28e-04	5.00e-04
6400	6.98e-05	1.00	1.29e-06	-6.23e-05	1.31e-04
14400	3.11e-05	1.00	6.05e-07	-2.86e-05	5.91e-05
25600	1.75e-05	1.00	3.49e-07	-1.63e-05	3.35e-05

Table 2: Error in $(u_x, \mathbb{1}_{\Omega_c})$ for the Hartmann problem §5.1, with $\mathbb{1}_{\Omega_c} = [-\frac{1}{4}, \frac{1}{2}] \times [-\frac{1}{4}, \frac{1}{4}]$. The finite dimensional space here is $(\mathbb{P}^2, \mathbb{P}^1, \mathbb{P}^1)$ for $(\mathbf{u}, \mathbf{b}, p)$.

# Elements	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	-2.25e-04	1.02	1.08e-06	-2.27e-04	-4.79e-06
6400	-6.13e-05	1.04	1.04e-06	-6.23e-05	-2.18e-06
14400	-2.81e-05	1.04	5.98e-07	-2.86e-05	-1.13e-06
25600	-1.60e-05	1.04	3.76e-07	-1.64e-05	-6.81e-07

Table 3: Error in $(u_x, \mathbb{1}_{\Omega_c})$ for the Hartmann problem §5.1. The finite dimensional space here is $(\mathbb{P}^2, \mathbb{P}^2, \mathbb{P}^1)$ for $(\mathbf{u}, \mathbf{b}, p)$.

# Elements	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	1.23e-06	1.21	3.97e-07	-4.15e-06	5.24e-06
6400	1.46e-07	1.47	9.23e-08	-5.07e-07	6.29e-07
14400	4.97e-08	1.63	3.84e-08	-1.40e-07	1.83e-07
25600	2.47e-08	1.73	2.07e-08	-5.44e-08	7.64e-08

Table 4: Error in $(u_x, \mathbb{1}_{\Omega_c})$ for the Hartmann problem §5.1. The finite dimensional space here is $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$ for $(\mathbf{u}, \mathbf{b}, p)$. Here, we approximate the true solution with the computed solution which results in linearization error. For this accurate a solution, this deteriorates the quality of the estimate which in turn results in a efficiency further from 1. This is confirmed in Table 5 where we use the true solution and the effectivity is again close to 1.

2d Elem.	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	1.23e-06	1.00	2.75e-07	-4.39e-06	5.34e-06
6400	1.46e-07	1.00	5.97e-08	-5.60e-07	6.46e-07
14400	4.97e-08	1.00	2.35e-08	-1.63e-07	1.89e-07
25600	2.47e-08	1.00	1.22e-08	-6.65e-08	7.90e-08

Table 5: Error in $(u_x, \mathbb{1}_{\Omega_c})$ for the Hartmann problem, §5.1. The finite dimensional space here is $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$ for $(\mathbf{u}, \mathbf{b}, p)$. No linearization error is present here because we use the true solution in the definition of the adjoint.

419 problem, so there is not real hope for error analysis. This issue has been address
420 in a purely fluid context [43, 47]. In both cases, a regularization of the lid velocity
421 is proposed to mitigate theoretical issues (in the former) and the ability to achieve
422 higher Reynold's numbers (in the latter). In this work, we use a similar regularization

423 to the one proposed in [47], a polynomial regularization of the lid velocity,

$$424 \quad u_{top}(x) = C \left(x - \frac{1}{2} \right)^2 \left(x + \frac{1}{2} \right)^2,$$

425 with C chosen such that

$$426 \quad \int_{-1/2}^{1/2} u_{top}(x) \, dx = 1.$$

427 The boundary conditions are imposed as $\mathbf{g}(x, 0.5) = [u_{top}, 0]^T$ on the top face and
 428 zero on the rest of the boundary. The boundary conditions for the magnetic field are
 429 $\mathbf{q} = [-1, 0]^T$ so that $\mathbf{b} \times \mathbf{n} = [-1, 0]^T \times \mathbf{n}$ on $\partial\Omega$. To get a qualitative measure
 430 of the validity of the regularized problem, we show plot of the velocity profile for a
 431 fixed Reynold's number $Re = 5000$ and varying magnetic Reynold's numbers Re_m
 432 in Figure 1. These plots are qualitatively similar to Figure 1 in [57] (for which an
 433 un-regularized lid velocity is used), which gives a good indication that the regularized
 version produces qualitatively similar features.

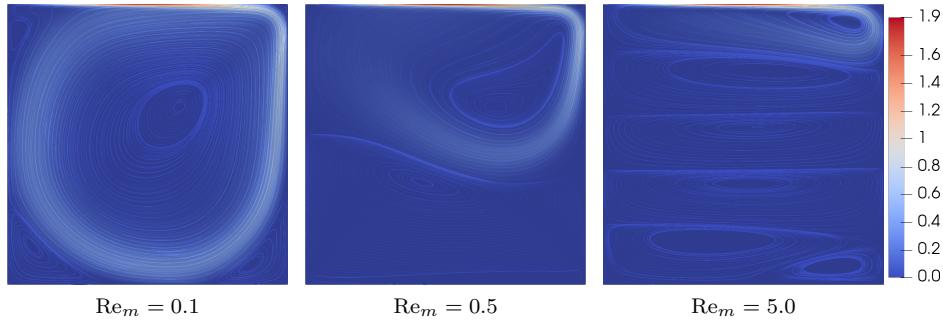


Fig. 1: Plots of the $\|\mathbf{u}\|_{\mathbb{R}^d}$ for the lid driven cavity §5.2 with added streamlines. We use a normalization on the lid velocity over a variety of magnetic Reynold's numbers, Re_m . The other nondimensionalized parameters $Re = 5000, \kappa = 1$ for all of these plots.

434
 435 Furthermore, since Newton's method requires a good initial guess for this problem,
 436 we use a homotopic sequence of initial guesses to achieve convergence to high Re .
 437 Specifically we run the problem for a moderate value of $Re = 200$ for example, and
 438 then use the solution produced by the solver as the initial guess for a larger value e.g.
 439 $Re = 1000$ until we have achieved the desired value. Figure 2 shows the intermediate
 440 values in this sequence to solve a problem with $Re = 1000$.

441 **5.2.2. Problem parameters and results.** We consider our QoI (2.13) with
 442 $\Psi = [0, 0, 0, \mathbb{1}_{\Omega_c}, 0]^T$ where now

$$443 \quad (5.5) \quad \Omega_c := \left[-\frac{1}{4}, \frac{1}{4} \right] \times \left[0, \frac{1}{2} \right],$$

444 so that the QoI $(\Psi, U) = (\mathbb{1}_{\Omega_c}, b_y)$ gives a measure of the induced magnetic field in
 445 the upper middle half of the box. See Figure 2 for plots of the induced field b_y as a
 446 function of Reynold's number Re .

447 Since there is no analytic solution for this problem, we compute solution on a
 448 400×400 mesh in the space $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$ for $(\mathbf{u}, \mathbf{b}, p)$. We consider the QoI obtained

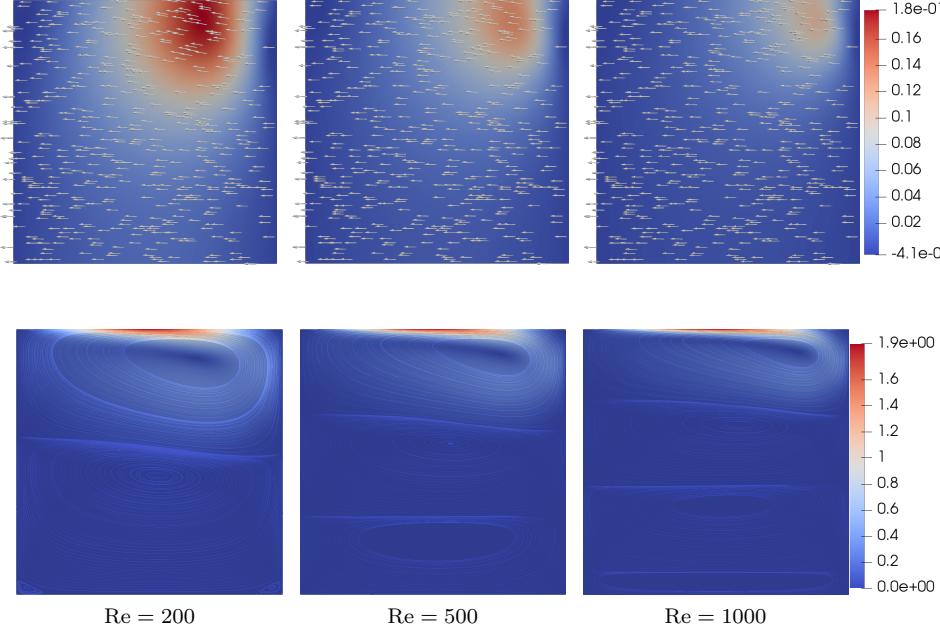


Fig. 2: Demonstrating the homotopy parameter strategy to achieve high fluid Reynold's numbers as described in §5.2. The other nondimensionalized parameters $Re_m = 5.0$, $\kappa = 1$ for all of these plots. The top row is colored according the b_y and with the arrows representing the vector \mathbf{b} . The bottom row is colored according to $\|u\|_{\mathbb{R}^d}$, with added streamlines.

449 from this very high resolution reference solution as a the true solution to compute the
 450 error in the denominator of the effectivity ratio (5.1). The effectivity ratio and error
 451 contributions for $Re = 1000$ and $Re = 2000$ are shown in Tables 6, 7, 8 and 9. The
 452 error estimate η is deemed accurate since all effectivity ratios are close to 1.

453 We first study the lowest order case, namely using the space $(\mathbb{P}^2, \mathbb{P}^1, \mathbb{P}^1)$ for
 454 $(\mathbf{u}, \mathbf{b}, p)$ in Table 6 where $Re = 1000$ and Table 8 where $Re = 2000$. For both
 455 $Re = 2000$ and $Re = 1000$, the error contributions are not drastically different in
 456 magnitude, and become even more similar as the mesh is refined. We also note that
 457 all contributions, and in particular the true error, are larger in magnitude for the case
 458 $Re = 2000$.

459 For the next experiment, we consider a higher order space for the velocity pair
 460 (\mathbf{u}, p) namely $(\mathbb{P}^3, \mathbb{P}^1, \mathbb{P}^2)$ for $(\mathbf{u}, \mathbf{b}, p)$ in Table 7 for $Re = 1000$ and Table 9 for
 461 $Re = 2000$. In both cases, the error is now dominated by the contribution E_M . The
 462 case of $Re = 2000$ is particularly interesting, as the error increases as the mesh is
 463 refined from 1600 elements to 3600 elements. This seemingly anomalous behavior is
 464 explain by examining the error contributions. For $\#Elements = 1600$ we have that
 465 $E_{mom} + E_{con}$ has magnitude comparable to that of E_M but opposite sign, and hence
 466 there is cancellation of error. For $\#Elements = 3600$, the magnitude of $E_{mom} + E_{con}$
 467 is much less than that of E_M and hence the total error increases as there is less
 468 cancellation of error. Hence, adjoint based analysis not only quantifies the error, it

also helps in diagnosing such anomalous behavior.

# Elements	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	-3.93e-05	0.99	-1.05e-05	-2.47e-05	-3.78e-06
3600	-9.50e-06	0.97	-2.23e-06	-5.23e-06	-1.74e-06
6400	-3.41e-06	0.98	-8.12e-07	-1.52e-06	-9.87e-07
10000	-1.61e-06	0.98	-3.64e-07	-5.81e-07	-6.33e-07

Table 6: Error estimates for $(b_y, \mathbb{1}_{\Omega_c})$ for the lid driven cavity §5.2. The finite dimensional space here is $(\mathbb{P}^2, \mathbb{P}^1, \mathbb{P}^1)$ for $(\mathbf{u}, \mathbf{b}, p)$. We use a very high resolution reference solution on a $400 \times 400 = 160000$ element mesh and $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$ elements. The parameters are $\text{Re} = 1000$, $\text{Re}_m = 0.4$, $\kappa = 1$.

469

# Elements	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	-5.37e-06	0.98	-4.65e-07	-9.75e-07	-3.81e-06
3600	-1.95e-06	0.99	-5.49e-08	-1.27e-07	-1.75e-06
6400	-1.03e-06	1.00	-1.06e-08	-2.76e-08	-9.87e-07
10000	-6.45e-07	1.00	-2.89e-09	-8.04e-09	-6.33e-07

Table 7: Error estimates for $(b_y, \mathbb{1}_{\Omega_c})$ for the lid driven cavity §5.2. The finite dimensional space here is $(\mathbb{P}^2, \mathbb{P}^2, \mathbb{P}^1)$ for $(\mathbf{u}, \mathbf{b}, p)$. We use a very high resolution reference solution on a $400 \times 400 = 160000$ element mesh and $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$ elements. The parameters are $\text{Re} = 1000$, $\text{Re}_m = 0.4$, $\kappa = 1$.

# Elements	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	-8.01e-05	1.10	-3.65e-05	-5.70e-05	5.63e-06
3600	-2.04e-05	0.98	-5.69e-06	-1.66e-05	2.25e-06
6400	-5.92e-06	0.96	-1.84e-06	-5.06e-06	1.19e-06
10000	-2.07e-06	0.96	-8.17e-07	-1.91e-06	7.41e-07

Table 8: Error estimates for $(b_y, \mathbb{1}_{\Omega_c})$ for the lid driven cavity §5.2. The finite dimensional space here is $(\mathbb{P}^2, \mathbb{P}^1, \mathbb{P}^1)$ for $(\mathbf{u}, \mathbf{b}, p)$. We use a very high resolution reference solution on a $400 \times 400 = 160000$ element mesh and $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$ elements. The parameters are $\text{Re} = 2000$, $\text{Re}_m = 0.4$, $\kappa = 1$.

470

5.3. Illustrative compute time comparison of the primal and adjoint problems. In this section we study CPU times for the Hartmann problem of §5.1 using $(\mathbb{P}^2, \mathbb{P}^1, \mathbb{P}^1)$ for $(\mathbf{u}, \mathbf{b}, p)$. In particular this corresponds to the experiment in Table 2. We compare the CPU time of numerically solving the adjoint problem with solving the discrete forward problem (2.12). The adjoint problem is solved in a higher order space $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$, but since it is linear, it is not obvious how it compares in terms of computational cost to the primal problem. The CPU times are shown in Table 10¹. The CPU time required for the adjoint problem is less in all cases than

471

472

473

474

475

476

477

¹These experiments were carried out using a dual-socket workstation with two Intel Xeon E5-2687W v2 for a total of 16 physical cores and 32 threads.

# Elements	True Error	Eff.	E_{mom}	E_{con}	E_M
1600	1.31e-06	0.78	-1.58e-06	-3.47e-06	6.08e-06
3600	1.51e-06	0.96	-1.91e-07	-5.29e-07	2.17e-06
6400	1.02e-06	0.98	-3.87e-08	-1.28e-07	1.17e-06
10000	6.94e-07	0.99	-1.07e-08	-4.04e-08	7.38e-07

Table 9: Error estimates for $(b_y, \mathbb{1}_{\Omega_c})$ for the lid driven cavity §5.2. The finite dimensional space here is $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^1)$ for $(\mathbf{u}, \mathbf{b}, p)$. We use a very high resolution reference solution on a $400 \times 400 = 160000$ element mesh and $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$ elements. The parameters are $\text{Re} = 2000$, $\text{Re}_m = 0.4$, $\kappa = 1$.

# Elements	Primal solve time (s)	Adjoint solve time (s)
1600	0.73	0.45
6400	3.40	1.62
14400	6.28	4.09
25600	11.70	8.01

Table 10: CPU times for the primal problem (using $(\mathbb{P}^2, \mathbb{P}^1, \mathbb{P}^1)$) and adjoint problem (using $(\mathbb{P}^3, \mathbb{P}^2, \mathbb{P}^2)$) corresponding to the results in Table 2.

478 the CPU time required for solving the primal problem. We note that these results
479 depend on the choice of linear and nonlinear solvers and preconditioners; here we are
480 simply using Newton's method and direct linear solvers for the primal problems and
481 direct linear solvers for the adjoint problems.

482 **6. Derivation of the weak adjoint and well-posedness.** In this section we
483 provide the details of computing the adjoint to exact penalty weak form following
484 the theory in §3. Then we use a standard saddle point argument to demonstrate the
485 well-posedness of this new adjoint problem (4.5). We take inspiration for these proofs
486 from [42]. To simplify notation in this section, we define

$$487 \quad (6.1) \quad \mathbf{s} := \mathbf{u} + \mathbf{u}_h, \quad \mathbf{t} := \mathbf{b} + \mathbf{b}_h.$$

488 Finally, we use the notation $\stackrel{(\cdot)}{=}$ and $\stackrel{(\cdot)}{\leq}$ to denote that the equality or inequality is
489 justified by equation (\cdot) .

490 **6.1. Derivation of the weak form of the adjoint.** In this section we provide
491 derivation for the primal linearized operators $\bar{\mathcal{J}}_{21}^* = \bar{\mathcal{Y}}^*$, $\bar{\mathcal{J}}_{11}^* = \bar{\mathcal{Z}}_{\mathbf{u}}^*$, $\bar{\mathcal{J}}_{12}^* = \bar{\mathcal{Z}}_{\mathbf{b}}^*$ and
492 $\bar{\mathcal{J}}_{31}^* = \mathcal{C}^*$ in (4.4). We first compute the primal linearized operators, $\bar{\mathcal{Y}} = \bar{\mathcal{J}}_{21}$,
493 $\bar{\mathcal{Z}}_{\mathbf{u}} = \bar{\mathcal{J}}_{11}$, $\bar{\mathcal{Z}}_{\mathbf{b}} = \bar{\mathcal{J}}_{12}$ and $\mathcal{C} = \bar{\mathcal{J}}_{31}$, using (3.11) and then apply (3.14) to compute
494 the $\bar{\mathcal{J}}_{ij}^*$ s. We have from (3.11) for $\mathbf{d} \in \mathbf{H}_\tau^1(\Omega)$ and $\mathbf{w} \in \mathbf{H}_0^1(\Omega)$,

$$495 \quad \bar{\mathcal{Y}} \mathbf{d} := \int_0^1 \frac{\partial \mathcal{Y}}{\partial \mathbf{b}} (s\mathbf{b} + (1-s)\mathbf{b}_h) \mathbf{d} \, ds,$$

$$496 \quad \bar{\mathcal{Z}}_{\mathbf{b}} \mathbf{d} := \int_0^1 \frac{\partial \mathcal{Z}}{\partial \mathbf{b}} (s\mathbf{u} + (1-s)\mathbf{u}_h) \mathbf{d} \, ds,$$

$$497 \quad \bar{\mathcal{Z}}_{\mathbf{u}} \mathbf{w} := \int_0^1 \frac{\partial \mathcal{Z}}{\partial \mathbf{u}} (s\mathbf{b} + (1-s)\mathbf{b}_h) \mathbf{w} \, ds.$$

499 To this end, we compute

$$\begin{aligned}
 \bar{\mathcal{Y}} \mathbf{d} &= \int_0^1 \frac{\partial \mathcal{Y}}{\partial \mathbf{b}} (s\mathbf{b} + (1-s)\mathbf{b}_h) \mathbf{d} \, ds \\
 500 \quad (6.2) \quad &= \int_0^1 [\nabla \times (s\mathbf{b} + (1-s)\mathbf{b}_h)] \times \mathbf{d} + (\nabla \times \mathbf{d}) \times (s\mathbf{b} + (1-s)\mathbf{b}_h) \, ds \\
 &= \frac{1}{2} [(\nabla \times (\mathbf{b}_h + \mathbf{b})) \times \mathbf{d} + (\nabla \times \mathbf{d}) \times (\mathbf{b}_h + \mathbf{b})].
 \end{aligned}$$

501 Similarly, for the two $\bar{\mathcal{Z}}$ terms,

$$\begin{aligned}
 \bar{\mathcal{Z}}_{\mathbf{b}} \mathbf{d} &= \int_0^1 \frac{\partial \mathcal{Z}}{\partial \mathbf{b}} (s\mathbf{u} + (1-s)\mathbf{u}_h) \mathbf{d} \, ds \\
 502 \quad (6.3) \quad &= \int_0^1 \nabla \times ((s\mathbf{u} + (1-s)\mathbf{u}_h) \times \mathbf{d}) \, ds = \frac{1}{2} [\nabla \times ((\mathbf{u}_h + \mathbf{u}) \times \mathbf{d})].
 \end{aligned}$$

503 An identical procedure produces,

$$504 \quad (6.4) \quad \bar{\mathcal{Z}}_{\mathbf{u}} \mathbf{w} = \frac{1}{2} [\nabla \times (\mathbf{w} \times (\mathbf{b} + \mathbf{b}_h))].$$

505 Now, to find the adjoints of these operators, we use (3.14), which in our case involves
506 multiplying by a test function and then isolating the trial function using integration
507 by parts. We also make use of the vector identities in Appendix B.

508 We are now prepared to compute the adjoint for $\bar{\mathcal{Y}}$. Integrating (6.2) against
509 $\mathbf{v} \in \mathbf{H}_0^1(\Omega)$,

$$\begin{aligned}
 510 \quad (\bar{\mathcal{Y}} \mathbf{d}, \mathbf{v}) &= \frac{1}{2} \int_{\Omega} [(\nabla \times \mathbf{t}) \times \mathbf{d} + (\nabla \times \mathbf{d}) \times \mathbf{t}] \cdot \mathbf{v} \, dx \\
 511 \quad &\stackrel{(\text{B.1a})}{=} \frac{1}{2} \int_{\Omega} \mathbf{d} \cdot [\mathbf{v} \times (\nabla \times \mathbf{t})] + (\nabla \times \mathbf{d}) \cdot [\mathbf{t} \times \mathbf{v}] \, dx \\
 512 \quad &\stackrel{(\text{B.1b})}{=} \frac{1}{2} \int_{\Omega} -\mathbf{d} \cdot [(\nabla \times \mathbf{t}) \times \mathbf{v}] + \mathbf{d} \cdot [\nabla \times (\mathbf{t} \times \mathbf{v})] \, dx - \frac{1}{2} \int_{\partial\Omega} \mathbf{d} \cdot [(\mathbf{t} \times \mathbf{v}) \times \mathbf{n}] \, ds \\
 513 \quad &\stackrel{(\text{B.1a})}{=} \frac{1}{2} \int_{\Omega} -\mathbf{d} \cdot [(\nabla \times \mathbf{t}) \times \mathbf{v}] + \mathbf{d} \cdot [\nabla \times (\mathbf{t} \times \mathbf{v})] \, dx + \frac{1}{2} \int_{\partial\Omega} (\mathbf{t} \times \mathbf{v}) \cdot [\mathbf{d} \times \mathbf{n}] \, ds \\
 514 \quad &\stackrel{(\text{2.4})}{=} \frac{1}{2} \int_{\Omega} -\mathbf{d} \cdot [(\nabla \times \mathbf{t}) \times \mathbf{v}] + \mathbf{d} \cdot [\nabla \times (\mathbf{t} \times \mathbf{v})] \, dx \stackrel{(\text{4.4})}{=} (\mathbf{d}, \bar{\mathcal{Y}}^* \mathbf{v}).
 \end{aligned}$$

516 We proceed with computing the adjoint for $\bar{\mathcal{Z}}_{\mathbf{u}}$, with $\mathbf{c} \in \mathbf{H}_{\tau}^1(\Omega)$,

$$\begin{aligned}
 517 \quad (\bar{\mathcal{Z}}_{\mathbf{u}} \mathbf{w}, \mathbf{c}) &= \frac{1}{2} (\nabla \times (\mathbf{w} \times \mathbf{t}), \mathbf{c}) \\
 518 \quad &\stackrel{(\text{B.1b})}{=} \frac{1}{2} \int_{\Omega} (\mathbf{w} \times \mathbf{t}) \cdot (\nabla \times \mathbf{c}) \, dx - \frac{1}{2} \int_{\partial\Omega} (\mathbf{w} \times \mathbf{t}) \cdot (\mathbf{c} \times \mathbf{n}) \, ds \\
 519 \quad &\stackrel{(\text{B.1a})}{=} \frac{1}{2} \int_{\Omega} \mathbf{w} \cdot [\mathbf{t} \times (\nabla \times \mathbf{c})] \, dx - \frac{1}{2} \int_{\partial\Omega} (\mathbf{w} \times \mathbf{t}) \cdot (\mathbf{c} \times \mathbf{n}) \, ds \\
 520 \quad &\stackrel{(\text{2.4})}{=} \frac{1}{2} \int_{\Omega} \mathbf{w} \cdot [\mathbf{t} \times (\nabla \times \mathbf{c})] \, dx \stackrel{(\text{4.4})}{=} (\mathbf{w}, \bar{\mathcal{Z}}_{\mathbf{u}}^* \mathbf{c}).
 \end{aligned}$$

522 Finally we compute the adjoint to the linearized operator $\bar{\mathcal{Z}}_b$, again with $\mathbf{c} \in \mathbf{H}_\tau^1(\Omega)$,

$$\begin{aligned} 523 \quad & (\bar{\mathcal{Z}}_b \mathbf{d}, \mathbf{c}) = \frac{1}{2} (\nabla \times (\mathbf{s} \times \mathbf{d}), \mathbf{c}) \\ 524 \quad & \stackrel{(\text{B.1b})}{=} \frac{1}{2} \int_\Omega (\mathbf{s} \times \mathbf{d}) \cdot (\nabla \times \mathbf{c}) \, dx - \frac{1}{2} \int_{\partial\Omega} (\mathbf{s} \times \mathbf{d}) \cdot (\mathbf{c} \times \mathbf{n}) \, ds \\ 525 \quad & \stackrel{(\text{B.1a})}{=} \frac{1}{2} \int_\Omega \mathbf{d} \cdot [(\nabla \times \mathbf{c}) \times \mathbf{s}] \, dx - \frac{1}{2} \int_{\partial\Omega} \mathbf{d} \cdot [\mathbf{s} \times (\mathbf{c} \times \mathbf{n})] - (\mathbf{s} \times \mathbf{d}) \cdot (\mathbf{c} \times \mathbf{n}) \, ds \\ 526 \quad & \stackrel{(\text{2.4})}{=} \frac{1}{2} \int_\Omega \mathbf{d} \cdot [(\nabla \times \mathbf{c}) \times \mathbf{s}] \, dx \stackrel{(\text{4.4})}{=} (\mathbf{d}, \bar{\mathcal{Z}}_b^* \mathbf{c}). \end{aligned}$$

528 The operator \mathcal{C}^* is identical to the one presented in [33].

529 **6.2. Well posedness of the adjoint problem.** In this section we prove the
530 well-posedness of the adjoint problem §4.1 equation (4.5) using a saddle point type
531 argument. To keep consistent with the standard setting of saddle point problems
532 [27, 13], we use the notation $X := \mathbf{H}_0^1(\Omega) \times \mathbf{H}_\tau^1(\Omega)$ and $M := L^2(\Omega)$ so that $\mathcal{P} =$
533 $X \times M$. We equip the space X with the graph norm

534 (6.5)
$$\|(\mathbf{v}, \mathbf{c})\|_X := (\|\mathbf{v}\|_1^2 + \|\mathbf{c}\|_1^2)^{1/2}.$$

535 We next define the bilinear form $a : X \times X \rightarrow \mathbb{R}$ by

$$\begin{aligned} 536 \quad (6.6) \quad & a((\phi, \beta), (\mathbf{v}, \mathbf{c})) = \frac{1}{\text{Re}} (\nabla \phi, \nabla \mathbf{v}) + (\bar{\mathcal{C}}^* \phi, \mathbf{v}) \\ & + \frac{\kappa}{\text{Re}_m} (\nabla \times \beta, \nabla \times \mathbf{c}) + \frac{\kappa}{\text{Re}_m} (\nabla \cdot \beta, \nabla \cdot \mathbf{c}) \\ & - \kappa (\bar{\mathcal{Y}}^* \phi, \mathbf{c}) - \kappa (\bar{\mathcal{Z}}_u^* \beta, \mathbf{v}) - \kappa (\bar{\mathcal{Z}}_b^* \beta, \mathbf{c}), \end{aligned}$$

537 and the mixed form $b : X \times M \rightarrow \mathbb{R}$ by

538 (6.7)
$$b((\phi, \beta), \pi) = (\pi, \nabla \cdot \phi).$$

539 The weak dual problem (4.5) is then equivalent to the following mixed problem: find
540 $((\phi, \beta), \pi) \in X \times M$ such that

$$\begin{aligned} 541 \quad (6.8) \quad & \begin{cases} a((\phi, \beta), (\mathbf{v}, \mathbf{c})) + b((\mathbf{v}, \mathbf{c}), \pi) = f(\mathbf{v}, \mathbf{c}), & \forall (\mathbf{v}, \mathbf{c}) \in X, \\ b((\phi, \beta), q) = -g(q), & \forall q \in M, \end{cases} \end{aligned}$$

542 where $f(\mathbf{v}, \mathbf{c}) = (\psi_u, \mathbf{v}) + (\psi_b, \mathbf{c})$, $g(q) = (\psi_p, q)$ and $\Psi = [\psi_u, \psi_b, \psi_p]^T$ so that
543 $(\Psi, V) = f(\mathbf{v}, \mathbf{c}) + g(q)$. According to the theory of saddle point systems, in order to
544 show the existence and uniqueness of solutions to (6.8), it suffices to show:

- 545 (i) The bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ are bounded on their respective domains.
- 546 (ii) The form $a(\cdot, \cdot)$ is coercive on $X_0 := \{v \in X : b(v, q) = 0, \forall q \in M\}$.
- 547 (iii) The form $b(\cdot, \cdot)$ satisfies the inf-sup condition: $\exists \beta > 0$ such that

548 (6.9)
$$\inf_{q \in M} \sup_{(\mathbf{v}, \mathbf{c}) \in X} \frac{b((\mathbf{v}, \mathbf{c}), q)}{\|(\mathbf{v}, \mathbf{c})\|_X \|q\|_M} \geq \beta.$$

549 We organize these parts in the following lemmas. We make frequent use of the in-
550 equalities in Appendix C in the proofs.

551 LEMMA 6.1. *The form $a(\cdot, \cdot)$ is bounded on X .*

552 *Proof.* Consider the splitting

553 (6.10)
$$a((\phi, \beta), (v, c)) = a_0((\phi, \beta), (v, c)) + a_1((\phi, \beta), (v, c))$$

554 where

555
$$a_0((\phi, \beta), (v, c)) = \frac{1}{\text{Re}} (\nabla \phi, \nabla v) + \frac{\kappa}{\text{Re}_m} (\nabla \times \beta, \nabla \times c) + \frac{\kappa}{\text{Re}_m} (\nabla \cdot \beta, \nabla \cdot c),$$

556
$$a_1((\phi, \beta), (v, c)) = (\bar{\mathcal{C}}^* \phi, v) - \kappa (\bar{\mathcal{Y}}^* \phi, c) - \kappa (\bar{\mathcal{Z}}_u^* \beta, v) - \kappa (\bar{\mathcal{Z}}_b^* \beta, c).$$

558 Then it suffices to show that both $a_0(\cdot, \cdot)$ and $a_1(\cdot, \cdot)$ are bounded separately. The
559 proof for the boundedness of a_0 is given in [42]. For a_1 observe that

560 (6.11)
$$\begin{aligned} |a_1((\phi, \beta), (v, c))| &\leq \int_{\Omega} |\bar{\mathcal{C}}^* \phi \cdot v| \, dx + \kappa \int_{\Omega} |\bar{\mathcal{Y}}^* \phi \cdot c| \, dx \\ &\quad + \kappa \int_{\Omega} |\bar{\mathcal{Z}}_u^* \beta \cdot v| \, dx + \kappa \int_{\Omega} |\bar{\mathcal{Z}}_b^* \beta \cdot c| \, dx. \end{aligned}$$

561 Now, for the first term on the right hand side of (6.11),

562
$$\begin{aligned} \int_{\Omega} |\bar{\mathcal{C}}^* \phi \cdot v| \, dx &= \frac{1}{2} \int_{\Omega} |[(\nabla s)^T \phi - ((s \cdot \nabla) \phi) - (\nabla \cdot s) \phi] \cdot v| \, dx \\ 563 &= \frac{1}{2} \int_{\Omega} |\phi^T (\nabla s) v - v^T (\nabla \phi) s - (\nabla \cdot s) (\phi \cdot v)| \, dx \\ 564 &\stackrel{(\text{C.5})}{\leq} \frac{1}{2} [\|\phi\|_{L^4} \|s\|_1 \|v\|_{L^4} + \|\phi\|_1 \|s\|_{L^4} \|v\|_{L^4} + \|\nabla \cdot s\| \|\phi \cdot v\|] \\ 565 &\stackrel{(\text{B.2d})}{\leq} \frac{1}{2} [\|\phi\|_{L^4} \|s\|_1 \|v\|_{L^4} + \|\phi\|_1 \|s\|_{L^4} \|v\|_{L^4} + \sqrt{3} \|s\|_1 \|\phi\|_{L^4} \|v\|_{L^4}] \\ 566 &\stackrel{(\text{C.1})}{\leq} \frac{\gamma}{2} (\|\phi\|_1 \|s\|_1 \|v\|_1 + \|s\|_1 \|\phi\|_1 \|v\|_1 + \sqrt{3} \|s\|_1 \|\phi\|_1 \|v\|_1) \\ 567 &\leq \frac{3\sqrt{3}\gamma}{2} \|s\|_1 \|\phi\|_1 \|v\|_1, \end{aligned}$$

569 where γ is the square of the embedding constant of $H^1(\Omega)$ into $L^4(\Omega)$, see (C.1). For
570 the second term on the right hand side of (6.11),

571
$$\begin{aligned} \kappa (\bar{\mathcal{Y}}^* \phi \cdot c) &\leq \frac{\kappa}{2} \int_{\Omega} |c \cdot [(\nabla \times t) \times \phi] + |c \cdot [\nabla \times (t \times \phi)]| \, dx \\ 572 &\stackrel{(\text{B.1b})}{=} \frac{\kappa}{2} \int_{\Omega} |c \cdot ((\nabla \times t) \times \phi) + |(\nabla \times c) \cdot (t \times \phi)| \, dx \\ 573 &\stackrel{(\text{B.1a})}{=} \frac{\kappa}{2} \int_{\Omega} |(\nabla \times t) \cdot (c \times \phi) + |(\nabla \times c) \cdot (t \times \phi)| \, dx \\ 574 &\stackrel{(\text{B.2b})}{\leq} \frac{\kappa}{2} (\|\nabla \times t\|_{L^2} \|c\|_{L^4} \|\phi\|_{L^4} + \|\nabla \times c\|_{L^2} \|t\|_{L^4} \|\phi\|_{L^4}) \\ 575 &\stackrel{(\text{B.2c})}{\leq} \frac{\kappa\sqrt{2}}{2} (\|c\|_{L^4} \|t\|_1 \|\phi\|_{L^4} + \|c\|_1 \|t\|_{L^4} \|\phi\|_{L^4}) \\ 576 &\stackrel{(\text{C.1})}{\leq} \kappa\gamma\sqrt{2} \|c\|_1 \|t\|_1 \|\phi\|_1. \end{aligned}$$

578 For the third term on the right hand side of (6.11),

$$\begin{aligned}
 579 \quad \kappa(\bar{\mathcal{Z}}_u^* \beta, v) &\leq \frac{\kappa}{2} \int_{\Omega} |v \cdot [t \times (\nabla \times \beta)]| dx \stackrel{(B.1b)}{=} \frac{\kappa}{2} \int_{\Omega} |(v \times t) \cdot (\nabla \times \beta)| dx \\
 580 \quad &\stackrel{(B.2c)}{\leq} \frac{\kappa\sqrt{2}}{2} \|v\|_{L^4} \|t\|_{L^4} \|\beta\|_1 \stackrel{(C.1)}{\leq} \frac{\kappa\gamma\sqrt{2}}{2} \|v\|_1 \|t\|_1 \|\beta\|_1.
 \end{aligned}$$

582 The fourth term follows the same argument as the third term to yield the bound,

$$583 \quad (6.12) \quad \kappa(\bar{\mathcal{Z}}_b^* \beta, c) \leq \frac{\kappa\gamma\sqrt{2}}{2} \|c\|_1 \|s\|_1 \|\beta\|_1.$$

585 Putting these bounds together, we conclude

$$\begin{aligned}
 586 \quad (6.13) \quad a_1((\phi, \beta), (v, c)) &\leq \gamma \left(\frac{3\sqrt{3}}{2} \|s\|_1 \|\phi\|_1 \|v\|_1 + \kappa\sqrt{2} \|c\|_1 \|t\|_1 \|\phi\|_1 \right. \\
 &\quad \left. + \frac{\kappa\sqrt{2}}{2} \|v\|_1 \|t\|_1 \|\beta\|_1 + \frac{\kappa\sqrt{2}}{2} \|c\|_1 \|s\|_1 \|\beta\|_1 \right) \\
 &\stackrel{(C.2)}{\leq} \gamma \left(\frac{3\sqrt{3}}{2} \|s\|_1 \|\phi\|_1 \|v\|_1 + \frac{\kappa\sqrt{2}}{2} \|c\|_1 \|s\|_1 \|\beta\|_1 \right. \\
 &\quad \left. + \|t\|_1 \kappa\sqrt{2} \|(v, c)\|_X \|(\phi, \beta)\|_X \right) \\
 &\stackrel{(C.2)}{\leq} \gamma \left(\|s\|_1 \max \left\{ \frac{3\sqrt{3}}{2}, \frac{\kappa\sqrt{2}}{2} \right\} \|(\phi, \beta)\|_X \right. \\
 &\quad \left. + \|t\|_1 \|(v, c)\|_X \|(\phi, \beta)\|_X \right) \\
 &\leq \alpha_b \|(v, c)\|_X \|(\phi, \beta)\|_X,
 \end{aligned}$$

587 where

$$588 \quad \alpha_b = \max \left\{ \|s\|_1 \max \left\{ \frac{3\sqrt{3}}{2}, \frac{\kappa\sqrt{2}}{2} \right\}, \|t\|_1 \right\}.$$

□

589 Now we consider the coercivity of the bilinear form $a(\cdot, \cdot)$ on X .

590 LEMMA 6.2. *There exists a constant $\alpha_c > 0$ such that whenever*

$$591 \quad (6.14) \quad \frac{k_1}{\text{Re}} - \gamma \left[\frac{3\sqrt{3}}{2} \|s\|_1 + \frac{3\kappa\sqrt{2}}{4} \|t\|_1 \right] > 0,$$

592 and

$$593 \quad (6.15) \quad \frac{k_2\kappa}{\text{Re}_m^2} - \gamma \left[\frac{\kappa\sqrt{2}}{2} \|s\|_1 + \frac{3\kappa\sqrt{2}}{4} \|t\|_1 \right] > 0$$

594 then

$$595 \quad (6.16) \quad a((\phi, \beta), (\phi, \beta)) \geq \alpha_c \|(\phi, \beta)\|_X^2, \quad \forall (\phi, \beta) \in X.$$

596 *Proof.* Using the splitting established in the previous lemma,

$$\begin{aligned}
 597 \quad (6.17) \quad a((\phi, \beta), (\phi, \beta)) &\geq a_0((\phi, \beta), (\phi, \beta)) - |a_1((\phi, \beta), (\phi, \beta))| \\
 &= \frac{1}{\text{Re}} (\nabla \phi, \nabla \phi) + \frac{\kappa}{\text{Re}_m} (\nabla \times \beta, \nabla \times \beta) + \frac{\kappa}{\text{Re}_m} (\nabla \cdot \beta, \nabla \cdot \beta) \\
 &\quad - |a_1((\phi, \beta), (\phi, \beta))| \\
 &\geq \frac{k_1}{\text{Re}} \|\phi\|_1^2 + \frac{k_2 \kappa}{\text{Re}_m^2} \|\beta\|_1^2 - |a_1((\phi, \beta), (\phi, \beta))|
 \end{aligned}$$

598 where k_1 comes from the Poincaré type inequality (C.3), and k_2 is defined though

$$599 \quad (6.18) \quad \|\nabla \times \mathbf{v}\|_0^2 + \|\nabla \cdot \mathbf{v}\|_0^2 \geq k_2 \|\mathbf{v}\|_1^2, \quad \forall \mathbf{v} \in \mathbf{H}_\tau^1(\Omega),$$

600 which is valid under the restrictions we have imposed on the domain Ω and the
601 continuous embedding of $\mathbf{H}_\tau^1(\Omega) \hookrightarrow \mathbf{H}^1(\Omega)$ [40, 42]. Picking up from (6.17) and
602 using (C.4) we conclude that,

$$\begin{aligned}
 603 \quad a((\phi, \beta), (\phi, \beta)) &\geq \frac{k_1}{\text{Re}} \|\phi\|_1^2 + \frac{k_2 \kappa}{\text{Re}_m^2} \|\beta\|_1^2 - |a_1((\phi, \beta), (\phi, \beta))| \\
 604 \quad &\stackrel{(6.13)}{\geq} \left(\frac{k_1}{\text{Re}} - \frac{\gamma 3\sqrt{3}}{2} \|\mathbf{s}\|_1 \right) \|\phi\|_1^2 + \left(\frac{k_2 \kappa}{\text{Re}_m^2} - \frac{\gamma \kappa \sqrt{2}}{2} \|\mathbf{s}\|_1 \right) \|\beta\|_1^2 \\
 605 \quad &\quad - \frac{\gamma 3\kappa \sqrt{2}}{2} \|\phi\|_1 \|\mathbf{t}\|_1 \|\beta\|_1 \\
 606 \quad &\stackrel{(C.4)}{\geq} \left(\frac{k_1}{\text{Re}} - \frac{\gamma 3\sqrt{3}}{2} \|\mathbf{s}\|_1 \right) \|\phi\|_1^2 + \left(\frac{k_2 \kappa}{\text{Re}_m^2} - \frac{\gamma \kappa \sqrt{2}}{2} \|\mathbf{s}\|_1 \right) \|\beta\|_1^2 \\
 607 \quad &\quad - \frac{\gamma 3\kappa \sqrt{2}}{4} \|\mathbf{t}\|_1 (\|\beta\|_1^2 + \|\phi\|_1^2) \\
 608 \quad &= \left(\frac{k_1}{\text{Re}} - \gamma \left[\frac{3\sqrt{3}}{2} \|\mathbf{s}\|_1 + \frac{3\kappa \sqrt{2}}{4} \|\mathbf{t}\|_1 \right] \right) \|\phi\|_1^2 \\
 609 \quad &\quad + \left(\frac{k_2 \kappa}{\text{Re}_m^2} - \gamma \left[\frac{\kappa \sqrt{2}}{2} \|\mathbf{s}\|_1 + \frac{3\kappa \sqrt{2}}{4} \|\mathbf{t}\|_1 \right] \right) \|\beta\|_1^2.
 \end{aligned}$$

611 Thus, taking

$$\begin{aligned}
 612 \quad (6.19) \quad \alpha_c &= \min \left\{ \frac{k_1}{\text{Re}} - \gamma \left[\frac{3\sqrt{3}}{2} \|\mathbf{s}\|_1 + \frac{3\kappa \sqrt{2}}{4} \|\mathbf{t}\|_1 \right], \right. \\
 &\quad \left. \frac{k_2 \kappa}{\text{Re}_m^2} - \gamma \left[\frac{\kappa \sqrt{2}}{2} \|\mathbf{s}\|_1 + \frac{3\kappa \sqrt{2}}{4} \|\mathbf{t}\|_1 \right] \right\},
 \end{aligned}$$

613 concludes the lemma. \square

614 **REMARK 2.** We note that the quantities assumed to be positive in (6.14) and
615 (6.15), depend on the computed and true solutions through $\|\mathbf{s}\|$ and $\|\mathbf{t}\|$, which should
616 should both be bounded for “small data” as described precisely in Theorem 4.7 of
617 [42]. The two quantities in (6.14) and (6.15) also depend on the fluid and magnetic
618 Reynolds numbers (Re and Re_m respectively). In particular, for small to moderate

619 Re and Re_m these inequalities might very well be satisfied, which is the case for dis-
 620 sipative MHD. However, the larger are Re and Re_m (and in particular for the limit
 621 as $\text{Re}, \text{Re}_m \rightarrow \infty$, that is in the case of ideal MHD), the smaller the positive terms of
 622 (6.14) and (6.15), and thus coercivity cannot be proven by this method. We conclude
 623 this method might therefore need to be adapted for high Re or Re_m flows to guarantee
 624 coercivity.

625 Now we are prepared to prove the main result.

626 **THEOREM 6.3.** *Under the conditions of Lemma 6.2 there exists a unique solution*
 627 *to the dual problem (4.5).*

628 *Proof.* The boundedness and inf-sup condition for $b(\cdot, \cdot)$ are standard see e.g. [13].
 629 The boundedness of $a(\cdot, \cdot)$ follows from Lemma 6.1, and Lemma 6.2 proves $a(\cdot, \cdot)$ is
 630 coercive on X so in particular on X_0 . \square

631 **7. Conclusions.** We have presented an adjoint-based *a posteriori* analysis of ad-
 632 joint for an exact penalty formulation of incompressible resistive MHD. This included
 633 the derivation of the adjoint error estimate, and a development that characterized the
 634 separate contributions of error from the momentum, continuity and magnetic field
 635 equations. The numerical examples illustrated both the accuracy as well as the use-
 636 fulness of the error estimate for the the assessment of the respective sources of the
 637 error from the different physics components. The example QoIs included two differing
 638 physically meaningful quantities, the averaged velocity-related to the flow rate, and
 639 the induced magnetic field strength.

640 The novel aspects of this work include defining an adjoint problem for an overde-
 641 termined system, namely the stationary MHD equations. In particular, the standard
 642 definition of an adjoint operator does not suffice and we must define the adjoint di-
 643 rectly for the weak problem. Moreover, we prove the well-posedness of the adjoint
 644 problem. The error estimates derived in this article are also amenable for using in
 645 adaptive refinement algorithms e.g. see [5, 14, 6, 20, 36, 16].

646 **Appendix A. Standard function spaces.** We denote by $L^2(\Omega)$ the set of all
 647 square Lebesgue integrable functions on $\Omega \subset \mathbb{R}^d$ with associated inner product (\cdot, \cdot)
 648 and norm $\|\cdot\|$. This extends naturally to vector valued functions, denoted by $L^2(\Omega)$,
 649 where the inner product is given by,

$$650 \quad (\mathbf{u}, \mathbf{v}) = \sum_{i=1}^d (u_i, v_i).$$

651 The Sobolev norm for $p = 2$ is,

$$652 \quad \|v\|_m := \left(\sum_{|\alpha|=0}^m \|D^\alpha v\|^2 \right)^{1/2}.$$

653 where $\alpha = (\alpha_1, \dots, \alpha_m)$ is a multi-index of length m and

$$654 \quad D^\alpha v := \partial_{x_1}^{\alpha_1} \dots \partial_{x_m}^{\alpha_m} v,$$

655 where the partial derivatives are taken in the weak sense. Thus, the Hilbert spaces
 656 H^m for $m = 0, 1, 2, \dots$ is simply be defined as functions with bounded m -norm,

$$657 \quad H^m(\Omega) := \{v : \|v\|_m < \infty\}.$$

658 The space $H^0(\Omega)$ is identified with $L^2(\Omega)$. For vector valued functions, the Hilbert
 659 space \mathbf{H}^m is defined as,

660
$$\mathbf{H}^m(\Omega) := \{\mathbf{v} : v_i \in H^m(\Omega), i = 1, \dots, d\},$$

661 with associated norm

662
$$\|\mathbf{v}\|_m = \left(\sum_{i=1}^d \|v_i\|_m^2 \right)^{1/2}.$$

663

664 **Appendix B. Vector identities and inequalities.** We use the following
 665 vector identities,

666 (B.1a)
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}),$$

667 (B.1b)
$$\int_{\Omega} \mathbf{A} \cdot (\nabla \times \mathbf{B}) \, dx = \int_{\Omega} \mathbf{B} \cdot (\nabla \times \mathbf{A}) \, dx - \int_{\partial\Omega} \mathbf{B} \cdot (\mathbf{A} \times \mathbf{n}) \, ds.$$

669 We also make use of the following inequalities for $\mathbf{u}, \mathbf{v} \in \mathbf{H}^1(\Omega)$,

670 (B.2a)
$$|\mathbf{u} \cdot \mathbf{v}| \leq \|\mathbf{u}\|_{\mathbb{R}^d} \|\mathbf{v}\|_{\mathbb{R}^d},$$

671 (B.2b)
$$\|\mathbf{u} \times \mathbf{v}\|_{\mathbb{R}^d} \leq \|\mathbf{u}\|_{\mathbb{R}^d} \|\mathbf{v}\|_{\mathbb{R}^d},$$

672 (B.2c)
$$\|\nabla \times \mathbf{u}\|_{\mathbb{R}^d} \leq \sqrt{2} \|\nabla \mathbf{u}\|_{\mathbb{R}^{d \times d}},$$

673 (B.2d)
$$|\nabla \cdot \mathbf{u}| \leq \sqrt{3} \|\nabla \mathbf{u}\|_{\mathbb{R}^{d \times d}}$$

674 (B.2e)
$$\|A\mathbf{v}\|_{\mathbb{R}^d} \leq \|A\|_{\mathbb{R}^{d \times d}} \|\mathbf{v}\|_{\mathbb{R}^d},$$

676 and finally the equality

677 (B.3)
$$\|\nabla \mathbf{v}^T\|_{\mathbb{R}^{d \times d}} = \|\nabla \mathbf{v}\|_{\mathbb{R}^{d \times d}},$$

678 **Appendix C. Useful inequalities from analysis.**

679 1. The space $\mathbf{H}^1(\Omega)$ embeds continuously in $\mathbf{L}^4(\Omega)$ with constant $\sqrt{\gamma}$. That is,
 680 $\mathbf{H}^1(\Omega) \hookrightarrow \mathbf{L}^4(\Omega)$ such that,

681 (C.1)
$$\|\mathbf{v}\|_{\mathbf{L}^4} \leq \sqrt{\gamma} \|\mathbf{v}\|_{\mathbf{H}^1}.$$

682 2. The Cauchy-Schwarz inequality for $[a, b], [c, d] \in \mathbb{R}^2$,

683 (C.2)
$$ac + bd = [a, b] [c, d]^T \leq \sqrt{a^2 + c^2} \sqrt{b^2 + d^2},$$

684 3. The following inequality follows from the Poincaré inequality,

685 (C.3)
$$\|\nabla \mathbf{v}\|_0^2 \geq k_1 \|\mathbf{v}\|_1^2, \quad \forall \mathbf{v} \in \mathbf{H}_0^1(\Omega).$$

686 4. For $x, y \in \mathbb{R}$,

687 (C.4)
$$-xy \geq -\frac{1}{2}(x^2 + y^2),$$

688 We also need the following propositions,

689 **PROPOSITION 1.** *Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{H}^1(\Omega)$. Then there holds*

690 (C.5)
$$\int_{\Omega} \mathbf{u}^T (\nabla \mathbf{v}) \mathbf{w} \, dx \leq \|\mathbf{u}\|_{\mathbf{L}^4} \|\mathbf{w}\|_{\mathbf{L}^4} \|\mathbf{v}\|_1.$$

691 *Proof.* We will work with the integrand first. To this end, we have that

$$\begin{aligned}
 692 \quad \mathbf{u}^T(\nabla \mathbf{v})\mathbf{w} &= \sum_{i=1}^d u_i \mathbf{w}^T \nabla v_i \leq \sum_{i=1}^d |u_i| \|\mathbf{w}\|_{\mathbb{R}^d} \|\nabla v_i\|_{\mathbb{R}^d} = \|\mathbf{w}\|_{\mathbb{R}^d} \sum_{i=1}^d |u_i| \|\nabla v_i\|_{\mathbb{R}^d} \\
 693 \quad &\leq \|\mathbf{w}\|_{\mathbb{R}^d} \left(\sum_{i=1}^d |u_i|^2 \right)^{1/2} \left(\sum_{i=1}^d \|\nabla v_i\|_{\mathbb{R}^d}^2 \right)^{1/2} = \|\mathbf{w}\|_{\mathbb{R}^d} \|\mathbf{u}\|_{\mathbb{R}^d} \|\nabla \mathbf{v}\|_{\mathbb{R}^{d \times d}}. \\
 694
 \end{aligned}$$

695 Now we integrate,

$$\begin{aligned}
 696 \quad &\int_{\Omega} |\mathbf{w}|_{\mathbb{R}^d} \|\mathbf{u}\|_{\mathbb{R}^d} \|\nabla \mathbf{v}\|_{\mathbb{R}^{d \times d}} \, dx \\
 697 \quad &\leq \left(\int_{\Omega} \|\mathbf{u}\|_{\mathbb{R}^d}^2 \|\mathbf{w}\|_{\mathbb{R}^d}^2 \, dx \right)^{1/2} \left(\int_{\Omega} \|\nabla \mathbf{v}\|_{\mathbb{R}^{d \times d}}^2 \, dx \right)^{1/2} \\
 698 \quad &\leq \left(\int_{\Omega} \|\mathbf{u}\|_{\mathbb{R}^d}^4 \, dx \right)^{1/4} \left(\int_{\Omega} \|\mathbf{w}\|_{\mathbb{R}^d}^4 \, dx \right)^{1/4} \left(\int_{\Omega} \|\nabla \mathbf{v}\|_{\mathbb{R}^{d \times d}}^2 \, dx \right)^{1/2} \\
 699 \quad &= \|\mathbf{u}\|_{\mathbb{L}^4} \|\mathbf{w}\|_{\mathbb{L}^4} \|\mathbf{v}\|_1 \leq \|\mathbf{u}\|_{\mathbb{L}^4} \|\mathbf{w}\|_{\mathbb{L}^4} \|\mathbf{v}\|_1. \quad \square
 \end{aligned}$$

701 REFERENCES

- 702 [1] J. H. ADLER, M. BREZINA, T. A. MANTEUFFEL, S. F. MCCORMICK, J. W. RUGE, AND L. TANG, *Island coalescence using parallel first-order system least squares on incompressible resistive magnetohydrodynamics*, SIAM Journal on Scientific Computing, 35 (2013), pp. S171–S191.
- 703 [2] J. H. ADLER, Y. HE, X. HU, AND S. P. MACLACHLAN, *Vector-potential finite-element formulations for two-dimensional resistive magnetohydrodynamics*, Computers & Mathematics with Applications, 77 (2019), pp. 476–493.
- 704 [3] J. H. ADLER, T. A. MANTEUFFEL, S. F. MCCORMICK, AND J. W. RUGE, *First-order system least squares for incompressible resistive magnetohydrodynamics*, SIAM Journal on Scientific Computing, 32 (2010), pp. 229–248.
- 705 [4] J. H. ADLER, T. A. MANTEUFFEL, S. F. MCCORMICK, J. W. RUGE, AND G. D. SANDERS, *Nested iteration and first-order system least squares for incompressible, resistive magnetohydrodynamics*, SIAM Journal on Scientific Computing, 32 (2010), pp. 1506–1526.
- 706 [5] M. AINSWORTH AND T. ODEN, *A posteriori error estimation in finite element analysis*, John Wiley-Teubner, 2000.
- 707 [6] B. AKSOYLU, S. D. BOND, E. C. CYR, AND M. HOLST, *Goal-oriented adaptivity and multilevel preconditioning for the Poisson-Boltzmann equation*, Journal of Scientific Computing, 52 (2011), pp. 202–225.
- 708 [7] M. S. ALNÆS, J. BLECHTA, J. HAKE, A. JOHANSSON, B. KEHLET, A. LOGG, C. RICHARDSON, J. RING, M. E. ROGNES, AND G. N. WELLS, *The fenics project version 1.5*, Archive of Numerical Software, 3 (2015).
- 709 [8] W. BANGERTH AND R. RANNACHER, *Adaptive Finite Element Methods for Differential Equations*, Birkhauser Verlag, 2003.
- 710 [9] T. J. BARTH, *A posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods*, vol. 41 of Lecture Notes in Computational Science and Engineering, Springer, New York, 2004.
- 711 [10] R. BECKER AND R. RANNACHER, *An optimal control approach to a posteriori error estimation in finite element methods*: *Acta numerica*, Jan 2003.
- 712 [11] P. BOCHEV AND A. ROBINSON, *Matching algorithms with physics: exact sequences of finite element spaces*, Collected Lectures on the Preservation of Stability Under Discretization, edited by D. Estep and S. Tavener, SIAM, Philadelphia, (2001).
- 713 [12] D. BOFFI, F. BREZZI, M. FORTIN, ET AL., *Mixed finite element methods and applications*, vol. 44, Springer, 2013.
- 714 [13] S. C. BRENNER AND L. R. SCOTT, *The mathematical theory of finite element methods*, Springer, 2011.

736 [14] V. CAREY, D. ESTEP, A. JOHANSSON, M. LARSON, AND S. TAVENER, *Blockwise adaptivity*
 737 *for time dependent problems based on coarse scale adjoint solutions*, SIAM Journal on
 738 Scientific Computing, 32 (2010), pp. 2121–2145.

739 [15] V. CAREY, D. ESTEP, AND S. TAVENER, *A posteriori analysis and adaptive error control for*
 740 *multiscale operator decomposition solution of elliptic systems I: One way coupled systems*,
 741 SIAM Journal on Numerical Analysis, 47 (2009), pp. 740–761.

742 [16] J. H. CHAUDHRY, *A posteriori analysis and efficient refinement strategies for the poisson–*
 743 *boltzmann equation*, SIAM Journal on Scientific Computing, 40 (2018), pp. A2519–A2542.

744 [17] J. H. CHAUDHRY, N. BURCH, AND D. ESTEP, *Efficient distribution estimation and uncertainty*
 745 *quantification for elliptic problems on domains with stochastic boundaries*, SIAM/ASA
 746 Journal on Uncertainty Quantification, 6 (2018), pp. 1127–1150.

747 [18] J. H. CHAUDHRY, J. COLLINS, AND J. N. SHADID, *A posteriori error estimation for multi-stage*
 748 *runge–kutta IMEX schemes*, Applied Numerical Mathematics, 117 (2017), pp. 36–49.

749 [19] J. H. CHAUDHRY, D. ESTEP, V. GINTING, J. N. SHADID, AND S. TAVENER, *A posteriori er-*
 750 *ror analysis of imex multi-step time integration methods for advection–diffusion–reaction*
 751 *equations*, Computer Methods in Applied Mechanics and Engineering, 285 (2015), pp. 730–
 752 751.

753 [20] J. H. CHAUDHRY, D. ESTEP, S. TAVENER, V. CAREY, AND J. SANDELIN, *A posteriori error*
 754 *analysis of two-stage computation methods with application to efficient discretization and*
 755 *the Parareal algorithm*, SIAM Journal on Numerical Analysis, 54 (2016), pp. 2974–3002.

756 [21] J. H. CHAUDHRY, J. N. SHADID, AND T. WILDEY, *A posteriori analysis of an IMEX entropy–*
 757 *viscosity formulation for hyperbolic conservation laws with dissipation*, Applied Numerical
 758 Mathematics, 135 (2019), pp. 129–142.

759 [22] J. M. CONNORS, J. W. BANKS, J. A. HITTINGER, AND C. S. WOODWARD, *Quantification of*
 760 *errors for operator-split advection–diffusion calculations*, Computer Methods in Applied
 761 Mechanics and Engineering, 272 (2014), pp. 181–197.

762 [23] E. C. CYR, J. SHADID, AND T. WILDEY, *Approaches for adjoint-based a posteriori analysis*
 763 *of stabilized finite element methods*, SIAM Journal on Scientific Computing, 36 (2014),
 764 pp. A766–A791.

765 [24] A. DEDNER, F. KEMM, D. KRONER, C.-D. MUNZ, T. SCHNITZER, AND M. WESENBERG, *Hyper-*
 766 *bolic divergence cleaning for the MHD equations*, Journal of Computational Physics, 175
 767 (2002), pp. 645–673.

768 [25] K. ERIKSSON, D. ESTEP, P. HANSBO, AND C. JOHNSON, *Introduction to adaptive methods for*
 769 *differential equations*, Acta Numerica, 4 (1995), pp. 105–158.

770 [26] K. ERIKSSON, D. ESTEP, P. HANSBO, AND C. JOHNSON, *Computational Differential Equations*,
 771 Cambridge University Press, Cambridge, 1996.

772 [27] A. ERN AND J.-L. GUERMOND, *Theory and practice of finite elements*, Springer, 2011.

773 [28] D. ESTEP, *A posteriori error bounds and global error control for approximation of ordinary*
 774 *differential equations*, SIAM Journal on Numerical Analysis, 32 (1995), pp. 1–48.

775 [29] D. ESTEP, V. GINTING, D. ROPP, J. N. SHADID, AND S. TAVENER, *An a posteriori–a priori*
 776 *analysis of multiscale operator splitting*, SIAM Journal on Numerical Analysis, 46 (2008),
 777 pp. 1116–1146.

778 [30] D. ESTEP, A. MÅLQVIST, AND S. TAVENER, *Nonparametric density estimation for randomly*
 779 *perturbed elliptic problems I: Computational methods, a posteriori analysis, and adaptive*
 780 *error control*, SIAM J. Sci. Comput., 31 (2009), pp. 2935–2959.

781 [31] D. ESTEP, A. MÅLQVIST, AND S. TAVENER, *Nonparametric density estimation for randomly*
 782 *perturbed elliptic problems I: Computational methods, a posteriori analysis, and adaptive*
 783 *error control*, SIAM Journal on Scientific Computing, 31 (2009), pp. 2935–2959.

784 [32] D. ESTEP, A. MÅLQVIST, AND S. TAVENER, *Nonparametric density estimation for randomly*
 785 *perturbed elliptic problems II: Applications and adaptive modeling*, International Journal
 786 *for Numerical Methods in Engineering*, 80 (2009).

787 [33] D. ESTEP, S. TAVENER, AND T. WILDEY, *A posteriori error estimation and adaptive mesh*
 788 *refinement for a multiscale operator decomposition approach to fluid–solid heat transfer*,
 789 *Journal of Computational Physics*, 229 (2010), pp. 4143–4158.

790 [34] D. J. ESTEP, M. G. LARSON, R. D. WILLIAMS, AND A. M. SOCIETY, *Estimating the error*
 791 *of numerical solutions of systems of reaction–diffusion equations*, American Mathematical
 792 Society, 2000.

793 [35] C. R. EVANS AND J. F. HAWLEY, *Simulation of magnetohydrodynamic flows: A constrained*
 794 *transport model*, Astrophysical Journal, 332 (1988), p. 659.

795 [36] K. J. FIDKOWSKI AND D. L. DARMOFAL, *Review of output-based error estimation and mesh*
 796 *adaptation in computational fluid dynamics*, AIAA Journal, 49 (2011), pp. 673–694.

797 [37] J.-F. GERBEAU, *A stabilized finite element method for the incompressible magnetohydrody-*

798 *namic equations*, Numerische Mathematik, 87 (2000), pp. 83–111.

799 [38] J.-F. GERBEAU, C. L. BRIS, AND T. LELIÈVRE, *Mathematical Methods for the Magnetohydro-*
800 *dynamics of Liquid Metals*, Oxford University Press, Aug. 2006.

801 [39] M. B. GILES AND E. SÜLI, *Adjoint methods for PDEs: a posteriori error analysis and postpro-*
802 *cessing by duality*, Acta Numerica 2002, (2002), p. 145–236.

803 [40] V. GIRAUT AND P.-A. RAVIART, *Finite Element Methods for Navier-Stokes Equations*,
804 Springer Berlin Heidelberg, 1986.

805 [41] J. P. H. GOEDBLOED, S. POEDTS, A. MILLS, AND S. ROMAINE, *Principles of Magnetohydrody-*
806 *namics: With Applications to Laboratory and Astrophysical Plasmas*, Cambridge Univer-
807 *sity Press*, 2003.

808 [42] M. D. GUNZBURGER, A. J. MEIR, AND J. S. PETERSON, *On the existence, uniqueness, and*
809 *finite element approximation of solutions of the equations of stationary, incompressible*
810 *magnetohydrodynamics*, Mathematics of Computation, 56 (1991), pp. 523–523.

811 [43] M. HAMOUDA, R. TEMAM, AND L. ZHANG, *Modeling the lid driven flow: Theory and computa-*
812 *tion*, International Journal of Numerical Analysis and Modeling, 14 (2017), pp. 313–341.

813 [44] P.-W. HSIEH AND S.-Y. YANG, *A bubble-stabilized least-squares finite element method for steady*
814 *MHD duct flow problems at high hartmann numbers*, Journal of Computational Physics,
815 228 (2009), pp. 8301–8320.

816 [45] J. M. HYMAN AND M. SHASHKOV, *Adjoint operators for the natural discretizations of the diver-*
817 *gence, gradient and curl on logically rectangular grids*, Applied Numerical Mathematics,
818 25 (1997), pp. 413–442.

819 [46] D. KUZMIN AND N. KLYUSHNEV, *Limiting and divergence cleaning for continuous finite ele-*
820 *ment discretizations of the MHD equations*, Journal of Computational Physics, 407 (2020),
821 p. 109230.

822 [47] M. W. LEE, E. H. DOWELL, AND M. J. BALAJEWICZ, *A study of the regularized lid-driven*
823 *cavity’s progression to chaos*, Nov 2018.

824 [48] P. LIN, J. SHADID, J. HU, R. PAWLOWSKI, AND E. CYR, *Performance of fully-coupled algebraic*
825 *multigrid preconditioners for large-scale VMS resistive MHD*, Journal of Computational
826 *and Applied Mathematics*, 344 (2018), pp. 782–793.

827 [49] P. T. LIN, J. N. SHADID, AND P. H. TSUJI, *On the performance of krylov smoothing for fully*
828 *coupled AMG preconditioners for VMS resistive MHD*, International Journal for Numerical
829 *Methods in Engineering*, 120 (2019), pp. 1297–1309.

830 [50] A. LOGG, K.-A. MARDAL, G. N. WELLS, ET AL., *Automated Solution of Differential Equations*
831 *by the Finite Element Method*, Springer, 2012.

832 [51] A. LOGG, G. N. WELLS, AND J. HAKE, *DOLFIN: a C++/Python Finite Element Library*,
833 Springer, 2012.

834 [52] G. I. MARCHUK, *Adjoint Equations and Analysis of Complex Systems*, Springer Nature, 1995.

835 [53] G. I. MARCHUK, V. I. AGOSHKOV, AND V. P. SHUTYAEV, *Adjoint equations and perturbation*
836 *algorithms in nonlinear problems*, CRC Press, 1996.

837 [54] MARTIN AND M. DAUGE, *Weighted regularization of maxwell equations in polyhedral domains*,
838 Dec 2002.

839 [55] S. MILLER, E. CYR, J. SHADID, R. KRAMER, E. PHILLIPS, S. CONDE, AND R. PAWLOWSKI,
840 *IMEX and exact sequence discretization of the multi-fluid plasma model*, Journal of Com-
841 *putational Physics*, 397 (2019), p. 108806.

842 [56] J. C. NEDELEC, *Mixed finite elements in \mathbb{R}^3* , Numerische Mathematik, 35 (1980), p. 315–341.

843 [57] E. G. PHILLIPS, H. C. ELMAN, E. C. CYR, J. N. SHADID, AND R. P. PAWLOWSKI, *A block*
844 *preconditioner for an exact penalty formulation for stationary MHD*, SIAM Journal on
845 *Scientific Computing*, 36 (2014).

846 [58] D. SCHOTZAU, *Mixed finite element methods for stationary incompressible magneto-*
847 *hydrodynamics*, Numerische Mathematik, 96 (2004), p. 771–800.

848 [59] J. SHADID, R. PAWLOWSKI, J. BANKS, L. CHACÓN, P. LIN, AND R. TUMINARO, *Towards a*
849 *scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods*,
850 *Journal of Computational Physics*, 229 (2010), pp. 7649–7671.

851 [60] S. SIVASANKARAN, A. MALLESWARAN, J. LEE, AND P. SUNDAR, *Hydro-magnetic combined con-*
852 *vection in a lid-driven cavity with sinusoidal boundary conditions on both sidewalls*, Interna-
853 *tional Journal of Heat and Mass Transfer*, 54 (2011), pp. 512–525.

854 [61] R. TEMAM, *Navier–Stokes Equations: Theory and Numerical Analysis*, American Mathemati-
855 *cal Society*, Apr. 2001.

856 [62] J. P. TRELLES AND S. M. MODIRKHAZENI, *Variational multiscale method for nonequilibrium*
857 *plasma flows.*, Computer Methods in Applied Mechanics and Engineering, 282 (2014),
858 pp. 87 – 131.

859 [63] M. ULRICH AND B. LEO, *Magnetofluidynamics in Channels and containers*, Springer, 2010.