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Abstract. Resistive magnetohydrodynamics (MHD) is a continuum base-level model for con-4
ducting fluids (e.g. plasmas and liquid metals) subject to external magnetic fields. The e�cient and5
robust solution of the MHD system poses many challenges due to the strongly nonlinear, non self-6
adjoint, and highly coupled nature of the physics. In this article, we develop a robust and accurate7
a posteriori error estimate for the numerical solution of the resistive MHD equations based on the8
exact penalty method. The error estimate also isolates particular contributions to the error in a9
quantity of interest (QoI) to inform discretization choices to arrive at accurate solutions. The tools10
required for these estimates involve duality arguments and computable residuals.11
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1. Introduction. The resistive magnetohydrodynamics (MHD) equations pro-15

vide a continuum model for conducting fluids subject to magnetic fields and are often16

used to model important applications e.g. higher-density, highly collisional plasmas.17

In this context, MHD calculations aid physicists in understanding both thermonuclear18

fusion and astrophysical plasmas as well as understanding the behavior of liquid met-19

als [41, 63]. From a phenomenological perspective, the governing equations of MHD20

couple Navier-Stokes equations for fluid dynamics with a reduced set of Maxwell’s21

equations for low frequency electromagnetic phenomenon. Structurally, the equations22

of MHD form a highly coupled, nonlinear, non self-adjoint system of partial di↵erential23

equations (PDEs). Analytical solutions to the MHD system cannot be obtained for24

practical configurations; instead numerical solutions are sought. The theoretical and25

numerical analysis of MHD dates back to the pioneering work of Temam [61]. Finite26

element formulations of incompressible resistive MHD include stabilization methods27

based on variational multiscale (VMS) approaches [48, 49, 62], exact and weighted28

penalty methods [42, 37, 57, 54], first order system least squares (FOSLS) [3, 4, 1, 44]29

and structure preserving methods [56, 35, 45, 11, 55]. A survey of various numeri-30

cal techniques for MHD is found in [38]. In this article we restrict ourselves to the31
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2 J. H. CHAUDHRY, A. E. RAPPAPORT, AND J. N. SHADID

stationary MHD equations based on the exact penalty finite element formulation,32

originally developed in [42] from a finite element method discretization. We do not33

employ specialized solver strategies e.g. block preconditioning as the problem size we34

consider does not merit it.35

The numerical solution of complex equations like the MHD equations often have36

a significant discretization error for solution with significant fine scale spatial struc-37

tures. This error must be quantified for the reliable use of MHD equations in numerous38

science and engineering fields. Accurate error estimation is a key component of pre-39

dictive computational science and uncertainty quantification [29, 30, 17]. Moreover,40

the error depends on a complex interaction between many contributions. Thus, the41

availability of an accurate error estimate and the di↵erent sources of error also o↵ers42

the potential of optimizing the choice of discretization parameters in order to achieve43

desired accuracy in an e�cient fashion. In this work we leverage adjoint based a44

posteriori error estimates for a quantity of interest (QoI) related to to the solution45

of the MHD equations. These estimates provide a concrete error analysis of di↵erent46

contributions of error, as well as inform solver and discretization strategies.47

In many scientific and engineering applications, the goal of running a simulation48

is to compute a set of specific QoIs of the solution, for example the drag over a49

plane wing in the context of the compressible Navier-Stokes equations. Adjoint based50

analysis [39, 10, 28, 26, 5, 8] for quantifying the error in a numerically computed QoI51

has found success for a wide variety of numerical methods and discretizations ranging52

from finite element [16, 29, 33, 21], finite volume [9], time integration [28, 20, 19, 18],53

operator splitting techniques [29, 33] and uncertainty quantification [31, 32, 17].54

Adjoint based a posteriori error analysis uses variational analysis and duality to55

relate errors to computable residuals. In particular, one solves an adjoint problem56

whose solution provides the residual weighting to produce the error in the QoI. The57

technique also naturally allows to identify and isolate di↵erent components of error58

arising from di↵erent aspects of discretization and solution methods, by analyzing59

di↵erent components of the weighted residual separately.60

This article carries out the first adjoint based a posteriori error analysis for the61

MHD equations to the best of our knowledge. The definition of the adjoint operator to62

the strong form of the MHD system is not obvious since that system is rectangular,63

and hence the weak form of the exact penalty method is needed for forming the64

appropriate adjoint problem. We further provide theory supporting the well-posedness65

of the adjoint weak form. Additionally, the resulting a posteriori error estimate is66

decomposed to identify various sources of error, and the e�cacy of the error estimate67

is demonstrated on a set of benchmark MHD problems.68

The remainder of the article is organized as follows. In §2, we review the equations69

of incompressible resistive MHD, present the exact penalty weak form and the finite70

element method to numerically solve the problem. In §3 we develop theoretical results71

for adjoint based a posteriori error analysis for an abstract problem representative72

of the exact penalty weak form. We apply these results to the MHD equations in73

§4 to develop an a posteriori error estimate. In §5 we present numerical results to74

demonstrate the accuracy and utility of the error estimates produced by our method.75

In §6 we give details of the derivation of the nonlinear operators in the weak adjoint76

form as well as a well-posedness argument for the adjoint problem.77

2. Exact penalty formulation and discretization. In this section we de-78

scribe the nondimensionalized equations of incompressible stationary MHD, a stabi-79

lized weak form of the MHD system and a finite element method for its solution.80
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2.1. The MHD equations. Throughout the rest of the paper, let ⌦ ⇢ Rd, d =281

or 3 be a bounded, convex polyhedral domain with boundary @⌦. The assumptions82

on the domain are necessary for the solution strategy we choose, as elaborated in §2.3.83

The nondimensional equations for stationary incompressible MHD in ⌦ are given by84

� 1

Re
�u+ (u ·r)u+rp� (r⇥ b)⇥ b = f ,(2.1a)85

r · u = 0,(2.1b)86



Rem
r⇥ (r⇥ b)� r⇥ (u⇥ b) = 0,(2.1c)87

r · b = 0,(2.1d)8889

where the unknowns are the velocity u, the magnetic field b, and the pressure p. The90

nondimensional parameters are the fluid Reynolds number Re > 0, Magnetic Reynolds91

number Rem > 0, and interaction parameter  = H
2
a/(ReRem), where Ha > 0 is the92

Hartmann number. We require the source term f 2 H
�1(⌦). For x 2 ⌦ we have93

u(x) 2 Rd, b(x) 2 Rd, p(x) 2 R and f(x) 2 Rd. We supplement the system (2.1)94

with boundary conditions,95

u = g, on @⌦,(2.2a)96

b⇥ n = q ⇥ n, on @⌦.(2.2b)9798

99

Referring to (2.1), we observe there are 2d + 2 and only 2d + 1 unknowns [57].100

E↵ectively enforcing the solenoidal constraint (2.1d) (an involution of the transient101

MHD system) is an active area of research. Techniques include compatible discretiza-102

tions [58, 11], vector potential [2, 59] and divergence cleaning [24, 46] as well as the103

exact penalty method [42, 37, 57]. In this article, we consider the exact penalty104

method which we further describe in §2.3.105

2.2. Function spaces for the MHD system. We make use of the standard106

spaces L2(⌦) and H
m(⌦) as well as their vector counterparts L2(⌦) and H

m(⌦). The107

L
2(⌦) (or L2(⌦)) inner product is denoted by (·, ·) and the norm is denoted by k · k,108

while the H
1(⌦) (or H

1(⌦)) norm is denoted by k · k1. The norm in Rd is denoted109

by k · kRd . The details of these function spaces are given in Appendix A. Further110

useful relations used throughout the text are given in Appendix B and Appendix C.111

For b 2 H
1(⌦), we define rb :=

⇥
rb1, . . . ,rbd

⇤T
as a matrix whose rows are the112

gradients of the components of b. The relevant subspaces of H1(⌦) needed to satisfy113

the boundary conditions (in the sense of the trace operator) are,114

H
1
0(⌦) := {w 2 H

1(⌦) : w|@⌦ ⌘ 0},(2.3)115

H
1
⌧ (⌦) := {w 2 H

1(⌦) : (w ⇥ n)|@⌦ ⌘ 0}.(2.4)116117

Finally, we define the product space,118

P := H
1
0(⌦)⇥H

1
⌧ (⌦)⇥ L

2(⌦).(2.5)119120

We also remark that for d = 2, we use the natural inclusion of R2
,! R3,

⇥
v1, v2

⇤T 7!121
⇥
v1, v2, 0

⇤T
to define the operators r⇥ and ⇥. Thus for v,w 2 H

1(⌦), we have that122

r⇥ v =

✓
@vy

@x
� @vx

@y

◆
k̂, v ⇥w = (vxwy � vywx) k̂.123

124
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4 J. H. CHAUDHRY, A. E. RAPPAPORT, AND J. N. SHADID

2.3. Exact penalty formulation. In this section we present the weak form of125

the stationary incompressible MHD system based on the exact penalty formulation126

[42]. The exact penalty method requires that the domain ⌦ is bounded, convex and127

polyhedral. This ensures that H(curl,⌦) \ H(div,⌦) is continuously embedded in128

H
1(⌦) [56, 38]. We also assume homogeneous Dirichlet boundary conditions i.e. g =129

q = 0. Non-homogeneous boundary conditions can be dealt with through standard130

lifting arguments as discussed in §4.3. The exact penalty weak problem corresponding131

to (2.1) and (2.2) is: find U = (u, b, p) 2 P such that132

(2.6) NEP (U, V ) = (f ,v), 8V 2 P,133

where the nonlinear form NEP is defined for all V = (v, c, q) 2 P by134

(2.7)

NEP (U, V ) : =
1

Re
(ru,rv) + (C(u),v)� (p,r · v) + (q,r · u)

� (Y(b),v)� (Z(u, b), c)

+


Rem
(r⇥ b,r⇥ c) +



Rem
(r · b,r · c),

135

and the nonlinear operators are defined by136

C(u) := (u ·r)u,(2.8a)137

Y(b) := (r⇥ b)⇥ b,(2.8b)138

Z(u, b) := r⇥ (u⇥ b).(2.8c)139140

All except the last term in the weak form arise from multiplying (2.1a)-(2.1c) by141

test functions and performing integration by parts. The last term, 
Rem

(r · b,r · c),142

e↵ectively enforces the solenoidal involution (2.1d) since, assuming the aforementioned143

restrictions on the domain, there exists a function (see [42, 40]) b0 2 H
2(⌦) such that144

(2.9) r ·rb0 = r · b, and rb0 2 H
1
⌧ (⌦).145

Thus, we choose V = (0,rb0, 0) in (2.7) and use (B.1b) so that (2.6) reduces to146

(2.10) (r · b,r ·rb0) = (r · b,r · b) = 0,147

and hence (2.1d) is satisfied almost everywhere in ⌦.148

Remark 1. The existence of the solution to the problem (2.6) is proven in [42,149

Theorem 4.6] as well as in [38, Theorem 3.22], while uniqueness is proven in [42,150

Theorem 4.7] and also in [38, Theorem 3.22]. Both uniqueness proofs rely on a151

“small data” assumption, i.e. inequalities bounding the nondimensionalised constants,152

Re,Rem and , in terms of the data f , g and q.153

2.4. Finite element method. We introduce the standard continuous Lagrange154

finite element spaces. Let Th be a simplicial decomposition of ⌦, where h denotes the155

maximum diameter of the elements of Th, such that the union of the elements of Th156

is ⌦, and the intersection of any two elements is either a common edge, node, or is157

empty. The standard Lagrange space finite element space of order q is then158

(2.11) Pq
h :=

�
v 2 C(⌦) : 8K 2 Th, v|K 2 Pq(K)

 
,159

where Pq(K) is the space of polynomials of degree at most q defined on the element160

K. Additionally, our finite element space satisfies the Ladyzhenskaya-Babuška-Brezzi161
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condition stability condition [12] for the velocity pressure pair, e.g. Ph = P2
h(⌦) ⇥162

P1
h(⌦) ⇥ P1

h(⌦). Then the discrete problem to find an approximate solution Uh =163

(uh, bh, ph) 2 Ph to (2.7) is,164

(2.12) NEP (Uh, Vh) = (f ,vh) 8Vh 2 Ph.165

Note there is no restriction on the finite element space for bh, which is an advantage166

of this method. The existence and uniqueness of the solution of the discrete problem167

(2.12) is also demonstrated in Gunzburger et al. [42] with the same assumptions of168

the data as discussed in Remark 1.169

2.5. Quantity of interest (QoI). The goal of a numerical simulation is often170

to compute some functional of the solution, that is, the QoI. In particular, QoIs171

considered in this article have the generic form,172

(2.13) QoI =

Z

⌦
 · U dx = ( , U)173

where U is defined by (2.6) and  2 L
2(⌦)⇥L

2(⌦)⇥L
2(⌦) ⌘ [L2(⌦)]2d+1. For exam-174

ple in two dimensions, to compute the average of the y component of velocity uy over175

a region ⌦c ⇢ ⌦, set  = 1
|⌦c|

⇥
0, ⌦c , 0, 0, 0)

⇤T
, where S denotes the characteristic176

function over a set S. In the examples presented later, the QoIs physically represent177

quantities representative of the average flow rate, or the average induced magnetic178

field. We seek to compute error estimates in the QoI using duality arguments as179

presented in the following subsection.180

3. Abstract a posteriori error analysis. In this section we consider an ab-181

stract variational setting for a posteriori analysis based on the ideas from [28, 25, 39,182

5, 8]. Let W be a Hilbert space with inner-product h·, ·i and let V be a dense subspace183

of W . Throughout this section u 2 V refers to the solution of an abstract variational184

problem (e.g. solution of (3.3) or (3.8)). An example of such a variational problem185

is the exact penalty problem as described in §2.3. Moreover, we denote uh 2 Vh as186

a numerical approximation to u, where Vh is a finite dimensional subspace of V , and187

denote the error as e = u�uh. Finally, w and v refer to arbitrary functions, and their188

spaces are made clear when we use these functions. For the QoI, consider bounded189

linear functionals of the form,190

(3.1) Q(w) = h , wi, 8w 2 W ,191

for some fixed  2 W . The QoI is then,192

(3.2) Q(u) = h , ui.193

For example, in (2.13), h , ui = ( , U), that is the inner-product is the L
2 inner194

product. The aim of the a posteriori analysis is to compute the error in the QoI,195

Q(u) � Q(uh) = h , ui � h , uhi = h , ei. We briefly describe the analysis for linear196

problems in §3.1 and then consider nonlinear problems in §3.2.197

3.1. Linear variational problems. We consider the problem of evaluating198

(3.2) where u is the solution to the linear variational problem: find u 2 V such199

that200

(3.3) a(u, v) = hf, vi, 8v 2 V ,201
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where a : V ⇥ V ! R is a bilinear form. We then define the adjoint bilinear form202

a
⇤ : V ⇥ V ! R as the unique bilinear form satisfying203

(3.4) a
⇤(w, v) = a(v, w), 8w, v 2 V ,204

see [39, 10]. If � solves the dual problem: find � 2 V such that205

(3.5) a
⇤(�, v) = h , vi, 8v 2 V ,206

then we have the following error representation.207

Theorem 3.1. The error in the QoI (3.2) is represented as h , ei = hf,�i �208

a(uh,�), where u is the solution to (3.3), uh is a numerical approximation, e = u�uh209

and � is the solution to (3.5).210

Proof. The proof is a straightforward computation,211

(3.6) h , ei = a
⇤(�, e) = a(e,�) = a(u,�)� a(uh,�) = hf,�i � a(uh,�).212

Note from the proof above that a simple yet important property of the adjoint bilinear213

form a
⇤(·, ·) is,214

(3.7) a
⇤(v, e) = a(u, v)� a(uh, v),215

for w 2 V . We will use this property in motivation the analysis for nonlinear problems216

in §3.2.217

3.2. Nonlinear variational problems. Again, our goal is to evaluate (3.2)218

where now u is the solution to the nonlinear variational problem: find u in V such219

that220

(3.8) N (u, v) = hf, vi, 8v 2 V ,221

and N : V ⇥V ! R is linear in the second argument but may be nonlinear in the first222

argument. There is no straightforward definition of an adjoint operator corresponding223

to a nonlinear problem. However, a common choice useful for various kinds of analysis224

is based on linearization [53, 52, 21, 18, 16, 33]. This choice enables the definition of225

an adjoint bilinear form N ⇤
(·, ·) which satisfies the useful property,226

(3.9) N ⇤
(v, e) = N (u, v)�N (uh, v),227

for all v 2 V . This property is inspired by (3.7).228

We now present a specific case of this analysis such the problem (3.8) mimics the229

setup of the exact penalty problem in (2.6). Let V =
Qn

i=1 Vi and W =
Qn

i=1 Wi be230

product spaces of Hilbert spaces such that Vi is a dense subspace of Wi for each i.231

The left hand side in problem (3.8) is now more specifically given by232

(3.10) N (v, w) =
mX

i=1

hNi(v), w`ii+ a(v, w),233

where a(·, ·) is a bilinear form, `i 2 {1, . . . , n} and Ni : V ! W`i are nonlinear234

operators. For a solution/approximation pair (u/uh) to (3.8), define the matrix J ,235

where each entry J ij : Vj ! W`i is given by236

J ijvj =

Z 1

0

@Ni

@uj
(su+ (1� s)uh) ds vj ,(3.11)237

238

This manuscript is for review purposes only.



A POSTERIORI ANALYSIS OF MHD 7

where vj 2 Vj and @Ni
@uj

(·) denotes the partial derivative of Ni with respect to the239

argument uj . Define the linearized operator N̄i : V ! W`i by240

(3.12)

N̄iv =

Z 1

0

@Ni

@u
(su+ (1� s)uh) ds · v

=
nX

j=1

Z 1

0

@Ni

@uj
(su+ (1� s)uh) ds vj =

nX

j=1

J ijvj ,

241

for v 2 V . Now since each N̄i is linear, we may define the bilinear forms, ⌫i : V ⇥V !242

R, by243

⌫i(v, w) = hN̄iv, w`ii =
*

nX

j=1

J ijvj , w`i

+
=

nX

j=1

⌦
J ijvj , w`i

↵
,(3.13)244

245

for v, w 2 V . Define ⌫⇤i (v, w) = ⌫i(w, v), and adjoint operators J ⇤
ij to J ij satisfying246

(3.14) hJ ijw, vi = hw,J ⇤
ijvi247

for w 2 Vj and v 2 V`i . Hence, we can also write using the definition (3.13),248

⌫
⇤
i (v, w) =

nX

j=1

hwj ,J
⇤
ijv`ii.249

for v, w 2 V . Also since a(·, ·) in (3.10) is a bilinear form, we have from the definition250

(3.4) that a⇤(w, v) = a(v, w) for v, w 2 V . With these definitions in mind, we further251

define a composite adjoint bilinear form, N ⇤
: V ⇥ V ! R, as252

(3.15) N ⇤
(v, w) =

mX

i=1

⌫
⇤
i (v, w) + a

⇤(v, w) =
mX

i=1

nX

j=1

hwj ,J
⇤
ijv`ii+ a

⇤(v, w),253

for u, v 2 V . Then if � 2 V solves the dual problem,254

(3.16) N ⇤
(�, v) = h , vi, 8v 2 V ,255

we then have the following abstract error representation.256

Theorem 3.2. The error in the QoI (3.2) is represented as h , ei = hf,�i �257

N (uh,�) where u is the solution to (3.8), uh is a numerical approximation of u,258

e = u� uh, and � is the solution to (3.16).259
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Proof. We compute, starting by replacing v by e in (3.16),260

h , ei = N ⇤
(�, e) =

mX

i=1

nX

j=1

hej ,J
⇤
ij�`ii+ a

⇤(�, e)261

=
mX

i=1

nX

j=1

hJ ijej ,�`ii+ a(e,�)262

=
mX

i=1

hN ie,�`ii+ a(e,�)263

=
mX

i=1

hNi(u)�Ni(uh),�`ii+ a(u,�)� a(uh,�)264

=
mX

i=1

hNi(u),�`ii+ a(u,�)�
mX

i=1

hNi(uh),�`ii � a(uh,�)265

= N (u,�)�N (uh,�) = hf,�i �N (uh,�).266267

The main result of this theorem is that computing the adjoint to a nonlinear form is268

reduced to computing the adjoint for the averaged entries, J ij .269

4. A posteriori error estimate for the MHD equations. The analysis in270

§3.2 applies directly to the MHD equations. The inner product h·, ·i of the last section271

is represented by the [L2(⌦)]2d+1 inner product (·, ·). The linear and nonlinear terms272

in the exact penalty weak form (2.6) are mapped to match (3.10). The mapping273

between the abstract formulation and MHD equation is shown in Table 1.274

Abstract MHD

h, i (, )
m 3

N NEP

u U
v V
Ni NEP,i

(a)

Abstract MHD

hf, vi (f ,v)
u1 U1 ⌘ u
u2 U2 ⌘ b
u3 U3 ⌘ p
v1 V1 ⌘ v
v2 V2 ⌘ c

(b)

Abstract MHD

v3 V3 ⌘ q
J ⇤

11 Z⇤
u

J ⇤
12 Z⇤

b

J ⇤
21 Y⇤

J ⇤
31 C⇤

a aEP

(c)

Table 1: Mapping between the abstract framework in §3 and the MHD equation in
§4. NEP is given in (4.1), NEP,i in (4.2), aEP in (4.3) and Z⇤

u
,Z⇤

b
,Y⇤

,C⇤
are given

in (4.4).

For the exact penalty weak form, we have that275

(4.1) NEP (U, V ) =
3X

i=1

(NEP,i(U), V`i) + aEP (U, V ),276

where277

(4.2)

(NEP,1(U), V2) = (Z(u, b), c),

(NEP,2(U), V1) = (Y(b),v),

(NEP,3(U), V1) = (C(u),v),
278
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Z,Y ,C are in turn defined in (2.8), and279

(4.3)
aEP (U, V ) =

1

Re
(ru,rv)� (p,r · v) + (q,r · u)

+


Rem
(r⇥ b,r⇥ c) +



Rem
(r · b,r · c).

280

The entries J ⇤
11V2 = Z⇤

u
c, J ⇤

12V2 = Z⇤
b
c, J ⇤

21V1 = Y⇤
v and J ⇤

31V1 = C⇤
v are,281

(4.4)

Z⇤
u
c = 1

2 (u+ uh)⇥ (r⇥ c),

Z⇤
b
c = � 1

2 (b+ bh)⇥ (r⇥ c),

Y⇤
v = 1

2

�
� (r⇥ (b+ bh)⇥ v) +r⇥ ((b+ bh)⇥ v)

�
,

C⇤
v = 1

2

�
(ru+ruh)

T
v � (((u+ uh) ·r)v)�

�
r · (u+ uh)

�
v,

282

while the remaining J ⇤
ij entries are zero. The details of the derivation are given in283

§6.1.284

4.1. Adjoint problem for incompressible MHD. We are now prepared to285

pose a weak adjoint problem corresponding to exact penalty primal problem (2.6).286

Based on (4.1), (4.4) and (3.16), the weak dual problem is therefore be stated as: find287

� = (�,�,⇡) 2 P such that288

(4.5) N ⇤
EP (�, V ) = ( , V ), 8V = (v, c, q) 2 P,289

with290

(4.6)

N ⇤
EP (�, V ) =

1

Re
(r�,rv) +

⇣
C⇤
�,v

⌘
+ (r · v,⇡)� (r · �, q)

+


Rem
(r⇥ �,r⇥ c) +



Rem
(r · �,r · c)

� 

⇣
Y⇤
�, c

⌘
� 

⇣
Z⇤

u
�,v

⌘
� 

⇣
Z⇤

b
�, c

⌘
.

291

Here recall that  is defined by (2.13). The forms of the linear operators C⇤
,Y⇤

, Z⇤
u

292

and Z⇤
b
are given in (4.4). We discuss the well-posedness of the adjoint problem (4.5)293

in §6.2.294

4.2. Error representation. In order to discuss an error representation we need295

to make the following definition296

Definition 4.1. Define the monolithic error by E =
⇥
eu, eb, ep

⇤T
with compo-297

nent errors298

eu = u� uh, eb = b� bh, ep = p� ph.(4.7)299300

where (u, b, p) 2 P is the solution to (2.6) and (uh, bh, ph) 2 Ph is the solution to301

(2.12).302

We then have the following error representation.303

Theorem 4.2 (Error representation for exact penalty). The error in the numer-304
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ical approximation of the QoI (2.13) satisfies305

( , E) = (f ,�)�

1

Re
(ruh,r�) + (uh ·ruh,�)306

� (ph,r · �) + ((r⇥ bh)⇥ bh,�) + (r · uh,⇡)307

+


Rem
(r⇥ bh,r⇥ �) + (r⇥ (uh ⇥ bh),�)308

+


Rem
(r · bh,r · �)

�
,309

310

where � = (�,�,⇡) is defined in (4.5).311

Proof. By Theorem 3.2,312

( , E) = N ⇤
EP (�, E) = NEP (U,�)�NEP (Uh,�) = (f ,�)�NEP (Uh,�).313314

4.3. Non-homogeneous boundary conditions for the MHD system. The315

analysis above easily extends to the case of non-homogeneous boundary conditions,316

i.e. when g or q are not identically zero. First assume that the numerical solution317

Uh the satisfies the non-homogeneous conditions exactly. That is, u = uh = g and318

b ⇥ n = bh ⇥ n = q ⇥ n on @⌦. Then, although neither the true solution U nor319

the numerical solution Uh belong to P, the error E defined in Definition 4.1 satisfies320

homogeneous boundary conditions and hence belongs to P. Thus, the error analysis321

in the previous section applies directly in this case.322

On the other hand, if Uh belongs to Ph \P, then in general Uh does not satisfy323

the non-homogeneous boundary conditions exactly. Hence we consider the splitting324

of the numerical solutions as,325

(4.8) Uh = U
0
h + U

d
,326

where U
0
h 2 Ph solves,327

(4.9) NEP (Uh, Vh) = NEP (U
0
h + U

d
, Vh) = (F, Vh), 8Vh 2 Ph,328

and U
d is a known function that satisfies the non-homogeneous boundary conditions329

accurately. That is, the unknown is now U
0
h and the numerical solution Uh is formed330

through the sum in (4.8). In this article the function U
d is approximated through331

a finite element space of much higher dimension than Ph to capture the boundary332

conditions accurately and hence minimize discretization error. An alternate approach333

is to represent U
d in the same space as U

0
h and then quantify the error due to this334

approximation, for example see [16].335

4.4. Error estimate and contributions. The error representation in Theo-336

rem 4.2 requires the exact solution � = (�,�,⇡) 2 P of (4.5). Moreover, the adjoint337

form (4.6) is linearized around the true solution U and the approximate solution Uh.338

In practice, the adjoint solution itself must be approximated in a finite element space339

Wh ⇢ P and is linearized only around the numerical solution. Let this approxima-340

tion to the adjoint be denoted by �h = (�h,�h,⇡h) 2 Wh. This approximation leads341

to an error estimate from the error representation in Theorem 4.2. Let this error342

estimate be denoted by ⌘. That is, ⌘ ⇡ ( , E) such that,343

(4.10) ⌘ = Emom + Econ + EM ,344
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where,345

(4.11)

Emom = (f ,�h)�
✓

1

Re
(ruh,r�h) + ((uh ·r)uh,�h)� (ph,r · �h)

+ ((r⇥ bh)⇥ bh,�h)

◆
,

Econ = �(r · uh,⇡h),

EM = � 

Rem
(r⇥ bh,r⇥ �h) + (r⇥ (uh ⇥ bh),�h)

� 

Rem
(r · bh,r · �h).

346

Here Emom, Econ and EM represent the momentum error contribution, the continuity347

error contribution and the magnetic error contribution respectively.348

To obtain an accurate error estimate we choose Wh to be of much higher dimen-349

sion than Ph as is standard in adjoint based a posteriori error estimation [34, 28, 25,350

20, 19, 34, 22, 15, 9]. Moreover, the inaccuracy caused by substituting the numerical351

solution in place of true solution in the adjoint form is of higher order and shown to352

decrease in the limit of refined discretization [34, 23].353

5. Numerical results. In this section we present numerical results to verify the354

accuracy of the error estimate (4.10) and the and utility of the error contributions in355

(4.11). The e↵ectivity ratio, denoted E↵., characterizes how well the error estimate356

approximates the true error,357

(5.1) E↵. =
Error estimate

True error
=

⌘

( , E)
.358

The closer the e↵ectivity is to 1, the better the error estimate provided by our method.359

We present two numerical examples here, the Hartmann problem in §5.1 which360

admits an analytic solution, and the magnetic lid driven cavity §5.2. Since there is361

no closed form solution for the magnetic lid driven cavity, we use as reference a high362

order/fine mesh solution to provide a high accuracy estimate for the true error. All363

the following computations were carried out using the finite element package Dolfin364

in the FEniCS suite [7, 50, 51].365

For all experiments, we chose di↵erent polynomial orders of Lagrange spaces for366

the product space Ph and choose the adjoint space Wh such that it is one higher367

polynomial degree in each variable. The computational domain for all problems is368

chosen to be a unit length square, ⌦ := [� 1
2 ,

1
2 ]

2 ⇢ R2. The mesh is a simplicial369

uniform mesh with the total number of elements denoted by #Elements.370

5.1. Hartmann flow in two dimensions. Our first results concern the so-371

called Hartmann problem [63]. This problem models the one-dimensional flow of a372

conducting fluid in a channel and forms both a momentum boundary layer (viscous373

boundary layer), and a layer formed by the di↵usion of the magnetic field that in-374

fluences the flow due to the Lorentz force (a Hartmann layer). In this case we take375

consider a square channel as the computational domain, however the analytic solution376

is only a one-dimensional profile, as described in the beginning of the section. This377
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12 J. H. CHAUDHRY, A. E. RAPPAPORT, AND J. N. SHADID

problem admits an analytic solution [57], u =
⇥
ux, 0

⇤T
, b =

⇥
bx, 1

⇤T
, p where378

ux(y) =
GRe(cosh(Ha/2)� cosh(Hay))

2Ha sinh(Ha/2)
,(5.2a)379

Bx(y) =
G(sinh(Hay)� 2 sinh(Ha/2)y)

2 sinh(Ha/2)
,(5.2b)380

p(x) = �Gx� B
2
x/2,(5.2c)381382

and G = � dp
dx is an arbitrary pressure drop that we choose to normalize the maximum383

velocity |ux(y)| to 1.384

5.1.1. Problem parameters and QoI. The values of the nondimensionalized385

constants are chosen as follows: Re = 16,Rem = 16, = 1 which produce a Hartmann386

number of Ha = 16. The QoI is chosen as the average velocity across the flow over a387

slice. To this end, define388

(5.3) ⌦c :=
⇥
� 1

4 ,
1
2

⇤
⇥
⇥
� 1

4 ,
1
4

⇤
389

and consequently ⌦c the characteristic function on ⌦c. We choose  to be  =390 ⇥
⌦c , 0, 0, 0, 0

⇤T
so that the QoI (2.13) thus reduces to391

(5.4) ( , U) = ( ⌦c , ux).392

This has a physical interpretation of the capturing the flow rate across this slice of393

the channel, ⌦c.394

5.1.2. Numerical results and discussion. The error contributions of (4.10)395

as well as e↵ectivity ratios using di↵erent order polynomial spaces are presented in396

Table 2, Table 3, Table 4, and Table 5. The e↵ectivity ratio in tables Table 2 and Table397

3 is quite close to 1 indicating the accuracy of the error estimate. The error estimate398

in Table 4 is not as accurate due to linearization error incurred by replacing the true399

solution by the approximate solution in the definition of the adjoint as discussed in400

§4.4. This may be verified by linearizing the adjoint weak form around both the true401

(which we know for this example) and the approximate solutions. These results are402

shown in Table 5 and now the error estimate is again accurate.403

In Table 2 we use the lowest order tuple of Lagrange spaces, (P2
,P1

,P1) for the404

variables (u, b, p). In this case, the error is largely dominated by the contributions405

Econ and EM . We greatly reduce the error in EM by using a higher degree Lagrange406

space, P2, for b as demonstrated in table Table 3. However, this does not reduce407

the magnitude of the total error much (about 5%) which is still dominated by the408

contribution Econ. The contribution Econ is not significantly a↵ected by the finite409

dimensional space for b. Now finally, in Table 4 we use a higher order tuple (P3
,P2

,P2)410

for (u, b, p) and the total error drops by two orders of magnitude.411

5.2. Magnetic Lid Driven Cavity.412

5.2.1. Regularization and solution method. The magnetic lid driven cavity413

is another common benchmark problem for verifying MHD codes [57, 60]. However,414

the standard lid velocity is discontinuous and therefore obtains at most H1/2�" reg-415

ularity in two dimensions with " > 0. By the converse of the trace theorem and416

the Sobolev inequality [27, 13], the solution ux cannot obtain H
1 regularity on the417

interior. Indeed, in this situation, we do not even have well-posedness of the primal418
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# Elements True Error E↵. Emom Econ EM

1600 2.76e-04 1.00 4.53e-06 -2.28e-04 5.00e-04
6400 6.98e-05 1.00 1.29e-06 -6.23e-05 1.31e-04
14400 3.11e-05 1.00 6.05e-07 -2.86e-05 5.91e-05
25600 1.75e-05 1.00 3.49e-07 -1.63e-05 3.35e-05

Table 2: Error in (ux, ⌦c) for the Hartmann problem §5.1, with ⌦c = [� 1
4 ,

1
2 ] ⇥

[� 1
4 ,

1
4 ]. The finite dimensional space here is (P2

,P1
,P1) for (u, b, p).

# Elements True Error E↵. Emom Econ EM

1600 -2.25e-04 1.02 1.08e-06 -2.27e-04 -4.79e-06
6400 -6.13e-05 1.04 1.04e-06 -6.23e-05 -2.18e-06
14400 -2.81e-05 1.04 5.98e-07 -2.86e-05 -1.13e-06
25600 -1.60e-05 1.04 3.76e-07 -1.64e-05 -6.81e-07

Table 3: Error in (ux, ⌦c) for the Hartmann problem §5.1. The finite dimensional
space here is (P2

,P2
,P1) for (u, b, p).

# Elements True Error E↵. Emom Econ EM

1600 1.23e-06 1.21 3.97e-07 -4.15e-06 5.24e-06
6400 1.46e-07 1.47 9.23e-08 -5.07e-07 6.29e-07
14400 4.97e-08 1.63 3.84e-08 -1.40e-07 1.83e-07
25600 2.47e-08 1.73 2.07e-08 -5.44e-08 7.64e-08

Table 4: Error in (ux, ⌦c) for the Hartmann problem §5.1. The finite dimensional
space here is (P3

,P2
,P2) for (u, b, p). Here, we approximate the true solution with the

computed solution which results in linearization error. For this accurate a solution,
this deteriorates the quality of the estimate which in turn results in a e�ciency further
from 1. This is confirmed in Table 5 where we use the true solution and the e↵ectivity
is again close to 1.

2d Elem. True Error E↵. Emom Econ EM

1600 1.23e-06 1.00 2.75e-07 -4.39e-06 5.34e-06
6400 1.46e-07 1.00 5.97e-08 -5.60e-07 6.46e-07
14400 4.97e-08 1.00 2.35e-08 -1.63e-07 1.89e-07
25600 2.47e-08 1.00 1.22e-08 -6.65e-08 7.90e-08

Table 5: Error in (ux, ⌦c) for the Hartmann problem, §5.1. The finite dimensional
space here is (P3

,P2
,P2) for (u, b, p). No linearization error is present here because

we use the true solution in the definition of the adjoint.

problem, so there is not real hope for error analysis. This issue has been address419

in a purely fluid context [43, 47]. In both cases, a regularization of the lid velocity420

is proposed to mitigate theoretical issues (in the former) and the ability to achieve421

higher Reynold’s numbers (in the latter). In this work, we use a similar regularization422
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14 J. H. CHAUDHRY, A. E. RAPPAPORT, AND J. N. SHADID

to the one proposed in [47], a polynomial regularization of the lid velocity,423

utop(x) = C
�
x� 1

2

�2 �
x+ 1

2

�2
,424

with C chosen such that425 Z 1/2

�1/2
utop(x) dx = 1.426

The boundary conditions are imposed as g(x, 0.5) =
⇥
utop, 0

⇤T
on the top face and427

zero on the rest of the boundary. The boundary conditions for the magnetic field are428

q =
⇥
�1, 0

⇤T
so that b ⇥ n =

⇥
�1, 0

⇤T ⇥ n on @⌦. To get a qualitative measure429

of the validity of the regularized problem, we show plot of the velocity profile for a430

fixed Reynold’s number Re = 5000 and varying magnetic Reynold’s numbers Rem431

in Figure 1. These plots are qualitatively similar to Figure 1 in [57] (for which an432

un-regularized lid velocity is used), which gives a good indication that the regularized433

version produces qualitatively similar features.

Rem = 0.1 Rem = 0.5 Rem = 5.0

Fig. 1: Plots of the kukRd for the lid driven cavity §5.2 with added streamlines. We
use a normalization on the lid velocity over a variety of magnetic Reynold’s numbers,
Rem. The other nondimensionalized parameters Re = 5000, = 1 for all of these
plots.

434
Furthermore, since Newton’s method requires a good initial guess for this problem,435

we use a homotopic sequence of initial guesses to achieve convergence to high Re.436

Specifically we run the problem for a moderate value of Re = 200 for example, and437

then use the solution produced by the solver as the initial guess for a larger value e.g.438

Re = 1000 until we have achieved the desired value. Figure 2 shows the intermediate439

values in this sequence to solve a problem with Re = 1000.440

5.2.2. Problem parameters and results. We consider our QoI (2.13) with441

 =
⇥
0, 0, 0, ⌦c , 0

⇤T
where now442

(5.5) ⌦c :=
⇥
� 1

4 ,
1
4

⇤
⇥
⇥
0, 1

2

⇤
,443

so that the QoI ( , U) = ( ⌦c , by) gives a measure of the induced magnetic field in444

the upper middle half of the box. See Figure 2 for plots of the induced field by as a445

function of Reynold’s number Re.446

Since there is no analytic solution for this problem, we compute solution on a447

400 ⇥ 400 mesh in the space (P3
,P2

,P2) for (u, b, p). We consider the QoI obtained448
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Re = 200 Re = 500 Re = 1000

Fig. 2: Demonstrating the homotopy parameter strategy to achieve high fluid
Reynold’s numbers as described in §5.2. The other nondimensionalized parameters
Rem = 5.0, = 1 for all of these plots. The top row is colored according the by and
with the arrows representing the vector b. The bottom row is colored according to
kukRd , with added streamlines.

from this very high resolution reference solution as a the true solution to compute the449

error in the denominator of the e↵ectivity ratio (5.1). The e↵ectivity ratio and error450

contributions for Re = 1000 and Re = 2000 are shown in Tables 6, 7, 8 and 9. The451

error estimate ⌘ is deemed accurate since all e↵ectivity ratios are close to 1.452

We first study the lowest order case, namely using the space (P2
,P1

,P1) for453

(u, b, p) in Table 6 where Re = 1000 and Table 8 where Re = 2000. For both454

Re = 2000 and Re = 1000, the error contributions are not drastically di↵erent in455

magnitude, and become even more similar as the mesh is refined. We also note that456

all contributions, and in particular the true error, are larger in magnitude for the case457

Re = 2000.458

For the next experiment, we consider a higher order space for the velocity pair459

(u, p) namely (P3
,P1

,P2) for (u, b, p) in Table 7 for Re = 1000 and Table 9 for460

Re = 2000. In both cases, the error is now dominated by the contribution EM . The461

case of Re = 2000 is particularly interesting, as the error increases as the mesh is462

refined from 1600 elements to 3600 elements. This seemingly anomalous behavior is463

explain by examining the error contributions. For #Elements = 1600 we have that464

Emom +Econ has magnitude comparable to that of EM but opposite sign, and hence465

there is cancellation of error. For #Elements = 3600, the magnitude of Emom+Econ466

is much less than that of EM and hence the total error increases as there is less467

cancellation of error. Hence, adjoint based analysis not only quantifies the error, it468
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also helps in diagnosing such anomalous behavior.

# Elements True Error E↵. Emom Econ EM

1600 -3.93e-05 0.99 -1.05e-05 -2.47e-05 -3.78e-06
3600 -9.50e-06 0.97 -2.23e-06 -5.23e-06 -1.74e-06
6400 -3.41e-06 0.98 -8.12e-07 -1.52e-06 -9.87e-07
10000 -1.61e-06 0.98 -3.64e-07 -5.81e-07 -6.33e-07

Table 6: Error estimates for (by, ⌦c) for the lid driven cavity §5.2. The finite dimen-
sional space here is (P2

,P1
,P1) for (u, b, p). We use a very high resolution reference

solution on a 400x400=160000 element mesh and (P3
,P2

,P2) elements. The parame-
ters are Re = 1000,Rem = 0.4, = 1.

469

# Elements True Error E↵. Emom Econ EM

1600 -5.37e-06 0.98 -4.65e-07 -9.75e-07 -3.81e-06
3600 -1.95e-06 0.99 -5.49e-08 -1.27e-07 -1.75e-06
6400 -1.03e-06 1.00 -1.06e-08 -2.76e-08 -9.87e-07
10000 -6.45e-07 1.00 -2.89e-09 -8.04e-09 -6.33e-07

Table 7: Error estimates for (by, ⌦c) for the lid driven cavity §5.2. The finite dimen-
sional space here is (P2

,P2
,P1) for (u, b, p). We use a very high resolution reference

solution on a 400x400=160000 element mesh and (P3
,P2

,P2) elements. The parame-
ters are Re = 1000,Rem = 0.4, = 1.

# Elements True Error E↵. Emom Econ EM

1600 -8.01e-05 1.10 -3.65e-05 -5.70e-05 5.63e-06
3600 -2.04e-05 0.98 -5.69e-06 -1.66e-05 2.25e-06
6400 -5.92e-06 0.96 -1.84e-06 -5.06e-06 1.19e-06
10000 -2.07e-06 0.96 -8.17e-07 -1.91e-06 7.41e-07

Table 8: Error estimates for (by, ⌦c) for the lid driven cavity §5.2. The finite dimen-
sional space here is (P2

,P1
,P1) for (u, b, p). We use a very high resolution reference

solution on a 400x400=160000 element mesh and (P3
,P2

,P2) elements. The parame-
ters are Re = 2000,Rem = 0.4, = 1.

5.3. Illustrative compute time comparison of the primal and adjoint470

problems. In this section we study CPU times for the Hartmann problem of §5.1471

using (P2
,P1

,P1) for (u, b, p). In particular this corresponds to the experiment in472

Table 2. We compare the CPU time of numerically solving the adjoint problem with473

with solving the discrete forward problem (2.12). The adjoint problem is solved in a474

higher order space (P3
,P2

,P2), but since it is linear, it is not obvious how it compares475

in terms of computational cost to the primal problem. The CPU times are shown in476

Table 10 1. The CPU time required for the adjoint problem is less in all cases than477

1These experiments were carried out using a dual-socket workstation with two Intel Xeon E5-
2687W v2 for a total of 16 physical cores and 32 threads.
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# Elements True Error E↵. Emom Econ EM

1600 1.31e-06 0.78 -1.58e-06 -3.47e-06 6.08e-06
3600 1.51e-06 0.96 -1.91e-07 -5.29e-07 2.17e-06
6400 1.02e-06 0.98 -3.87e-08 -1.28e-07 1.17e-06
10000 6.94e-07 0.99 -1.07e-08 -4.04e-08 7.38e-07

Table 9: Error estimates for (by, ⌦c) for the lid driven cavity §5.2. The finite dimen-
sional space here is (P3

,P2
,P1) for (u, b, p). We use an very high resolution reference

solution on a 400x400=160000 element mesh and (P3
,P2

,P2) elements. The parame-
ters are Re = 2000,Rem = 0.4, = 1.

# Elements Primal solve time (s) Adjoint solve time (s)
1600 0.73 0.45
6400 3.40 1.62
14400 6.28 4.09
25600 11.70 8.01

Table 10: CPU times for the primal problem (using (P2
,P1

,P1)) and adjoint problem
(using (P3

,P2
,P2)) corresponding to the results in Table 2.

the CPU time required for solving the primal problem. We note that these results478

depend on the choice of linear and nonlinear solvers and preconditioners; here we are479

simply using Newton’s method and direct linear solvers for the primal problems and480

direct linear solvers for the adjoint problems.481

6. Derivation of the weak adjoint and well-posedness. In this section we482

provide the details of computing the adjoint to exact penalty weak form following483

the theory in §3. Then we use a standard saddle point argument to demonstrate the484

well-posedness of this new adjoint problem (4.5). We take inspiration for these proofs485

from [42]. To simplify notation in this section, we define486

(6.1) s := u+ uh, t := b+ bh.487

Finally, we use the notation
(·)
= and

(·)
 to denote that the equality or inequality is488

justified by equation (·).489

6.1. Derivation of the weak form of the adjoint. In this section we provide490

derivation for the primal linearized operators J ⇤
21 = Y⇤

, J ⇤
11 = Z⇤

u
, J ⇤

12 = Z⇤
b
and491

J ⇤
31 = C⇤ in (4.4). We first compute the primal linearized operators, Y = J 21,492

Zu = J 11, Zb = J 12 and C = J 31, using (3.11) and then apply (3.14) to compute493

the J ⇤
ijs. We have from (3.11) for d 2 H

1
⌧ (⌦) and w 2 H

1
0(⌦),494

Y d :=

Z 1

0

@Y
@b

(sb+ (1� s)bh)d ds,495

Zb d :=

Z 1

0

@Z
@b

(su+ (1� s)uh)d ds,496

Zu w :=

Z 1

0

@Z
@u

(sb+ (1� s)bh)w ds.497
498
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To this end, we compute499

(6.2)

Y d =

Z 1

0

@Y
@b

(sb+ (1� s)bh)d ds

=

Z 1

0
[r⇥ (sb+ (1� s)bh)]⇥ d+ (r⇥ d)⇥ (sb+ (1� s)bh) ds

=
1

2
[(r⇥ (bh + b))⇥ d+ (r⇥ d)⇥ (bh + b)] .

500

Similarly, for the two Z terms,501

(6.3)

Zb d =

Z 1

0

@Z
@b

(su+ (1� s)uh)d ds

=

Z 1

0
r⇥ ((su+ (1� s)uh)⇥ d) ds =

1

2
[r⇥ ((uh + u)⇥ d)] .

502

An identical procedure produces,503

(6.4) Zu w =
1

2
[r⇥ (w ⇥ (b+ bh))] .504

Now, to find the adjoints of these operators, we use (3.14), which in our case involves505

multiplying by a test function and then isolating the trial function using integration506

by parts. We also make use of the vector identities in Appendix B.507

We are now prepared to compute the adjoint for Y . Integrating (6.2) against508

v 2 H
1
0(⌦),509

(Y d,v) =
1

2

Z

⌦
[(r⇥ t)⇥ d+ (r⇥ d)⇥ t] · v dx510

(B.1a)
=

1

2

Z

⌦
d · [v ⇥ (r⇥ t)] + (r⇥ d) · [t⇥ v] dx511

(B.1b)
=

1

2

Z

⌦
�d · [(r⇥ t)⇥ v] + d · [r⇥ (t⇥ v)] dx� 1

2

Z

@⌦
d · [(t⇥ v)⇥ n] ds512

(B.1a)
=

1

2

Z

⌦
�d · [(r⇥ t)⇥ v] + d · [r⇥ (t⇥ v)] dx+

1

2

Z

@⌦
(t⇥ v) · [d⇥ n] ds513

(2.4)
=

1

2

Z

⌦
�d · [(r⇥ t)⇥ v] + d · [r⇥ (t⇥ v)] dx

(4.4)
= (d,Y⇤

v).514
515

We proceed with computing the adjoint for Zu, with c 2 H
1
⌧ (⌦),516

(Zu w, c) =
1

2
(r⇥ (w ⇥ t), c)517

(B.1b)
=

1

2

Z

⌦
(w ⇥ t) · (r⇥ c) dx� 1

2

Z

@⌦
(w ⇥ t) · (c⇥ n) ds518

(B.1a)
=

1

2

Z

⌦
w · [t⇥ (r⇥ c)] dx� 1

2

Z

@⌦
(w ⇥ t) · (c⇥ n) ds519

(2.4)
=

1

2

Z

⌦
w · [t⇥ (r⇥ c)] dx

(4.4)
= (w,Z⇤

u
c).520

521
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Finally we compute the adjoint to the linearized operator Zb, again with c 2 H
1
⌧ (⌦),522

(Zb d, c) =
1

2
(r⇥ (s⇥ d), c)523

(B.1b)
=

1

2

Z

⌦
(s⇥ d) · (r⇥ c) dx� 1

2

Z

@⌦
(s⇥ d) · (c⇥ n) ds524

(B.1a)
=

1

2

Z

⌦
d · [(r⇥ c)⇥ s] dx� 1

2

Z

@⌦
d · [s⇥ (c⇥ n)]� (s⇥ d) · (c⇥ n) ds525

(2.4)
=

1

2

Z

⌦
d · [(r⇥ c)⇥ s] dx

(4.4)
= (d,Z⇤

b
c).526

527

The operator C⇤ is identical to the one presented in [33].528

6.2. Well posedness of the adjoint problem. In this section we prove the529

well-posedness of the adjoint problem §4.1 equation (4.5) using a saddle point type530

argument. To keep consistent with the standard setting of saddle point problems531

[27, 13], we use the notation X := H
1
0(⌦) ⇥ H

1
⌧ (⌦) and M := L

2(⌦) so that P =532

X ⇥M . We equip the space X with the graph norm533

(6.5) k(v, c)kX := (kvk21 + kck21)1/2.534

We next define the bilinear form a : X ⇥X ! R by535

(6.6)

a((�,�), (v, c)) =
1

Re
(r�,rv) +

⇣
C⇤
�,v

⌘

+


Rem
(r⇥ �,r⇥ c) +



Rem
(r · �,r · c)

�
⇣
Y⇤
�, c

⌘
� 

⇣
Z⇤

u
�,v

⌘
� 

⇣
Z⇤

b
�, c

⌘
,

536

and the mixed form b : X ⇥M ! R by537

(6.7) b((�, c),⇡) = (⇡,r · �).538

The weak dual problem (4.5) is then equivalent to the following mixed problem: find539

((�,�),⇡) 2 X ⇥M such that540

(6.8)

(
a((�,�), (v, c)) + b((v, c),⇡) = f(v, c), 8(v, c) 2 X,

b((�,�), q) = �g(q), 8q 2 M,
541

where f(v, c) = ( 
u
,v) + ( 

b
, c), g(q) = ( p, q) and  =

⇥
 

u
, 

b
, p

⇤T
so that542

( , V ) = f(v, c) + g(q). According to the theory of saddle point systems, in order to543

show the existence and uniqueness of solutions to (6.8), it su�ces to show:544

(i) The bilinear forms a(·, ·) and b(·, ·) are bounded on their respective domains.545

(ii) The form a(·, ·) is coercive on X0 := {v 2 X : b(v, q) = 0, 8q 2 M}.546

(iii) The form b(·, ·) satisfies the inf-sup condition: 9� > 0 such that547

(6.9) inf
q2M

sup
(v,c)2X

b((v, c), q)

k(v, c)kXkqkM
� �.548

We organize these parts in the following lemmas. We make frequent use of the in-549

equalities in Appendix C in the proofs.550
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Lemma 6.1. The form a(·, ·) is bounded on X.551

Proof. Consider the splitting552

(6.10) a((�,�), (v, c)) = a0((�,�), (v, c)) + a1((�,�), (v, c))553

where554

a0((�,�), (v, c)) =
1

Re
(r�,rv) +



Rem
(r⇥ �,r⇥ c) +



Rem
(r · �,r · c) ,555

a1((�,�), (v, c)) =
⇣
C⇤
�,v

⌘
� 

⇣
Y⇤
�, c

⌘
� 

⇣
Z⇤

u
�,v

⌘
� 

⇣
Z⇤

b
�, c

⌘
.556

557

Then it su�ces to show that both a0(·, ·) and a1(·, ·) are bounded separately. The558

proof for the boundedness of a0 is given in [42]. For a1 observe that559

(6.11)

|a1((�,�), (v, c))| 
Z

⌦

���C⇤
� · v

��� dx+ 

Z

⌦

���Y⇤
� · c

��� dx

+

Z

⌦

���Z⇤
u
� · v

��� dx+ 

Z

⌦

���Z⇤
b
� · c

��� dx.
560

Now, for the first term on the right hand side of (6.11),561

Z

⌦

���C⇤
� · v

��� dx =
1

2

Z

⌦

�� ⇥(rs)T�� ((s ·r)�)� (r · s)�
⇤
· v
�� dx562

=
1

2

Z

⌦

���T (rs)v � v
T (r�)s� (r · s)(� · v)

�� dx563

(C.5)
 1

2
[k�kL4ksk1kvkL4 + k�k1kskL4kvkL4 + kr · skk� · vk]564

(B.2d)
 1

2

h
k�kL4ksk1kvkL4 + k�k1kskL4kvkL4 +

p
3ksk1k�kL4kvkL4

i
565

(C.1)
 �

2

⇣
k�k1ksk1kvk1 + ksk1k�k1kvk1 +

p
3ksk1k�k1kvk1

⌘
566

 3
p
3�

2
ksk1k�k1kvk1,567

568

where � is the square of the embedding constant of H1(⌦) into L
4(⌦), see (C.1). For569

the second term on the right hand side of (6.11),570



⇣
Y⇤
� · c

⌘
 

2

Z

⌦

��c · [(r⇥ t)⇥ �]
��+
��c · [r⇥ (t⇥ �)]

�� dx571

(B.1b)
=



2

Z

⌦

��c · ((r⇥ t)⇥ �)
��+
��(r⇥ c) · (t⇥ �)

�� dx572

(B.1a)
=



2

Z

⌦

��(r⇥ t) · (c⇥ �)
��+
��(r⇥ c) · (t⇥ �)

�� dx573

(B.2b)
 

2
(kr ⇥ tkL2kckL4k�kL4 + kr ⇥ ckL2ktkL4k�kL4)574

(B.2c)
 

p
2

2
(kckL4ktk1k�kL4 + kck1ktkL4k�kL4)575

(C.1)
 �

p
2kck1ktk1k�k1.576577
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For the third term on the right hand side of (6.11),578



⇣
Z⇤

u
�,v

⌘
 

2

Z

⌦

��v · [t⇥ (r⇥ �)]
�� dx (B.1b)

=


2

Z

⌦

��(v ⇥ t) · (r⇥ �)
�� dx579

(B.2c)
 

p
2

2
kvkL4ktkL4k�k1

(C.1)
 �

p
2

2
kvk1ktk1k�k1.580

581

The fourth term follows the same argument as the third term to yield the bound,582



⇣
Z⇤

b
�, c

⌘
 �

p
2

2
kck1ksk1k�k1.(6.12)583

584

Putting these bounds together, we conclude585

(6.13)

a1((�,�), (v, c))  �

✓
3
p
3

2
ksk1k�k1kvk1 + 

p
2kck1ktk1k�k1

+

p
2

2
kvk1ktk1k�k1 +


p
2

2
kck1ksk1k�k1

◆

(C.2)
 �

 
3
p
3

2
ksk1k�k1kvk1 +


p
2

2
kck1ksk1k�k1

+ktk1
p
2k(v, c)kXk(�,�)kX

!

(C.2)
 �

 
ksk1 max

(
3
p
3

2
,

p
2

2

)
k(v, c)kXk(�,�)kX

+ktk1k(v, c)kXk(�,�)kX

!

 ↵bk(v, c)kXk(�,�)kX ,

586

where587

↵b = max

(
ksk1 max

(
3
p
3

2
,

p
2

2

)
, ktk1

)
.

588

Now we consider the coercivity of the bilinear form a(·, ·) on X.589

Lemma 6.2. There exists a constant ↵c > 0 such that whenever590

(6.14)
k1

Re
� �

"
3
p
3

2
ksk1 +

3
p
2

4
ktk1

#
> 0,591

and592

(6.15)
k2

Re2m
� �

"

p
2

2
ksk1 +

3
p
2

4
ktk1

#
> 0593

then594

(6.16) a((�,�), (�,�)) � ↵ck(�,�)k2X , 8(�,�) 2 X.595
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Proof. Using the splitting established in the previous lemma,596

(6.17)

a((�,�), (�,�)) � a0((�,�), (�,�)) � |a1((�,�), (�,�))|

=
1

Re
(r�,r�) + 

Rem
(r⇥ �,r⇥ �) + 

Rem
(r · �,r · �)

� |a1((�,�), (�,�))|

� k1

Re
k�k21 +

k2

Re2m
k�k21 � |a1((�,�), (�,�))|

597

where k1 comes from the Poincaré type inequality (C.3), and k2 is defined though598

(6.18) kr ⇥ vk20 + kr · vk20 � k2kvk21, 8v 2 H
1
⌧ (⌦),599

which is valid under the restrictions we have imposed on the domain ⌦ and the600

continuous embedding of H
1
⌧ (⌦) ,! H

1(⌦) [40, 42]. Picking up from (6.17) and601

using (C.4) we conclude that,602

a((�,�), (�,�)) � k1

Re
k�k21 +

k2

Re2m
k�k21 � |a1((�,�), (�,�))|603

(6.13)
�

 
k1

Re
� �3

p
3

2
ksk1

!
k�k21 +

 
k2

Re2m
� �

p
2

2
ksk1

!
k�k21604

� �3
p
2

2
k�k1ktk1k�k1605

(C.4)
�
 

k1

Re
� �3

p
3

2
ksk1

!
k�k21 +

 
k2

Re2m
� �

p
2

2
ksk1

!
k�k21606

� �3
p
2

4
ktk1

�
k�k21 + k�k21

�
607

=

 
k1

Re
� �

"
3
p
3

2
ksk1 +

3
p
2

4
ktk1

#!
k�k21608

+

 
k2

Re2m
� �

"

p
2

2
ksk1 +

3
p
2

4
ktk1

#!
k�k21.609

610

Thus, taking611

(6.19)

↵c = min

(
k1

Re
� �

"
3
p
3

2
ksk1 +

3
p
2

4
ktk1

#
,

k2

Re2m
� �

"

p
2

2
ksk1 +

3
p
2

4
ktk1

#)
,

612

concludes the lemma.613

Remark 2. We note that the quantities assumed to be positive in (6.14) and614

(6.15), depend on the computed and true solutions through ksk and ktk, which should615

should both be bounded for “small data” as described precisely in Theorem 4.7 of616

[42]. The two quantities in (6.14) and (6.15) also depend on the fluid and magnetic617

Reynolds numbers (Re and Rem respectively). In particular, for small to moderate618
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Re and Rem these inequalities might very well be satisfied, which is the case for dis-619

sipative MHD. However, the larger are Re and Rem (and in particular for the limit620

as Re,Rem ! 1, that is in the case of ideal MHD), the smaller the positive terms of621

(6.14) and (6.15), and thus coercivity cannot be proven by this method. We conclude622

this method might therefore need to be adapted for high Re or Rem flows to guarantee623

coercivity.624

Now we are prepared to prove the main result.625

Theorem 6.3. Under the conditions of Lemma 6.2 there exists a unique solution626

to the dual problem (4.5).627

Proof. The boundedness and inf-sup condition for b(·, ·) are standard see e.g. [13].628

The boundedness of a(·, ·) follows from Lemma 6.1, and Lemma 6.2 proves a(·, ·) is629

coercive on X so in particular on X0.630

7. Conclusions. We have presented an adjoint-based a posteriori analysis of ad-631

joint for an exact penalty formulation of incompressible resistive MHD. This included632

the derivation of the adjoint error estimate, and a development that characterized the633

separate contributions of error from the momentum, continuity and magnetic field634

equations. The numerical examples illustrated both the accuracy as well as the use-635

fulness of the error estimate for the the assessment of the respective sources of the636

error from the di↵erent physics components. The example QoIs included two di↵ering637

physically meaningful quantities, the averaged velocity-related to the flow rate, and638

the induced magnetic field strength.639

The novel aspects of this work include defining an adjoint problem for an overde-640

termined system, namely the stationary MHD equations. In particular, the standard641

definition of an adjoint operator does not su�ce and we must define the adjoint di-642

rectly for the weak problem. Moreover, we prove the well-posedness of the adjoint643

problem. The error estimates derived in this article are also amenable for using in644

adaptive refinement algorithms e.g. see [5, 14, 6, 20, 36, 16].645

Appendix A. Standard function spaces. We denote by L
2(⌦) the set of all646

square Lebesgue integrable functions on ⌦ ⇢ Rd with associated inner product (·, ·)647

and norm k · k. This extends naturally to vector valued functions, denoted by L
2(⌦),648

where the inner product is given by,649

(u,v) =
dX

i=1

(ui, vi).650

The Sobolev norm for p = 2 is,651

kvkm :=

0

@
mX

|↵|=0

��D↵
v
��2
1

A
1/2

.652

where ↵ = (↵1, . . . ,↵m) is a multi-index of length m and653

D
↵
v := @

↵1
x1

. . . @
↵m
xm

v,654

where the partial derivatives are taken in the weak sense. Thus, the Hilbert spaces655

H
m for m = 0, 1, 2, . . . is simply be defined as functions with bounded m-norm,656

H
m(⌦) := {v : kvkm < 1}.657
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The space H
0(⌦) is identified with L

2(⌦). For vector valued functions, the Hilbert658

space H
m is defined as,659

H
m(⌦) := {v : vi 2 H

m(⌦), i = 1, . . . , d},660

with associated norm661

kvkm =

 
dX

i=1

kvik2m

!1/2

.662

663

Appendix B. Vector identities and inequalities. We use the following664

vector identities,665

A · (B ⇥C) = B · (C ⇥A) = C · (A⇥B),(B.1a)666
Z

⌦
A · (r⇥B) dx =

Z

⌦
B · (r⇥A) dx�

Z

@⌦
B · (A⇥ n) ds.(B.1b)667

668

We also make use of the following inequalities for u,v 2 H
1(⌦),669

|u · v|  kukRdkvkRd ,(B.2a)670

ku⇥ vkRd  kukRdkvkRd ,(B.2b)671

kr ⇥ ukRd 
p
2krukRd⇥d ,(B.2c)672

|r · u| 
p
3krukRd⇥d(B.2d)673

kAvkRd  kAkRd⇥dkvkRd ,(B.2e)674675

and finally the equality676

(B.3) krv
T kRd⇥d = krvkRd⇥d ,677

Appendix C. Useful inequalities from analysis.678

1. The space H
1(⌦) embeds continuously in L

4(⌦) with constant
p
�. That is,679

H
1(⌦) ,! L

4(⌦) such that,680

(C.1) kvkL4  p
�kvkH1 .681

2. The Cauchy-Schwarz inequality for
⇥
a, b
⇤
,
⇥
c, d
⇤
2 R2,682

(C.2) ac+ bd =
⇥
a, b
⇤ ⇥
c, d
⇤T 

p
a2 + c2

p
b2 + d2,683

3. The following inequality follows from the Poincaré inequality,684

(C.3) krvk20 � k1kvk21, 8v 2 H
1
0(⌦).685

4. For x, y 2 R,686

(C.4) � xy � � 1
2 (x

2 + y
2),687

We also need the following propositions,688

Proposition 1. Let u,v,w 2 H
1(⌦). Then there holds689

(C.5)

Z

⌦
u
T (rv)w dx  kukL4kwkL4kvk1.690

This manuscript is for review purposes only.



A POSTERIORI ANALYSIS OF MHD 25

Proof. We will work with the integrand first. To this end, we have that691

u
T (rv)w =

dX

i=1

uiw
Trvi 

dX

i=1

|ui|kwkRdkrvikRd = kwkRd

dX

i=1

|ui|krvikRd692

 kwkRd

 
dX

i=1

|ui|2
!1/2 dX

i=1

krvik2Rd

!1/2

= kwkRdkukRdkrvkRd⇥d .693

694

Now we integrate,695

Z

⌦
|wkRdkukRdkrvkRd⇥d dx696


✓Z

⌦
kuk2Rdkwk2Rd dx

◆1/2✓Z

⌦
krvk2Rd⇥d

◆1/2

697


✓Z

⌦
kuk4Rd dx

◆1/4✓Z

⌦
kwk4Rd dx

◆1/4✓Z

⌦
krvk2Rd⇥d dx

◆1/2

698

= kukL4kwkL4 |v|1  kukL4kwkL4kvk1.699700
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