IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 1, JANUARY 2021

55

A Dynamic Timing Enhanced DNN Accelerator
With Compute-Adaptive Elastic
Clock Chain Technique

Tianyu Jia™, Member, IEEE, Yuhao Ju, Student Member, IEEE, and Jie Gu™, Senior Member, IEEE

Abstract— This article presents a deep neural network (DNN)
accelerator using an adaptive clocking technique (i.e., elastic
clock chain) to exploit the dynamic timing margin for the 2-D
processing element (PE) array-based DNN accelerator. To address
two major challenges on exploiting dynamic timing margin for
modern deep learning accelerators (i.e., diminishing dynamic
timing margin on a large array and strong timing dependence
on runtime operands), in this work, we proposed an elastic
clock chain scheme to provide a flexible multi-domain clock
management scheme for in siru compute adaptability. More
specifically, a total of 16 clock domains have been created for
the 2-D PE array with the clock periods dynamically adjusted
based on both runtime instructions and operands. The multi-
domain clock sources are generated from a multi-phase delay-
locked loop (DLL) and delivered by a global clock bus. The
clock offsets between neighboring domains are deliberately man-
aged to maintain the synchronization among clock domains.
A 16 x 8 PE array that supports different DNN dataflows and
bit-precisions was fabricated using a 65-nm CMOS process. The
measurement results on MNIST and CIFAR-10 data sets showed
that the effective operating frequency was improved by up to
19% for a single instruction multiple data (SIMD) data flow by
enabling the operation of the proposed elastic clock chain. The
performance improvement was converted into up to 34% energy
saving. Compared with SIMD data flow, the systolic dataflow
shows reduced performance improvement of up to 11% due to
the consideration of all in-flight operand values.

Index Terms— Adaptive clocking, deep neural network (DNN)
accelerator, dynamic timing margin, multiple clock domains,
processing element (PE), systolic array.

I. INTRODUCTION

N RECENT years, machine learning-related computing
tasks, especially those using deep neural networks (DNNs),
have attracted huge interests from both software and hardware
communities due to the algorithm’s groundbreaking accuracy
achievement on many applications, such as image or voice

Manuscript received April 25, 2020; revised July 8, 2020 and
September 2, 2020; accepted September 27, 2020. Date of publication
October 13, 2020; date of current version December 24, 2020. This article
was approved by Guest Editor Ping-Hsuan Hsieh. This work was supported
in part by the National Science Foundation under Grant CCF-1618065.
(Corresponding author: Tianyu Jia.)

Tianyu Jia was with the Department of Electrical and Computer Engineer-
ing, Northwestern University, Evanston, IL 60208 USA. He is now with the
School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138 USA (e-mail: tjia@seas.harvard.edu).

Yuhao Ju and Jie Gu are with the Department of Electrical and Computer
Engineering, Northwestern University, Evanston, IL 60208 USA.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2020.3027953

recognition, natural language processing, etc. The ubiquitous
application of DNN and the intensive computation requirement
strongly stimulate the design of domain-specific application-
specified integrated circuit (ASIC) DNN accelerators [1]-[4].
To improve the energy efficiency of DNN accelerators, many
design approaches have been explored at architecture or
micro-architecture level, such as flexible dataflows [1], bit-
precision [2], [3], quantization [4], etc. However, there have
been very few explorations of adaptive techniques for special-
ized DNN accelerators yet. In this work, an adaptive clocking
scheme with an elastic clock chain is developed to exploit the
dynamic timing margin during runtime and improve the per-
formance for a 2-D array-based DNN accelerator architecture.

Previously, adaptive techniques have been widely studied
and adopted for microprocessors to improve the energy effi-
ciency of the digital system [5]—[8]. In the conventional micro-
processor design, each microprocessor core requires significant
frequency or voltage guardband margin to secure the chip’s
operations in the presence of various sources of variations
such as process, voltage, and temperature (PVT), aging, and
jitter, etc. However, these guardbands are determined based
on the worst-case variations leading to degradation of proces-
sors’ performance and energy efficiency in normal operations.
As a result, many adaptive techniques have been developed
for processors to reduce this guardband. For example, adaptive
clocking schemes have been developed to dynamically adjust
the clock period to mitigate voltage droop impact [5], [6].
Fully integrated voltage regulators have been leveraged to
adaptively scale the supply voltage levels to reduce the voltage
guardband [7], [8]. In these adaptive techniques, the voltage
droop events are monitored to guide the regulations of clocks
or voltages.

Recently, a few adaptive techniques have been explored on
DNN accelerators. In [9], the globally asynchronous locally
synchronous (GALS) adaptive clocking has been implemented
on a scalable processing element (PE) array-based DNN
accelerator [10]. Each PE partition contains its clock domain
provided by a local adaptive clock generator. As a result,
the droop protection guardband of each PE can be reduced
leading to promising performance improvement. However, this
work only focuses on mitigating the impact of voltage droop
and does not exploit the finer-grained dynamic timing slack
(DTS). In [11], the error resiliency feature of DNN has been
exploited on a 1-D single instruction multiple data (SIMD)
DNN accelerator by utilizing Razor flip-flops. An adaptive

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4570-4613
https://orcid.org/0000-0003-2912-7294

56

Pipeline

T Vad

===

Timing

{ 80
[}

I

I

| Timing L \ \

I Control A A | A .
Lo ——__ add mov .- orr:

Guide | In-flight instructions)
N o o o o o o o - - - - - -

Conventional Clocking:
: l | l | l |

. | Pipe1 — —
Dynamic |pipe 2 | | Logic pTgi

Delay: hpi e _ # _
Ao

Instruction-driven Clocking: Speedup

Fig. 1. Instruction-driven adaptive clocking scheme for a pipelined micro-
processor [16]-[18].

clocking scheme is further developed to manage the clock
period when the timing errors are detected to improve energy
efficiency [12]. However, the above schemes are only imple-
mented for a group of 1-D vector MAC units and will be
challenging to be applied for a more commonly used 2-D PE
array-based architecture.

Exploiting runtime dynamic timing margin brings addi-
tional performance and energy gains beyond the droop-based
adaptive schemes. In typical digital circuits, the critical paths
with the longest logic delay are not always excited during
the program’s runtime. The timing margin existed between
the actual cycle-by-cycle path delay and the worst-case clock
period is referred to as “DTS” [13]. In the past, the DTS
margin has been exploited by instruction-driven adaptive
clocking schemes for simple in-order CPUs [14], [15] or a
more complicated GPGPU architecture [16]. As the example
illustrated in Fig. 1, all the in-flight instructions in the pipeline
stages were monitored during runtime to guide the clock
period adjustment. For each clock cycle, the dynamic delays
from all pipeline stages were analyzed in advance. The longest
dynamic delay among all pipeline stages was identified as
the target clock period to guide the dynamic clock period
adjustment. As the clock period can be dynamically scaled
cycle-by-cycle, a notable performance speedup was obtained
on the benchmark programs [14]-[16].

Although some promising results have been reported to
exploit DTS for microprocessors, it is still very challenging
to apply similar adaptive clocking technique for DNN accel-
erator, especially the 2-D array-based accelerator architecture.
There are two major challenges to exploit DTS inside the
accelerator PE array. First, the DTS benefit becomes very
small after considering the worst-case dynamic timing within
the entire 2-D PE array. Second, there is a lack of runtime
instructions for the accelerator to guide the cycle-by-cycle
clock management. In this work, we developed a compute-
adaptive elastic clock chain technique, which utilizes a multi-
domain clocking scheme to exploit DTS for a PE array-based
DNN accelerator. In addition to the runtime instructions,
the real-time operand values are also utilized to guide the clock

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 1, JANUARY 2021

Configurable MAC

Multi dataflow/
bit-precision

Diminished DTS

ingle

s 4| bt b 2]

PE

Margin (%)

k2
| Accumulation & Activation |
2-D SIMD Flow
——

Dynamic Timing

16 16x8

8
Systolic Flow PE Number
=D

(a)

STA Timing

i

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55
Runtime Cycle

(b)

Delay (ns)

Dynamic
o o

[I NN

-
PEO

Fig. 2. (a) 2-D PE array architecture used in this work with diminished DTS
margin. (b) Dynamic timings of six PEs during MNIST inference runtime.

management. The experiments on a 65-nm CMOS silicon test
chip showed that up to 19% performance gain or 34% energy
saving can be obtained for DNN inference using MNIST and
CIFAR-10 data set [18].

The rest of this article is organized as follows. The DTS
margin for a PE array is analyzed in Section II, which also
illustrates the design challenges. The overview of the devel-
oped multi-domain clocking scheme for PE array architecture
is presented in Section III. Section IV introduces the compute-
adaptive timing analysis and the clock management strategy.
The synchronization policy for the elastic clock chain is
presented in Section V. The implementation and measurement
results obtained from the test chip are shown in Section VI,
followed by conclusions in Section VII.

II. DYNAMIC TIMING STUDY IN PE ARRAY

To evaluate the dynamic timing behaviors inside the PE
array during DNN operation, a 2-D PE array with 16 rows
and 8 columns is built, as shown in Fig. 2(a). Each PE is a
reconfigurable MAC unit, which can support various precision
including INT1/4/8. The PE array has two operation configu-
rations for different dataflow mappings. First, each column can
independently process one output channel value of the neural
network in an output stationary fashion, which is the same
as the 2-D vector SIMD architecture in [4]. Second, the data
path of the PE array can also be configured as a systolic array
with the input activation (ACT) values shared across each row
as in [17]. These two representative dataflows are implemented
in the same PE array with very small reconfiguration overhead.
The DTS exploitation benefit for both configurations will be
demonstrated later in Section VI.

JIA et al.: DYNAMIC TIMING ENHANCED DNN ACCELERATOR

B 60%
O 50%
3 0%
c 30%
é’ 20%
5 10% ==

uSingle PE m4PE m8PE_ =128 PE

-

o 0%
° 08 09

1 1.1 12
Dynamic Delay (ns)

Fig. 3. Histograms of the worst-case dynamic timing considering different
numbers of PEs.

The gate-level netlist of the PE unit is generated after syn-
thesis and place and route using industry-standard EDA tools.
The speed of the PE unit is closed at 700 MHz. To simulate
the dynamic timing behavior for every PE, all 128 PE units
in the array are using gate-level netlist with back-annotated
timing from RC extraction. Fig. 2(b) shows the simulated
runtime dynamic timings of six individual PE units under 2-D
SIMD INTS operation mode for the MNIST data set inference.
During the simulation, the data toggling time of every flip-
flop inside the PE unit is monitored for every clock cycle,
with the last data transition time recorded as the dynamic
timing of the PE. It is observed that there is a large variation
of the dynamic timing for a single PE unit cycle-by-cycle.
As analyzed later in Section IV, this dynamic timing variation
is highly related to the operand value changes and different
configuration modes. Besides, the longest critical paths are
rarely exercised during runtime leading to a significant DTS
margin between the dynamic timings and the worst-case static
timing analysis (STA) timing. However, every PE unit shows
different runtime dynamic timing patterns due to the difference
of real-time operands (i.e., weights and input values). To apply
prior cycle-level adaptive clocking to PE array [15], [16], the
worst-case dynamic timing among all PE units needs to be
considered to guide the clock adjustment every cycle.

Fig. 3 shows the distribution histogram of dynamic timing
considering the worst-case dynamic timing among different
number of PE units for the MNIST inference task. Within a
single PE, the dynamic timings of a majority of run cycles are
only around 1 ns, which is much shorter than the STA reported
clock period of 1.43 ns. Considering the longest dynamic
timing among four or eight PEs every cycle, the dynamic
timing cluster shifts toward STA timing while still centralized
around 1.1 ns. However, if considering the worst-case dynamic
timing among the entire PE array, the majority of run cycles
have dynamic timings very close to STA timing, e.g., around
1.3 ns. As every PE is processing different operand values,
each PE has a different dynamic timing at any given cycle.
The diminishing DTS margin indicates there is at least one PE
unit within the array exercising its critical path and dominating
the DTS margins for other PE units. Fig. 2(a) shows the
diminished DTS margin. It is observed that the DTS margin
diminishes with the size of PE array increasing (i.e., reducing
from 40% to only 4% when the number of PEs increases
from 1 to 128).

As DTS almost disappears when considering the worst-
case dynamic timing for the entire 2-D PE array, the previous

57

Clock

Memories

%2019

%2019

julewoq Quiewoq

Zulewoq
%2019

glutewoq
%2019

Fig. 4. Overview of the multi-domain clocking design on the 2-D PE array.

centralized DTS adaptive techniques [14]-[16] cannot exploit
the dynamic timing margin effectively for a large 2-D PE
array. For the pipelined microprocessor with a few pipeline
stages [14]-[16], it is feasible to capture all the in-flight
instructions. The dynamic timing for each instruction can be
analyzed using STA in advance to guide the clock adjustment.
For the PE array-based accelerator, it is more challenging to
perform case timing analysis as the diversity of input activity
conditions. As illustrated in Fig. 3, the maximum DTS margin
can only be obtained by assigning a different clock domain for
each PE. However, this will require large design overhead and
complicated synchronization scheme. Therefore, we chose a
compromised design choice (i.e., each PE row has one clock
domain). Each row of eight PEs contains their clock domains
with a local manager module to guide clock period adjustment.
For the PE array with different sizes, the proposed elastic
clock chain scheme is scalable with both the row number and
PE number in a row. Although the row numbers can scale
freely in our scheme, the DTS benefits will degrade with the
increase of PE numbers in a clock domain, especially for the
systolic array dataflow. Therefore, we suggest to limit the PE
numbers within a clock domain to be 8-16 in practice. To fit
the reality of fewer instructions in accelerator design, the clock
management is guided by both runtime instructions and real-
time operand values to exploit the cycle-level DTS margin.

III. MULTI-DOMAIN ADAPTIVE CLOCKING SCHEME
A. Design Overview

In this work, we developed an adaptive clocking scheme
with multiple clock domains to exploit the runtime DTS in PE
array-based DNN accelerator. Fig. 4 shows the overview of the
DNN accelerator architecture and clocking scheme designed
for it. As introduced before, the data path of the PE array
can be configured into two operation modes. For the 2-D
SIMD configuration, the input ACT value is provided from
the A_Mem with 8-bit width and shared among all PEs in
the same row. The weight memory W_Mem has a wider

58

64-bit width to support simultaneous eight weights fetched
from different filter channels. The partial sum results inside
each PE are propagated vertically along with columns and
eventually accumulated by the accumulator on the bottom of
the array, which is the same as design [4]. In this operation
mode, each PE column is independently processing different
output channel values, with no data transfer across columns.
The PE array is also able to be configured as a systolic array,
in which the input values are reused horizontally from PE, to
PE; in each row. The multiplication values are accumulated
immediately by the PE unit one row below, which is the
same as [17]. There is an address generator module in each
row which manages SRAM address based on the operation
configurations.

To exploit the DTS benefit, each row of eight PE units with
their input/weight SRAMs are clocked by a different clock
domain. Therefore, there is a total of 16 clock domains in
this 16 x 8 array. The SRAMs are only accessed by the
local PEs within the same clock domain. To accommodate
the adaptive clocking technique, the interface of SRAM is
timing closed based on the fastest adaptive clock frequency.
The PE array generates the accumulation results at the bottom
row and stores the results to output memory O_Mem. The
accumulation and ACT modules on the bottom of the array and
the output memory are clocked by clock domain 15. An all-
digital PLL is designed to feed the root clock to a delay-locked
loop (DLL), which generates a clock phase bus sent to all the
clock domains. Inside each clock domain, a data detection and
timing controller (DDTC) module is designed to dynamically
select clock phases as a local clock based on the runtime
compute operands. Therefore, each clock domain could adjust
the clock period cycle-by-cycle to exploit the DTS margin.
Besides, the DDTC module also manages the synchronizations
through sync data paths across clock domains. The maximum
clock phase offset between neighbor domains is constrained
to guarantee the timing correctness of data paths crossing
domains, such as partial sum propagations.

B. Clock Phase Bus Design

Fig. 5 shows the design details of the clock phase bus
design. The architecture of DLL design in this work is similar
to previous work [19], in which a simple up/down counter is
used to tune the loading capacitance at every delay stage. DLL
is locked at the same frequency as PLL. The DLL delay line is
designed to provide 28 equally delayed phases of clock edges.
The identical amount of load capacitance is inserted at each
delay line stage, with careful layout optimization to minimize
the delay mismatch. Each delay stage generates one clock
phase, with a phase step about 50 ps. These 28 clock phases
are sent to all 16 clock domains through a global clock phase
bus, which travels a total distance of 1.5 mm. To minimize
the clock skew between different domains, the DLL is placed
in the center location of the floorplan, with eight PE rows at
both top and bottom sides.

The 28 clock phases (i.e., po—p27) travel from DLL delay
line to phase selection multiplexers in all clock domains using
high-level metal layers. As shown in Fig. 5(b), the routing

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 1, JANUARY 2021

44444 W]
PE, PE; vem |

>
£
£
5

g2
P
I

Q.

I
|
! PEo PE7 &
|
i

Phase Sel

Phase Mismatch

er

caNwbh OO

-4 1 0

3 2 - 1.2 3 4
Phase Offset(ps)

(b)

PhaseNumb(wwg-l’) sng aseqd)|30|:)

Fig. 5. (a) Design details of the multi-phase clock bus design. (b) Layout
optimizations for the clock phase routings.

layout for each clock phase has been carefully optimized with
similar lengths and loadings to reduce phase skew. In addition,
there are two additional clock phases p_; and pys, which
is one phase step earlier and later than phase po and pa7,
respectively, intentionally inserted at the clock bus boundaries.
These two dummy phases are also generated from the DLL
delay line and aim to provide a uniform and clean routing
environment for the clock bus. With these layout optimiza-
tions, the skew mismatch between neighbor clock phases has
been limited within 4 ps. The long clock routing distance
leads an 18-ps static mismatch from end to end domains,
e.g., between clock domain O and clock domain 7. However,
this static mismatch across the long clock trace is not critical
because each clock domain only needs to synchronize with its
neighboring domains.

The DDTC module is the clock manager inside each clock
domain. Based on runtime operand values and the instruction
configurations, DDTC will update its clock phase selection
every cycle. One clock phase is chosen from the clock bus
through a glitch-free phase-selection mux as the local clocking.
As shown in Fig. 6, all 28 clock phases are connected to the
phase selection mux in every clock domain. The key feature
of this phase selection mux is to support fast clock phase
adjustment within one cycle. In our design, only one NMOS
switch is turned on at a time to pass through the selected
clock phase. The pull-up PMOS is designed using a small
size transistor, with NMOS 4x wider. To avoid the clock
glitch during the phase selection, each clock phase needs to
pass through a negative edge-triggered clock gating cell. The
duration of the high phase of the clock remains the same
in every cycle for the simplicity of implementation, while
the low phase is reduced by the dynamic phase selection.
As all the logics and SRAMs in our design are triggered by
the positive edge, the unbalanced clock duty cycle will not
impact the normal operations. Other alternative solution for
phase selection mux design (e.g., stacking PMOSs) may lead

JIA et al.: DYNAMIC TIMING ENHANCED DNN ACCELERATOR

Input Value

Clock Ta0.1ns

Po P1 P2

P25 P26 P27

Fig. 6. Glitch-free phase selection mux and the clock adjustment waveform.

Instruction: Instruction:
* 8-bit MAC e 4-bit MAC
e SIMD conf. « Systolic conf.
-==» CPs -==» CPs
(a) (b)

Fig. 7. PE unit design and data path connections, and the PE critical paths
under (a) 2-D SIMD INT8 and (b) systolic INT4 modes.

to significant delay and is not adopted here. The slew rates of
rising and falling edge inside mux are balanced after passing
through the following clock buffers. Compared with the total
power, the phase selection mux power is negligible, but it
supports fast dynamic clock phase selection for our special
requirement.

The phase selection follows a rotary manner (i.e., selecting
an earlier phase to shrink the output clock period). DDTC
takes one clock cycle response time for data detection and
timing decision, which is equivalently one pipeline stage
inserted in the data path. Therefore, the DDTC only introduces
one clock cycle latency for the entire matrix multiplication
operation, which is negligible. In addition, the DDTC will not
impact the throughput of the PE array.

IV. COMPUTE-ADAPTIVE CLOCKING MANAGEMENT
A. PE Critical Path Study

Fig. 7 shows the design details of the PE unit and the data
path connections between neighbor PEs. In our design, each
PE unit can be configured to perform one 8-bit MAC, two 4-bit
MAG:s, or eight simultaneous 1-bit MACs every cycle. There
are three additional multiplexers added at the input values
port A, the partial sum input port PS_in and output port PS_out
to support both 2-D SIMD and systolic array configuration.
During 2-D SIMD configuration, each PE accumulates partial
sums and propagate the results to the bottom accumulator.
The input ACT value is shared among all PEs in the same
row. In the systolic configuration, each PE unit accumulates
the MAC results from the PE unit at one row above. The
input values are propagated horizontally from PEg to PE; with
eight different input values in-flight simultaneously in each
row. The design overhead for supporting these two data path

59

Example in Innovus:
set_case_analysis 0 A_reg_0_/Q
set_case_analysis 1 A_reg_1_/Q

PipeReg
PipeReg

Al7] 1
Fixe1 l
[—»| Acc[23]
- Fixed PaEh Delay D [—»{ Acc[22]
% e

W0 : PE Netlist LAl

set_case_analysis rise A_reg_7_/Q

set_case_analysis fall W_reg_0_/Q

set_case_analysis rise W_reg_7_/Q

Fixed
Fixed
Fixed

[No bit transition
8 0-1or1-0

report_timing

Fig. 8. Case STA method to find out the worst-case path delay under certain
input conditions.

configurations is only three multiplexers, which is very small
and will not impact the design timing closure.

To understand the dynamic timing characteristics inside
the PE unit, we first utilize the conventional STA method
to find out the critical paths with long delay under different
configurations. As the dash paths shown in Fig. 7, the critical
paths vary based on instructions (configurations) being issued.
During the 8-bit precision mode, the longest paths are domi-
nated by MAC operations in the first pipeline stage. However,
when switching to 4- or 1-bit precision, both the MAC and
data paths at the second pipeline stage become critical paths.
In addition, the partial sum data paths crossing PE unit are
also identified to have long delays after considering the speed
offset between neighbor clock domains, which will be further
explained in Section V. Therefore, it is observed that critical
paths vary at different PE locations under different instruction
configurations. To exploit this instruction based dynamic tim-
ing variation, a timing borrowing scheme is designed inside
PE to dynamically rebalance the pipeline timing.

B. Case Static Timing Analysis

To discover the dynamic timing dependence on the runtime
operands, a case-based STA method from the commercial EDA
tool is leveraged. As shown in Fig. 8, we first define the
transition conditions for all input registers inside PE final gate-
level netlist. Based on bit transition conditions during operand
update, the register activities of input value A, weight value W,
and accumulated value Acc are constrained to have either
certain fixed values or rising/falling transitions. In addition,
to define operation configurations, the configuration registers
are also set accordingly for proper dataflow and bit precision.
The register transition activities can be constrained using the
“set_case_analysis” command in commercial EDA tools. For
example, we can use “set_case_analysis rise A_reg_0_/Q” to
define bit A[0] to have a rising transition.

In the conventional STA timing closure, the longest data
path is closed timing with assuming both input A[7:0] and
W[7:0] have transition activities (e.g., transit from 0 x FF to
0 x 00, or vice versa). After defining input register activities,
the worst-case path delay is reported under the designated
transitioning conditions using the STA timing method. It is
worth mentioning that we only focus on the dynamic timing
dependence study for the input value A, assuming all the bits
of weight value W and accumulation value Acc can have
transitions. This is because the input value is shared among

60
PE Delay v.s. Transition Bits Am
14 STATi O Ay
» 3
£13 [mmmsTos o St o N S
51'2 # of transition bit: 2 "§
211 |[ZamEsi B s
(=) of transition bit: «Q L.
- _Ae—pe” VOO SigRIICANCE ~ g Timing
g ! 4 E Eontrol
; 09 # of transition bit: 0 g -
Q g
Pl S
AL AT A2) AS) A4 AISL AL Al7) Transition P‘mglammable
Bit Transition Position detection Significance

(a)

Fig. 9. (a) Dynamic timing results under different operand transition
conditions. (b) Dynamic timing control mechanism.

all PE units in the same row in SIMD configuration, which
is the same as other accelerator designs [4], [9]. It is hence
easier for the adaptive clocking management to only detect
A value. In the dynamic timing analysis, since we made no
case timing constraint for W bits, our analysis always captures
the worst-case W activity. For the systolic array configuration,
the clock period is determined by the longest dynamic timing
among eight in-flight A values in the row.

Fig. 9(a) shows the reported dynamic timings under differ-
ent input A transition conditions. Significant dynamic timing
dependencies on both the number of transitioning bits and
the transitioning bits’ positions are observed. As mentioned
previously, the PE timing is closed at 1.43 ns by the STA
method. If there is no bit flip of A value (i.e., A maintain
the same value within two consecutive cycles), the worst-case
path delay is only around 0.9 ns, which is much shorter than
the STA timing. In fact, due to the sparse characteristics of
the neural network, a significant amount of run cycles has no
A bit transition as A value is consistent to be 0. If there is
a single bit flip in A, the dynamic timing becomes longer to
between 1 and 1.2 ns. In addition, the bit transition positions
also contribute differently to the dynamic timing. In our PE
design, the toggling of MSB bits will lead to longer path delay
than LSB bits. When considering the cases with more than
two bits’ transition, the various combinations between different
bit flip positions make the exploration of worst-case dynamic
timing harder. Fig. 9(a) also shows the worst-case delay for
two bits of A being transitioned, e.g., the worst-case delay
with both A[0] and A[x] (x could be 1-7) transitioning. Under
this condition, the worst-case dynamic timing becomes around
1.3 ns, which is close to the STA timing.

To exploit the dynamic timing dependence on the operand
values, the transition activity of input A values is detected
inside the DDTC module to guide the fine-grained clock
management. Fig. 9 shows the dynamic timing control settings
considering both the transition bit number and bit position. The
difference between dynamic timing levels is set to be 0.1 ns,
which is the delay of two DLL delay stages. We choose the
0.1-ns interval to reduce the complexity of dynamic timing
selection and also add a protection margin for the cycle-to-
cycle jitter. As there are only a few timing levels, we adopt
the weighted sum approach to represent the dynamic timing
levels. Each bit of transition has a programmable significance,
which is a 3-bit value. During the elastic clock chain mode,

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 1, JANUARY 2021

0—1o0r1-0 PO O XXX RN -
Operands
Detection

Runtime
Phase Select :

Instruction
Types

Fig. 10. Compute-adaptive clock management strategy for PEs.

Y

Tunable
Clock Buffer

the significance values for all transitioning bits are summed
up to guide the dynamic clock management. Hence, both
the transition bit number and bit position significance are
leveraged to define proper clock adjustment levels.

C. Compute-Adaptive Clocking Strategy

Based on the previous dynamic timing studies, it is observed
that the PE dynamic timing is based on both instruction
configurations and the runtime operand value transitioning.
As shown in Fig. 10, to exploit the instruction-based timing
variation, a tunable delay buffer is implemented in the PE
to rebalance the pipeline timing under different instructions.
The tunable delay is realized by a series delay buffers with
very small area overhead, which is similar to [5]. The delay
setting of the tunable clock buffer is controlled by configu-
ration registers in each clock domain. Before the operation
of each neural network layer, the delay of clock buffer will
be updated according to the required bit precision. The buffer
can be tuned with a step of 50 ps to borrow timing At from
the second pipeline stage to the MAC stage based on different
instructions. For example, the tunable delay Af can be set as
large as 200 ps during INT8 mode, in which the critical paths
are dominated by the first pipeline stage MAC operations.
For IN1 mode, the timing difference between pipeline stags
becomes small and the timing borrowing Af is also set to be
small. It is worth to mention that it is quite common to use
the same bit precision for one entire DNN model (e.g., 8-bit
precision for all neural network layers). Therefore, the setting
of the tunable clock buffer only needs to be updated before
the entire DNN computation, which has negligible overhead.

To exploit the DTS margin existed within every cycle,
the clock period needs to be adjusted dynamically cycle-by-
cycle. In every clock domain, the DDTC module detects the
transitioning of local runtime operand values and determines
the clock period requirement for the next cycle. Based on
DDTC’s target clock period, one clock phase is selected
from the clock phase bus to either shrink or maintain a
constant clock period for the clock domain. Combining two
management strategies above, our adaptive clocking scheme
exploits both instruction-based and runtime operand-based
dynamic timing variations.

V. ELASTIC CLOCK CHAIN AND ITS SYNCHRONIZATION
A. Clock Chain Synchronization

As mentioned earlier, there are a total of 16 clock domains
in the PE array, each clock domain needs to synchronize its

JIA et al.: DYNAMIC TIMING ENHANCED DNN ACCELERATOR

Normal Normal Normal Faster
North ¥ 7ok Tclk Tclk

clkg 0.8Tck
Neighbor|
max max offset
clk, Current
Domain ,08Tck ,0.8Tck ,Tck Tek
Faster Faster Locked Locked Unlocked
Clkz
) % (b)
H ax Offset Fafter Fafter Locked Locked Unlocked
* Current Yo0.8Tck Y0.8Tclk Y Tclk Tclk
clk Domai i i
14 ?nax !’n offset
S_oul'h] 3
clks Neighbor ,Tck Telk Tclk 0.8Tclk
Normal Normal Normal Faster
(a) (C)
Fig. 11. (a) Clock synchronization inside the elastic clock chain, with each

clock domain constrains the maximum phase offset between both (b) north
neighbor domain and (c) south neighbor domain.

clock with its neighbor domains. As shown in Fig. 11(a), each
clock domain is running at a different speed based on different
local runtime operand values. To maintain synchronization
between neighbor domains, we constrain the maximum phase
offset between neighbor domains. When the phase offset
reaches the max constraint, the clock domain that runs faster
than its neighbor will be locked (i.e., not allow to speedup)
by using the worst-case STA clock period T¢x. The synchro-
nization policy adopts a simple unidirectional clock adjustment
strategy (i.e., only forcing the faster clock domain to be locked
until the neighbor domains catch up). Each clock domain
needs to monitor the phase offset between itself and its neigh-
bor domains. As the examples shown in Fig. 11(b) and (c),
whenever the current clock domain becomes too fast and
reaches the phase offset limit with either its North neighbor or
South neighbor domain, it will be forced to use the worst-case
clock period T¢k, until its neighbor clock domains speedup to
reduce the phase offset. Because all the 16 clock domains
run at different speeds while synchronizing neighbors within
offset margin, we refer the proposed adaptive clocking scheme
as “elastic clock chain,” as all the domains are synchro-
nized with some speed offsets forming a chain style clock
propagation.

The main reason for maintaining synchronization between
neighbor clock domains is to guarantee that data paths
which cross time domains can be completed within the same
amount of run cycles (i.e., no degradation of the throughput).
In addition, asynchronous clock domain crossing logic can be
avoided, which minimizes design costs. Inside the PE array,
one representative data path that crosses clock domains is the
partial sum propagation path which is connected vertically
along the PE column. To maintain the timing margin for the
partial sum data path, the maximum phase offset is confined
to be within 300 ps. In addition, this phase offset margin is
specially considered during the timing closure of the PE unit.
The partial sum data paths are given careful timing closure
(i.e., considering the maximum phase offset inside the timing
constraints of external input—output delay) to satisfy both setup
and hold timing. If the partial sum data path is critical with
long delay initially, we have to limit a smaller maximum clock
phase offset between clock domains.

61

------------------------------------- o Output
v Data

Transition Phase -4u.;.>phase

Detection L Selection ! OFFSET

Logic H

Phase
SEL

D,
, D>
Vi

from/to South Nejghbor SEL from
Input data North, OFFSET
———————————————— i 'to-NErth
I .
s] Phase EI»
um__ Sum| Timin, Offset
» —I—E' FFSET
max } | $ |
W Programmable ||| Phase _I§EL
Timing Table | Calc. L
for Systolic =
R - = SELto

SEL: the selected phase number for the current domain
OFFSET: phase offset between current and North domains OFFSET
from South

Fig. 12. Design details of DDTC module.

B. Data Detection and Timing Controller

The DDTC module is implemented in every clock domain
to manage the local clock period adjustment. Fig. 12 shows the
design details of DDTC, which has two main functionalities.
First, DDTC detects the bit transition conditions of input value.
The input value A is fetched from SRAM and buffered in
DDTC for the timing detection. The transition of each A bit
is detected by XOR transition detectors. The significances of
all the transitioning bits are summed up as the Sum value.
A small lookup table is implemented inside DDTC to store
dynamic timing settings for different transition significance
summations Sum. After enabling the proposed elastic clock
chain, a target clock period will be selected out based on
the significance summation value every cycle. Second, DDTC
determines the target clock period for the following cycle.
Based on the summed significance Sum and the phase offsets
with neighbor domains, the DDTC determine the dynamic
clock period. There is a phase offset module that continuously
monitors the phase offset between the current domain and
its North neighbor. This phase offset is considered for phase
calculation for the current domain and is also sent to its North
neighbor domain.

The phase calculation module determines the clock phase
selection based on three items: the target clock period selected
from the lookup table, the North neighbor phase offset
recorded in phase offset module, and the South neighbor phase
offset sent from the South clock domain. If both North and
South phase offsets are within the phase offset limit, the
phase selection will allow the target clock period to speedup
(i.e., select earlier clock phase to shrink the clock period).
If one neighbor phase offset has reached the max offset, the
clock phase selection is maintained the same as the worst-case
clock period Tg.

For 2-D SIMD configuration, the target clock period is
selected from the lookup table every cycle based on the
operand detection. For systolic array configuration, an addi-
tional queue is designed to store the operand detection results
for the past eight cycles, as the input value will be propagated

62

65nm CMOS
3.6mm?

288mW

Technology

Active Area

Total Power

700MHz
820MHz
0.5-1Vv
84KB
1.6%
1.1%
2.2%

Base Freq.

Boosted Freq.
Supply Vdd
SRAM
DLL Area
Clk Bus Area
DDTC Area

Fig. 13. Die photograph and the implementation details of chip.

TABLE I
POWER BREAKDOWN OF THE CHIP (mW)

Total Power 288
16x8 PE array 165 (57.3%)
SRAM memories 95.6 (33.2%)
PLL 11.5 (4.0%)
DLL 5.1 (1.8%)
Clock Bus 3.6 (1.2%)
DDTC 7.2 (2.5%)

inside PE row and last for eight cycles. The largest significance
summation values from these eight cycles will be used for the
target clock period selection. The overall data buffering and
DDTC only introduces a negligible one clock cycle of latency
in the accelerator’s execution. After DDTC updates the phase
selection, the clock period will be dynamically adjusted within
the following cycle.

VI. CHIP IMPLEMENTATION AND MEASUREMENT
A. Chip Implementation

A 2-D PE array-based DNN accelerator with the elastic
clock chain techniques was fabricated using a 65-nm CMOS
process. The chip die photo and implementation details are
shown in Fig. 13. The active die area is 3.6 mm?. The nominal
supply voltage and operating frequency are 1 V and 700 MHz.
The chip is tested with voltage scaled down to 0.5 V.

There is a total of 128 PE units in the 2-D array with 16 rows
and 8 columns. The DLL is placed in the center position to
reduce the clock skew between different domains. The clock
phase bus and DDTC modules are placed between PE array
and all SRAM memories. The input ACT values are fetched
from image memory and sent to DDTC first. The DDTC
detects runtime compute operands and determines clock phase
selection cycle-by-cycle. The accumulation and ACT modules
are located at the bottom of the PE array and clocked by clock
domain 15. All the on-chip SRAM content can be preload and
read out through a scan IO interface. FPGA board is utilized
as the interface to communicate data between the laptop and
the chip for scanning in or out the memory data for functional
verification.

To realize the elastic clock chain design, the clock phase
bus consumes 1.1% of the total accelerator area and the
DDTC modules consume 2.2% of the area. Table I provides

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 1, JANUARY 2021

Clock
Domain13 |

Clock

Domain14 |

0 0 s
1 1 1R
2 2 : \
3 3 1 ‘\
c4 £4 &
®5 T 5 : j
€6 € 1 &
<]] 1591
ar a7 [
<8 X8 B
] Qg ' 5
9 o |
o 2 =
o ° IH
! 1
W5 1
! 1
i)
Ay

0 5 1 15 2 25 30 3B 4 N 4 5 6 70
Run Cycles Run Cycles

(a) (b)

8 Phase
Rotation

Fig. 15. Reconstructed clock propagation color map for all 16 clock domains
under (a) 2-D SIMD and (b) systolic array configurations.

a detailed power breakdown of the chip at 1 V. The distribution
of 28 clock phases and phase selection for all clock domains
consumes about 3.6 mW at 1 V, which is 1.2% of the
total active power. The customized clock phase bus has been
carefully designed for the 1.5-mm-long-distance clock routing
using high-level metals. After all the clock phases reach each
PE row, the local clock is selected for each clock domain. The
local clock tree is identical as conventional clock distribution,
without any overhead. The DDTC modules cost 2.5% of total
power. Overall, the proposed clocking schemes consume 5.5%
of total power including DLL, clock phase bus, and DDTCs.

B. Elastic Clock Chain Measurement

Figs. 14 and 15 show the measured clock waveform and
reconstructed color maps with the elastic clock chain tech-
nique. During testing, up to four real-time clock domains
can be captured simultaneously using high-speed oscillo-
scopes. The phase offsets between measurement ports are pre-
calibrated. As a measurement example shown in Fig. 14, if one
domain is too fast (i.e., reaching the max phase offset with its
neighbor), it will be locked using the longest clock period
until the neighbors catch up, leading to a wavelike phase
propagation.

In our measurement, the PLL frequency is locked at a con-
stant frequency. To capture accurate clock propagation, we first
measured the effective clock period by keeping rotating a
fixed amount of clock phases (i.e., shrink the clock period
constantly every cycle). During the benchmark test, the actual
dynamic clock period for every cycle can be obtained based on
the number of clock phase rotation. To measure the effective
frequency of a DNN model with enabling the elastic clock
chain, we run the entire model and verify the output results to
be correct. With the correct DNN computation results, we can
deterministically calculate the effective execution time based

JIA et al.: DYNAMIC TIMING ENHANCED DNN ACCELERATOR

TABLE 11
DETAILS OF THE TEST DNN MODELS

Dataset Model Accuracy
97.22% (8b)
MNIST L1-L4 (FC): 784x256x256x256x10 96.36% (4b)
95.88% (1b)
L1-L4 (Conv): (32,32,3) x (3,3,128) x| 86.53% (8b)
CIFAR- (3,3,128) x (3,3,256) * (3,3,256) 84.56% (4b)
10 L5-L6 (FC): 1024x1024x10 78.67% (1b)

on the predefined dynamic timing control settings and the
measured effective clock period.

The clocks across all clock domains were repetitively mea-
sured to reconstruct a clock propagation map, which represents
the phase selection at each clock domain along with execution
cycles. Fig. 15(a) shows the color map under the configuration
of 2-D SIMD INT8 operation mode for MNIST data set
inference. In our adaptive clock design, the clock period can
either shrink or maintain constant by default. Depending on
the transition bit number and position, the dynamic clock
period is shrunk in different magnitudes. It is observed that
each clock domain rotativity selects earlier clock phases from
phase 27 (yellow) to phase O (blue) to shrink clock period
and speedup the execution. Besides, every clock domain
synchronizes with its neighbor clock domains within the phase
offset limitation. The speedup in each clock domain is related
to the runtime data pattern of the local operand values. The
measured color map matches simulated wave propagation.

Fig. 15(b) shows the color map running the same data
sequence under the systolic array configuration. For systolic
dataflow, because the input value data travels horizontally
among PEs, the worst-case target clock period is selected
across eight previous clock cycles. Therefore, it is observed
the clock propagation speed is slower than the 2-D SIMD con-
figuration, which also leads to less performance improvement.

It is worth mentioning that data path delays vary at different
voltage levels. Therefore, the post-silicon timing calibration
is helpful to capture more accurate critical path delays on
silicon and guide the dynamic timing settings with PVT
variation. During our test, several customized weight and
input value patterns with a certain amount of operand bit
transitions are built to calibrate the timing for the dynamic
timing settings. For the benchmark test, the timing table inside
the DDTC is initially programmed with timing control settings
based on case STA results. After the timings of individual
transition condition have been calibrated, the calibrated timing
control settings are then scanned into the timing table for the
benchmark run again.

C. Benchmark Measurement Results

To evaluate the benefit of the elastic clock chain, we tested
the inference of two DNN models for MNIST and CIFAR-10
data sets, as listed in Table II. A multilayer perceptron model
(four fully connected layers) and a convolution neural network
model (four convolution layers, two fully connected layers)
are built for benefit evaluation. The proposed elastic clock

63

S m Instr. Based =™ Operand Based

X

=

=

[} 0,

gl

« 5% T Cl -10
D 0%

o

8-bit 4-bit 1-bit 8-bit 4-bit 1-bit

Bit Precision
3
EZ
= 20%
® 15% I
c
@ 10%
(7]
=
[]
o

= Instr. Based ™ Operand Based

(a)
|||IIIIIIII
5% tolic

Fig. 16. (a) Performance improvement results under different bit-precisions.
(b) Improvement breakdown at each neural network layer for CIFAR-10 under
different configurations at INT8 mode.

chain scheme is also applicable to DNN models with different
layer configurations and dimensions. These DNN models
have been run layer by layer on the test chip. The average
energy efficiency for one inference task is 310 GOPS/W using
INT8 and 2.8 TOPS/W using INT1 at 1 V.

Fig. 16 shows the performance improvement by exploiting
both instruction-based and operand-based dynamic timing
variations. During testing, each neural network layer has been
broken into several small data pieces. After finishing the
run of each data piece, the intermediate accumulation results
have been read off-chip to verify the computation correctness.
By this way, we guarantee all the matrix intermediate and final
accumulation results are identical with the golden software
model. For performance measurement, we first measured the
maximum operating frequency (i.e., highest frequency with
correct final results) with elastic clock chain disabled. After
that, the effective frequency was measured again with enabling
the elastic clock chain on the same test chip. Hence, the per-
formance improvement can be measured in an apple-to-apple
comparison with and without our proposed scheme.

Fig. 16 also shows the overall performance improve-
ment results with different bit precision under 2-D SIMD
configuration and the benefit breakdown at each layer at
INT8 mode. Up to 19% performance improvement is obtained
at INT8 mode, which effectively improves the operation
frequency from 700 to more than 820 MHz. Within the
benefit, about 9% is obtained by leveraging the instruction-
based pipeline timing rebalance. The rest benefit comes from
exploiting operand-based dynamic timing variation. When PE
array is switched to INT1 mode, there are eight 1-bit MAC
operations simultaneously processed in every PE. Therefore,
eight operand numbers are fetched from the image memory
of each PE, which significantly increases the register transi-
tion activities and reduces the operand-based dynamic timing
benefit. Similar performance improvement is obtained from
both MNIST and CIFAR-10 data set. It is also observed that
the systolic array obtained about 8% less benefit for the same

64

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 1, JANUARY 2021

TABLE III

COMPARISON WITH PRIOR ADAPTIVE TECHNIQUES

Supply Voltage (V)

Fig. 17. Energy saving benefit with scaling down voltage while maintaining
same total execution latency.

test run using the elastic clock chain. As explained before,
this is because the systolic dataflow needs to consider the
worst-case target clock period among the past eight cycles.
The achieved benefits of performance improvement can be
equivalently converted to energy savings by scaling down
to a lower supply voltage while maintaining the same total
execution time. As shown in Fig. 17, an average of 30.6%
and up to 34% energy savings were achieved with the supply
voltage down to 0.5 V.

Table III summarizes the design specifications of the devel-
oped elastic clock chain scheme and compares it with prior
adaptive techniques. Previously, droop-based adaptive clocking
schemes have been widely developed for processors to detect
dynamic voltage droop and mitigate the voltage guardband by
adaptively adjusting the operation frequency [5], [6]. A voltage
variation monitor, e.g., tunable replica circuits, has been used
to monitor the voltage droop. Compared with the droop-
based adaptive clocking, the elastic clock chain is focusing on
exploiting the slack of the runtime dynamic timing variation.
There are a few adaptive clocking schemes exploiting DTS
for some simple in-order CPU pipelines [14], [15] or more
complicated GPGPU architecture [16], in which the clock
adjustment settings are guided based on runtime instructions.
In this work, multiple clock domains are supported with clock
management guided by both runtime instructions and operand

[5]JSSC’16 [6]ISSCC’17 [16] ISSCC’19 [117JSSC’18 [12]JSSC’19 This work
Process 16 nm 14 nm 65 nm 28 nm 16 nm 65nm
Architecture MAC Unit CPU cores GPU cores DNN Accelerator | DNN Accelerator DNN Accelerator
égiiﬁgfe D]e)tl;:%(t)in D]e)tz(():(t)ir())n Instruction Based | Razor Detection Droop Detection gl;;ﬁiﬁogaireli
Datapath 64-bit 64-bit 32-bit 8/16-bit 8/16-bit 1/4/8-bit
PE Number 1 4 2 8 8 128
Frequency (MHz) 2500 4000 417 1200 1000 700
Voltage (V) 0.9 Not reported 1.0 0.9 0.8 1.0
Power (mW) 250 Not reported 468 63.5 59.5 288
. 1.209 TOPS/W ~500 GOPS/W 310 GOPS/W (8b)
ML Efficiency N/A N/A N/A (8b, 0.9V) (8b, 0.8V) 2.8 TOPS/W (1b)
Perf. Improvement 13% 3.5% 18.2% 50% 11.7% 19%
Energy Saving 5% 8% 30.4% 30% 8.4% 34%
9 transitions for the DNN accelerator. Previously, resilient Razor
> flip-flops or adaptive droop detection schemes have been
E applied to a 1-D pipelined neural network accelerator to
3 explore the error resiliency [11], [12]. However, this scheme
2 will be very challenging to be applied to a 2-D PE array-
5 based accelerator. The proposed elastic clock chain technique
i 0.5 0.6 0.7 0.8 0.9 1.0 can exploit the dynamic timing variation within the PE unit.

To fit the adaptive clocking properly into the 2-D PE array,
there are a total of 16 clock domains implemented inside the
array. In addition, the clock management is guided by both
runtime instruction and operand values to realize fine-grained
cycle-by-cycle clock adjustment.

It is worth mentioning that there are many schemes pro-
posed to exploit the data sparsity at the architecture level
[20], [21]. The zero values are skipped during DNN computa-
tion to improve the performance. However, complicated index-
ing mechanism is required to indicate the memory accessing
addresses and the unstructured “0” pattern makes indexing
challenging and heavy cost. Compared with those work, the
proposed adaptive clock technique exploits the DTS margin
from a clocking design angle, which does not require the
complex indexing design. In addition, our solution can be
applied to the sparsity exploitation PE-array orthogonally with
special clocking considerations for the sparsity management
modules.

VII. CONCLUSION

In this article, an adaptive clocking technique, elastic clock
chain, is proposed to exploit the dynamic timing margin
for a 2-D PE array-based DNN accelerator. The proposed
scheme implemented a total of 16 clock domains through
a multi-phase clock bus. The clocking for each domain is
guided by both runtime instructions and local operands. Every
clock domain synchronizes with its neighbors by constraining
the maximum clock phase offset. Measurement results on a
65-nm test chip show that the effective frequency has been
improved by up to 19% for MNIST and CIFAR-10 data sets

JIA et al.: DYNAMIC TIMING ENHANCED DNN ACCELERATOR

under 2-D SIMD configuration. The obtained performance
benefit is equivalently converted to 34% energy saving. For
the systolic dataflow, 8% less performance gain is obtained
due to consideration of the worst-case dynamic timing among
eight run cycles.

REFERENCES

[1] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

[2] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
FDSOL,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 246-247.

[3] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: A
50.6TOPS/W unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2018, pp. 218-219.

[4] K. Ueyoshi et al., “QUEST: A 7.49TOPS multi-purpose log-quantized
DNN inference engine stacked on 96MB 3D SRAM using inductive-
coupling technology in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2018, pp. 160-161.

[5] K. A. Bowman et al., “A 16 nm all-digital auto-calibrating adaptive
clock distribution for supply voltage droop tolerance across a wide
operating range,” IEEE J. Solid-State Circuits, vol. 51, no. 1, pp. 8-17,
Jan. 2016.

[6] M. Floyd et al., “Adaptive clocking in the POWERY processor for
voltage droop protection,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017,
pp. 444-445.

[71 S. T. Kim et al., “Enabling wide autonomous DVFS in a 22 nm
graphics execution core using a digitally controlled fully integrated
voltage regulator,” IEEE J. Solid-State Circuits, vol. 51, no. 1, pp. 18-30,
Jan. 2016.

[8] M. Cho et al., “Postsilicon voltage guard-band reduction in a 22 nm
graphics execution core using adaptive voltage scaling and dynamic
power gating,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 50-63,
Jan. 2017.

[9]1 B. Zimmer et al., “A 0.11 plJ/op, 0.32-128 TOPS, scalable Multi-
Chip-Module-based deep neural network accelerator with ground-
reference signaling in 16nm,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. 300-301.

[10] M. Fojtik et al., “A fine-grained GALS SoC with Pausible adaptive
clocking in 16 nm FinFET,” in Proc. 25th IEEE Int. Symp. Asynchronous

Circuits Syst. (ASYNC), May 2019, pp. 27-35.

P. N. Whatmough, S. K. Lee, D. Brooks, and G.-Y. Wei, “DNN engine:

A 28-nm timing-error tolerant sparse deep neural network processor

for IoT applications,” IEEE J. Solid-State Circuits, vol. 53, no. 9,

pp. 2722-2731, Sep. 2018.

S. K. Lee, P. N. Whatmough, D. Brooks, and G.-Y. Wei, “A 16-

nm always-on DNN processor with adaptive clocking and multi-

cycle banked SRAMs,” IEEE J. Solid-State Circuits, vol. 54, no. 7,

pp. 1982-1992, Jul. 2019.

Y. Fan, S. Campanoni, and R. Joseph, “Time squeezing for tiny devices,”

in Proc. 46th Int. Symp. Comput. Archit. (ISCA), Jun. 2019, pp. 657-670.

[14] J. Constantin, A. Bonetti, A. Teman, C. Muller, L. Schmid, and A. Burg,
“DynOR: A 32-bit microprocessor in 28 nm FD-SOI with cycle-by-cycle
dynamic clock adjustment,” in Proc. ESSCIRC Conf., 42nd Eur. Solid-
State Circuits Conf., Sep. 2016, pp. 261-264.

[15] T. Jia, R. Joseph, and J. Gu, “An instruction-driven adaptive clock
management through dynamic phase scaling and compiler assistance
for a low power microprocessor,” IEEE J. Solid-State Circuits, vol. 54,
no. 8, pp. 2327-2338, Aug. 2019.

[16] T. Jia, R. Joseph, and J. Gu, “An adaptive clock management scheme

exploiting instruction-based dynamic timing slack for a general-purpose
graphics processor unit with deep pipeline and out-of-order execution,”

in IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 318-319.

N. Jouppi et al, “In-datacenter performance analysis of a tensor

processing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit. (ISCA),

Jun. 2017, pp. 1-12.

[18] T. Jia, Y. Ju, and J. Gu, “A compute-adaptive elastic clock-chain
technique with dynamic timing enhancement for 2D PE-array-based
accelerators,” in [EEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 482-483.

(11]

[12]

[13]

[17]

65

[19] B. Mesgarzadeh and A. Alvandpour, “A low-power digital DLL-based
clock generator in open-loop mode,” IEEE J. Solid-State Circuits,
vol. 44, no. 7, pp. 1907-1913, Jul. 2009.

A. Parashar et al., “SCNN: An accelerator for compressed-sparse

convolutional neural networks,” in Proc. 44th Annu. Int. Symp. Comput.

Archit. (ISCA), Jun. 2017, pp. 27-40.

[21] Z. Yuan et al., “Sticker: A 0.41-62.1 TOPS/W 8Bit neural network
processor with multi-sparsity compatible convolution arrays and online
tuning acceleration for fully connected layers,” in Proc. IEEE Symp.
VLSI Circuits, Jun. 2018, pp. 33-34.

[20]

Tianyu Jia (Member, IEEE) received the B.S.
and M.S. degrees from the Beijing University
of Posts and Telecommunications, Beijing, China,
in 2011 and 2014, respectively, and the M.S. and
Ph.D. degrees in computer engineering from North-
western University, Evanston, IL, USA, in 2018 and
2019, respectively.

He was interned at the IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, USA,
in 2018, and Apple Inc., Cupertino, CA, USA,
in 2019. He is currently a Post-Doctoral Fellow with
Harvard University, Cambridge, MA, USA. His current research interests
include the architecture explorations for domain-specific accelerator design,
and efficient power and clock management circuits.

Dr. Jia was a recipient the IEEE SSCS Predoctoral Achievement Award
from 2019 to 2020.

Yuhao Ju (Student Member, IEEE) received the B.S.
degree from the University of Electronic Science
and Technology of China, Chengdu, China, in 2017,
and the M.S. degree from Northwestern University,
Evanston, IL, USA, in 2019, where he is currently
pursuing the Ph.D. degree in computer engineering.

His current research interests include com-
puter architecture and machine learning accelerator
design.

Jie Gu (Senior Member, IEEE) received the B.S.
degree from Tsinghua University, Beijing, China,
in 2001, the M.S. degree from Texas A&M Uni-
versity, College Station, TX, USA, in 2003, and
the Ph.D. degree from the University of Minnesota,
Minneapolis, MN, USA, in 2008.
He worked as an IC Design Engineer with
Texas Instruments, Dallas, TX, USA, from 2008 to
2010, focusing on ultra-low-voltage mobile proces-
4‘ sor design and integrated power management tech-
’ niques. He was a Senior Staff Engineer with
Maxlinear, Inc., Carlsbad, CA, USA, from 2011 to 2014, focusing on low-
power mixed-signal broadband system-on-chip (SoC) design. He is currently
an Assistant Professor with Northwestern University, Evanston, IL, USA. His
research interests include ultra-dynamic clock and power management for
microprocessor and accelerators, emerging mixed-signal computing circuit,
and the design of machine learning capable edge devices.
Dr. Gu was a recipient of the NSF CAREER Award. He has served as the
Co-Chair of program committees and conference for numerous low-power
design conferences and journals, such as ISPLED, DAC, ICCAD, and ICCD.

