Using Game Design Mechanics as Metaphors to Enhance
Learning of Introductory Programming Concepts

Chaima Jemmali*, Erica Kleinman*, Sara Bunian*, Mia Victoria Almeda’, Elizabeth Rowe", Magy

Seif El-Nasr*
* Northeastern University, 7 EdGE at TERC
{jemmali.c,kleinman.e,banian.s } @husky.neu.edu, { mia_almeda,elizabeth_rowe } @terc.edu,magy @northeastern.edu

ABSTRACT

There are several educational games and tools that teach program-
ming. However, very few offer a deep understanding of Computer
Science concepts such as Abstraction, Modularity, Semantics, and
Debugging. We present May’s Journey, an educational game that
supports learning of basic programming concepts, where players
solve puzzles and interact with the environment by typing in a cus-
tom programming language. The game design seamlessly integrates
learning goals, core mechanics, and narrative elements. We discuss
how we integrate the CS concepts mentioned above using game
mechanic metaphors.

CCS CONCEPTS

¢ Human-centered computing — Scenario-based design; * Ap-
plied computing — Interactive learning environments;

KEYWORDS
Computer Science Education, Learning, Game Design, Metaphors

ACM Reference Format:

Chaima Jemmali*, Erica Kleinman*, Sara Bunian*, Mia Victoria Almeda’,
Elizabeth Rowe’, Magy Seif El-Nasr*. 2019. Using Game Design Mechanics
as Metaphors to Enhance Learning of Introductory Programming Concepts.
In The Fourteenth International Conference on the Foundations of Digital
Games (FDG ’19), August 26-30, 2019, San Luis Obispo, CA, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3337722.3341825

1 INTRODUCTION

Making programming education more accessible to beginners is an
active field of research. Constructionist approaches to programming
have become popular due to their ease of use. Examples include
Scratch [20], Alice [2] or Logo Programming [17], where students
are invited to freely explore and construct their programs. However,
while increasing interest and engagement, previous empirical studies
have shown that students who used these tools had either not discov-
ered important programming concepts, like booleans, variables, and
control flow, or held misconceptions about their functions [6, 9, 11].
Furthermore, the use of these environments to teach programming
depends largely on a tutor providing structure to allow students to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FDG 19, August 26-30, 2019, San Luis Obispo, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7217-6/19/08.

https://doi.org/10.1145/3337722.3341825

learn specific concepts. Rather than going with a constructionist
approach, we decided to use a structured approach to target informal
settings. Our idea is to deliver a gaming environment that can teach
specific programming concepts.

Game-based approaches provide structure while also offering
agency and freedom to play. However, in most existing games, such
as CodeCombat' or Human resource Machine®, problems are pre-
sented as a series of tasks. While players do use knowledge acquired
in previous levels to solve the current, and future, one, the code,
functions, and constructs previously learned cannot be reused. The
tasks are seen as independent, and, therefore, the learning objectives
are mostly constrained to scripting or coding, and do not extend to
modularity, abstraction, or reusability, which we target in our design.

In our game, a story connects the programming problems in a way
that supports the idea of decomposition of a program into smaller
modular reusable units that players build and use throughout the
game. Additionally, our game endorses the idea of a game world
made of Objects interacting with each other, introducing Object
Oriented Design in an interactive and applied way.

2 RELATED WORK

Programming and puzzle games are both environments that share
requirements for inquisitive thinking and efficient problem solv-
ing. Considering programming as an application of problem-solving
skills has been adopted by a strong movement in computing and
informatics [3, 10, 12, 18, 22]. Problem based learning increases
knowledge and understanding through complex problem solving.
The challenge is that the success of the approach largely depends
on the quality of the scenarios [25], which makes designing the
problems, and in our case the puzzles, a critical process. There is a
large number of games that are designed to focus on programming or
computer science education [13, 23]. However, many of these lack
scientific validation regarding their learning outcomes [16]. More-
over, in a recent review of Serious Games for programming [13],
most games did not cover important concepts, such as abstract data
types, or the use of software libraries. The general trend seemed to
focus on problem solving with limited, or no, emphasis on formality.
These concepts can be challenging for beginners and introducing
them through metaphors can be an interesting approach.

In fact, metaphors have proven to be effective tools for learning
[14, 19, 21, 24], exercising the imagination, promoting thought,
and allowing students to conceptualize new information in a more
concrete way [4, 5]. Metaphors help students build imaginative
conceptions and bridge the gap between those and what is being

! codecombat.com
2tomorrowcorporation.com/humanresourcemachine


https://doi.org/10.1145/3337722.3341825
https://doi.org/10.1145/3337722.3341825

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA Jemmali C, Kleimnan E, Bunian S, Alimeda MV, Rowe E, EIl-Nasr MS

=
o
=
R

block1.MoveUp();

O 00~N; OO0 s WN

10}

re: objectName.MoveDirection();

Move block1 in the
main () { correct direction to

block2 . MoveUp(); reform the path!
black2.Moveleft();

}

O{
blockl.MoveRight();
block1.MoveDown();

Figure 1: Coding phase of the game: In the first level, the player has to change the code provided to move blockl down and rebuild
the path. Top right is where they can type their code. Bottom right is the console. Bottom Left is where new commands are introduced

and previous ones can be viewed.

taught [4, 15]. In subject areas where direct experience or interaction
with the subject matter is impossible, metaphors can help students
build an understanding by comparing it to familiar domains [4, 15,
21].

In this work, we explore the use of metaphors as game mechanics
to design a game that not only teaches programming but also focuses
on important concepts that have not been addressed by previous de-
signs. These concepts include: Abstraction, Modularity, Semantics,
and Debugging.

3 DESIGN

May’s Journey is a 3D puzzle game in which players type code in a
custom programming language to manipulate the environment and
solve increasingly complex puzzles [7, 8]. The narrative tells the
story of a game world, created with code, that is breaking. The player
is asked to help May, the protagonist, solve the mystery behind the
broken world in order to fix it. The gameplay alternates between two
phases; an exploration phase where players can walk around, talk to
NPCs, collect objects, and discover new areas, and a coding phase
in which players can type programs to interact with the environment
as seen in Figure 1.

The game is designed to teach the basics of programming, focus-
ing on four essential constructs:

e Abstraction: understanding Object Oriented Design princi-
ples demonstrated through the ability to construct simple
abstractions of classes and instances of classes.

e Modularity and Reusability: creating functions and rou-
tines that can serve more than one purpose and therefore can
be reused.

o Semantics: differentiating between semantically correct and
incorrect programs and identifying expected output.

e Debugging: identifying, locating, and solving programming
logical and non-logical errors when they arise.

Figure 2: Interactable objects in the game: From left to right,
rotatable block, block, cat, and windblock.

3.1 Abstraction

We follow Zhu and Zhou’s methodology for teaching abstraction
through Object Oriented paradigms starting from real world obser-
vations [26]. Their approach consists of emphasizing good practices
rather than teaching the specificities of a particular language.

The use of a metaphor to teach abstraction lies in the storyline
of how the game world is constructed. The hero May invites the
player into her world. The latter discovers that her world is made of
code and that they need to edit it to restore and fix the world. From
observation, every element in the game is an Object from a specific
class. In the first levels of the game, the objects that can be coded are
already available in the scene. In later levels, players have to create
new objects from classes they have already seen, and new classes
for new objects.



Game Design Mechanics as Metaphors

New Function Created:

MoveUp(Object obj, int distance)

FDG '19, August 26-30, 2019, San Luis Obispo, CA, USA

MoveUp(statue1, 5);

1
s

MoveUp(Object obj, int distance) {
for (0 to distanc
obj.MoveUp();

Would you like to save it to your inventory?

@ Rotate(Object obj, int angle)

Print(string message)

Figure 3: Design of the library/inventory system: After running a correct program, the player is prompted whether they would like
to save new functions they created into their inventory. The bottom left part, shows previous functions that players have saved, they

can be viewed, edited, or deleted.

For example, the Object of class "Block" is any block that a
player can interact with in the game. There exists another class,
"WindBlock", which is the same as Block, but allows for more
functions. For example, the wind from a WindBlock can obstruct
the player’s way, but it can also propagate fire to light pits and
reveal new items or unlock additional locations. The WindBlock
class can be thought of a as class that extends Block. They share
similar properties with an added functionality for the child class.
Figure 2 shows some of the available interactable objects in the
current version of the game. The player must write code to move or
rotate these objects such that they are able to fulfill their roles within
the gameplay.

This kind of metaphor is very important for beginners. Seeing the
pieces of the world as objects, and seeing the whole game world as a
multitude of programmable objects interacting with each other helps
in presenting programming problems as "real life" situations, which
makes problem solving more efficient[1].

3.2 Modularity

To encourage students to reuse functions when solving large prob-
lems, we first introduce smaller problems, in which they use simple
functions. Whenever the player creates a function for the first time,
they are given the choice to save that function in their inventory.
The inventory acts as our metaphor for modularity, emulating the
inventory system in games, where players store tools that help them
progress. In this case, their tools are the programming functions and
classes they create. Figure 3 shows an example of a player writing
the MoveUp function. After they run their code, if the function does

not contain errors, they are able to save it into their inventory and
reuse it in the following levels.

Players can also view, edit, or remove functions they had already
created. Later problems in the game will require players to use a
multitude of functions from the inventory. This is a design choice
that allows us to emphasize the importance of considering the big-
ger picture when solving a problem or writing a function. Players
may need to revisit their functions and modify them to facilitate
their work. For example, the game provides built-in functions such
as Object.MoveUp(); as shown in 1. The player can augment this
function by adding a distance argument. The function becomes
MoveUp(GameObject obj, int distance) and it moves a game object
"obj" Up by "distance" units. This function can also be modified
to include a "direction" argument. MoveObject(GameObject obj,
string direction, int distance) will move "obj" by "distance" units
in a specific "direction". At the beginning, through exploration,
feedback, NPCs, and manuscripts, the game will provide hints and
advice. Eventually, players will learn to recognize patterns and create
reusable functions without help from the game.

3.3 Semantics

In certain levels, players discover a puzzle where a piece of code
has already been written. Depending on the context, it could have
been left there by the antagonist, a companion, etc. The code will be
syntactically correct, but semantically wrong (gives a runtime error).
The player needs to understand why the error is happening and fix it.

In other levels, players will find a programming interface that has
correct code, but the run button is compromised and they cannot
click it to run the program. The output of the code given provides



FDG '19, August 26-30, 2019, San Luis Obispo, CA, USA

main () {
string id = Input();
if (id == correctld) {

Print (“*authentication complete”);
door.Open();

1

J
else {

Print(*authentication failed”);
door.Alarm();

Figure 4: Example of a semantics puzzle: Players have to enter
the correct password in the input field.

important information - a secret code to a door or an answer to a
riddle they need to say to an NPC, etc. Players should be able to
fully understand how their programs work and how variables change
in each step.

In some other levels, players will be given an existing program
they need to decode in order to progress. The example in Figure 4
shows a problem where a locked door needs a password. The players
need to type in the correct password in the input field, but cannot
modify the existing code. If they enter the wrong password, an alarm
is activated and they have to restart the level. The correct password
is hidden in another program within the level. This example might
be simple, but later levels will include loops, and variables inside
loops. Misconceptions about variables in loops have been observed
with beginners [11], hence the importance of addressing this point
through increasingly difficult levels.

These types of levels also present a variation from writing their
own code. It enforces the narrative where programming is prevalent
in this world, other characters can use it, and players need to uncover
secrets, passwords, and riddles as a metaphor for semantics puzzles.

3.4 Debugging

In some levels, a broken program is presented to the player. The
program is not behaving in the correct way and the player must
identify the problem, the expected output, and correct the program
to produce the correct behavior. This task helps with semantics
as well as debugging. Understanding a given program, debugging,
and correcting it are essential skills for a programmer. To make
the debugging process smoother, error messages are designed to be
simple and easy to understand. The messages are also designed in
the form of a conversation with the machine. If there is an error,
it is because the editor did not understand the player’s code, so

Jemmali C, Kleimnan E, Bunian S, Aimeda MV, Rowe E, EI-Nasr MS

they need to change it. The messages will get easier if the player
encounters the same error multiple times. For example, instead of
writing "’blockk1’ does not exist in the current context, line 3", the
message will read "I don’t understand the word "blockk1’ in line 3".
If the same error is encountered again, the message becomes "I don’t
understand the word "blockk1’ in line 3, did you mean ’block1’? ".
Debugging becomes a type of conversation with the code editor. It
is also analogous to the interaction with the Google search bar when
there is a typo. The metaphor of a discussion with the console as a
way of debugging can make fixing mistakes more natural and less
intimidating.

Players can also rely on a debugging button to further understand
the program. During the first levels of the game, step by step code
running and highlight of which line is being run happens automati-
cally. As the player progresses, this becomes optional since it is time
consuming and might take away from playtime. This is when the
debugging button appears, it will still provide step by step running
but will add the functionality of looking into variables content after
each line of code.

4 DISCUSSION AND LIMITATIONS

There are multiple challenges that arise from designing around these
specific constructs. The first is how to assure a smooth learning
curve. In each level, we introduce either one new CS construct or one
new game mechanic. This becomes more and more difficult when
constructs get more complicated and more dependent on each other.
For instance, how does one introduce boolean logic in a playful way?
This would most likely include introducing conditionals or while
loops which may be overwhelming, but at the same time introducing
booleans by themselves could seem boring or non-playful.

Another challenge is how to make sure that students are learning
the proper constructs. For example, how to encourage them to use
the inventory without forcing them to do so. There should be an
intrinsic motivation and an awareness about its utility rather than
extra points or a penalty.

Finally, assessing all these constructs will require a longitudinal
study in which students play parts of the game over a long period
of time so they have time to assimilate and build on their previous
knowledge.

S CONCLUSION AND FUTURE WORK

We presented May’s Journey, an educational puzzle game teaching
programming. The main distinguishing features of the game are
the use of problem solving and real world analogy to teach object
oriented paradigms, the integration of a story to increase intrinsic
motivation, and the introduction to a text-based custom language
to emphasize debugging. Most importantly, the game highlights
the importance of good practices for programmers, focusing on
aspects such as Abstraction, Modularity, Semantics, and Debugging.
In future work, we plan to build several puzzles for each construct
and conduct studies to assess how does the game affect students’
learning in each of these constructs.

6 ACKNOWLEDGEMENTS

This research is supported by NSF AISL (Advancing Informal
STEM Learning) Award Id : 1810972



Game Design Mechanics as Metaphors

REFERENCES

[1]

[2

3

[4

[5

[6]

[7

[8

[9

(10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

David Boud and Grahame Feletti. 2013. The challenge of problem-based learning.
Routledge.

Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D tool for
introductory programming concepts. In Journal of Computing Sciences in Colleges,
Vol. 15. Consortium for Computing Sciences in Colleges, 107-116.

Giuliana Dettori and Ana Paiva. 2009. Narrative learning in technology-enhanced
environments. Technology-Enhanced Learning (2009), 55-69.

Reinders Duit. 1991. On the role of analogies and metaphors in learning science.
Science education 75, 6 (1991), 649-672.

Shaun Gallagher and Robb Lindgren. 2015. Enactive metaphors: Learning through
full-body engagement. Educational Psychology Review 27, 3 (2015), 391-404.
Shuchi Grover and Satabdi Basu. 2017. Measuring student learning in introductory
block-based programming: Examining misconceptions of loops, variables, and
boolean logic. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. ACM, 267-272.

Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr. 2018.
Educational Game Design: An Empirical Study of the Effects of Narrative. learn-
ing 66 (2018), 68.

Chaima Jemmali and Zijian Yang. 2016. May’s Journey: A serious game to teach
middle and high school girls programming. Master’s thesis. Worcester Polytechnic
Institute.

D Midian Kurland, Catherine A Clement, Ronald Mawby, and Roy D Pea. 1987.
Mapping the cognitive demands of learning to program. In Mirrors of Minds:
Patterns of experience in educational computing. Ablex Publishing Corp., 103—
127.

Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. 2005. A study of the
difficulties of novice programmers. In Acm Sigcse Bulletin, Vol. 37. ACM, 14-18.
John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk.
2008. Programming by choice: urban youth learning programming with scratch.
Vol. 40. ACM.

Richard E Mayer. 1992. Teaching for transfer of problem-solving skills to com-
puter programming. In Computer-based learning environments and problem
solving. Springer, 193-206.

Michael A Miljanovic and Jeremy S Bradbury. 2018. A Review of Serious Games
for Programming. In Joint International Conference on Serious Games. Springer,
204-216.

Kai Niebert and Harald GropengieBer. 2011. aAIJCO 2 Causes a Hole in the
AtmospheredAl: Using LaypeopleAAZs Conceptions as a Starting Point to Com-
municate Climate Change. In The economic, social and political elements of
climate change. Springer, 603-622.

Kai Niebert, Sabine Marsch, and David F Treagust. 2012. Understanding needs
embodiment: A theory-guided reanalysis of the role of metaphors and analogies
in understanding science. Science Education 96, 5 (2012), 849-877.

Velian T Pandeliev and Ronald M Baecker. 2010. A framework for the online eval-
uation of serious games. In Proceedings of the International Academic Conference
on the Future of Game Design and Technology. ACM, 239-242.

Roy D Pea. 1987. Logo programming and problem solving. (1987).

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature
on the teaching of introductory programming. ACM SIGCSE Bulletin 39, 4 (2007),
204-223.

Miriam Reiner, James D Slotta, Michelene TH Chi, and Lauren B Resnick. 2000.
Naive physics reasoning: A commitment to substance-based conceptions. Cogni-
tion and instruction 18, 1 (2000), 1-34.

Mitchel Resnick, John Maloney, Andrés Monroy-Herndndez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11
(2009), 60-67.

Tanja Riemeier and Harald GropengieBer. 2008. On the roots of difficulties in
learning about cell division: process-based analysis of studentsAAZ conceptual
development in teaching experiments. International Journal of Science Education
30, 7 (2008), 923-939.

Ralf Romeike. 2008. What’s my challenge? The forgotten part of problem solving
in computer science education. Informatics Education-Supporting Computational
Thinking (2008), 122-133.

Adilson Vahldick, Anténio José Mendes, and Maria José Marcelino. 2014. A
review of games designed to improve introductory computer programming compe-
tencies. In 2014 IEEE frontiers in education conference (FIE) proceedings. IEEE,
1-7.

Marianne Wiser and Tamer Amin. 2001. AAIJIs heat hot?4A1 Inducing conceptual
change by integrating everyday and scientific perspectives on thermal phenomena.
Learning and Instruction 11, 4-5 (2001), 331-355.

Diana F Wood. 2003. ABC of learning and teaching in medicine: Problem based
learning. BMJ: British Medical Journal 326, 7384 (2003), 328.

Haibin Zhu and MengChu Zhou. 2003. Methodology first and language second:
A way to teach object-oriented programming. In Companion of the 18th annual

FDG '19, August 26-30, 2019, San Luis Obispo, CA, USA

ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. ACM, 140-147.



	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Abstraction
	3.2 Modularity
	3.3 Semantics
	3.4 Debugging

	4 discussion and limitations
	5 Conclusion and future work
	6 Acknowledgements
	References

