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Abstract— We propose energy efficient voltage
induced strain control of domain wall (DW) in a
perpendicularly magnetized nanoscale racetrack on a
piezoelectric substrate that can implement a multi-state
synapse to be utilized in neuromorphic computing
platforms. Here strain generated in the piezoelectric is,
mechanically transferred to the racetrack and modulates
the Perpendicular Magnetic Anisotropy (PMA) in a
system that has significant interfacial Dzyaloshinskii—
Moriya interaction (DMI). When different voltages are
applied (i.e. different strains are generated) in
conjunction with SOT due to a fixed current flowing in
the heavy metal layer for a fixed time, DWs are
translated to different distances and implement different
synaptic weights. We have shown using micromagnetic
simulations that S-state and 3-state synapses can be
implemented in a racetrack that is modeled with the
inclusion of natural edge roughness and room
temperature thermal noise. These simulations show
interesting dynamics of DWs with roughness induced
pining sites both at the beginning and end of the SOT
current pulse for different PMA modulation. Thus,
notches need not be fabricated to implement multi-state
nonvolatile synapses. Such a strain-controlled synapse
has an energy consumption of ~ 1 {J and could thus be
very attractive to implement energy-efficient quantized
neural networks, which has been shown recently to
achieve near equivalent classification accuracy to the
full-precision neural networks.

Index Terms—Neuromorphic computing, Synapse,

Domain wall, MTJ, Edge roughness, Spin orbit torque,
Magneto-elastic effect.

L INTRODUCTION

Neuromorphic computing outperforms traditional
von-Neumann type processors in data-intensive
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classification tasks. Moreover, their in-memory
computing architecture can reduce energy dissipation
[1] required to shuttle data back and forth between
processor and memory unit in traditional computing
architectures. Examples of hardware realization for
neuromorphic computing include phase change
random access memory (PCRAM) [2-4], resistive
random-access memory (RRAM) [5,6] and spin
transfer torque random-access memory (STTRAM)
[7]. While the device variability is a persistent issue
for all of the above-mentioned devices, recent work in
fully connected artificial neural network (ANN) [8]
shows equivalent accuracy to software-based training.
Unfortunately, PCRAM and RRAM based devices
consume energy on the order of a few pJs per synaptic
weight alteration event [9]. Hence, the future [oTs and
edge-devices where power is limited will necessitate
alternate neuromorphic hardware that are energy
efficient and enable real time programing of synaptic
weights so the networks can be trained in-situ.
Recently, nanomagnet based synaptic devices has
shown potential to be energy efficient compared to
PCRAM and RRAM [9, 10, 11]. Among nanomagnet
based neuromorphic devices, domain wall (DW) based
magnetic tunnel junctions (MTJs) are one of the most
promising. To implement these devices, domain walls
(DWs) are translated to different positions by
externally applied magnetic field [12], an electric
current that causes spin-orbit torque (SOT) [13-15],
spin transfer torque (STT) [16-18] or a strain gradient
[19-20]. Strain control of magnetization consumes
ultra-low energy [21-27]. Hence, manipulation of
DWs with strain can be utilized to implement energy
efficient neuromorphic devices. Recently, strain-
mediated control of DW has been reported [28, 29].
Strain gradient in conjunction with SOT or STT [10]
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has also been proposed to control DW position to
implement energy efficient synaptic devices that can
be programmed in real time.

In this work, we propose to utilize SOT to translate
the DW in a realistic nanoscale racetrack modeled
with edge roughness and thermal noise where the DW
position is controlled by modulating the perpendicular
magnetic anisotropy (PMA) of the racetrack with the
application of stress. Here, deterministic control of
DW to realize different synaptic values is hard to
achieve when different stress values are generated by
applying voltage pulse of different amplitudes to the
electrodes patterned on top of a piezoelectric. This is
because, equilibrium DW positions are often
stochastic in nature and with the presence of defects
[30], local imperfections [31] and thermal noise [32] it
could be very difficult to achieve deterministic
control. Nevertheless, the DW can be arrested by
providing trap sites such as curved shape [33] and
notch or protrusion [34], which can act as a potential
well or barrier. Moreover, edge roughness [35-36] can
introduce pinning sites for DW motion. In this paper,
we use edge roughness and obtain the statistical
distribution of DW position from micromagnetic
simulations which shows that the mean positions are
different for different stress induced change of PMA
for a fixed current induced SOT of a fixed “clock”
time. Although the number of states (different DW
positions) attained are limited and there are overlaps
between the states, such a DW based racetrack as
synapse is particularly attractive to implement
quantized deep neural networks (DNN) [37-39] as
these networks have been shown to reach accuracy
very close to the infinite states network. The overlap
between states can be addressed during the training
stage of a learning network. Moreover, the stochastic
variation of a state can be useful in generating
stochastic weights for training the network which can
work as DNN regularizer to reduce overfitting of
training [40]. Studies have shown training with
stochastically determined weights rather than
deterministic ones can potentially increase the
classification accuracies for some data sets [37].

IL. METHOD

The proposed device structure is illustrated in Fig.
1(a). The stack consists of a heavy metal layer and a
magnetic tunnel junction (MTJ) containing the
nanoscale racetrack as free layer, along with the tunnel
barrier and the hard layer. Such a stack is patterned on
top of a piezoelectric substrate. We consider Pt/CoFe
(soft or free racetrack layer)/MgO/CoFe (hard or fixed
layer) as our stack materials where the heavy metal
layer Pt will create perpendicular anisotropy and

strong DMI at Pt/CoFe interface, which is known to
favor the chiral Neel DWs [41]. We propose to arrest
the DWs at different positions in the free layer of the
MTIJ, which will modify the resistance value of the
MT]J stack. Thus, different synaptic weights, which
define the strength between the neurons can be
determined from the DW positions. Different layers of
a DNN can be implemented by arranging the DW
devices in the crossbar as shown in Fig. 1(c), where
the DW devices provide the programmable
conductances which are equivalent to the DNN
weights.

To arrest the DW at various positions we apply
different amplitude stress in combination to a fixed
amplitude and fixed duration SOT pulse. When a
voltage is applied between the electrodes on top and
bottom of the piezo-substrate as shown in Fig. 1(b),
mechanical strain is generated. This strain is then
transferred to the racetrack and consequently
modulates the perpendicular anisotropy due to
magnetoelastic interaction. In combination with stress,
we apply a current pulse in the adjacent heavy metal
Pt layer to exert SOT shown by red arrow in Fig. 1(b),
which moves the DW through the nanowire racetrack
to the other end of the nanowire. If we reverse the
direction of current in the heavy metal layer, it will
reverse the direction of DW motion and reset it to the
other end.

We have considered edge roughness that is present
naturally in a nanoscale racetrack due to lithographic
imperfection and pattern transfer process. Authors
report [42] ~ 2nm rms edge roughness for 25 nm wide
racetrack when they use a combination of electron
beam lithography (EBL) and ion beam etching.
Authors [36] also report ~ 2nm rms edge roughness for
80 nm wide racetrack using the same method.
However, studies have shown higher rms edge
roughness for low voltage EBL for racetrack of width
50 nm or higher [42]. For our simulation we have
assumed Gaussian distribution for the edge roughness
with a rms value of ~ 3nm considering the effect of
high electron jitter from mean position for low voltage
EBL. In addition to the local structure variation,
microstructure in the racetrack such as grain boundary,
defects can provide pinning sites and introduce
stochasticity in the devices. We did not consider these
in our simulation for sake of simplicity. The simulated
racetracks have a length of 500 nm, maximum width
of 50 nm and thickness of 1 nm. The magnetization
dynamics in the presence of Spin Orbit Torque (SOT)
is simulated in MUMAX3 [43] using the Landau—
Lifshitz—Gilbert-Slonczewski equation:
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We consider secondary spin torque parameter to be
&' = ae and neglect the field like torque. Here, mp =
fx X Z where ] is the value of current flowing through
the heavy metal layer and fx is the unit vector defining
the direction of current flow and Z is the direction of
inversion asymmetry. Here, 6 is the spin Hall angle
which is 0.1 for Pt [44], y is the gyromagnetic ratio,
m is the unit magnetization vector, M, is the saturation
magnetization, h is the reduced Planck constant, y, is
the permeability of free space, e is the electron charge
and d is the thickness of the nanowire. To equate the
Slonczewski toque with Spin orbit torque we assume
spin polarization to be P =1 and Slonczewski
parameter to be A = 1 . Here the effective field, ﬁe ff
accounts for the contributions from demagnetization,
PMA, Heisenberg exchange interaction,
Dzyaloshinskii-Moriya interaction (DMI), stress
induced anisotropy and thermal noise. ﬁeff can be
expressed as follows:

Heff = Hanis + Hdemag + Hstress (3)
+ Hexch + chermal

The racetracks are discretized into 2 nm X 2 nm X

1 nm cells which are well within the ferromagnetic
exchange length of ;A;"z = 5.66 nm. We note that
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curved edges are difficult to approximate with finite
difference method as it depends on stair case
approximation. As a result, the demagnetization tensor
is not computed properly [45-47]. However, we find
similar trend in our result when we decrease the cell
size.
PMA induced effective field can be expressed as,
Hanis
- 2K, ., .,
anis — M (u- m)u (4)

S

Where K, is the first order anisotropy constant and
U represents the uniaxial anisotropy direction (i.e.
perpendicular to plane).

If the electrodes patterned on top of the
piezoelectric substrate have dimensions similar to the
piezoelectric thickness and separated by one or two
times the piezoelectric thickness, maximum stress is
generated [48]. In such a scenario, when a positive
(negative) voltage is applied in the top electrode pair,
the area underneath the electrode become stretched
(compressed) in the out of plane direction and
compressed (stretched) in the in-plane direction.
Compression (tension) in the in-plane direction
underneath the electrode surface creates tension
(compression) in the nanoscale racetrack patterned in
between the top electrodes due to strain-displacement
compatibility. We assumed our electrodes to be
rectangular with width b=piezoelectric thickness and
length L=racetrack length. This is similar to having
(L/b) number of square -electrodes of (bxb)
dimensions and therefore one can assume this
electrode configuration will produce similar amount of
stress as mentioned in Ref [46]. Fig. 1(b) shows the
strain formation in the nanoscale racetrack in such a
scenario. Stress produced in the in-plane direction of
the racetrack induces anisotropy field due to the
magneto-elastic effect in the same direction and
modulates the PMA or the anisotropy constant K;,. The
effect of the stress is modeled by the modulating K, in
the micromagnetic simulation. For simplicity, we did
not consider the strain that can be produced in the in-
plane direction of the racetrack which is orthogonal to
that shown in the Fig. 1(b).
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Fig. 1: (a) Proposed device stack where the nanoscale racetrack
act as the magnetic free layer of the MTJ. DW in the racetrack
moves when a current is applied to the heavy metal layer underneath



the racetrack (b) Stress generation mechanism in rough edge
racetrack when a voltage is applied across the piezoelectric. (c)
Implementation of layers of DNN with DW based synaptic devices.
The devices are arranged in crossbar to provide programmable
conductance equivalent to the DNN weights.

The effective field due to the interfacial
Dzyaloshinskii-Moriya interaction is expressed as
follows [43]:
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HDM:,uOMS ox ~dy = oax oy

Here, D is the DMI constant and m,, m,, and m,
are the x, y and z component of unit magnetization
vector 7 respectively.

Thermal noise induces a random effective field

ﬁthermal [49]:
N R 2akT
Hipermar =1 LM,y QA

Here, 77 is a random variable with Gaussian
distribution with mean zero and unit variance and
independent (uncorrelated) in each of the 3 cartesian
coordinates generated at each time step, k is
Boltzmann constant, € is the cell volume, 4 is the time
step size.

The parameters for the simulation are presented at
table I [50-52].

(6)

TABLE 1
Parameters Values
DMI constant (D) 0.001 Jm™2
Gilbert damping () 0.015
Saturation magnetization (M) 10 Am™1!
Exchange constant (Ag,) 2x 1071 ym™1

Saturation magnetostriction (4;) 250 ppm
Perpendicular Magnetic 7.5 % 10° jm™3
Anisotropy (K,,)

The synaptic state of the proposed device could be
read by the MTJ. For a read voltage applied between
the read and GND terminal (as in Fig. 1(a)) the
resistance is provided by the portion of the racetrack
that is parallel (P) and antiparallel (AP) to the fixed
layer and a small DW region where the magnetization
is transverse to the fixed layer magnetization. The read
current also counters a resistance from heavy metal
layer however that is small compared to the tunnel
magnetoresistance. If we assume the conductance of
the racetrack is Gy, » When completely in P state with

respect to the fixed layer and Gy, 4» When completely
in AP state, then for any intermediate position q of the
DW inside the racetrack of length L, the conductance
of the synapse can be expressed as the following:

G(qQ) = Gaxp (%) + Grinar (1 - %) +Gow ()

III. RESULTS AND DISCUSSION

A. Effect of edge roughness on Domain Wall
motion

In rough edge racetrack the racetrack width varies, so
local pinning sites are created randomly along the
length of the racetrack. Depending on the magnitude
of the edge roughness (rms value or standard
deviation) the pinning strength of the pining sites
varies. Studies have shown that higher magnitude edge
irregularities require higher depinning current to
translate DW in the racetrack [53-55]. Thus, the
magnitude of the edge roughness influences the
equilibrium DW positions in the racetrack. This also
determines the operating current of the DW based
synaptic device.

In addition to the rms edge roughness, the pining
location distribution or the relative position of the
pining sites from DW start position and center of the
racetrack influences the final DW position. The
characteristic DW motion equation during the
acceleration phase (at the time of SOT excitation) can
be found by linearizing the 1-D DW equations [41,56].
The following Newton-like motion equation is
obtained:

Where the effective DW mass can be expressed as:

1+ a?
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The friction force is:
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And the external force is:

n 2
F = Hp;y(q)Hg + (E) HpyHsy (1)



Here, Hpy, [41] is the DMI field, Hgy is the damping
like spin hall effective field and Hyg is the shape
anisotropy field from magnetostatic origin.
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Here, A is the DW width which can be expressed as:
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The pinning field can be expressed as:
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Where Vp;y (q) is the local pinning potential due to the
roughness induced pinning locations and w is the
racetrack width, d is the racetrack thickness.

From the linearized motion equation of the DW we
can see that the roughness induced pinning sites
induce an attractive force towards the pining site
scaled by the magnetostatic field (Hp;y(q)Hy term in
external force Eq. 11). This force is added to the SOT
current induced force due to Hgy field. The
demagnetization field, H; 1is maximum at both ends
of rectangular shape racetrack and starts to decrease
and becomes minimum at the center of the racetrack.
Similarly, the pining field, Hp;y(q) is high (low)
away from (close to) the pining site, however the range
of this force is much more localized than the
demagnetization force. Depending on the PMA
modulation (different value of K,,), Hp;y(gq) changes,
thus the competition between Hp;y(q) and Hg
changes. This competition eventually determines the
relationship between the pining site distance from the
DW and the corresponding kinetic energy (depinning
current) to overcome that pining site.

When the SOT current pulse is withdrawn, the DW
starts to decelerate and the deceleration force can be
obtained by linearizing the 1-D DW equations:

s
F =~ (Hq = Hom) Hon(@)  (16)
As Hp;y(q) and Hy are both functions of distance, the
magnitude of the deceleration force acting on the DW
changes with the DW position in the racetrack for a
fixed PMA. Thus, the DW position at the end of the
SOT pulse also influences the equilibrium DW
position.

B.  Non-thermal Statistics due to Different Edge
Roughness Profiles in Different Racetracks

For non-thermal simulations we have simulated
the DW motion in 40 different racetracks with
different edge roughness profile. The PMA of the
racetracks is considered to be 7.5 X 10% J/m3. The
PMA can be decreased or increased uniformly over the
whole racetrack by applying a suitable voltage to the
electrodes. The clocking SOT current is applied
simultaneously with this voltage pulse. We have
assumed that the DW is initialized to a pinning site
located at one end of the racetrack. The SOT current
translates the DW while the PMA modulation helps to
drive the DW to different positions when clocked with
SOT for a fixed time. This could be explained as
following.

The critical depinning current density /. of the DW
is related to the anisotropy coefficient K, of the
racetrack. When K, is higher, the potential well of a
pinning site becomes deep, so it requires high
depinning current, /. to depin a DW siting in such a
potential well or energy minima. On the contrary,
lower K,, is associated with a shallow potential well
for the same pinning site hence requires lower
threshold current to depin. Fig. 2(a) presents a sketch
of an example racetrack where the DW is situated at a
pinning site located near the right end of the racetrack
and Fig. 2(b) plots the depinning current versus the
anisotropy coefficient for that DW. From Fig. 2(b) we
can see that critical depinning current /. is increased
with the increase of anisotropy coefficient K.

The DW velocity at steady state can be expressed
by the following [56,57]:

b= T YAHpy
T2 5 17
1+ 22 (47
Jp = af Hpy/Hsy (18)

Empirical critical current density /. is used to account
for the pinning effect which is validated by fitting one
dimensional DW model to the experimental data [56].

As seen from Fig. 2(b), the critical current
density . is high for higher K,,. As a result, for a
higher K,,, for a fixed clocking SOT current] > J.,
the velocity becomes small as the denominator in Eq.
17 is large compared to the case of lower K, for which
the denominator is small (low critical current density
J¢) and velocity is high. In addition, when K, increases
(decreases) the DW width A in Eq. 14 decreases
(increases) which increases (decreases) Jp in Eq. 18



and the denominator in Eq. 17, consequently the
velocity decreases (increases).

The DW position for different anisotropy constant
K, is shown in Fig. 2(c) for one rough edge racetrack
where the SOT current of 24 x 10'° A/m? is applied
for fixed 1.2 ns. The change in velocity with the
change in K, is evident as the DW translates to
different distances with the same SOT. After the
withdrawal of the SOT and strain, the DW further
moves at terminal velocity due to the momentum
gained because of the SOT toque. The lower the
anisotropy constant the higher the velocity gain and
the higher the distance travelled by the DW after the
withdrawal of SOT as can be seen for the case of K}, =
7.3 x 10° J/m3. Notably, the DW for K,, = 7.0 X
105 J/m? also traveled same distance as K, = 7.3 X
105 J/m3 as the velocity difference after SOT
withdrawal is small and there is no suitable pining site
in between to pin and stop the DW at a different
position due to the small velocity difference.
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Fig. 2: (a) Initial pinning position of the DW in a PMA rough
edge racetrack. (b) dependence of the DW depinning current on the
anisotropy coefficient when the DW in racetrack 2(a) is in the initial
pinning position. (¢) DW positions with time in racetrack 2(a) for a
fixed duration and amplitude current pulse exerting SOT and
different stresses (different K,,). The SOT and stress are withdrawn
at 1.2 ns. For different stresses respective DWs travel different
distances and get pinned to different locations.

We have simulated a total of 40 racetracks of ~
3nm rms edge roughness where we varied anisotropy
constant values K,, to 8.0, 7.8, 7.5, 7.3 and 7.0 (x 10°)
J/m3 in each of these racetracks and applied SOT
current of fixed amplitude 24 X 10° A/m? for 1.2 ns.
Each of the DW is initialized to a pinning site located
near the right end of the racetrack. After the
simultaneous withdrawal of the SOT and stress we
wait for 10 ns to allow sufficient time for the DW to
decelerate and get pinned to a specific position. We
note that, the DWs usually settle within approximately
+ 4 nm of the equilibrium pinning locations after 10
ns of SOT withdrawals which is approximately 3x of
the deceleration time constant calculated from 1-D
DW equations. The distribution of the final DW
position for the 40 racetracks is shown in Fig. 3.

In Fig. 3 for each K, value we also overlay a
gaussian distribution with identical mean and standard
deviation of the data used to create the bins. Although
the final position distribution does not follow Gaussian
distribution, we see that the mean final positions are
different for different stress (K,,) values (Fig. 3(a)-(e)).
The mean DW positions shift to the left of the
racetracks as we decrease the PMA. The primary
source of the distribution of final DW positions for a
specific K,, could be attributed to the interaction of the
DWs with the roughness induced pining sites during
the acceleration and deceleration phases of DW
motion. During the acceleration phase the kinetic
energy (or SOT current) required to overcome a pining
site depends on the relative distance of the DW from
the pining sites. Different racetracks offer pining sites
at different locations, thus influences the equilibrium
DW positions distribution. Similarly, during the
deceleration phase, DW loses momentum due to
damping and begins to interact strongly with the edges
due to the deceleration force exerted towards the
roughness induced pining sites (as seen from Eq. 16).
DW-edge interaction varies among racetracks due to
their different roughness profile (distribution of pining
sites is different). Moreover, for different racetrack the
DWs begin deceleration from different positions so the
deceleration forces acted on the DWs become
different. All of these factors contribute to the DWs
being pinned at random positions for different
racetracks. In addition to that, DWs in different
racetracks are initialized from pinning sites that have
different longitudinal position and geometry for
different racetracks. Pinning site geometry affects the
depinning current /. vs. K, relationship and thus
different geometry can add stochasticity to the final
DW position. Adding a fixed geometry notch at one
end of the racetracks for DW initial location could
address this stochasticity (though it cannot be
addressed fully due to different stray fields for
different racetracks). However, more importantly,



significant stochasticity still persists (in spite of the
notch to have the same initial DW starting point) due
to the above-mentioned DW-edge interaction both at
the beginning and end of SOT excitation.
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Fig. 3: (a)-(e) Equilibrium DW positions in 40 different
racetracks at T=0 K for a fixed SOT and different stresses
correspond to K, values of 8.0, 7.8, 7.5, 7.3 and 7.0 (x 10%) J/m3.
For each figure in 3(a)-(¢) a Gaussian distribution plot is overlaid
having a mean and standard deviation identical to the data used to
create the bins (f) 3-dimentional histogram shows combined plot of

3(a)-(e).

C. Thermal Statistics

At room temperature, the thermal perturbation can
dislodge the DW. Hence, edge roughness of ~ 3
nm cannot offer similar pinning effect in thermal cases
as in the non-thermal cases. As a result, the depinning
current decreases in the presence of room temperature
thermal noise for the same racetrack. For thermal
simulation, we use a fixed clocking SOT current
density of 15 X 10'° A/m? which is smaller than the
current density we use in non-thermal case. The SOT
and stress application time are kept the same as before
(1.2 ns). After the withdrawal of SOT and stress, we
relax for 10 ns (as we did earlier for the non-thermal
case). Unlike non-thermal cases, the DWs do not settle
to a specific pinning site but oscillate around this
pinning site as the thermal energy causes the DW
position to fluctuate around the equilibrium position.
We found that DWs usually encounter a pinning site

within 6 ns of SOT withdrawal. So, a relaxation time
of 10 ns is enough for the DWs to reach an equilibrium
position. We changed the anisotropy constant, K,
values to 8.0, 7.8, 7.5, 7.3 and 7.0 (x 10°) J/m3 and
ran the simulation for each K, value 100 times
considering limited computational resources and time.
The equilibrium DW position distribution for one such
racetrack of ~ 3nm rms edge roughness is shown in
Fig. 4. Here, we also overlay Gaussian distribution
with identical mean and standard deviation of the data
used to create the bins. The bins in Fig. 4(a)-(e) are
sized according to the standard deviation of the data.
Although the distribution does not follow Gaussian
distribution, the mean positions for different K,
follow the same trend as in non-thermal case where for
lower K, values the mean DW position shifts to the
left. Due to the random variation of the DW internal
magnetization angle in the presence of thermal noise,
upon encountering a potential barrier (or a well), the
DW could overcome the barrier (or gets attracted to
the well) in some cases but not in other cases. This
leads to a distribution.

The settling time of 10 ns for the DW or a total
write time 11.2 ns may indicate a slower device
compare to SOT-MRAM based memory device where
low switching time is expected. However, for
hardware implementation of DNN, 11.2 ns write time
is not considered too slow, as different layers in DNN
are implemented with separate crossbars (as shown in
Fig. 1(c)) thus can take advantage of parallel
operation. Performing the weighted sum operation
during the forward and backward pass of DNN
consumes time (read operation), so does the activation
function computation. Thus, when a crossbar
implements forward pass or backward pass of one
layer, the other crossbar devices can be programmed
(write operation) to achieve target conductance values.

D. Determination of Synaptic State

If the number of target states are n, and the
maximum and the minimum conductance of the
racetrack are Gpgyp and Gpin ap, then ~(Gpaxp —
Gminap) can be divided into n — 1 parts to represent
one state. In such a scenario, the target conductances
for each of the n states can be ~ Ginap » Gminap

Gmax,P—Gmin,AP G 2 % Gmax,p=Gmin,aP
n-1 > min,AP n-1

Gmaxp For any programming voltage pulse,
representing by a specific PMA or Ku, the probability
by which any stabilized DW provides conductance G
that is within the range of target conductance G such

Gmax,p—Grmi . .
that |G — G7| < %W , is the probability of

that state for that programming condition. Fig. 5(a)
and (b) plots the cumulative probability of DW device
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conductance at T=300 K for five and three different
programming conditions that implements 5- and 3-
state synapse. For the conductance calculation, Eq.7 is
used and the resistance area product and TMR are
assumed to be 4.04 x 10~20m? and 120 % [9]. The
value of Gpy is small and neglected for calculation. In
Fig. 5, the black dotted lines represent the target
conductance of a state and the adjacent red dotted lines
represent the state boundaries. For 5-state synapse the
target conductance are chosen to be 3.22, 3.86, 4.5,
5.14 and 5.78 mS which can be achieved by
modulating the PMA to 8.0, 7.8, 7.5, 7.3 and 7.0 (X
10°) J/m3 respectively. For 3-state synapse the target
conductance are chosen to be 3.22,4.5 and 5.78 mS.
Ideally one would want 100% probability for a state
for one programming condition or a specific Ku.
However, in the case of stochastic DW, we get a finite
probability for all the states for one programming
condition. This leads to overlap of states which could
degrade the ANN accuracy. These overlaps can be
easily addressed by restricting the conductance of a
state within the range of a target conductance (given
by the adjacent red lines) by programming and then
sensing or performing read-verify-write operation in a
loop [58]. “Closed loop on device” [59] method can
be used to perform read-verify-write operation for on-
chip learning and “open loop off device” [60] method
can be used for off-chip learning where the target
conductance values are calculated beforehand by
training a precursor neural network. Comparing Fig.
5(a) and (b) we can see that the state boundary is wide
for 3-state synapse, thus one state can be programmed
with smaller number of attempts.

While the nanoscale racetrack could be used as a
synaptic device after addressing the state overlap
issue, however, the presence of device to device
variation (as in Fig. 3) and intra-device variation (as in
Fig. 4) are also evident. Intuitively such variation
could be harmful to the functioning of the DW based
synaptic device as an inference engine for
classification task, as the synaptic weights obtained
after software-based training cannot be programmed
accurately during inference stage. However, recent
studies [40] have shown that addressing the device
variability during the training stage can achieve high
inference accuracies that is very close to baseline
accuracy (no device variability is assumed) and the
accuracy is highest when the level of noise (because of
the device variability) injected during the training is on
the same order as the noise of the device used for the
inference task.
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Fig. 5: (a) Cumulative probability of device conductance for 5
different programming conditions (different K,,) implementing a 5-
state stochastic synapse. The black dotted lines represent the 5 target
conductances for the 5-state synapse. The red dotted lines represent
the boundaries of each state to ensure that no overlap happens
between adjacent states. (b) Cumulative probability of device
conductance for 3-state synapse. The red dotted lines represent the
state boundaries. of each state. For 3-state synapse the width of state
boundary is high so one state can be programmed with a smaller
number of attempts.

E. Energy Dissipation

Energy dissipation in our proposed device depends
on charging the piezoelectric layer as well as I?R loss
of the clocking current through the heavy metal layer.
To introduce stress, we have to charge the
piezoelectric layer. Energy required to charge this
capacitive layer is 1/ 2 C V2, where, V is the voltage
applied and C is the capacitance of the piezoelectric
layer between the metal contacts.

In our proposed device, the racetrack PMA we have
considered is K, =7.0 X 10° J/m? and the maximum
change of PMA with voltage induced stress is
APMA=0.5 X 10° ] /m? to achieve K, =7.0 or 8.0 (X
10%) J/m3. The saturation magnetostriction of CoFe
is, ;=250 ppm. Using the above values, the maximum
amount of required stress, ¢ is calculated to be,

@j"f*—m MPa. For CoFe with Young’s Modulus of

24s

200 GPa, the required strain is, 133 MPa - _10-3,
200 MPa

Previous study [48] showed that 1073 strain is
possible in Lead Zirconate Titanate (PZT)
piezoelectric with an applied electric field of
E=3MVm~?! when the electrode dimensions are in the
same order of the PZT thickness. If we consider our
PZT layer to be b=50 nm thick (same as top electrode
or racetrack width as shown in Fig. 1(b)) then a voltage
of, E¥b = 0.15 V applied at the top electrode pair can
generate the required strain. If the top electrode length
L=500 nm (same as racetrack length 500 nm) and
width b=50 nm is considered, and relative permittivity
of PZT is €,=3000 then the effective capacitance is

calculated to be 2TEP) 133 fF. This suggests a

1/2 CV? loss of ~0.3 fJ considering two top electrodes

on both sides of the racetrack.

For our SOT clocking, we assume resistivity of Pt
layer is 100 Q nm. We also assume Pt layer to be 5
nm thick, which is greater than the spin diffusion
length of ~2 nm [44] and the spin hall angle to be 0.1
[44]. If a clocking current density of 24 X 101° A/m?
is applied through the Pt layer of length 500 nm, width
50 nm and thickness 5 nm for a clocking period of 1.2
ns, then the I?R loss incurred is calculated to be ~0.86
fJ. Therefore, our proposed DW based device can

program the synapse with maximum energy
dissipation of approximately /.16 fJ.

Energy consumption to program the proposed
synapse to the maximum (or minimum) conductance
value is 1.16 fJ which is much less than previously
reported [10,11]. Recent study has shown DW based
synapse with racetrack dimension of 1000 nm x 50 nm,
where each synaptic state is programmed by applying
SOT current pulse for 3 ns [9]. In their device they
require ~ 8.64f] to program the synaptic conductance
from one extreme to the other. While the state-of-the-
art phase change memory (PCM) device and the metal
oxide resistive random-access memory (RRAM)
device can have a smaller footprint, however, the
programming energy can be as high as several pJs [9,
61] because these devices involve physical movement
of ions. Moreover, the endurance cycle of the of the
PCM and the RRAM devices are low compare to
spintronic DW devices [62].

Iv. CONCLUSION

In summary, we have proposed an energy efficient
strain-controlled synapse where different synaptic
weights have been achieved by applying different
values of voltage induced stress in conjunction with a
fixed clocking SOT current in chiral DW systems with
significant DMI. While a uniform change in stress-
induced anisotropy cannot move the DW that is pinned
in a trap site, it can influence the potential landscape
such that the DW in a low PMA racetrack moves faster
than in a high PMA one, when being driven by a fixed
SOT current. We have showed that five different mean
equilibrium DW positions with five different voltage
induced stress values is achievable in a 500 nm long
and 50 nm wide racetrack with edge roughness of ~3
nm. These suggest the feasibility of a 5-state synapse
A 3-state synapse can be also achieved using three
different voltage induced PMA modulation. Recent
progress in low precision quantized neural network to
achieve near equivalent accuracy to full-precision
network makes such a DW based synapse device
specifically attractive as a powerful classification tool
for edge devices where energy requirement is at a
premium.
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