
Voltage Controlled Energy Efficient Domain Wall 
Synapses with Stochastic Distribution of Quantized Weights 

in the Presence of Thermal Noise and Edge Roughness 
 

Walid Al Misba, Tahmid Kaisar, Dhritiman Bhattacharya, Member, IEEE, and Jayasimha Atulasimha, 
Senior Member, IEEE 

 
 

Abstract— We propose energy efficient voltage 
induced strain control of domain wall (DW) in a 
perpendicularly magnetized nanoscale racetrack on a 
piezoelectric substrate that can implement a multi-state 
synapse to be utilized in neuromorphic computing 
platforms. Here strain generated in the piezoelectric is, 
mechanically transferred to the racetrack and modulates 
the Perpendicular Magnetic Anisotropy (PMA) in a 
system that has significant interfacial Dzyaloshinskii–
Moriya interaction (DMI). When different voltages are 
applied (i.e. different strains are generated) in 
conjunction with SOT due to a fixed current flowing in 
the heavy metal layer for a fixed time, DWs are 
translated to different distances and implement different 
synaptic weights. We have shown using micromagnetic 
simulations that 5-state and 3-state synapses can be 
implemented in a racetrack that is modeled with the 
inclusion of natural edge roughness and room 
temperature thermal noise. These simulations show 
interesting dynamics of DWs with roughness induced 
pining sites both at the beginning and end of the SOT 
current pulse for different PMA modulation. Thus, 
notches need not be fabricated to implement multi-state 
nonvolatile synapses. Such a strain-controlled synapse 
has an energy consumption of ~ 1 fJ and could thus be 
very attractive to implement energy-efficient quantized 
neural networks, which has been shown recently to 
achieve near equivalent classification accuracy to the 
full-precision neural networks.   
 

Index Terms—Neuromorphic computing, Synapse, 
Domain wall, MTJ, Edge roughness, Spin orbit torque, 
Magneto-elastic effect. 
 

I. INTRODUCTION 
 

Neuromorphic computing outperforms traditional 
von-Neumann type processors in data-intensive 
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classification tasks. Moreover, their in-memory 
computing architecture can reduce energy dissipation 
[1] required to shuttle data back and forth between 
processor and memory unit in traditional computing 
architectures. Examples of hardware realization for 
neuromorphic computing include phase change 
random access memory (PCRAM) [2-4], resistive 
random-access memory (RRAM) [5,6] and spin 
transfer torque random-access memory (STTRAM) 
[7]. While the device variability is a persistent issue 
for all of the above-mentioned devices, recent work in 
fully connected artificial neural network (ANN) [8] 
shows equivalent accuracy to software-based training. 
Unfortunately, PCRAM and RRAM based devices 
consume energy on the order of a few pJs per synaptic 
weight alteration event [9]. Hence, the future IoTs and 
edge-devices where power is limited will necessitate 
alternate neuromorphic hardware that are energy 
efficient and enable real time programing of synaptic 
weights so the networks can be trained in-situ.  

Recently, nanomagnet based synaptic devices has 
shown potential to be energy efficient compared to 
PCRAM and RRAM [9, 10, 11]. Among nanomagnet 
based neuromorphic devices, domain wall (DW) based 
magnetic tunnel junctions (MTJs) are one of the most 
promising. To implement these devices, domain walls 
(DWs) are translated to different positions by 
externally applied magnetic field [12], an electric 
current that causes spin-orbit torque (SOT) [13-15], 
spin transfer torque (STT) [16-18] or a strain gradient 
[19-20]. Strain control of magnetization consumes 
ultra-low energy [21-27]. Hence, manipulation of 
DWs with strain can be utilized to implement energy 
efficient neuromorphic devices. Recently, strain-
mediated control of DW has been reported [28, 29]. 
Strain gradient in conjunction with SOT or STT [10] 
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has also been proposed to control DW position to 
implement energy efficient synaptic devices that can 
be programmed in real time. 

In this work, we propose to utilize SOT to translate 
the DW in a realistic nanoscale racetrack modeled 
with edge roughness and thermal noise where the DW 
position is controlled by modulating the perpendicular 
magnetic anisotropy (PMA) of the racetrack with the 
application of stress. Here, deterministic control of 
DW to realize different synaptic values is hard to 
achieve when different stress values are generated by 
applying voltage pulse of different amplitudes to the 
electrodes patterned on top of a piezoelectric. This is 
because, equilibrium DW positions are often 
stochastic in nature and with the presence of defects 
[30], local imperfections [31] and thermal noise [32] it 
could be very difficult to achieve deterministic 
control. Nevertheless, the DW can be arrested by 
providing trap sites such as curved shape [33] and 
notch or protrusion [34], which can act as a potential 
well or barrier. Moreover, edge roughness [35-36] can 
introduce pinning sites for DW motion. In this paper, 
we use edge roughness and obtain the statistical 
distribution of DW position from micromagnetic 
simulations which shows that the mean positions are 
different for different stress induced change of PMA 
for a fixed current induced SOT of a fixed “clock” 
time. Although the number of states (different DW 
positions) attained are limited and there are overlaps 
between the states, such a DW based racetrack as 
synapse is particularly attractive to implement 
quantized deep neural networks (DNN) [37-39] as 
these networks have been shown to reach accuracy 
very close to the infinite states network. The overlap 
between states can be addressed during the training 
stage of a learning network. Moreover, the stochastic 
variation of a state can be useful in generating 
stochastic weights for training the network which can 
work as DNN regularizer to reduce overfitting of 
training [40]. Studies have shown training with 
stochastically determined weights rather than 
deterministic ones can potentially increase the 
classification accuracies for some data sets [37]. 
 
 

II. METHOD 
 
The proposed device structure is illustrated in Fig. 

1(a). The stack consists of a heavy metal layer and a 
magnetic tunnel junction (MTJ) containing the 
nanoscale racetrack as free layer, along with the tunnel 
barrier and the hard layer. Such a stack is patterned on 
top of a piezoelectric substrate. We consider Pt/CoFe 
(soft or free racetrack layer)/MgO/CoFe (hard or fixed 
layer) as our stack materials where the heavy metal 
layer Pt will create perpendicular anisotropy and 

strong DMI at Pt/CoFe interface, which is known to 
favor the chiral Neel DWs [41]. We propose to arrest 
the DWs at different positions in the free layer of the 
MTJ, which will modify the resistance value of the 
MTJ stack. Thus, different synaptic weights, which 
define the strength between the neurons can be 
determined from the DW positions. Different layers of 
a DNN can be implemented by arranging the DW 
devices in the crossbar as shown in Fig. 1(c), where 
the DW devices provide the programmable 
conductances which are equivalent to the DNN 
weights.  

 
To arrest the DW at various positions we apply 

different amplitude stress in combination to a fixed 
amplitude and fixed duration SOT pulse. When a 
voltage is applied between the electrodes on top and 
bottom of the piezo-substrate as shown in Fig. 1(b), 
mechanical strain is generated. This strain is then 
transferred to the racetrack and consequently 
modulates the perpendicular anisotropy due to 
magnetoelastic interaction. In combination with stress, 
we apply a current pulse in the adjacent heavy metal 
Pt layer to exert SOT shown by red arrow in Fig. 1(b), 
which moves the DW through the nanowire racetrack 
to the other end of the nanowire. If we reverse the 
direction of current in the heavy metal layer, it will 
reverse the direction of DW motion and reset it to the 
other end.  

 
We have considered edge roughness that is present 

naturally in a nanoscale racetrack due to lithographic 
imperfection and pattern transfer process. Authors 
report [42] ~ 2nm rms edge roughness for 25 nm wide 
racetrack when they use a combination of electron 
beam lithography (EBL) and ion beam etching. 
Authors [36] also report ~ 2nm rms edge roughness for 
80 nm wide racetrack using the same method. 
However, studies have shown higher rms edge 
roughness for low voltage EBL for racetrack of width 
50 nm or higher [42]. For our simulation we have 
assumed Gaussian distribution for the edge roughness 
with a rms value of ~ 3nm considering the effect of 
high electron jitter from mean position for low voltage 
EBL. In addition to the local structure variation, 
microstructure in the racetrack such as grain boundary, 
defects can provide pinning sites and introduce 
stochasticity in the devices. We did not consider these 
in our simulation for sake of simplicity. The simulated 
racetracks have a length of 500 nm, maximum width 
of 50 nm and thickness of 1 nm. The magnetization 
dynamics in the presence of Spin Orbit Torque (SOT) 
is simulated in MUMAX3 [43] using the Landau–
Lifshitz–Gilbert-Slonczewski equation: 



ሺ1 ൅ ଶሻߙ
ௗ௠ሬሬሬԦ

ௗ௧
ൌ െߛ ሬ݉ሬԦ ൈ ሬሬԦ௘௙௙ܪ െ ߛߙ ቀ ሬ݉ሬԦ ൈ

൫ ሬ݉ሬԦ ൈ ሬሬԦ௘௙௙൯ቁܪ െ ߝሺߛߚ െ ᇱሻ൫ߝߙ ሬ݉ሬԦ ൈ ሺ ሬ݉ሬԦ௉ ൈ ሬ݉ሬԦሻ൯ 

൅	ߛߚሺߝᇱ െ ሻሺߝߙ ሬ݉ሬԦ ൈ ሬ݉ሬԦ௉ሻ 

(1) 

 

ߚ ൌ
԰ߠܬ

௦ܯ଴݁݀ߤ
,

ߝ ൌ
ଶ߉ܲ

ሺ߉ଶ ൅ 1ሻ ൅ ሺ߉ଶ െ 1ሻ൫ ሬ݉ሬԦ ⋅ ሬ݉ሬԦ௣൯
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We consider secondary spin torque parameter to be 
ᇱߝ ൌ and neglect the field like torque. Here,  ሬ݉ሬԦ௉ ߝߙ ൌ
Ԧ௫ܬ ൈ  is the value of current flowing through ܬ  Ԧ  whereݖ
the heavy metal layer and  ܬԦ௫	is the unit vector defining 
the direction of current flow and ݖԦ  is the direction of 
inversion asymmetry. Here,	ߠ is the spin Hall angle 
which is 0.1 for Pt [44],	 ߛ is the gyromagnetic ratio, 
ሬ݉ሬԦ is the unit magnetization vector, ܯ௦ is the saturation 
magnetization,	԰ is the reduced Planck constant, ߤ଴ is 
the permeability of free space, ݁ is the electron charge 
and ݀ is the thickness of the nanowire. To equate the 
Slonczewski toque with Spin orbit torque we assume 
spin polarization to be ܲ ൌ 1 and Slonczewski 
parameter to be	߉ ൌ 1 . Here the effective field, ܪሬሬԦ௘௙௙ 
accounts for the contributions from demagnetization, 
PMA, Heisenberg exchange interaction, 
Dzyaloshinskii–Moriya interaction (DMI), stress 
induced anisotropy and thermal noise.  ܪሬሬԦ௘௙௙ can be 
expressed as follows: 

 
ሬሬԦ௘௙௙ܪ ൌ ሬሬԦ௔௡௜௦ܪ ൅ ሬሬԦௗ௘௠௔௚ܪ ൅ ሬሬԦ௦௧௥௘௦௦ܪ

൅ ሬሬԦ௘௫௖௛ܪ ൅  ሬሬԦ௧௛௘௥௠௔௟ܪ
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The racetracks are discretized into 2 nm ൈ 2 nm ൈ 

1 nm cells which are well within the ferromagnetic 

exchange length of ට
ଶ஺೐ೣ
ఓᴏ	ெೞ

మ = 5.66 nm. We note that 

curved edges are difficult to approximate with finite 
difference method as it depends on stair case 
approximation. As a result, the demagnetization tensor 
is not computed properly [45-47]. However, we find 
similar trend in our result when we decrease the cell 
size.  

 PMA induced effective field can be expressed as, 
 : ሬሬԦ௔௡௜௦ܪ

ሬሬԦ௔௡௜௦ܪ ൌ
௨ܭ2
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ሺݑሬԦ. ሬ݉ሬԦሻݑሬԦ (4) 

 
Where ܭ௨ is the first order anisotropy constant and 

 .ሬԦ represents the uniaxial anisotropy direction (i.eݑ
perpendicular to plane).  

If the electrodes patterned on top of the 
piezoelectric substrate have dimensions similar to the 
piezoelectric thickness and separated by one or two 
times the piezoelectric thickness, maximum stress is 
generated [48].  In such a scenario, when a positive 
(negative) voltage is applied in the top electrode pair, 
the area underneath the electrode become stretched 
(compressed) in the out of plane direction and 
compressed (stretched) in the in-plane direction. 
Compression (tension) in the in-plane direction 
underneath the electrode surface creates tension 
(compression) in the nanoscale racetrack patterned in 
between the top electrodes due to strain-displacement 
compatibility. We assumed our electrodes to be 
rectangular with width b=piezoelectric thickness and 
length L=racetrack length. This is similar to having 
(L/b) number of square electrodes of (bൈb) 
dimensions and therefore one can assume this 
electrode configuration will produce similar amount of 
stress as mentioned in Ref [46]. Fig. 1(b) shows the 
strain formation in the nanoscale racetrack in such a 
scenario. Stress produced in the in-plane direction of 
the racetrack induces anisotropy field due to the 
magneto-elastic effect in the same direction and 
modulates the PMA or the anisotropy constant ܭ௨. The 
effect of the stress is modeled by the modulating ܭ௨ in 
the micromagnetic simulation. For simplicity, we did 
not consider the strain that can be produced in the in-
plane direction of the racetrack which is orthogonal to 
that shown in the Fig. 1(b). 

 

 
 

Fig. 1: (a) Proposed device stack where the nanoscale racetrack 
act as the magnetic free layer of the MTJ. DW in the racetrack 
moves when a current is applied to the heavy metal layer underneath 



the racetrack (b) Stress generation mechanism in rough edge 
racetrack when a voltage is applied across the piezoelectric. (c) 
Implementation of layers of DNN with DW based synaptic devices. 
The devices are arranged in crossbar to provide programmable 
conductance equivalent to the DNN weights. 

 

 
The effective field due to the interfacial 

Dzyaloshinskii-Moriya interaction is expressed as 
follows [43]: 
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Here, D is the DMI constant and ݉௫, ݉௬ and ݉௭ 
are the x, y and z component of unit magnetization 
vector ሬ݉ሬԦ respectively.   

Thermal noise induces a random effective field 
  :ሬሬԦ௧௛௘௥௠௔௟  [49]ܪ

ሬሬԦ௧௛௘௥௠௔௟ܪ ൌ ඨ	Ԧߟ
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 (6) 

Here, ߟԦ is a random variable with Gaussian 
distribution with mean zero and unit variance and 
independent (uncorrelated) in each of the 3 cartesian 
coordinates generated at each time step, ݇ is 
Boltzmann constant, Ω is the cell volume, ߂ is the time 
step size. 

The parameters for the simulation are presented at 
table I [50-52]. 

 
 TABLE I 

 
Parameters Values 

DMI constant (D) 0.001 ି݉ܬଶ 
Gilbert damping (ߙ) 0.015 
Saturation magnetization (ܯ௦) 10଺	ି݉ܣଵ

Exchange constant (ܣ௘௫) 2 ൈ 10ିଵଵି݉ܬଵ

Saturation magnetostriction (ߣ௦) 250 ݉݌݌ 
Perpendicular Magnetic 
Anisotropy (ܭ௨) 

7.5 ൈ 10ହ ି݉ܬଷ 

 
    The synaptic state of the proposed device could be 
read by the MTJ. For a read voltage applied between 
the read and GND terminal (as in Fig. 1(a)) the 
resistance is provided by the portion of the racetrack 
that is parallel (P) and antiparallel (AP) to the fixed 
layer and a small DW region where the magnetization 
is transverse to the fixed layer magnetization. The read 
current also counters a resistance from heavy metal 
layer however that is small compared to the tunnel 
magnetoresistance. If we assume the conductance of 
the racetrack is ܩ௠௔௫,௉ when completely in P state with 

respect to the fixed layer and ܩ௠௜௡,஺௉ when completely 
in AP state, then for any intermediate position q of the 
DW inside the racetrack of length L, the conductance 
of the synapse can be expressed as the following: 
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III. RESULTS AND DISCUSSION 

 
 
 

A. Effect of edge roughness on Domain Wall 
motion 

 
In rough edge racetrack the racetrack width varies, so 
local pinning sites are created randomly along the 
length of the racetrack. Depending on the magnitude 
of the edge roughness (rms value or standard 
deviation) the pinning strength of the pining sites 
varies. Studies have shown that higher magnitude edge 
irregularities require higher depinning current to 
translate DW in the racetrack [53-55]. Thus, the 
magnitude of the edge roughness influences the 
equilibrium DW positions in the racetrack. This also 
determines the operating current of the DW based 
synaptic device. 
   In addition to the rms edge roughness, the pining 
location distribution or the relative position of the 
pining sites from DW start position and center of the 
racetrack influences the final DW position. The 
characteristic DW motion equation during the 
acceleration phase (at the time of SOT excitation) can 
be found by linearizing the 1-D DW equations [41,56]. 
The following Newton-like motion equation is 
obtained: 
 

 ݉∗ ݒ݀
ݐ݀
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߬
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Where the effective DW mass can be expressed as:  

 ݉∗ ൌ
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The friction force is: 
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And the external force is: 
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Here, ܪ஽ெ [41] is the DMI field, ܪௌு is the damping 
like spin hall effective field and  ܪ௄  is the shape 
anisotropy field from magnetostatic origin. 
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Here, ∆ is the DW width which can be expressed as: 
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The pinning field can be expressed as: 
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Where ܸ ௉ூேሺݍሻ is the local pinning potential due to the 
roughness induced pinning locations and ݓ is the 
racetrack width, d is the racetrack thickness. 
    From the linearized motion equation of the DW we 
can see that the roughness induced pinning sites 
induce an attractive force towards the pining site 
scaled by the magnetostatic field (ܪ௉ூேሺݍሻܪ௄ term in 
external force Eq. 11). This force is added to the SOT 
current induced force due to ܪௌு field. The 
demagnetization field, ܪ௄  is maximum at both ends 
of rectangular shape racetrack and starts to decrease 
and becomes minimum at the center of the racetrack. 
Similarly, the pining field, ܪ௉ூேሺݍሻ  is high (low) 
away from (close to) the pining site, however the range 
of this force is much more localized than the 
demagnetization force. Depending on the PMA 
modulation (different value of ܭ௨),	ܪ௉ூேሺݍሻ changes, 
thus the competition between ܪ௉ூேሺݍሻ and ܪ௄ 
changes. This competition eventually determines the 
relationship between the pining site distance from the 
DW and the corresponding kinetic energy (depinning 
current) to overcome that pining site.  
     When the SOT current pulse is withdrawn, the DW 
starts to decelerate and the deceleration force can be 
obtained by linearizing the 1-D DW equations: 

ܨ  ൌ െቀܪ௄ െ
ߨ
2
 ሻ (16)ݍ௉ூேሺܪ஽ெቁܪ

As ܪ௉ூேሺݍሻ and ܪ௄ are both functions of distance, the 
magnitude of the deceleration force acting on the DW 
changes with the DW position in the racetrack for a 
fixed PMA. Thus, the DW position at the end of the 
SOT pulse also influences the equilibrium DW 
position. 
 

B. Non-thermal Statistics due to Different Edge 
Roughness Profiles in Different Racetracks 

 
For non-thermal simulations we have simulated 

the DW motion in 40 different racetracks with 
different edge roughness profile. The PMA of the 
racetracks is considered to be 7.5 ൈ 10ହ ܬ ݉ଷ⁄ . The 
PMA can be decreased or increased uniformly over the 
whole racetrack by applying a suitable voltage to the 
electrodes. The clocking SOT current is applied 
simultaneously with this voltage pulse. We have 
assumed that the DW is initialized to a pinning site 
located at one end of the racetrack. The SOT current 
translates the DW while the PMA modulation helps to 
drive the DW to different positions when clocked with 
SOT for a fixed time. This could be explained as 
following.  

The critical depinning current density ܬ஼ of the DW 
is related to the anisotropy coefficient ܭ௨ of the 
racetrack. When ܭ௨ is higher, the potential well of a 
pinning site becomes deep, so it requires high 
depinning current, ܬ஼ to depin a DW siting in such a 
potential well or energy minima. On the contrary, 
lower ܭ௨ is associated with a shallow potential well 
for the same pinning site hence requires lower 
threshold current to depin. Fig. 2(a) presents a sketch 
of an example racetrack where the DW is situated at a 
pinning site located near the right end of the racetrack 
and Fig. 2(b) plots the depinning current versus the 
anisotropy coefficient for that DW. From Fig. 2(b) we 
can see that critical depinning current ܬ஼ is increased 
with the increase of anisotropy coefficient ܭ௨.  

The DW velocity at steady state can be expressed 
by the following [56,57]:  
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஽ܬ ൌ ܬߙ ஽ெܪ ⁄ௌுܪ  (18) 

 
Empirical critical current density ܬ஼ is used to account 
for the pinning effect which is validated by fitting one 
dimensional DW model to the experimental data [56].  

 
    As seen from Fig. 2(b), the critical current 

density  ܬ஼ is high for higher ܭ௨. As a result, for a 
higher ܭ௨, for a fixed clocking SOT current	ܬ ൐ 		  ,	஼ܬ
the velocity becomes small as the denominator in Eq. 
17 is large compared to the case of lower ܭ௨  for which 
the denominator is small (low critical current density  
 ௨ increasesܭ ஼) and velocity is high. In addition, whenܬ
(decreases) the DW width ∆ in Eq. 14 decreases 
(increases) which increases (decreases) ܬ஽ in Eq. 18 



and the denominator in Eq. 17, consequently the 
velocity decreases (increases).   

The DW position for different anisotropy constant 
 ௨ is shown in Fig. 2(c) for one rough edge racetrackܭ
where the SOT current of 24	 ൈ 10ଵ଴ ܣ ݉ଶ⁄  is applied 
for fixed 1.2 ns. The change in velocity with the 
change in ܭ௨ is evident as the DW translates to 
different distances with the same SOT. After the 
withdrawal of the SOT and strain, the DW further 
moves at terminal velocity due to the momentum 
gained because of the SOT toque. The lower the 
anisotropy constant the higher the velocity gain and 
the higher the distance travelled by the DW after the 
withdrawal of SOT as can be seen for the case of ܭ௨ ൌ
7.3	 ൈ 10ହ ܬ ݉ଷ⁄ . Notably, the DW for ܭ௨ ൌ 7.0	 ൈ
10ହ ܬ ݉ଷ⁄  also traveled same distance as ܭ௨ ൌ 7.3	 ൈ
10ହ ܬ ݉ଷ⁄  as the velocity difference after SOT 
withdrawal is small and there is no suitable pining site 
in between to pin and stop the DW at a different 
position due to the small velocity difference.  

 

 
 

Fig. 2: (a) Initial pinning position of the DW in a PMA rough 
edge racetrack. (b) dependence of the DW depinning current on the 
anisotropy coefficient when the DW in racetrack 2(a) is in the initial 
pinning position. (c) DW positions with time in racetrack 2(a) for a 
fixed duration and amplitude current pulse exerting SOT and 
different stresses (different ܭ௨). The SOT and stress are withdrawn 
at 1.2 ns. For different stresses respective DWs travel different 
distances and get pinned to different locations.  

 

We have simulated a total of 40 racetracks of ~ 
3nm rms edge roughness where we varied anisotropy 
constant values ܭ௨ to 8.0, 7.8, 7.5, 7.3 and 7.0 (ൈ 10ହ) 
ܬ ݉ଷ⁄  in each of these racetracks and applied SOT 
current of fixed amplitude 24	 ൈ 10ଽ ܣ ݉ଶ⁄  for 1.2 ns. 
Each of the DW is initialized to a pinning site located 
near the right end of the racetrack. After the 
simultaneous withdrawal of the SOT and stress we 
wait for 10 ns to allow sufficient time for the DW to 
decelerate and get pinned to a specific position. We 
note that, the DWs usually settle within approximately  
േ 4 nm of the equilibrium pinning locations after 10 
ns of SOT withdrawals which is approximately 3x of 
the deceleration time constant calculated from 1-D 
DW equations. The distribution of the final DW 
position for the 40 racetracks is shown in Fig. 3.  

In Fig. 3 for each ܭ௨ value we also overlay a 
gaussian distribution with identical mean and standard 
deviation of the data used to create the bins. Although 
the final position distribution does not follow Gaussian 
distribution, we see that the mean final positions are 
different for different stress (ܭ௨) values (Fig. 3(a)-(e)). 
The mean DW positions shift to the left of the 
racetracks as we decrease the PMA. The primary 
source of the distribution of final DW positions for a 
specific ܭ௨ could be attributed to the interaction of the 
DWs with the roughness induced pining sites during 
the acceleration and deceleration phases of DW 
motion. During the acceleration phase the kinetic 
energy (or SOT current) required to overcome a pining 
site depends on the relative distance of the DW from 
the pining sites. Different racetracks offer pining sites 
at different locations, thus influences the equilibrium 
DW positions distribution. Similarly, during the 
deceleration phase, DW loses momentum due to 
damping and begins to interact strongly with the edges 
due to the deceleration force exerted towards the 
roughness induced pining sites (as seen from Eq. 16). 
DW-edge interaction varies among racetracks due to 
their different roughness profile (distribution of pining 
sites is different). Moreover, for different racetrack the 
DWs begin deceleration from different positions so the 
deceleration forces acted on the DWs become 
different. All of these factors contribute to the DWs 
being pinned at random positions for different 
racetracks. In addition to that, DWs in different 
racetracks are initialized from pinning sites that have 
different longitudinal position and geometry for 
different racetracks. Pinning site geometry affects the 
depinning current ܬ஼ vs. ܭ௨ relationship and thus 
different geometry can add stochasticity to the final 
DW position. Adding a fixed geometry notch at one 
end of the racetracks for DW initial location could 
address this stochasticity (though it cannot be 
addressed fully due to different stray fields for 
different racetracks). However, more importantly, 



significant stochasticity still persists (in spite of the 
notch to have the same initial DW starting point) due 
to the above-mentioned DW-edge interaction both at 
the beginning and end of SOT excitation.  

 

 
 

Fig. 3: (a)-(e) Equilibrium DW positions in 40 different 
racetracks at T=0 K for a fixed SOT and different stresses 
correspond to ܭ௨ values of 8.0, 7.8, 7.5, 7.3 and 7.0 (ൈ 10ହ) ܬ ݉ଷ⁄ . 
For each figure in 3(a)-(e) a Gaussian distribution plot is overlaid 
having a mean and standard deviation identical to the data used to 
create the bins (f) 3-dimentional histogram shows combined plot of 
3(a)-(e). 

 

 
C. Thermal Statistics 

 
At room temperature, the thermal perturbation can 
dislodge the DW. Hence, edge roughness of ~ 3 
nm	cannot offer similar pinning effect in thermal cases 
as in the non-thermal cases. As a result, the depinning 
current decreases in the presence of room temperature 
thermal noise for the same racetrack. For thermal 
simulation, we use a fixed clocking SOT current 
density of 15	 ൈ 10ଵ଴ ܣ ݉ଶ⁄  which is smaller than the 
current density we use in non-thermal case. The SOT 
and stress application time are kept the same as before 
(1.2 ns).  After the withdrawal of SOT and stress, we 
relax for 10 ns (as we did earlier for the non-thermal 
case). Unlike non-thermal cases, the DWs do not settle 
to a specific pinning site but oscillate around this 
pinning site as the thermal energy causes the DW 
position to fluctuate around the equilibrium position. 
We found that DWs usually encounter a pinning site 

within 6 ns of SOT withdrawal. So, a relaxation time 
of 10 ns is enough for the DWs to reach an equilibrium 
position. We changed the anisotropy constant, ܭ௨ 
values to 8.0, 7.8, 7.5, 7.3 and 7.0 (ൈ 10ହ) ܬ ݉ଷ⁄  and 
ran the simulation for each ܭ௨ value 100 times 
considering limited computational resources and time.  
The equilibrium DW position distribution for one such 
racetrack of ~ 3nm rms edge roughness is shown in 
Fig. 4. Here, we also overlay Gaussian distribution 
with identical mean and standard deviation of the data 
used to create the bins. The bins in Fig. 4(a)-(e) are 
sized according to the standard deviation of the data. 
Although the distribution does not follow Gaussian 
distribution, the mean positions for different ܭ௨  
follow the same trend as in non-thermal case where for 
lower ܭ௨ values the mean DW position shifts to the 
left. Due to the random variation of the DW internal 
magnetization angle in the presence of thermal noise, 
upon encountering a potential barrier (or a well), the 
DW could overcome the barrier (or gets attracted to 
the well) in some cases but not in other cases. This 
leads to a distribution. 
     The settling time of 10 ns for the DW or a total 
write time 11.2 ns may indicate a slower device 
compare to SOT-MRAM based memory device where 
low switching time is expected. However, for 
hardware implementation of DNN, 11.2 ns write time 
is not considered too slow, as different layers in DNN 
are implemented with separate crossbars (as shown in 
Fig. 1(c)) thus can take advantage of parallel 
operation. Performing the weighted sum operation 
during the forward and backward pass of DNN 
consumes time (read operation), so does the activation 
function computation. Thus, when a crossbar 
implements forward pass or backward pass of one 
layer, the other crossbar devices can be programmed 
(write operation) to achieve target conductance values. 
 

D. Determination of Synaptic State 
 

       If the number of target states are ݊, and the 
maximum and the minimum conductance of the 
racetrack are  ܩ௠௔௫,௉ and ܩ௠௜௡,஺௉, then ~ሺܩ௠௔௫,௉ െ
݊ ௠௜௡,஺௉ሻ can be divided intoܩ െ 1 parts to represent 
one state. In such a scenario, the target conductances 
for each of the n states can be ~ ܩ௠௜௡,஺௉ , ܩ௠௜௡,஺௉ 

+
ீ೘ೌೣ,ುିீ೘೔೙,ಲು

௡ିଵ
௠௜௡,஺௉+2ܩ , ∗

ீ೘ೌೣ,ುିீ೘೔೙,ಲು

௡ିଵ
, ….. , 

 ,௠௔௫,௉ For any programming voltage pulseܩ
representing by a specific PMA or Ku, the probability 
by which any stabilized DW provides conductance ܩ 
that is within the range of target conductance ்ܩ such 

that  |ܩ െ |்ܩ ൏
ଵ

ଶ

ீ೘ೌೣ,ುିீ೘೔೙,ಲು

௡ିଵ
 , is the probability of 

that state for that programming condition. Fig. 5(a) 
and (b) plots the cumulative probability of DW device 



conductance at T=300 K for five and three different 
programming conditions that implements 5- and 3-
state synapse. For the conductance calculation, Eq.7 is 
used and the resistance area product and TMR are 
assumed to be 4.04 ൈ 10ିଵଶΩ݉ଶ and 120 % [9]. The 
value of ܩ஽ௐ is small and neglected for calculation. In 
Fig. 5, the black dotted lines represent the target 
conductance of a state and the adjacent red dotted lines 
represent the state boundaries. For 5-state synapse the 
target conductance are chosen to be 3.22, 3.86, 4.5, 
5.14 and 5.78 mS which can be achieved by 
modulating the PMA to 8.0, 7.8, 7.5, 7.3 and 7.0 (ൈ
10ହ) ܬ ݉ଷ⁄  respectively. For 3-state synapse the target 
conductance are chosen to be 3.22,4.5 and 5.78 mS.  
Ideally one would want 100% probability for a state 
for one programming condition or a specific Ku. 
However, in the case of stochastic DW, we get a finite 
probability for all the states for one programming 
condition. This leads to overlap of states which could 
degrade the ANN accuracy. These overlaps can be 
easily addressed by restricting the conductance of a 
state within the range of a target conductance (given 
by the adjacent red lines) by programming and then 
sensing or performing read-verify-write operation in a 
loop [58].  “Closed loop on device” [59] method can 
be used to perform read-verify-write operation for on-
chip learning and “open loop off device” [60] method 
can be used for off-chip learning where the target 
conductance values are calculated beforehand by 
training a precursor neural network. Comparing Fig. 
5(a) and (b) we can see that the state boundary is wide 
for 3-state synapse, thus one state can be programmed 
with smaller number of attempts.  
   While the nanoscale racetrack could be used as a 
synaptic device after addressing the state overlap 
issue, however, the presence of device to device 
variation (as in Fig. 3) and intra-device variation (as in 
Fig. 4) are also evident. Intuitively such variation 
could be harmful to the functioning of the DW based 
synaptic device as an inference engine for 
classification task, as the synaptic weights obtained 
after software-based training cannot be programmed 
accurately during inference stage. However, recent 
studies [40] have shown that addressing the device 
variability during the training stage can achieve high 
inference accuracies that is very close to baseline 
accuracy (no device variability is assumed) and the 
accuracy is highest when the level of noise (because of 
the device variability) injected during the training is on 
the same order as the noise of the device used for the 
inference task.  
 
 

 
 
Fig. 4: (a)-(e) Equilibrium DW positions in one racetrack (~ 3nm 
rms edge roughness) at T=300K for a fixed SOT and different 
stresses correspond to ܭ௨ values of 8.0, 7.8, 7.5, 7.3 and 7.0 (ൈ 10ହ) 
ܬ ݉ଷ⁄ .  For each figure in 4(a)-(e) a Gaussian distribution plot is 
overlaid having a mean and standard deviation identical to the data 
used to create the bins (f) 3-dimentional histogram shows combined 
plot of 4(a)-(e) 
 

    
 

 



 
Fig. 5: (a) Cumulative probability of device conductance for 5 

different programming conditions (different ܭ௨) implementing a 5-
state stochastic synapse. The black dotted lines represent the 5 target 
conductances for the 5-state synapse. The red dotted lines represent 
the boundaries of each state to ensure that no overlap happens 
between adjacent states. (b) Cumulative probability of device 
conductance for 3-state synapse. The red dotted lines represent the 
state boundaries. of each state. For 3-state synapse the width of state 
boundary is high so one state can be programmed with a smaller 
number of attempts. 

 

E. Energy Dissipation 
 
      Energy dissipation in our proposed device depends 
on charging the piezoelectric layer as well as ܫଶܴ loss 
of the clocking current through the heavy metal layer. 
To introduce stress, we have to charge the 
piezoelectric layer. Energy required to charge this 
capacitive layer is  1 2ൗ  ଶ, where, ܸ is the voltageܸܥ
applied and ܥ is the capacitance of the piezoelectric 
layer between the metal contacts. 
    In our proposed device, the racetrack PMA we have 
considered is ܭ௨ ൌ7.0 ൈ 10ହ ܬ ݉ଷ⁄  and the maximum 
change of PMA with voltage induced stress is 
∆PMA=0.5 ൈ 10ହ ܬ ݉ଷ⁄  to achieve  ܭ௨ ൌ7.0 or 8.0 ሺൈ
10ହሻ ܬ ݉ଷ⁄ . The saturation magnetostriction of CoFe 
is, ߣ௦=250 ppm. Using the above values, the maximum 
amount of required stress, σ is calculated to be,  
∆௉ெ஺
ଷ
ଶൗ ఒೞ

=133 MPa.  For CoFe with Young’s Modulus of 

200 GPa, the required strain is, 
ଵଷଷ	ெ௉௔

ଶ଴଴	ெ௉௔
 ~10ିଷ. 

Previous study [48] showed that 10ିଷ strain is 
possible in Lead Zirconate Titanate (PZT) 
piezoelectric with an applied electric field of 
E=3ିܸ݉ܯଵ when the electrode dimensions are in the 
same order of the PZT thickness. If we consider our 
PZT layer to be b=50 nm	thick (same as top electrode 
or racetrack width as shown in Fig. 1(b)) then a voltage 
of, E*b = 0.15 V applied at the top electrode pair can 
generate the required strain. If the top electrode length 
L=500 nm (same as racetrack length 500 nm) and 
width b=50 nm is considered, and relative permittivity 
of PZT is ߳௥=3000 then the effective capacitance is 

calculated to be 
ఢబఢೝሺ௅∗௕ሻ

௕
 ~ 13.3 fF. This suggests a  

1
2ൗ  loss of ~0.3 fJ considering two top electrodes	ଶܸܥ

on both sides of the racetrack. 
For our SOT clocking, we assume resistivity of Pt 

layer is 100 Ω nm. We also assume Pt layer to be 5 
nm	thick, which is greater than the spin diffusion 
length of ~2 nm [44] and the spin hall angle to be 0.1 
[44]. If a clocking current density of 24	 ൈ 10ଵ଴ ܣ ݉ଶ⁄  
is applied through the Pt layer of length 500 nm, width 
50 nm and thickness 5 nm for a clocking period of 1.2 
ns, then the ܫଶܴ loss incurred is calculated to be ~0.86 
fJ. Therefore, our proposed DW based device can 

program the synapse with maximum energy 
dissipation of approximately 1.16 fJ. 

Energy consumption to program the proposed 
synapse to the maximum (or minimum) conductance 
value is 1.16 fJ which is much less than previously 
reported [10,11]. Recent study has shown DW based 
synapse with racetrack dimension of 1000 nm x 50 nm, 
where each synaptic state is programmed by applying 
SOT current pulse for 3 ns [9]. In their device they 
require ~ 8.64fJ to program the synaptic conductance 
from one extreme to the other. While the state-of-the-
art phase change memory (PCM) device and the metal 
oxide resistive random-access memory (RRAM) 
device can have a smaller footprint, however, the 
programming energy can be as high as several pJs [9, 
61] because these devices involve physical movement 
of ions. Moreover, the endurance cycle of the of the 
PCM and the RRAM devices are low compare to 
spintronic DW devices [62]. 
 
 

IV. CONCLUSION 
 

In summary, we have proposed an energy efficient 
strain-controlled synapse where different synaptic 
weights have been achieved by applying different 
values of voltage induced stress in conjunction with a 
fixed clocking SOT current in chiral DW systems with 
significant DMI. While a uniform change in stress-
induced anisotropy cannot move the DW that is pinned 
in a trap site, it can influence the potential landscape 
such that the DW in a low PMA racetrack moves faster 
than in a high PMA one, when being driven by a fixed 
SOT current. We have showed that five different mean 
equilibrium DW positions with five different voltage 
induced stress values is achievable in a 500 nm long 
and 50 nm wide racetrack with edge roughness of ~3 
nm. These suggest the feasibility of a 5-state synapse 
A 3-state synapse can be also achieved using three 
different voltage induced PMA modulation. Recent 
progress in low precision quantized neural network to 
achieve near equivalent accuracy to full-precision 
network makes such a DW based synapse device 
specifically attractive as a powerful classification tool 
for edge devices where energy requirement is at a 
premium.  
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