
THEME ARTICLE: Reusable Software

Feature: THEME ARTICLE: Reusable Software

Community Organizations:
Changing the Culture in
Which Research Software
Is Developed and
Sustained

Daniel S. Katz

University of Illinois at Urbana-Champaign
Lois Curfman McInnes

Argonne National Laboratory
David E. Bernholdt

Oak Ridge National Laboratory
Abigail Cabunoc Mayes

Mozilla
Neil P. Chue Hong

Software Sustainability Institute, University of Edinburgh
Jonah Duckles

The Carpentries
Sandra Gesing

University of Notre Dame
Michael A. Heroux

Sandia National Laboratories
Simon Hettrick

Software Sustainability Institute, University of Southampton
Rafael C. Jimenez,

ELIXIR
Marlon Pierce

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

Indiana University
Belinda Weaver

The Carpentries
Nancy Wilkins-Diehr

University of California, San Diego

Software is the key crosscutting technology that enables advances in mathematics, computer science,

and domain-specific science and engineering to achieve robust simulations and analysis for science,

engineering, and other research fields. However, software itself has not traditionally received focused

attention from research communities; rather, software has evolved organically and inconsistently, with

its development largely as by-products of other initiatives. Moreover, challenges in scientific software

are expanding due to disruptive changes in computer hardware, increasing scale and complexity of

data, and demands for more complex simulations involving multiphysics, multiscale modeling and

outer-loop analysis. In recent years, community members have established a range of grass-roots

organizations and projects to address these growing technical and social challenges in software

productivity, quality, reproducibility, and sustainability. This article provides an overview of such groups

and discusses opportunities to leverage their synergistic activities while nurturing work toward

emerging software ecosystems.

Keywords: research software; scientific software; software ecosystems; software productivity;
software sustainability; software community culture

During the past twenty years, computation has penetrated essentially all areas of research, in-
cluding science, engineering, technology, and society; advanced modeling, simulation, and data
analysis drive new discoveries and new understanding as complements to experimental and theo-
retical methods. 1,2 Reusable software is a key element of these advances; software libraries and
community codes encapsulate cutting-edge algorithms and domain-specific expertise, thereby
enabling use/reuse and facilitating collaboration. We can understand the impact of software in
research across all fields by asking researchers, by examining their published papers, and by ex-
amining their funding. Two surveys, of academic researchers at Russell Group universities in
the UK 3 and members of the National Postdoctoral Association in the United States, 4 found that
about 65% of respondents said they couldn’t do their research without software, while about 25%
said they could, but it would be much more difficult, and only a few percent said it would make
no difference. And a study of 40 papers in Nature from January to March 2016 showed that 32 ex-
plicitly mentioned software, with each paper mentioning an average of 6.5 software tools, almost
all of which were research software. 5 Likewise, searching the NSF award database for projects
that mention “software” in their abstracts between 1995 and 2016 finds 18,592 awards totaling
$9.6 billion. 6

Software is essential to most of today’s research, and the software used for a research project
is almost never entirely developed by that project but, rather, it depends on, uses, and builds on
research software from other projects and from other developers. Thus, it becomes apparent that
research software, much like research itself, is actually developed and maintained by a commu-
nity, forming an ecosystem of competing and collaborating products. Much of this circumstance
is due to the open source movement and its culture of sharing and collaboration, similar to the
idealized culture of open science and open research toward which we are slowly moving.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

Open source has created a tremendous variety of software, but this plethora of solutions is not
easy for researchers to find and use out of the box. Moreover, researchers face growing challenges
in creating more ambitious software for all research areas. 7,8 For example, in computational sci-
ence and engineering, challenges include coupling physics, scales, and analytics while adapting
to disruptive changes in computing architectures. Due to limitations in funding models and re-
ward structures, researchers face pressure to publish new scholarly results quickly rather than
investing in development of sustainable software that reliably supports longer-term research and
interdisciplinary collaboration. Researchers need training in best practices for software engineer-
ing, customized to address the unique needs of disciplinary cultures, yet typical graduate and
undergraduate programs do not adequately cover these topics.

To address these circumstances and promote research collaboration through emerging software
ecosystems, community members have recently established a variety of grass-roots organiza-
tions and projects, which have been further inspired by the growth of digital resources (that can
more easily be shared), the growth of the internet (making sharing easier), and the growth of col-
laborative tools such as GitHub and Slack. Community organizations that focus on a particular
discipline, a particular technology, or particular functional skills can help researchers understand
relevant parts of the ecosystem, including what software is available and what isn’t and how the
available software packages compare. In addition, these community organizations can support
the health of the ecosystem, for example, by encouraging policies, reuse, and collaboration and
supporting best practices for software development. The remainder of this paper highlights such
organizations and how they work.

OVERVIEW OF COMMUNITY ORGANIZATIONS
In this section, we provide overviews of several community organizations: the Software Sustain-
ability Institute (SSI), Conceptualization of a U.S. Research Software Sustainability Institute
(URSSI), IDEAS Software Productivity, Better Scientific Software (BSSw), the Science Gateways
Community Institute (SGCI), ELIXIR, Mozilla, the Apache Foundation, Software Carpentry, and
WSSSPE. We also provide brief summaries of some organizations that have written longer arti-
cles in this special issue or are described in more detail elsewhere: Computational Infrastructure
for Geodynamics (CIG), Molecular Science Software Institute (MolSSI), NuMFOCUS, rOpenSci,
Extreme-scale Scientific Software Development Kit (xSDK), Astrophysics Source Code Library
(ASCL), and an emerging effort on Promoting Research Software. For each organization, we
present its goals, including potential culture changes, some history, its activities, and how these
are designed to achieve the organization’s goals, and, when appropriate, information about the
organization’s future.

The Software Sustainability Institute

The Software Sustainability Institute (SSI, https://www.software.ac.uk/) was established in 2010
to cultivate better and more sustainable research software to enable world-class research: “Better
software, better research.” The SSI is unique in supporting the mainstream of researchers across
all disciplines. It has established itself as the de facto authority for research software practice,
acting as a focal point to enable best practices to be shared within and between disciplines.

The goal of the SSI is to enable the UK research community (and its international collaborators)
to take full advantage of software and, in doing so, to support the conduct of excellent research.

The SSI (a consortium of the universities of Edinburgh, Manchester, Oxford and Southampton)
was formed after the conclusion of the UK’s e-Science program brought a widespread call from
the UK research community for the increased reliability and robustness of research software.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

Initial funding was from the UK Engineering and Physical Sciences Research Council, subse-
quently joined by the Economic and Social Sciences Research Council and Biotechnology and
Biological Sciences Research Council, with the mandate to develop an understanding of the re-
quirements and challenges of research software users and developers from all disciplines. To
address these challenges, the SSI worked directly with over 80 groups to improve their codes and
ran community engagement workshops in different domains. A fellowship program has created
a network of over 100 advocates at 70 organizations from across research disciplines, types of
institutions, and career stages. More recently, the SSI has transitioned to enabling communities to
help themselves. This effort has included the collection of evidence and provision of arguments
for changing stakeholder policy and engaging with new organizations and groups being set up in
the UK and internationally aimed at supporting research software.

Clearly for any significant and permanent improvements in the practice of research software,
structural problems around lack of skills and recognition must be addressed. The role of the SSI is
to provide the support and leadership to create these cultural shifts.

The activities of the SSI 9 include community engagement (annual Collaborations Workshop,
topic and domain workshops, fellowship program, and support for other community events and
initiatives); training (UK coordination of The Carpentries, instructor training, online guides);
research software engineering (open call for consultancy projects, software evaluation service,
software management plans); policy (campaigns and reports, research and data collection, con-
tributing to international best practice); and outreach (blog and social media, Journal of Open
Research Software).

The SSI believes that "communities of practice" 10 are the most effective and sustainable way of
creating the cultural change that enables better practices to be widely adopted. The SSI’s author-
ity and support make a big difference to the success of these communities: taking an issue and
turning it into a plan of action, leveraging its network of collaborators to bring the right people
together, and empowering people to step up to leadership roles to take the community forward.
For example, the Research Software Engineer (RSE) movement started from an SSI workshop
in 2012 11 and has led to a community of over 1,200 RSEs and chapters in Australia, Canada,
Germany, the Netherlands, Norway, South Africa, and the United States. The Carpentries (see
Software Carpentry, below) now number hundreds of instructors worldwide, but growth in the UK
started with just one person when the SSI hosted the first UK training events in 2012. A focus on
capacity growth—training 140+ instructors—now enables 1,600 researchers to be trained each
year in the UK.

The SSI has developed an understanding of how research software is used and developed and how
software is changing the way research is conducted. A key lesson learned was to support, and col-
laborate with, enthusiastic leaders (e.g., Fellows, RSEs) who furthered the SSI’s goals. The SSI is
now planning to focus on the creation of communities of practice to empower cultural change and
enable far wider adoption of better practices, with the aim of sharing expertise, enabling software
reuse, and providing support that scales to even greater numbers of people.

Conceptualization of a U.S. Research Software Sustainability Institute

An active NSF-funded project, Conceptualization of a U.S. Research Software Sustainability In-
stitute (URSSI, http://urssi.us), 12 is currently working to make the case for and plan a possible
institute to improve science and engineering research by supporting the development and sus-
tainability of research software in the United States. The institute aims to address three primary
classes of concern that are pervasive across research software in all research disciplines and have
stymied research software from achieving maximum impact: functioning of the individual and
team, functioning of the research software, and functioning of the research field itself.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

The goal of this conceptualization project is to create a roadmap for a future URSSI (an actual
institute) to minimize or at least decrease these types of concerns. In order to do so, the URSSI
conceptualization has two aims: bring the research software community together to determine
how to address the issues that are already known; and identify additional issues URSSI should
address, identify communities for whom these issues are relevant, determine how to address the
issues in coordination with the communities, and decide how to prioritize all the issues in URSSI.

URSSI is working with other community organizations, both outside and inside NSF. Many of
these organizations are described in other papers in this special issue or in other subsections of
this paper. In the NSF-funded space in particular, there are two ongoing institutes and a recently
completed conceptualization, two other conceptualization projects now under way, and a large
number of software development and maintenance projects. In the UK, the Software Sustainabil-
ity Institute is an inspiration and a potential model for this project, as well as a potential collabo-
rator. Figure 1 shows a view of the space of URSSI, which is similar to that of the SSI. Where a
disciplinary or technology project/community exists, URSSI will work with it, taking successful
activities and generalizing them for other communities. And where there is no organized commu-
nity, URSSI will work directly with software stakeholders.

Figure 1. General space in which a U.S. research software sustainability institute would
operate, showing overlaps with other NSF-funded software institutes.

Given these existing organizations, part of the challenge is to define how URSSI will work with
these other groups. For example, URSSI might decide that another group performs an activity
so well that URSSI should point to it, such as the SSI’s software guides. Or URSSI might decide
either to duplicate or to enhance an activity another group does, in order to expand its impact,
such as working with the Science Gateway Community Institute to offer incubator services to a
wider community than just gateway developers. Or URSSI might decide to collaborate with one
or more groups, such as on policy campaigns aimed at providing better career paths for research
software developers in universities.

URSSI itself is working through a series of activities, including detailed ethnographic studies
of three specific projects, two focused workshops with 20–30 participants on software credit
and software project incubation, two more general workshops with 50–80 participants aimed at
discussion of challenges and potential solutions, and a widely distributed community survey. In
addition, to bring the U.S. research software community together around URSSI, the project has a
website, a series of newsletters, a set of URSSI-written and community-contributed blogs, and a
community discussion site.

The immediate goal of the URSSI conceptualization project is to make the case for and plan a
possible institute to improve science and engineering research by supporting the development and
sustainability of research software in the United States. Making the case involves bringing the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

research software community together around the idea of an institute, and both the project and
the community convincing NSF and/or another funding agency to offer an opportunity to run an
institute. The institute would then work with the community to improve the processes that are
used and the policies that shape how research software is developed, used, and maintained.

IDEAS Software Productivity

Researchers in computational science and engineering (CSE) face unprecedented challenges due
to a confluence of disruptive changes in HPC architectures and opportunities for next-generation
simulation, analysis, and design. Teams are working toward predictive science through multi-
physics, multiscale simulations and analytics, while needing greater scientific reproducibility and
exploiting massive on-node concurrency during disruption in underlying hardware, system soft-
ware, and programming environments. This situation brings with it an opportunity to fundamen-
tally change how scientific software is designed, developed, and sustained. The Interoperable De-
sign of Extreme-scale Application Software project (IDEAS, https://www.ideas-productivity.org)
is partnering with the CSE community to improve developer productivity (positively impacting
software quality, development time, and staffing resources) and software sustainability (reducing
the cost of sustaining and evolving software over its intended lifetime)—thereby helping improve
scientific productivity while ensuring continued scientific success.

The IDEAS project began in 2014, sponsored by the U.S. Department of Energy Office of Sci-
ence, to address challenges in software productivity and sustainability, with emphasis on ter-
restrial ecosystem modeling. The project expanded in 2017 in the DOE’s Exascale Computing
Project (ECP, https://www.exascaleproject.org), which requires intensive development of appli-
cations and software technologies while anticipating and adapting to continuous advances in
computing architectures. The role of IDEAS within the ECP is to ease the challenges of software
development and ensure that investment in the exascale software ecosystem is as productive and
sustainable as possible.

A central IDEAS activity is productivity and sustainability improvement planning (PSIP), 13 a
lightweight, iterative workflow where teams identify their most urgent software bottlenecks and
work to overcome them. To support these advances, the IDEAS project collaborates with the
community to develop, customize, and curate software methodologies, processes, and tools for
improving software productivity and sustainability. Topics include software engineering, design,
development, testing, refactoring, and performance, with information tailored to address the needs
of high-performance CSE. Resources are relevant for projects of all sizes, ranging from small
teams (for example, a professor and students) to aggregate teams (that is, multiple teams who
collaborate on next-generation science via software yet must maintain autonomy and flexibility
because of varying priorities, stakeholders, and funding).

To serve and partner with the broader community, IDEAS outreach 14 features a webinar series on
Best Practices for HPC Software Developers, various tutorials and events, 15 and content from the
Better Scientific Software site (see below). Complementary work focuses on building an extreme-
scale scientific software ecosystem composed of high-quality, reusable software components and
libraries (xSDK; see below).

IDEAS is working to advance the quality of high-performance CSE and to provide a founda-
tion (through software productivity methodologies and an extreme-scale software ecosystem)
that enables transformative and reliable next-generation predictive science and decision support.
Members of the IDEAS project are pursuing collaboration with synergistic groups to work to-
ward long-term changes in the culture, funding, and reward structure of CSE. A key lesson from
IDEAS has been the value in using webinars to help to engage a broader audience and to get the
project’s message out.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

Better Scientific Software

The Better Scientific Software site (https://bssw.io) is a new community-based resource for sci-
entific software improvement—a central hub for sharing information on practices, techniques,
experiences, and tools to improve developer productivity and software sustainability for CSE and
related technical computing areas. The site features curated content, experiences, and reasoned
insights provided by the international community, including researchers, practitioners, and stake-
holders from national laboratories, academia, and industry who are dedicated to curating, creating,
and disseminating information that leads to improved CSE software. Historically, opportunities
for CSE software developers to exchange information and experiences have been limited; BSSw
provides a space to support this kind of sharing.

The BSSw site was launched in November 2017 as an outgrowth of the IDEAS project (see
above). The long-term vision for BSSw is to serve as an international community-driven and
community-managed resource, with content and editorial processes provided by volunteers, ini-
tially nucleated by the IDEAS team but over time expanding to much broader participation. The
BSSw Fellowship program gives recognition and funding to leaders and advocates of high-quality
scientific software.

The BSSw platform provides easy access to resources and training materials provided by the
community. Content spans a range of topics (such as scientific software planning, development,
reliability, collaboration, and performance), including introductory WhatIs and HowTo informa-
tion covering basic steps for improving software productivity and sustainability. The site includes
a growing collection of curated content—brief articles that highlight other web-based materials,
describing why the scientific software community might find them of value. The site also fea-
tures an expanding collection of original blog articles, including science teams’ experiences with
productivity-related software issues and discussion of organizations in the software productivity
community.

The BSSw site is the starting point for any new user. A GitHub backend enables content develop-
ment using a collaborative, open workflow. Content can also be contributed with an easy-to-use
Google form. Anyone with experience or expertise who can help other scientific software teams is
encouraged to contribute an article or pointer to relevant work. 16

BSSw encompasses a rich variety of communities who are working to advance the methods
and practices of CSE software. BSSw community landing pages provide custom starting points
for using the site and promote shared understanding of scientific software issues. Curators of
a community landing page can customize content to serve the needs of community members.
BSSw communities include a growing set of science-focused areas (computational molecular
sciences, environmental system science) as well as crosscutting areas (scientific libraries, software
engineering, supercomputing facilities and their users, and exascale computing).

By providing a venue to share information and experiences on software issues, BSSw is raising
awareness of the importance of good software practices to scientific productivity and enabling
readers to discover potential connections to their own priorities and workflows. Future plans
center on establishing broader community leadership and growth in order to help CSE researchers
(regardless of nationality and funding sources) to increase software productivity, quality, and
sustainability while changing CSE culture to fully support software’s essential role. BSSw has
shown that it is possible to lower the barrier to participation by leveraging an environment with
which the majority of the community is already familiar (GitHub and Markdown).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

Science Gateways Community Institute

The Science Gateways Community Institute (SGCI, https://sciencegateways.org) was launched in
2016 in recognition of the important role that end-to-end solutions, also called science gateways,
play in the advancement of research. Often, gateways are the means by which millions of dollars
of research infrastructure—telescopes and microscopes, supercomputers and sensor streams—are
accessed. All gateways typically have an intuitive user interface component. Many are completely
open, democratizing access to high-end resources typically available only to those at leading
research institutions.

But the designers of SGCI had observed that gateway developers did not interact with one another.
The goal of SGCI is to help the research community build more cost-effective, sustainable science
gateways. Seven years of focus group studies and a large-scale survey informed the design of
the Science Gateways Community Institute 17 and its five service areas: Incubator, Extended
Developer Support, Scientific Software Collaborative, Community Engagement and Exchange,
and Workforce Development.

The Incubator functions much like a business incubator, providing specialized expertise for short
durations of time, and also runs a one-week bootcamp for gateway teams. Extended Developer
Support provides up to 12 months of hands-on assistance in actually developing a gateway, in-
cluding technology selection and best practices such as version control, open source, and support
for community contributions. The Scientific Software Collaborative team develops and maintains
a catalog of functional science gateways available worldwide, including links to the software
packages used to build these gateways. Community Engagement and Exchange (CEE) fosters the
gateway community, primarily through an annual conference with citable proceedings and the
opportunity for authors to publish in a special issue of a peer-reviewed journal jointly managed
with gateway organizations in Europe and Australia. Additional CEE activities include webinars,
newsletters, and website content that engage the community. Workforce Development encom-
passes SGCI’s student programs, with several components such as coding institutes, internship
placements with staff and clients, hackathons, and travel support to attend gateway-related events.

Through these activities, SGCI endeavors to create an international culture and a local support
structure that lead to the development of more sustainable, effective gateways that advance sci-
ence. SGCI’s long-term goal is to distribute gateway-building expertise throughout that com-
munity. This is envisioned in several ways. 18,19 Because most academic development of science
gateways happens on campuses, changing the landscape there is important. Several institutions
are part of SGCI specifically because they are models of how successful gateway developer
groups can be set up on campus. SGCI has engaged with many university campuses as well as
groups such as the XSEDE Campus Champions (https://www.xsede.org/community-engagement/
campus-champions) and ACI-REF (https://aciref.org) to share and promote these solutions and
support career paths for developers and research computing engineers.

Over the first two years, one of the lessons the SGCI team has had to learn quickly is how to scale
due to demand. This scaling is envisioned throughout the organization. Cohorts graduating from
SGCI’s bootcamp can continue to collaborate through the formation of a brain trust. EDS activi-
ties can be made more scalable by sharing case studies and straightforward gateway development
solutions that may meet the needs of many, without a long-term engagement with SGCI. Trained
students will benefit others as they take their science gateway knowledge gained through SGCI
internships and share it with others over their careers. SGCI envisions these mechanisms causing
a positive change in how science gateway development is approached.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

ELIXIR

ELIXIR (https://www.elixir-europe.org) is an intergovernmental organization that brings together
life science resources across Europe. These resources include databases, software tools, train-
ing materials, cloud storage, and supercomputers. The goal of ELIXIR is to coordinate these
resources so that they form a single infrastructure, making it easier for scientists to find and share
data, exchange expertise, and agree on best practices.

The ELIXIR Scientific Advisory Board, supported by the ELIXIR preparatory phase reports,
emphasized the importance of ensuring the quality and sustainability of software developed in
ELIXIR. To support this goal, at the end of 2015, ELIXIR created the “Software development
best practices” group in partnership with the Software Sustainability Institute and the Netherlands
eScience Center. The group includes experts from ELIXIR nodes as well as other stakeholders
concerned with the quality and sustainability of software for research across scientific disciplines.

The group began by defining good software development practices as well as metrics to assess
their adoption. 20 Later the group proposed the 4OSS recommendations, a smaller set of broader
recommendations to support the understanding and uptake of these practices. 21 The 4OSS rec-
ommendations are designed around open source values and provide practical suggestions that
contribute to making research software and its source code more discoverable, reusable, and trans-
parent. The recommendations are meant not just for software developers but also for research
funders, research institutions, journals, group leaders, and managers of projects producing re-
search software.

The current activities of the group focus on assessing the adoption of the 4OSS recommendations
and training to facilitate their adoption. The ELIXIR benchmarking framework OpenEbench
(https://openebench.bsc.es) is being used to assess compliance; and https://bio.tools, the ELIXIR
registry of tools, 22 to visualize that compliance. In partnership with the ELIXIR training platform,
Software Carpentry, and other communities, the group is also creating a collection of training
materials to help researchers and developers implement the 4OSS recommendations. ELIXIR is
also exploring how to improve the quality of their software in terms of user experience and us-
ability. All these activities aim to trigger the development of higher-quality and more-sustainable
software, with the ultimate goal of helping researchers perform better research.

A key lesson learned by ELIXIR has been to focus on a simple, practical, and achievable set of
outcomes, engaging with communities beyond ELIXIR. These outcomes should be able to be
easily adopted and measured by the community, linked to other community efforts and supported
by a wide range of stakeholders.

Mozilla

The mission of Mozilla (https://www.mozilla.org) is to ensure the internet is a global public re-
source, open and accessible to all. Its global network of technologists, thinkers, and builders
work for a healthier internet through core issues such as privacy and security, openness, decen-
tralization, web literacy, and digital inclusion. Among the research community, Mozilla supports
project-based learning and mentorship to further data sharing and open source, provides fellow-
ships and mini-grants to empower the next generation of leaders, and advocates for the growing
number of researchers working openly.

Mozilla’s strategy is to fuel a movement that connects a global force of people willing to stand up
for and build the open internet. Researchers play a major role since scientists invented the web
and research increasingly relies on the open source software that also drives the open internet.
By investing in open science leaders, Mozilla wants to see breakthroughs that bring together

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

researchers in this movement.

Since 2013, Mozilla has worked with the scientific community to make research more accessible,
open, and interoperable. Open source is the backbone of scientific software today. Adopting open
source software practices leads to more sustainable and innovative research software. With roots
in the open source movement, Mozilla continues to work openly, train others, and research open
source software.

Mozilla has three main activities addressing the culture around scientific software:

• Fellowships. The Mozilla Fellowships for Science (https://science.mozilla.org/programs/
fellowships) promote open science, open access, and open source in research programs
globally. Fellows are funded for 10 months of research in their local institutions and scien-
tific departments.

• Mini-Grants. The Open Science Mini-Grants (https://science.mozilla.org/blog/2018b_
minigrantrfp) fund project proposals focusing on prototyping, community building, or
curriculum. These projects work toward open innovation, efficiency in open science, and
reproducibility.

• Open leadership training. Mozilla Open Leaders (https://foundation.mozilla.org/opportunity/
mozilla-open-leaders/) provides mentorship and training on working open best practices.
Participants join a cohort of open leaders for 14 weeks to design and build projects that
empower others to collaborate within inclusive communities.

The Mozilla Fellowships for Science empower open science advocates embedded in academic
institutions. Fellows receive training and support on open source, data sharing, open science
policy, and licensing. They act as local catalysts by crafting code and learning resources that help
their communities adopt open practices, and they teach their institutional peers. Through the Open
Science Mini-Grants, Mozilla supports and develops a community of leaders with the aim of
transforming research and the culture around science. Mozilla Open Leaders provide the training
and community support needed to build an open project through cohort-based training and 1:1
mentorship. Graduates are encouraged to return as mentors, thus transforming participants into
mentors and advocates, helping the next generation work openly.

Mozilla will continue to connect leaders motivated by this agenda to bring the next wave of open-
ness and opportunity in online life. In turn, this activity will make research more open, accessible
and interoperable.

Apache Software Foundation

The Apache Software Foundation (ASF, https://apache.org) is a 501(c)3 nonprofit organization
that fosters the growth of open source software communities and provides technical infrastructure
and support mechanisms, including licensing and legal support, that are needed by these com-
munities. ASF can be thought of as a “factory” for open source communities, providing flexible
templates for organization and governance. In 2018, the foundation consisted of 322 open source
projects, as well as 52 incubating projects that are in the process of joining the foundation.

Although the ASF typically does not work directly with communities associated with scientific
code bases and many of its member projects have their roots in commercially produced soft-
ware, the roots of the foundation itself are based on academically produced software (the HTTPD
server) that had its origin in supporting the international high-energy physics community.

The ASF’s founding goals (https://www.apache.org/foundation/how-it-works.html) are fourfold:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

• Provide a foundation for open, collaborative software development projects by supplying
hardware, communication, and business infrastructure;

• Create an independent legal entity to which companies and individuals can donate re-
sources and be assured that those resources will be used for the public benefit;

• Provide a means for individual volunteers to be sheltered from legal suits directed at the
foundation’s projects;

• Protect the "Apache" brand, as applied to its software products, from being abused by other
organizations.

Founded in 1999, the foundation grew from a group of maintainers of the open source HTTPD
server code initially developed by the National Center for Supercomputing Applications. The
distributed locations and diverse employments of the founding members greatly shaped the orga-
nization’s focus on meritocratic decision making processes, legal cover for individuals (ensuring
members have freedom to act independently of their employers’ intellectual property and copy-
right policies), and licensing approach. In particular, the foundation’s license allows proprietary
extensions (unlike the “free” licenses of the Free Software Foundation) and thus is potentially
more amenable as a basis for commercial software.

As an umbrella organization for its constituent projects, ASF has three primary activities: op-
erating the Incubator, a metaproject that helps projects join the foundation and understand its
governance processes; operating the INFRA project, which provides infrastructure support (in-
cluding mailing lists, code repositories, and issue-tracking systems); and conducting two an-
nual ApacheCon conferences (one in North America and one in Europe) that promote member
projects’ software and enable collaboration among project members.

A key cultural feature of the ASF is its focus on meritocracy and consensus-based governance
with transparent, archived communications and decision-making mechanisms. A common ASF
slogan is “community over code,” meaning that a large, diverse, and vibrant developer base is the
best chance that an open source project has for long-term sustainability.

Software Carpentry

Software Carpentry (https://software-carpentry.org) is a community-driven project teaching
foundational coding skills to researchers, empowering them to develop research software, au-
tomate research tasks and workflows, and perform reproducible science. Software Carpentry’s
approach has been to develop a volunteer community of trained peer instructors (often researchers
themselves) who can capably teach other researchers. Software Carpentry workshops deliver
community-developed, open source lessons on software and coding skills in an engaging work-
shop environment with a strongly enforced code of conduct.

Software Carpentry’s more than 2,000 certified instructors are drawn from the research and re-
search support communities and have completed a two-day instructor training course. In that
course, they learn sound, evidence-based pedagogical practices that will make the sharing of
their knowledge, skills, and abilities more impactful and engaging. Together with prepared
instructors and community-developed lessons, Carpentries workshops have good outcomes
(https://carpentries.org/assessment). Workshop attendees are taught to adopt a range of practices—
version control, testing, automation—that foster open science and reproducibility, deliver greater
efficiencies, reduce the risk of error, and build confidence in further learning.

Software Carpentry had its start in 1998 teaching good coding practices to researchers at Los
Alamos National Laboratory. In 2012, with support from the Alfred P. Sloan Foundation, Soft-
ware Carpentry pivoted to its instructor training and capacity-building model. The launch of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

the two-day workshop model accelerated its growth and uptake. In 2015 an annual member-
ship model was launched to enable organizations to train local instructors and support the in-
frastructure provided by Software and Data Carpentry together. By mid-2018, The Carpentries
(https://carpentries.org), a fiscally sponsored project of community initiatives, had more than 70
member organizations in 10 countries and an instructor community of 2,000 trained instructors in
39 countries.

Key activities of Software Carpentry include two-day workshops; instructor training by certified
instructor trainers; collaborative, open lesson development; a mentoring program; and support for
ongoing community building at the local level through the Champions network and the Commu-
nity Cookbook (https://cookbook.carpentries.org). Software Carpentry also provides supporting
infrastructure to allow community members to register workshops, apply for instructor training,
run assessment surveys, and engage in targeted discussions via a range of mailing lists. Soft-
ware Carpentry publishes a newsletter every two weeks. Other lesson communities within the
Carpentries—Data Carpentry (https://datacarpentry.org), focused on reproducible data analysis
workflows, and Library Carpentry (https://librarycarpentry.org), focused on the work of 21st-
century research librarians—are extending the model of Software Carpentry to new areas.

Key outcomes are building skills and confidence in coding for research and in the teaching of
peers with an aim to empower the participating community. Community members are the key
drivers of a range of local community and skill-building activities such as study groups, hacky
hours, skill-shares, research bazaars, hackathons and do-a-thons. The Carpentries encourage a
growth mindset among digitally skilled researchers and help people embrace a culture of life-
long learning in community. Maintainers develop transferable skills in software development
and managing collaborative projects, while instructors develop research and teaching insights
by instructing learners in other disciplines and gain useful perspectives and adaptability through
teaching audiences with varying levels of skill. Overall, Software Carpentry has demonstrated
that community, shared lesson development for commonly taught topics, and a focus on improv-
ing teaching skills among the research community can make technical skills workshops more
impactful and empowering for attendees.

Working towards Sustainable Software for Science: Practice and
Experiences

WSSSPE (http://wssspe.researchcomputing.org.uk) is an international community-driven orga-
nization that promotes sustainable research software by addressing challenges related to the full
lifecycle of research software through shared learning and community action. WSSSPE envisions
a world where research software is accessible, robust, sustained, and recognized as a scholarly
research product critical to the advancement of knowledge, learning, and discovery.

WSSSPE promotes sustainable research software by positively impacting the following areas:

• Principles and best practices. Promoting best practices in sustainable software

• Careers. Developing and supporting career paths in research software development and
engineering

• Learning. Engaging in activities to promote peer learning and interaction

• Credit. Ensuring recognition of research software as an intellectual contribution equal to
other research products

WSSSPE started with a one-day workshop at the SC13 conference in 2013 and gradually became
a community. In 2015 and 2016, WSSSPE used longer multiday meetings to attempt to create

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

ongoing working groups but discovered that people who were willing to come and work together
during a workshop could not necessarily also commit to doing large amounts of work outside
those workshop days. A lesson learned from WSSSPE was that some working groups were
successful, particularly those that overlapped already existing activities, but those that attempted
to start new activities were generally not successful.

Recognizing this situation, WSSSPE has moved to become a series of one-day meetings associ-
ated with other events (in 2017 with the RSE conference and with the IEEE International Confer-
ence on eScience, and in 2018 with the IEEE International Conference on eScience again). Thus,
members of the WSSSPE community come together, discuss progress on ongoing activities, and
bring in new members to such activities but generally do not create new activities solely under the
WSSSPE umbrella.

Additional Organizations

In addition to the organizations discussed previously in this article, longer descriptions of some
community organizations appear in this pair of special issues, and descriptions of other organi-
zations have appeared elsewhere. We briefly summarize several such organizations here, along the
same lines (goals, history, activities, and future) as for the previously described organizations.

Computational Infrastructure for Geodynamics

Computational Infrastructure for Geodynamics 23 (CIG, https://geodynamics.org) is a "community
of practice" that advances Earth science by developing and disseminating software for geophysics
and related fields. CIG began in 2005 with the goal of advancing solid-Earth science and related
fields by developing and disseminating scientific software, using best practices from computa-
tional science. CIG identifies and encourages use of the best practices that are have proven to
be most effective for this community, while also supporting development and dissemination of
high-quality, free, open source scientific software for geophysics. CIG helps software authors
improve their development practices and teaches early career scientists in particular to work with
and extend these software packages, to prepare the scientific workforce to be expert users, and to
contribute to scientific software. Software is developed differently today in the geodynamics com-
munity from how it was in 2005, thanks to this organization. The CIG best practices, including
use of open source licenses, version control, and automated test suites, have become the accepted
standard in the community. CIG continues to improve these best practices and teach them to the
community.

The Molecular Science Software Institute

The Molecular Science Software Institute (MolSSI, https://molssi.org) is a nexus for science,
education, and cooperation serving the worldwide community of computational molecular
scientists—a broad field including biomolecular simulation, quantum chemistry, and materials
science. MolSSI began at the same time as the SGCI and went through a similar community-
building and requirements-gathering process. MolSSI includes a software engineering team who
develop software, interact with community software developers, support forums for standards
development, mentor MolSSI software fellows, and work with industrial, national lab, and interna-
tional partners. The MolSSI software fellows are graduate students and postdocs, funded for up to
two years, who work on their own software projects as well as outreach and education; they form
a link between the institute and the larger community. MolSSI also provides coordination with the
developers of community codes to improve their interaction with one another.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

NumFOCUS

NumFOCUS (https://numfocus.org) is a 501(c)(3) nonprofit promoting open code for better
science. The mission of NumFOCUS is to promote sustainable high-level programming lan-
guages, open code development, and reproducible scientific research. It accomplishes this mission
through its educational programs and events as well as through fiscal sponsorship of open source
scientific computing projects. NumFOCUS aims to increase collaboration and communication
within the data science and scientific computing community. It was founded in 2012 with a goal
to advance the long-term sustainability of open source scientific computing projects, working
with both research and industry partners. Today NumFOCUS supports 23 fiscally sponsored
projects and 23 affiliated projects, including popular data science tools such as Jupyter, pandas,
and NumPy. It also organizes the PyData network, an educational program of regional events and
local chapters spanning 45 countries and comprising over 85,000 data enthusiasts and practition-
ers. NumFOCUS works to connect the large global community of users of open source scientific
software with the developers and maintainers of these projects in an effort to produce a supportive,
sustainable future for these tools.

rOpenSci

The rOpenSci (https://ropensci.org) project 24 is a nonprofit initiative founded in 2011 to enable
open and reproducible research by creating technical infrastructure in the form of carefully vetted,
staff- and community-contributed R packages that lower barriers to working with scientific data
sources on the web; creating social infrastructure through a welcoming and diverse community;
making data, tools and best practices more discoverable; building capacity of software users and
developers; and advocating for a culture of data sharing and reusable software, all run by a staff
of research software engineers and a community manager. rOpenSci has developed an ecosystem
of hundreds of free and open source R tools. It runs a transparent, non-adversarial system for peer
review of these packages, where successful authors can blog about their package to an audience
of users and potential contributors. rOpenSci also provides a newsletter, blog posts, tweets using
the #rstats hashtag, a dedicated public discussion forum, and a Slack workspace for rOpenSci
contributors. rOpenSci hosts an annual hackathon-flavored "unconference" that brings together
60 current and new community members (users and contributors) to collaborate on projects they
choose. The unconference integrates new members into the community, building an in-person
trust network that contributes to the sustainability of their global online community.

Extreme-scale Scientific Software Development Kit

Work on the xSDK (https://xsdk.info) began in 2014 as part of the IDEAS Software Productiv-
ity project (see above) in recognition that collaboration across independent numerical library
efforts could have a tremendous positive impact on developer productivity, software sustain-
ability, and the capabilities that the libraries provide to users. Work focuses on community de-
velopment and a commitment to combined success via quality improvement policies, better
build infrastructure, and the ability to use diverse, independently developed libraries in combi-
nation to solve large-scale multiphysics and multiscale problems. xSDK community policies
(https://xsdk.info.policies) govern activities and set expectations for future xSDK members. Any
package that satisfies the community policies is welcome. The first xSDK release in April 2016
included four widely used numerical libraries and a biogeochemistry package. In 2017, xSDK
transitioned to become a primary delivery mechanism for math library capabilities in the Exascale
Computing Project, incorporating continual advancements toward support for predictive science.
The xSDK release in December 2017 included a total of 9 packages. Eleven additional packages
are working toward inclusion the fall 2018 xSDK release (for a total of 20 xSDK packages). The
long-term goal of xSDK is community collaboration toward productive and sustainable commu-
nity software ecosystems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

Astrophysics Source Code Library

The Astrophysics Source Code Library (ASCL, https://ascl.net) seeks to improve the transparency
and reproducibility of astronomy and astrophysics by making the software enabling research re-
sults more discoverable for examination. The ASCL effort was founded in 1999; its editors seek
out both new and old peer-reviewed papers that describe methods or experiments that involve
the development or use of source code, and they add entries for the found software to the library
if the source code is available for download. This approach ensures that source codes are added
without requiring authors to actively submit them, resulting in a comprehensive listing that covers
a significant number of the astrophysics source codes used in peer-reviewed studies. To change
the culture of the astronomy community, the ASCL organization also encourages software au-
thors to release and submit their own codes; and it works with authors, journals, and indexers
to improve recognition of those who write software. The ASCL organization provides a citable
software ID that is widely accepted by journals and indexers, advocates for citation of software on
its own merit and career opportunities for software authors through participation in various groups
and conference presentations, organizes conference sessions to improve the visibility of software
authors, and links codes with the research literature it enabled.

Promoting Research Software

Michelle Barker of the Australian Research Data Commons, working with Daniel S. Katz and
Neil Chue Hong, has recently begun a "community of communities" activity informally being
called Promoting Research Software. This community will have as a goal bringing together the
various research software communities, many of which are elsewhere discussed in the article, to
collectively promote research software as a critical research enabler. This activity began with a
small meeting in March 2018 and held additional meetings in September and October, alongside
other events. This metacommunity is planning to help the set of communities interested in re-
search software develop a common message and work collaboratively toward larger goals, such as
increased representation of research software in international initiatives or forums.

CONCLUSIONS
The work of these community organizations focuses on a few common themes, with variations
in approaches according to factors such as topical scope and sources of funding. While each
organization focuses on a small number of activities to have impact, these choices are different
for each organization. In a vast space like research software development, there are so many
useful activities that could help, and there is a temptation to try to cover all the bases. But each
successful organization has enough discipline not to try to take on too much too quickly. For
example, the SSI is intentionally transitioning from one focus to a new one.

In their respective spheres of influence, these groups nurture communities, work to change re-
search culture, and promote the growth of software ecosystems. Groups provide information
about effective approaches for creating, sustaining, and collaborating via scientific research soft-
ware. While some groups establish partnerships with research software teams to provide guidance
and intensive hands-on assistance for improved software practices, this approach has scalability
limits in terms of human effort and cost. Other groups instead create flexible resources for self-
study and outreach to the broader scientific research community. Some groups provide modest
funding and community recognition to promote attention to software quality improvements and
to nurture new generations of leadership. Common activities include establishing events (such
as workshops, conferences, minisymposia, webinars, and tutorials) and informal mechanisms for
sharing information (blog series and websites with community input). Groups also articulate key
issues and needs to stakeholders, agencies, and the broader research community, while advanc-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

ing understanding of the importance of good-quality software to the integrity of computational
research and to effect changes in policies, funding, and reward structure. As these organizations
have grown, they have determined geographic scaling models that allow for coordination of con-
tribution and effort. Whether scaling to global, national, or regional impact, it has been important
for these organizations to focus initially on empowering participants at the local scale. In addi-
tion, each organization’s macro-level vision for shared impact has been critical. This approach of
top-down vision meeting bottom-up local activities for developing impact is common across the
successful organizations in this paper. Overall, these organizations seek impact and have extensive
outreach activities; they are not merely trying to grow their communities but also are exploring
ways to have impact outside their immediate communities.

Important differences among these organizations also exist. Some differences are inherent to their
scope and goals, such as SGCI aiming to benefit the science gateway community vs. ELIXIR
working in life sciences. But others are related to how the organizations started and how they op-
erate (governance). Some organizations started as broad communities, without dedicated funding,
such as Apache, Software Carpentry, and WSSSPE. Others began as funded projects, aimed at a
particular goal and then later expanding to try to change a community, perhaps because it became
apparent that culture change was a key method for achieving the initial goal. Most of the organiza-
tions are led by participants who are now funded to be the leaders. One issue is how this structure
influences the sustainability of the organization itself. When some participants in an organization
are funded and others are not, conflicts can arise. And if a transparent method does not exist for
unfunded contributors to become funded and to become leaders, these unfunded contributors may
not continue. Most of the organizations presented here are technically projects, but some are fully
independent (such as Apache and Mozilla).

While these community groups already interact and in some cases collaborate, opportunities
abound for more focused partnerships to promote awareness of resources and fully leverage each
group’s unique capabilities and outreach materials. For example, almost all the organizations
share an explicit or implicit long-term goal of changing the culture of research software and in
turn enabling software to fully realize its role as a cornerstone of long-term collaboration and
scholarly progress. The Promoting Research Software activity aims at taking a first step toward
this goal. Many other areas of joint interest exist, where additional coordination and collaboration
would serve the overall research community.

ACKNOWLEDGMENTS
The authors acknowledge the contribution of Alice Allen to this paper. The Software Sustainabil-
ity Institute acknowledges the support of the EPSRC through Grant EP/H043160/1 and EPSRC,
ESRC and BBSRC through Grant EP/N006410/1. URSSI is supported by the National Science
Foundation (NSF) award 1743188. IDEAS, BSSw, and xSDK acknowledge support from the Ex-
ascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration. SGCI is supported by NSF
award 1547611. ELIXIR acknowledges the support of the ELIXIR-EXCELERATE grant funded
by the European Commission within the Research Infrastructures program of Horizon 2020, grant
agreement number 676559. Mozilla Science is supported by the Alfred P. Sloan Foundation, the
Helmsley Charitable Trust, and the Siegel Family Endowment. The Carpentries is supported by
the Alfred P. Sloan Foundation, the Gordon and Betty Moore Foundation, and the ongoing annual
membership contributions of more than 70 member research organizations in 10 countries.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

REFERENCES
1. U. Rüede et al., “Research and Education in Computational Science and Engineering,” SIAM

Review, vol. 60, no. 3, 2018, pp. 707–754, doi:10.1137/16M1096840.
2. W. Gropp, R. Harrison et al., “Future Directions for NSF Advanced Computing Infrastructure

to Support U.S. Science and Engineering in 2017-2020,” National Academies Press, 2016,
http://www.nap.edu/catalog/21886/.

3. S. Hettrick, “2014 Software in Research Survey,” Feb. 2018, doi:10.5281/zenodo.1183562.
4. U. Nangia and D. S. Katz, “Track 1 Paper: Surveying the US National Postdoctoral As-

sociation Regarding Software Use and Training in Research,” Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE5.1), 2017, doi:10.6084/m9.
figshare.5328442.v3.

5. U. Nangia and D. S. Katz, “Understanding Software in Research: Initial Results from Exam-
ining Nature and a Call for Collaboration,” 13th IEEE International Conference on e-Science
(e-Science), Oct 2017, pp. 486–487, doi:10.1109/eScience.2017.78.

6. “Deep Insights Anytime, Anywhere,” http://www.dia2.org, accessed: 2018-08-31.
7. M. Heroux, G. Allen et al., “Computational Science and Engineering Software Sustainability

and Productivity Challenges (CSESSP) Workshop Report,” 2016, Networking and Infor-
mation Technology Research and Development (NITRD) Program, https://www.nitrd.gov/
PUBS/CSESSPWorkshopReport.pdf.

8. D. E. Keyes et al., “Multiphysics Simulations: Challenges and Opportunities,” International
Journal of High Performance Computing Applications, vol. 27, no. 1, Feb 2013, pp. 4–83,
doi:10.1177/1094342012468181.

9. S. Crouch et al., “The Software Sustainability Institute: Changing Research Software At-
titudes and Practices,” Computing in Science & Engineering, vol. 15, no. 6, Nov 2013, pp.
74–80, ISSN 1521-9615, doi:10.1109/MCSE.2013.133.

10. E. Wenger, Communities of Practice: Learning, Meaning, and Identity, Cambridge University
Press, 1998, ISBN 978-0-521-66363-2.

11. S. Hettrick, “A Not-So-Brief History of Research Software Engineers,” https://software.ac.
uk/blog/2016-08-17-not-so-brief-history-research-software-engineers, 2016, [Accessed:
2018-08-09].

12. J. C. Carver et al., “Conceptualization of a US Research Software Sustainability Institute
(URSSI),” Computing in Science & Engineering, vol. 20, no. 3, May 2018, pp. 4–9, ISSN
1521-9615, doi:10.1109/MCSE.2018.03221924.

13. M. A. Heroux et al., “Productivity and Sustainability Improvement Planning,” https://bssw.io/
resources/planning-for-better-software-psip-tools, 2018, [Accessed: 2018-08-19].

14. D. E. Bernholdt, “Think Locally, Act Globally: Outreach for Better Scientific Software,”
https://bssw.io/blog_posts/think-locally-act-globally-outreach-for-better-scientific-software,
2018, [Accessed: 2018-08-19].

15. “IDEAS events,” https://ideas-productivity.org/events, 2018, [Accessed: 2018-08-19].
16. “Better Scientific Software: How to Contribute,” https://bssw.io/contribute, 2018, [Accessed:

2018-08-19].
17. N. Wilkins-Diehr and T. D. Crawford, “NSF’s Inaugural Software Institutes: The Science

Gateways Community Institute and the Molecular Sciences Software Institute,” Computing
in Science & Engineering, vol. 20, no. 5, 2018, pp. 26–38, ISSN 1521-9615, doi:10.1109/
MCSE.2018.05329813.

18. S. Gesing et al., “Science Gateways: The Long Road to the Birth of an Institute,” Proceedings
of the 50th Hawaii International Conference on System Sciences (2017), Hawaii International
Conference on System Sciences, 2017, doi:10.24251/hicss.2017.755.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Computing in Science & Engineering

19. N. Wilkins-Diehr et al., “The Science Gateways Community Institute at Two Years,” Proc.
of Practice and Experience on Advanced Research Computing, PEARC ’18, ACM, 2018, pp.
53:1–53:8, doi:10.1145/3219104.3219142.

20. H. Artaza et al., “Top 10 Metrics for Life Science Software Good Practices [version 1; ref: 2
approved],” F1000Research, vol. 5, no. 2000, 2016, doi:10.12688/f1000research.9206.1.

21. R. Jiménez et al., “Four Simple Recommendations to Encourage Best Practices in Research
Software [version 1; referees: 3 approved],” F1000Research, vol. 6, no. 876, 2017, doi:10.
12688/f1000research.11407.1.

22. J. Ison et al., “Tools and Data Services Registry: A Community Effort to Document Bioin-
formatics Resources,” Nucleic Acids Research, vol. 44, no. D1, 2016, pp. D38–D47, doi:
10.1093/nar/gkv1116.

23. W. Bangerth et al., “The role of Scientific Communities in Creating Reusable Software:
Lessons from Geophysics,” Computing in Science & Engineering, to appear in this issue,
manuscript CiSE-2018-07-0110.

24. C. Boettiger et al., “Building Software, Building Community: Lessons from the rOpenSci
Project,” Journal of Open Research Software, vol. 3, no. 1, 2015, p. e8, doi:10.5334/jors.bu.

ABOUT THE AUTHORS
Daniel S. Katz is Assistant Director for Scientific Software and Applications at the National Cen-
ter for Supercomputing Applications (NCSA) and Research Associate Professor in Computer
Science, Electrical and Computer Engineering, and School of Information Sciences (iSchool)
at University of Illinois at Urbana-Champaign. His research interests include applications, algo-
rithms, fault tolerance, programming in parallel and distributed computing, citation and credit
mechanisms and practices associated with software and data, organization and community prac-
tices for collaboration, and career paths for computing researchers. Katz received a PhD in Electri-
cal Engineering from Northwestern University. Contact him at d.katz@ieee.org.

Lois Curfman McInnes is a Senior Computational Scientist in the Mathematics and Com-
puter Science Division of Argonne National Laboratory. Her research interests focus on high-
performance computational science, with emphasis on scalable numerical libraries and collabo-
ration toward productive and sustainable software ecosystems; she coordinates work on mathe-
matical libraries in the U.S. Exascale Computing Project. McInnes received a Ph.D. in Applied
Mathematics from the University of Virginia. Contact her at mcinnes@mcs.anl.gov.

David E. Bernholdt is a Distinguished R&D Staff Member and Group Leader at Oak Ridge Na-
tional Laboratory. His research interests, broadly speaking, are related to making the development
and use of software for HPC computational science and engineering more expressive, more pro-
ductive, more sustainable, and better performing. Bernholdt received a Ph.D. in Chemistry from
the University of Florida. Contact him at bernholdtde@ornl.gov.

Abigail Cabunoc Mayes is a the Working Open Practice Lead at Mozilla. Her research interests
include open source and prototyping. Cabunoc Mayes received a Bachelor of Computer Science,
Honours Bioinformatics from the University of Waterloo. Contact her at abby@mozillafoundation.org.

Neil P. Chue Hong is Director of the Software Sustainability Institute and based in the EPCC at
the University of Edinburgh. His research interests include barriers and incentives in research

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

THEME ARTICLE: Reusable Software

software ecosystems and the role of software as a research object. Chue Hong received a Master
of Physics in Computational Physics from the University of Edinburgh. Contact him at
N.ChueHong@software.ac.uk.

Jonah Duckles is Director of Membership and Technology at The Carpentries. His research
interests include ecological informatics, global agricultural production, graphical information
systems, and remote sensing. Duckles received a Master of Science in Landscape Ecology from
Purdue University. Contact him at jduckles@carpentries.org.

Sandra Gesing is a Research Assistant Professor at University of Notre Dame. Her research
interests include science gateways, computational workflows, and distributed computing. Gesing
received a Ph.D. in Computer Science from University of Tübingen, Germany. Contact her at
sandra.gesing@nd.edu.

Michael A. Heroux is a Senior Scientist at Sandia National Laboratories, Scientist in Residence
at St. John’s University, and Director of Software Technology for the U.S. Exascale Comput-
ing Project. His research interests include all aspects of high-performance scientific computing
and software. Heroux received a Ph.D. in Applied Mathematics from Colorado State University.
Contact him at maherou@sandia.gov.

Simon Hettrick is Deputy Director of the Software Sustainability Institute and co-Director of
the Research Software Group at the University of Southampton. His work focuses on developing
careers in software engineering within research organizations and studying the demographics of
researchers who use software. Hettrick received a Ph.D. in laser physics from the University of
Southampton. Contact him at s.hettrick@software.ac.uk.

Rafael C. Jimenez is the Chief Data Architect at ELIXIR. His research interests include soft-
ware development, computational workflows, data integration, data standards, data management,
and data visualization. Jimenez received a M.Sc. in Computer Science from the University of
KwaZulu-Natal. Contact him at rafael.jimenez@elixir-europe.org.

Marlon Pierce is Director of the Science Gateways Research Center at Indiana University. His
research interests include the application of distributed computing principals and modern software
engineering practices to the development of open source middleware to support scientific research.
Pierce received a Ph.D. in Physics from Florida State University. Contact him at marpierc@iu.edu.

Belinda Weaver is the Community and Communications Lead at The Carpentries. Her research
interests include cloud computing, teaching coding, and digital skills for librarians. Weaver re-
ceived a Graduate Certificate in Journalism from The University of Queensland. Contact her at
bweaver@carpentries.org.

Nancy Wilkins-Diehr is an Associate Director at the San Diego Supercomputer Center and prin-
cipal investigator for the Science Gateways Community Institute. Her research interests include
science gateways, high-end computing, and management of large distributed teams. Wilkins-
Diehr received a M.S. in Aerospace Engineering from San Diego State University. Contact her at
wilkinsn@sdsc.edu.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MCSE.2018.2883051

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

