
Addressing Research Software Sustainability via
Institutes

Daniel S. Katz⇤, Jeffrey C. Carver†, Neil P. Chue Hong‡, Sandra Gesing§,
Simon Hettrick¶, Tom Honeymank, Karthik Ram⇤⇤, and Nicholas Weber††

⇤NCSA & CS & ECE & iSchool, University of Illinois, Urbana, IL, USA, ORCID: 0000-0001-5934-7525
†Department of Computer Science, University of Alabama, Tuscaloosa, AL, USA, Email: carver@cs.ua.edu

‡Software Sustainability Institute & EPCC, University of Edinburgh, Edinburgh, UK, ORCID: 0000-0002-8876-7606
§Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA, ORCID: 0000-0002-6051-0673

¶Software Sustainability Institute & ECS, University of Southampton, Southampton, UK, ORCID: 0000-0002-6809-5195
kSoftware program, Australian Research Data Commons, Univ. of Technology, Sydney, Aus., ORCID: 0000-0001-9448-4023

⇤⇤Berkeley Institute for Data Science, University of California, Berkeley, CA, USA, ORCID: 0000-0002-0233-1757
††Information School, University of Washington, Seattle, WA, USA, ORCID: 0000-0002-6008-3763

Abstract—Research software is essential to modern research,
but it requires ongoing human effort to sustain: to continually
adapt to changes in dependencies, to fix bugs, and to add
new features. Software sustainability institutes, amongst others,
develop, maintain, and disseminate best practices for research
software sustainability, and build community around them. These
practices can both reduce the amount of effort that is needed
and create an environment where the effort is appreciated and
rewarded. The UK SSI is such an institute, and the US URSSI
and the Australian AuSSI are planning to become institutes,
and this extended abstract discusses them and the strengths and
weaknesses of this approach.

Index Terms—software sustainability institutes, software best
practices, community, research software, software sustainability

I. INTRODUCTION AND CONTEXT

A large fraction of modern research depends on research
software [1, 2]. This software often can be considered to fit
into a stack, as described by Hinsen [3], consisting of, from
top to bottom: project-specific code (e.g., scripts, workflows),
domain-specific tools (e.g., community codes), scientific soft-
ware infrastructure (e.g., math and I/O libraries), and non-
scientific software infrastructure (e.g., compilers, standard li-
braries), all on top of the operating system (OS) and hardware.

The fact that this software works at a given time does
not mean that it will work in the future, because the lower
layers upon which the software depends (including the OS
and hardware) will change over time, and this can cause the
software to break. Additionally, there may be bugs discovered
in the software that should be fixed, and in many cases, new
use cases will arise that require modifying the software. In
all cases, there is work needed to keep the possibly fixed or
expanded software running correctly on the possibly updated
lower layers. We use sustainable to refer to situations where
this work is planned for and likely to occur, though in some
sense, sustainability is something that can only be evaluated
in hindsight; sustainability in the future is merely a prediction.

While some of this software, particularly in the lower layers,
is reasonably well-supported by funding agencies, industry, or
open source communities, and is likely to be sustained, much

of it is also developed by itinerant laborers (graduate students
and postdocs) as a side effort in their research activities, and
even when a person dedicates long term effort to a software
package, at some point they will retire or move on.

II. CHALLENGES

Better sustaining of research software can be addressed in
multiple ways, including by reducing the work needed to
sustain it, and increasing the resources available to do so.
To reduce the work, research is needed to develop, maintain,
and disseminate best practices and effective tools. To increase
the resources, which are often people, since developing and
maintaining software is human-intensive, we must increase
human effort, either by paying people to work on software
or finding other ways to encourage them to choose to do it.

While there is a technical aspect to these two factors (e.g.,
determining best practices, developing tools), many issues are
partially or entirely social (e.g., disseminating best practices
and tools, incentivizing contributions to software via hiring
and promotion, funding policies that plan for ongoing main-
tenance), thus community activity is needed to address them.

III. EXISTING SOLUTIONS

These challenges can be addressed at a global or national
scale, and because research funding is typically national,
national efforts are arising. Three national activities have been
working on this problem in their own countries, as part of a
larger community of researchers interested in this problem.

In the UK, the Software Sustainability Institute (SSI, soft-
ware.ac.uk) was established in 2010 with EPSRC funding to
identify key issues and best practices for research software [4].
It has worked with 70+ research groups to improve their
software practices and published over 80 guides (some used
by >50,000 people) ranging from software engineering to
managing projects to building communities. Other successes
include the SSI’s Fellowship program, a cohort of 150 advo-
cates for improving software practice (including diversity and
recognition) in their research domains [5], and a partnership

11

2021 IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability (BoKSS)

978-1-6654-4460-6/21/$31.00 ©2021 IEEE
DOI 10.1109/BoKSS52540.2021.00013

with The Carpentries that developed a 350+ instructor base and
delivered training for 7,500 learners at 50+ organizations. Con-
sequences include: an increased use of software engineering
practices that improve sustainability, such as version control;
software outputs from research projects are more likely to be
developed as open source and deposited in a digital repository.

The SSI was instrumental in establishing the Research
Software Engineering movement, from the term Research
Software Engineer being coined at a 2012 SSI workshop [6] to
providing backbone organization support to establish the UK
RSE Association in 2014 and Society of Research Software
Engineering in 2019. This included working with policymak-
ers to develop funding programs such as RSE Fellowships [7]
and guidance on recognizing software as a research output in
the UK Research Evaluation Framework. There are now RSE
associations on three continents, 370+ professional members,
and thousands engaged in the wider RSE community. UK
researchers are more likely to explicitly budget software
engineering effort on research grants.

In the US, a planning project started in 2017 to design a US
Research Software Sustainability Institute (URSSI, urssi.us)
and to build community support for it [8]. The project has
run multiple workshops and a large survey to understand
US researchers’ needs and to determine possible activities to
support them. In addition, it has used a set of community activ-
ities (e.g., website, blog posts) to build community awareness.
These activities and examining the UK SSI’s results led to
a plan for a US institute: plan.urssi.us. This plan includes
work in community and outreach, education and training,
incubation, and policy. The URSSI team is now seeking
funding to turn its vision, or at least parts of it, into reality.

In Australia, work began in 2020 to draft a national agenda
for research software (agenda framework shown in Figure 1),
with the aim of achieving recognition of software as a first
class research output. This agenda is heavily informed by
the work of the UK SSI and URSSI. Establishing a software
sustainability institute, AuSSI, will be validated with the
community in 2021. AuSSI will serve to coordinate activities
arising from the agenda, and will be housed within, and
complement existing activities at, the Australian Research
Data Commons (ARDC). The agenda suggests activities in
infrastructure, guidance and outreach, community building and
advocacy.

IV. STRENGTHS AND WEAKNESSES

As a solution to making research software more sustainable,
institutes have some strengths:

• Focus on academia and national labs (a government
funded activity can be most successful aimed at
government-funded institutions)

• Collaboration between institutes and communities (insti-
tutes and individuals can work together under a common
vision to find common or customizable solutions)

• Leveraging research-specific concerns such as repro-
ducibility and open science / open research

and some weaknesses:

Fig. 1. Framework for AuSSI agenda. (FAIR = findable, accessible, interop-
erable, reusable)

• Hard to impact industry (industry is much larger and has
different social practices and incentives)

• Limited funding and limited time (government funded
activities are dependent on government funding, which
is generally of fixed duration)

Institutes are not a complete solution, but in cooperation
with other activities (and with each other), they can help
communities change practices, leading to more sustainable
research software.

REFERENCES

[1] S. Hettrick et al., “UK research software survey 2014,”
Dec. 2014. [Online]. Available: https://doi.org/10.5281/
zenodo.14809

[2] U. Nangia and D. S. Katz, “Understanding software in
research: Initial results from examining Nature and a call
for collaboration,” in 13th Int. Conf. on e-Science, 2017.
doi: 10.1109/eScience.2017.78 pp. 486–487.

[3] K. Hinsen, “Dealing with software collapse,” Computing
in Science & Engineering, vol. 21, no. 3, pp. 104–108,
2019. doi: 10.1109/MCSE.2019.2900945

[4] S. Crouch et al., “The software sustainability institute:
Changing research software attitudes and practices,” Com-
puting in Science & Engineering, vol. 15, no. 6, pp. 74–80,
Nov. 2013. doi: 10.1109/mcse.2013.133

[5] S. Sufi and C. Jay, “Raising the status of soft-
ware in research: A survey-based evaluation of the
software sustainability institute fellowship programme,”
F1000Research, vol. 7, p. 1599, Oct 2018. doi:
10.12688/f1000research.16231.1

[6] R. Baxter, N. Chue Hong, D. Gorissen et al.,
“The Research Software Engineer,” Sep. 2012.
[Online]. Available: https://www.research.ed.ac.uk/portal/
files/65195747/DR2012 12 1 .pdf

[7] UKRI, “Research software engineer fellowships
2020,” 2020. [Online]. Available: https://www.ukri.org/
opportunity/research-software-engineer-fellowships-2020/

[8] J. C. Carver, S. Gesing, D. S. Katz, K. Ram, and
N. Weber, “Conceptualization of a US research software
sustainability institute (URSSI),” Computing in Science
& Engineering, vol. 20, no. 3, pp. 4–9, 2018. doi:
10.1109/MCSE.2018.03221924

12

