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Abstract

Modern research is inescapably digital, with data and publications most often

created, analyzed, and stored electronically, using tools and methods expressed

in software. While some of this software is general-purpose office software, a

great deal of it is developed specifically for research, often by researchers them-

selves. Research software is essential to progress in science, engineering, and all

other fields, but it is often not developed, shared, or stored in a sustainable way.

The following paper presents findings from an ethnography of two research soft-

ware projects that have, over the last 10 years, cooperatively organized develop-

ment efforts to produce important software enabling scientific breakthroughs in

both astronomy and macromolecular modeling. The work of these two projects

are framed in terms of James Carse's model of finite and infinite games. I argue

that by incentivizing institutional governance that resembles the design of an

infinite game, funding agencies can increase the sustainability of research soft-

ware and improve various aspects of data-driven scientific discovery.

1 | INTRODUCTION

Common tasks solved by research software often include
the generation, analysis, visualization, and processing of
data. These software solutions are, just as often, generaliz-
able beyond the immediate needs of an individual
researcher, research group, or a particular research effort.
However, there are few institutional and personal incen-
tives to develop generalizable research software, package
this software for reuse, create meaningful documentation,
and share software in open repositories. Each of these activ-
ities requires substantial investments of time, money, and
effort. For researchers the return on this investment may be
minimal - software is rarely cited in scholarly literature
(Howison & Bullard, 2016; Hwang, Fish, Soito, Smith, &
Kellogg, 2017; Hsu et al. 2019; Park & Wolfram, 2019, ten-
ure and promotion committees rarely consider software

contributions (Moher et al., 2018), and grant funding often
acknowledges software development as a byproduct of
rather than a substantive contribution to a research project
(Broman et al., 2017; Siepel, 2019).

These challenges are despite increasing evidence of
the value of software sharing and reuse in addressing
research challenges that require fast and efficient com-
munity response. For example, the Medical Research
Center in the UK is currently using a 13 year old pan-
demic simulation codebase to model control measures for
COVID-19. In doing so, they have attracted collaborators
from Microsoft, the Abdul Latif Jameel Institute for Dis-
ease and Emergency Analytics, and the WHO Collaborat-
ing Centre for Infectious Disease Modelling to document,
refactor, and extend this code. While the original author
of the simulation code acknowledged its numerous
imperfections,1 the ability to start from an existing
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working model saved time, money, and effort in combat-
ing a global pandemic.

Contemporary research is littered with similar
examples - imperfect software that is valuable for one pur-
pose can be made more broadly useful by being shared,
properly documented, and made available for sustainable
reuse. Finding ways to encourage and support research
software so that it remains accessible for future improve-
ments and uses is a primary goal of federal funding agen-
cies, like the National Science Foundation.

2 | SOFTWARE SUSTAINABILITY
IN THE USA

Between 1998-2016 the US National Science Foundation
(NSF) made more than 18,000 awards related to the
development of research software. This diverse invest-
ment portfolio, totaling over $9.6 billion dollars in federal
funding, includes projects that have produced new soft-
ware libraries, programming environments, visualization
tools, and software services (Ram et al., 2018). Alongside
advances in other cyberinfrastructure components, such
as data repositories and high-performance computing
centers, research software now enables advanced scien-
tific discovery and analytical innovations that are trans-
formative to many domains of knowledge production
(Katz and Ramnath, 2015).

This profound investment of financial capital into
research software has also introduced new challenges for a
sustainable scientific enterprise: Students need to be
trained to effectively use advanced software (Wilson,
2014), research results are difficult to reproduce without
democratized access to underlying hardware and software
sources (Stodden and Miguez, 2014), and academic career
advancement, predicated mainly on contributions in peer-
reviewed conference and journal publications, often does
not acknowledge nor give credit for the work of develop-
ing, maintaining, or sharing research software
(Howison, 2015; Weber and Thomer, 2015). In short, the
last two decades of scientific funding has ushered in para-
digmatic changes to research and development activities,
and has significantly expanded the software dependencies
necessary for advancing experimentation and discovery.

The Software Infrastructure for Sustained Innovation
(SI2) program at NSF recognized and made important
progress on many of the research software challenges
noted above (Katz and Ramnath, 2015). However, the
sponsors for that program also recognized that one of the
most vexing problems, one that cuts across all of these
issues, is how - given the time-limited, and finite finan-
cial commitments available to funding agencies like the
NSF - can valuable research projects sustain the human

and technical software infrastructures necessary to
advance scientific understanding?

In 2018, the US Research Software Sustainability
Institute (URSSI) was funded to investigate and support
sustainable software development by NSF. URSSI has,
over the last two years, held a number of community-
listening workshops and a widely-distributed survey that
engaged important stakeholder communities of scientific
software in the US (Carver, Gesing, Katz, Ram, &
Weber, 2018). Each of these activities have been designed
to help NSF learn about the software produced and used
by the US scientific and engineering community, and the
ways that NSF stakeholders go about practically sustain-
ing this research ecosystem.

As part of URSSI's work, the lead author has con-
ducted a year long ethnogic study of sustainable software
development. The goals of this ethnographic work are to
help URSSI better generate domain-specific examples of
sustainable software practices, and to inform the design
of a general institute aimed at improving software devel-
opment for research. The sections that follow present a
brief summary of the design of an ethnographic study of
two long-term research software projects that have
sustained their work through unique governance, and
software development practices. Following this section,
we present findings from this ethnography and frame the
results in terms of institutional design.

3 | INSTITUTIONAL
ETHNOGRAPHY & RESEARCH
DESIGN

Ethnographers of institutions are often interested in the
lived experience of people working together to build and
maintain social relations (Campbell et al., 2006). In the
context of this paper, an institution is the set of material
practices and symbolic systems including assumptions,
values, and beliefs that individuals (or groups of individ-
uals) use to provide meaning to routine activity. These
activities can range from simple naming and group iden-
tity, to complex tasks related to organizing collective
action, and reproducing or replicating patterns of collec-
tive action over time (Thornton & Ocasio, 2008). Through
observation (in-person and virtual), interviews, and
archival document analysis ethnographers can provide
descriptive causal interpretations about why some insti-
tutions succeed and others fail (Rankin, 2017).

To better understand the institutional arrangements
that lead to sustainable research software, we designed
a comparative ethnography of two projects: Astropy - a
python software project used broadly in Astronomy
research; and, Rosetta Commons - a platform for
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macromolecular modelling. Both projects have been suc-
cessful at producing high-quality research software, and
maintaining infrastructure that supports this software
over the last decade. We therefore sought to compare
how these projects successfully accomplished these sus-
tainability activities, and generalize from the similarities
and differences in their work. The formal research ques-
tions that we seek to answer are related to social rela-
tions, shared artifacts, and governance:

• How are social relations initiated and maintained
through shared artifacts (code) in research software
development?

• How do shared artifacts structure or get structured by
the institutional governance of a software project?; and

• How do forms of institutional governance get sustained
as they adjust to external and internal pressures of
maintaining social relations?

These research questions reflect our assumption that
social relations, shared artifacts, and governance are all
highly related to sustainability in a research software eco-
system. We therefore seek to understand and differentiate
how - through collective action processes - these concepts
impacted the practical, everyday work of two different
research software projects.

To operationalize this comparative study we first cre-
ated a brief historical account of the way that each pro-
ject formed. Through these histories we also sought to
explain how each project's organizational structure
(e.g., roles, funding, etc) has evolved over time. After cre-
ating these historical explanations, we purposefully rec-
ruited participants from each project to read and evaluate
the narrative that we had created. This reading and
editing of a historical account was a purposeful interven-
tion by our research team - we were attempting to induce
reflexivity in each interviewee, and gain an understand-
ing of how social relations, shared artifacts, and gover-
nance were articulated.

In total, we interviewed 23 users, developers / contribu-
tors, and project leaders in Astropy and Rosetta Commons.
A questionnaire was developed in advance and shared with
interview participants. Participants ranged in seniority
from graduate students to tenured professors. Each inter-
view lasted approximately 40 minutes, and took a semi-
structured form. Interviews were audio-recorded and then
transcribed. The lead author on this paper then developed
a codebook related to social relations, shared artifacts,
and governance, and coded each interview thematically
(Vaismoradi, Jones, Turunen, & Snelgrove, 2016).

In addition to interviews the lead author also col-
lected the following data: Observations from a series of
software workshops in Astronomy (2018), and an annual

retreat for the software in biomolecular modeling (2019).
Observations took the form of field notes that were also
transcribed, and coded thematically. We also collected
digital trace data of organizational activities, such as
email forum posts, Github issue discussions, and we
joined Slack and Gitter groups (with invitation from
administrators) for both projects. Using these resources
we then turned to the small, but influential literature on
research software engineering and peer production to
contextualize and further refine themes that cut across
both projects. We developed external and internal valid-
ity of our observational data in the following ways: We
shared interpretations of events and historical readings
with participants at each stage of analysis. We also
sought feedback on our initial coding of interview data,
and asked participants for their help in evaluating syn-
thesis of these observations with the existing literature on
research software sustainability.

The remainder of this paper is structured as follows:
We first present a brief historical narrative of both
Astropy and Rosetta Commons. We then compare gen-
eral features of each project in a summary table. Next, we
discuss emergent themes that were observed and
emerged from interviews with participants. We then turn
to an explanation of sustainable software institutions in
terms of finite and infinite games drawn from the work
of James Carse.

4 | CASE STUDIES OF
SUSTAINABLE RESEARCH
SOFTWARE

4.1 | Astronomy - Astropy

In the late 1990s the astronomy community began to
move away from using Interactive Data Language (IDL)
in favor of free open-source alternatives. This move was
precipitated by an increasingly sophisticated research
and development ecosystem in Astronomy that required
the broad sharing of software for interpreting telescope
observations that had increased substantially in size and
complexity (Boscoe, 2019). By the mid 2000s, the pro-
gramming language Python was being used extensively,
and astronomy specific-packages were being developed
in a number of USA and European labs working with
large-scale astronomy data. The adoption of Python in
astronomy also had to do in part with a desire for an
open alternative to IDL, and the paradigm of object-
oriented programming (as opposed to vector-oriented)
becoming pervasive in scientific computing.

The adoption of Python led to important innovations
in not just astronomy software, but general libraries for
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data processing and analysis. For example, ‘numarray’
developed by astronomers in 2003 directly led to
‘NumPy’, and ‘plotting’ developed in 2007 by John
Hunter led to ‘matplotlib’. Both of these packages, NumPy
and matplotlib, are used extensively in scientific comput-
ing. However, in astronomy there was also much redun-
dancy in development efforts with Python. Prior to “social
coding” infrastructures like Github there was no mecha-
nism for discovering software other than personal networks
of collaborators. This led to duplicated work and a failure
for the astronomy community to converge on shared soft-
ware projects that could harness collective efforts under a
single core library. Muna et al. describe the situation in the
early-2000s as not just uncoordinated, but also stifling “…it
would be one thing if there were widespread disagreement
on the next direction of software development, but given
that the path forward was clear and almost universally
agreed upon, it would have been reasonable to expect that
some institution – one that had led in software develop-
ment previously or somewhere new – would have taken on
the task of writing the next generation of tools, in Python,
that astronomers would be needing.” (2016). Two major
community-based efforts have since emerged in the post-
IDL era of Astronomy: yt and Astropy.

Astropy, formed in 2011, is self-described as a commu-
nity based project to “develop a single core package for
Astronomy in Python and foster interoperability between
Python astronomy packages.” (2018) The original project
documentation further describes the vision for the project
as “…to avoid duplication for common core tasks, and to
provide a robust framework upon which to build more
complex tools…This vision is not set in stone, and we are
committed to adapting it to whatever process and guide-
lines work in practice.” (2011). Astropy is licensed under
the three-clause BSD license which is a share-alike license
that allows for reuse and redistribution in binary form
without any liability for copyright holders. Astropy partici-
pants in this study noted that, true to the original vision,
the focus of the project continues to be on providing gen-
eralized interfaces, including a set of well documented
APIs that allow new developers to access, use, and eventu-
ally contribute to Astropy in meaningful ways. Astropy is
now used by the Association of Universities for Research
in Astronomy (AURA); the Hubble Space Telescope and
James Webb Space Telescope - among other influential
astronomy research laboratories.

Practically, astropy includes a core set of packages
that provide for common astronomical computing tasks,
such as data wrangling, modeling, visualization, statisti-
cal computing, numerical computing, text and image
processing, as well as a growing set of subject area librar-
ies that extend these capabilities. Participants in this
study stressed repeatedly a difference of Astropy from

other previous software contributions in astronomy - it is
community developed and user focused rather than
guided by the specific needs of a single survey or labora-
tory. Community focus means that as missions or surveys
develop specific imaging or pipelines for data processing
Astropy can be extended to satisfy general use cases, or
specific libraries can be contributed for specific tasks.

In 2014, after 3 years of general community financial
support, Astropy transitioned to fiscal sponsorship by
NumFOCUS (a non-profit organization that provides for
administrative services to open-source software projects).
Although broadly used, well documented, and highly
coordinated the project has continued to face dilemmas
in attracting the level of funding that is necessary for sus-
tainability. A provocative paper, written by a community
of users called this the Astropy Problem (Muna
et al., 2016) which echoes the free-rider problem in com-
mons governance. In short, it describes community devel-
oped software that is extensively used and that depends
exclusively on volunteer labor for its upkeep and mainte-
nance. Without direct financial support from the numer-
ous surveys and institutions that depend upon this
infrastructure the project faces extensive coordination
and sustainability issues. Muna's paper proposes a spon-
sorship model, and licensing fee which would help cover
the costs of producing and maintaining Astropy, but nei-
ther effort has been, as of yet, taken up.

4.2 | Molecular modeling - Rosetta
commons

Macromolecular modeling in the field of biophysics and
bioengineering includes the analysis and prediction of
molecular structures and activities. The field has advanced
rapidly over the last two decades, due in part to the devel-
opment of a common suite of modeling software called
Rosetta. The development of the software happened from
1997-2000 in David Baker's Lab at University of
Washington in response to a need for a “structure predic-
tion tool.” (Baker et al., 2001). Rosetta was originally writ-
ten in Fortran, but was later rewritten in C++ (v 2.0), and
eventually a set of Python wrappers were written to make
the code easier to interact with (v 3.0). The move to an
object-oriented language, similar to Astropy, was moti-
vated by the desire to increase learning opportunities of
undergraduate and graduate researchers, and to generally
encourage the development of new and extensible libraries
that could be coordinated in a growing number of contrib-
uting macromolecular bioinformatics labs.

Rosetta has been extended considerably since its origin
in a single university lab - it now helps to solve “common
computational macromolecular” problems throughout
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bioinformatics (e.g., industry, government labs, non-
profits). Rosetta also has multiple functional modules that
include RosettaAbinitio, RosettaDesign, RosettaDock,
RosettaAntibody, RosettaFragments, RosettaNMR, Rose-
ttaDNA, RosettaRNA, RosettaLigand, RosettaSymmetry
PyRosetta. RosettaScripts, ROSIE. Portions of the Rosetta
framework were used to produce, and analyze data from
the game FoldIT - which gained international attention
for its novel use of crowdsourcing (Khatib et al., 2011).

Rosetta became The Rosetta Commons in 2003 - a
non-profit entity that manages the intellectual property
of the project. This move was necessitated by the authors
of Rosetta, all of whom were part of the Baker Lab at
UW, ending their postdocs and starting their own labs at
new institutions. This group of postdocs wanted the abil-
ity to continue working on the codebase, sharing portions
of development responsibilities amongst new postdocs,
and building the basic framework of Rosetta into a suite
of infrastructure tools. Rosetta is licensed by the Univer-
sity of Washington, and is free for academic use. Licenses
for commercial use of Rosetta costs upwards of $40,000.

Rosetta has a developer and contributor program, but
does not allow for open contributions. Developers must
come from one of the 23 affiliated Rosetta Commons labs
(which currently includes about 150 contributors to the
core Rosetta library). The project is governed by a board
that is elected from member labs, but runs mostly on a vol-
unteer basis. A recurring grant from NIH has provided for
Rosetta Infrastructure to be maintained, at a rate of
approximately �$500 K annually, since 2005. Over the last
decade Rosetta Commons affiliate labs have won over
50 grants to build out complimentary algorithms, features,
and extensions of Rosetta. The grants are mostly in sup-
port of basic research for student and postdoc developers -
who also happen to be the most common software
developers in macromolecular modeling. The project sus-
tains itself practically by the member labs assuming
responsibility for one or more components of the core
architecture, and four dedicated infrastructure developers
(full time employees) at the University of North Carolina.

4.3 | Astropy & Rosetta at a glance

The following Table 1 provides a point of comparison for
the two projects based on some basic project demographics.

5 | OBSERVATIONS

In the following sections we offer some points of compar-
ison for how the two projects handle issues of sustainabil-
ity. Specific anecdotes or quotes are attributed to a

participant [P] of each project- Astropy [A] or Rosetta
[R]- and are numbered to provide for participant
anonymity.

5.1 | Contributors and Maintainers

Throughout our interviews we asked questions that could
explain the success of each project in attracting new con-
tributors and sustaining knowledgeable maintainers.
Notably, both projects have scaled from a small group of
early committed individuals to a distributed development
model of contributors working and coordinating tasks
across the world. Our questions on growth focused on
how new and existing contributors were initiated, and
how newcomers were helped to learn, understand, and
meet the expectations for contributing to a project.

Astropy was conceived of as having a distributed
coordination structure, and so its early documentation
sketched out a method of receiving and accepting new
contributions. The initial Astropy leaders had planned
initially to develop worked examples of how to make a
code contribution [PA-2]. Over time this documentation
has evolved into examples for not only how contributions
are expected to be structured, but the exact workflow that
new contributors can follow. One participant explained
the strength of the documentation reflecting the “survey
and mission” driven nature of Astronomy data produc-
tion [PA-1]. Astropy currently has a thorough set of

TABLE 1

Astropy Rosetta Commons

Founded 2011 2003

Fiscal Model Donation, Grants Grants, Licensing

License 3-clause BSD Custom (Rosetta
License)

Userbase
(estimated
size)

2500 forks (imperfect
proxy)

10000 current
licenses in use

Contributions Open Closed - member labs
and approved
secondary
developers only.

Maintenance Volunteer - (�7 core,
and � 25 sub-
package
maintenance
coordinators)

Core Infra team (4)
paid to work on
maintenance.

Coordination Weekly telecon,
Gitter, Github
Issues

RosettaCon (annual),
telecon monthly,
Slack, Github
Issues (closed)
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contributor guidelines including a worked example for
how to contribute via their git workflow (for beginners),
and even a condensed example for making new contribu-
tions to Astropy. These guidelines are developed and
maintained by designated individuals who are responsi-
ble for documentation upkeep - a task that could only be
assigned once a proper governance structure was in place
around the project [PA-2]. Making broader changes to
Astropy's core code is formally facilitated through an
Astropy Proposal for Enhancement (APE) process that
follows the same model of proposals as the Python lan-
guage. The APE is used to both coordinate new sub-
package development as well as code reorganization, and
other community wide proposals. Informally, the com-
munity discusses issues, proposals, training, and coordi-
nates through a mailing list that is open for anyone to
join. (Note: a further discussion of maintenance and
retention is also addressed in the final section of this
paper).

Rosetta Commons follows a very different contributor
model due to its licensing scheme – which necessarily
provides barriers to who can provide new code, propose
new directions for the project, and even communicate
with core developers. Both the process of contributing, as
well as finding out who can contribute new code or fix
bugs can be opaque. When asked to point to documenta-
tion about this procedure Rosetta participants had no
clear answer other than private Github wikis. One com-
menter on the Rosetta Commons forums explained this
to an external user as follows, “The Github account is just
the repository of the source code - while you don't get the
full history of the code and access to the cutting-edge ver-
sion, when you download the Rosetta release, you only
get a snapshot of that repository.” Rosetta repository
snapshots have no documentation about how to fix a
bug, how to contribute an extension, or make a pull
request to the repository. A participant explained the lack
of openness as being less exclusionary and more about
control of the project by member labs, “there certainly
isn't a secret page which lays out the structure of the
Rosetta library clearly” [PR-1]. Even the 23 contributing
labs lack documentation for proposing broad changes or
coordinating code clean-up. This was seen by many par-
ticipants code clean-up and bug resolution as a problem
that the infrastructure team was supposed to solve.

Much of the contributions of code come from just two
sources: Member labs or a core Infrastructure team.
There are 23 member labs of the Rosetta commons that
collectively employ over 200 students. Many of these stu-
dents and postdocs are responsible for maintaining and
responding to bugs that are found in one or more of the
sub-packages of Rosetta. Students are trained at individ-
ual labs about how to make pull requests to core and

sub-packages of Rosetta. There were, as of participant
reporting, no formal contributor guidelines that guide
this training. Most participants described a Rosetta boo-
tcamp at an annual event, RosettaCon, as their only for-
mal training for using and making contributions to the
project.

Besides students and postdocs, there is a team of core
infrastructure developers and maintainers (four FTE)
based at the University of North Carolina. The infrastruc-
ture team receives an annual NIH award for their salaries
(continuing since 2005). These individuals do almost all
servicing of commercial licensing holders and are respon-
sible for the Rosetta core maintenance and new develop-
ment. Students regularly interact with infrastructure team
members, and each of the current infrastructure members
are former Rosetta lab members. Infrastructure team
members receive training on infrastructural elements of
Rosetta hosting, provisioning, and deployment by UNC IT,
but are not trained on the Rosetta software itself other
than their experience as researchers. In interviewing stu-
dents, we asked if becoming an infrastructure team mem-
ber was seen as a coveted or admirable position – and
were enthusiastically rebuffed. The individuals playing this
role are well respected, but Rosetta students and postdocs
do not view the positions as viable career paths.

6 | INTERFACES (PARTIALLY)
EXPLAIN SUCCESS

Interviews with participants from both projects often ste-
ered towards questions of how and why their work had
succeeded where others had failed, and what explains
their collective success in sustaining a project over time.
Participants from both projects described early decisions
to privilege the development of well documented APIs,
and attributed these decisions to their success.

The core contribution of Rosetta Commons to macro-
molecular modeling is a common interface that allows
for protein prediction (and a host of other modeling
tasks) to be generalized. APIs are designed and
maintained only by the core infrastructure team of
Rosetta.

The APIs developed for this purpose have matured
alongside the growth of the project. One participant
explained Rosetta was first commercially licensed in 2004
the project received an influx of funds – and decided to
invest both their time and money in building out a suite
of APIs that would make accessing new libraries much
easier [PR-6]. The participant attributed this to the fur-
ther commercial success of Rosetta, and to the capabili-
ties of the APIs to allow for broad use of the modeling
components of Rosetta.
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Astropy participants also repeatedly described APIs as
the key to success of the project over other Python projects
in astronomy - notably work from the Large Synoptic Sur-
vey Telescope (LSST) in the mid-2000s that failed to be
extended beyond that particular survey [PA-3]. Develop-
ment and maintenance of API's in Astropy are the respon-
sibility of sub-package and core maintainers. The
maintainers that I talked to noted that this was one of
their most important responsibilities, as one explained the
dilemma in receiving credit for this work, “No one cites
data and no cites software – I can't even imagine someone
citing an API which is really some combination of… data
access and software.. I guess it's the key [to Astropy] but
I'm not sure anyone even knows I worked on it.” [PA-3].

For project contributors, computational interfaces in
both Rosetta and Astropy were seen as key to the early
and long-term successes. Interestingly, research partici-
pants in both projects noted that they did not really con-
sider such an interface to be a software contribution, and
were unsure who developed or maintained an API. This
invisibility of infrastructural middleware is a common
theme in CSCW (e.g., Bietz, Paine, & Lee, 2013), but we
argue in the conclusion that APIs require further atten-
tion from researchers attempting to understand contem-
porary software sustainability.

7 | ACKNOWLEDGEMENT OF USE

In interviews with both project developers and
researchers we sought to understand motivations for
working on shared software. While motivations for work-
ing on open-source projects have been thoroughly exam-
ined in other settings (Hars, 2002), we believed that
asking questions about this behavioral aspect of research
software sustainability could lend insights into how and
why social relations were maintained through shared
artifacts. The academic reward system, dependent upon
citations in peer-reviewed literature, was rarely men-
tioned by either group as a motivation for contributing to
software development. Instead, both Rosetta and Astropy
developers described a sense of “duty” for maintaining
research infrastructure that was important to their field.
One participant succinctly put this as follows:

I'm good in my field, but I'm not going to make break-
throughs. That requires a lot of access that frankly I just do
not have. I gave up on that in undergrad. But, I have made
a number of important pull requests for Astropy that feel
better to me than any publication I've ever been on. I mean,
when people describe their data processing pipeline at a
conference and I see something I've built - I'm like ‘I did
that! Your science is possible because of me’ [PA-5].

When asked about citation and formal acknowledge-
ment within publications many participants described
key papers that were known as “trademarks” [PA-5] for a
software contribution to either Rosetta and Astropy.
Below, we further investigate the papers that were men-
tioned by participants, and we describe their reception by
participants in interviews and observations.

The default citation for Rosetta is a 2004 paper
explaining the capabilities for using the software in pro-
tein structure prediction (Rohl, Strauss, Misura, &
Baker, 2004). The paper has received �1400 citations,
and continues to receive �100 per year, which is far less
than the use of Rosetta suggests based on active licenses.
Participants acknowledged that much of the software
development activities of students and postdocs goes
unrecognized and unacknowledged. Participants from
Rosetta provided conflicting thoughts about whether the
lack of acknowledgement in software development was
important. Students felt that this was their responsibility
for being a member of a lab, and were overall enthusias-
tic about the opportunity to engage and interact with
other labs via software development. One participant
noted that after a year developing for Rosetta he began
working hard to get pull requests accepted and to make
contributions to public repositories so that he could get
more credit for his contributions. I talked with only two
PIs of Rosetta labs, but both saw the acknowledgement of
software contributions as problematic for postdocs, and
they noted many graduate students having to spend more
and more time learning software engineering tasks and
not being rewarded for this work. They also noted that
undergraduate students increasingly viewed participation
in their labs as a pathway to industry.

By comparison, Astropy's default publication
(Robitaille et al., 2013) has received just 292 citations. This
publication is promoted on the Astropy website, and docu-
mentation throughout the project encourages citation for
the sake of acknowledgement. Participants in the Astropy
project all stressed the major dilemma that this caused for
attracting funding, demonstrating impact, and receiving
credit. Community members have been active in software
citation efforts in scholarly communications, and have
encouraged sub-package developers and maintainers to
pursue software specific publications [PA-1]. Muna et al,
have gone a step further in their 2016 publication by trying
to estimate the economic impact of Astropy. Using David
A. Wheeler's (Wheeler, 2004)“SLOCCount” they estimate
the cost of reproducing Astropy to be �$8.5 million, and
the annual economic impact on astronomy alone to be
�$1.5 million (2016). When asked whether or not this
exercise was effective for funding participants had mixed
feelings - One claimed that the figure was used in every
conversation she had with funding agencies and is widely
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cited in the astronomy software community, and another
said she believes the figure did harm in trying to loosely
put a “hedonic value” on something that could not be eas-
ily replaced [PA-6,7].

8 | MANAGEMENT,
GOVERNANCE, AND RETENTION

Scholars of peer production and social computing have
long been concerned with how newcomers are retained
in distributed digital projects. Halfaker, Kittur, and
Riedl (2011) and TeBlunthuis, Shaw, and Hill (2018) have
found that quality control systems often, “limit the
growth of peer production communities by deterring new
contributors and that norms tend to become entrenched
over time.” This latter claim, that norms are entrenched
over time, is by no means surprising, but has been shown
to lead to poor sustainability as projects scale beyond
small groups (n = 10) of participants. For example, Shaw
and Hill show that founders of a wiki often claim more
and more control as the diversity of participants (contrib-
utors) grows - which stifles newcomers and causes wikis
to fail over time (2015). Similar findings in open source
software studies show that transitioning newcomers from
the periphery positions to a core set of developers and
maintainers is one of the hardest tasks for distributed
projects, but also is important to their long-term success
(Crowston et al., 2007). We sought to understand how
norms had evolved in the face of growth, and the ways
that both Astropy and Rosetta Commons attempted to
move novices from the periphery into core leadership
roles.

Astropy has continued to evolve its leadership model,
and in doing so has seeded decision making power, and
task distribution to a more diverse set of participants.
This has been achieved by adding new governance roles,
and expanding the diversity of leadership positions that
can be held: Astropy now has appointed roles such as
core-package and package coordinators, release coordina-
tors, and sub-package maintainers. Each of these roles
are appointed at either a “lead” or a “deputy” level – with
deputies expected to support and learn from more experi-
enced leaders. A participant explained this granularity is
both necessary for the size of the project, and for recog-
nizing and encouraging highly engaged contributors to
take on specialized tasks [PA-1]. Over time, it is expected
that deputies can learn enough from leads that they will
eventually cycle into the position.

Rosetta Commons, in somewhat contrast, has a lead-
ership board but no formally acknowledged roles for con-
tributors that recognize leadership. Each sub-package or
library repository has an owner, but as one participant

explained ownership has more to do with who made the
initial commit to a version control system than to who
actually was going to assume responsibility for the pack-
age long-term. Newcomers to Rosetta typically only learn
the software through a bootcamp experience, and are
then mentored within their own lab on best practices for
maintenance. The lack of a formal governance structure
beyond this board was seen as a dilemma that reflected
the nature of Rosetta as an academic project whose sus-
tainability depended not on students, but on an
infrastructure team.

9 | DISCUSSION

We turn now to interpreting how the arrangement of
social relations, shared artifacts, and institutional rules
impact the sustainability of research software. Drawing
on the work of James Carse (2011), we describe research
software sustainability as being the product of games that
have finite and infinite properties. The design of and
funding for research software often resembles a finite
game. To improve the sustainability of a research ecosys-
tem that depends upon software we argue that these rule
sets should, instead, reflect an infinite game.

9.1 | Finite and infinite games in
software sustainability

Carse argues there are exactly two kinds of games: the
finite and the infinite. Finite games are bound temporally
and spatially; they have rigid rule structures which gov-
ern the state of play; and, most importantly, they have
definitive winners and losers. Players of a finite game are
keenly aware of the rules, and often make strategic deci-
sions and manipulate rules in order to win (or lose). Most
contests, sports, board games, and video games are
designed as finite games.

Oppositely, infinite games have rules that exist only
for the sake of continuing play. Players of an infinite
game are incentivized to adjust their actions, reconfigure
boundaries, share power, and negotiate the terms of
engagement for the sole purpose of keeping the game
alive. The roots of an infinite game are in cooperation
and furthering play for the sake of a collective good.
Energy grids, ecosystem services, and politics are often
(though not always successfully) identified as examples
of an infinite game. In each setting, actors are incentiv-
ized to adjust rules, create policies, and further play
through cooperative actions.

The ludic properties of research software develop-
ment are similar to those Carse outlines, but we argue
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that research funding bodies unwittingly incentivize
finite rather than infinite players. For example, the suc-
cess of many scientific projects are predicated on playing
a finite game - A researcher proposes a grant, executes
research that successfully delivers on the promises of that
grant, and then uses results from the grant to further
obtain new funding, publications, and prestige which can
further their own research. Developing sustainable soft-
ware is at odds with the finite player's motivatations in a
scientific enterprise. Investing time, energy, and precious
grant funding in the maintenance of a software contribu-
tion that can be used by a broad community is at odds
with winning new grant funding. Much of the contempo-
rary landscape of scientific software development resem-
bles a finite game rather than an infinite game.

Software projects like Rosetta and Astropy resemble
an infinite game. Contributors to these projects have
rejected winning and have instead invested time, energy,
and organization activities towards ‘continuing the state
of play’ - that is, they have taken deliberate collective
action to keep a software package alive and useful to a
broad community of researchers. This is despite the fact
that career advancement, winning grants to maintain
cooperative work, and receiving credit for their contribu-
tions are rare. As we noted at the beginning of this paper,
this is despite the fact that there is increasing evidence
for the immense value and productivity of sustainable
software to fuel new discoveries, and enable efficient
response to critical scientific phenomena.

What then should funding agencies do to invert the
state of games played by scientists developing and using
research software? We believe this requires, at minimum,
the following:

• Credit and acknowledgement for activities related to
curating software, developing, maintaining, and
supporting software and hardware, are necessary for
sustainability. Funding agencies should not just recom-
mend, but require that grantees acknowledge what
open-source software is used to produce a novel finding,
conduct an experiment, or produce new knowledge.

• Research institutions, including academic and national
laboratories, also need to give equal weight in tenure,
promotion, and hiring practices to all of the activities
necessary to cooperatively produce scientific software.
This requires a radical change in not just the way that
funding agencies reward these activities, but funda-
mentally shifting expectations for reliably educating
and sustaining a research and development workforce.

• Data management plans were an important first step to
developing a more sustainable research ecosystem, but
to ensure reliable management for the long-term access
to important software contributions, research funding

agencies need similar software sustainability plans.
These policy instruments should require that grant
awardees document and make clear why new software
needs to be developed, how it will be shared openly,
and ways that this software will remain accessible into
the future.

10 | CONCLUSION

In this paper, we have provided preliminary analysis of
an ethnographic study of software sustainability across
two long-standing projects - Astropy and Rosetta Com-
mons. We demonstrate that efforts to sustain a software
ecosystem within a competitive research environment
requires the structuring of formal institutional rules that
have ludic properties - those resembling finite games are
common, and often successful in the short-term; those
resembling infinite games, such as Astropy and Rosetta,
are successful in sustaining software projects despite a
rule set that increasingly disadvantages cooperative soft-
ware development. In future work, we hope to signifi-
cantly expand the description of how these ludic
properties are applied across research software develop-
ment activities, and further describe the unique institu-
tional forms, social relations, and shared artifacts that are
present in successful research software projects.

ENDNOTE
1 See Sean Furguson's tweet for an extended commentary
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