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Polarons with different types of electron-phonon coupling have fundamentally different properties. When the
dominant interaction is between the electron density and lattice displacement, the momentum of the ground
state does not change and the polaron gets exponentially heavy at strong coupling. In contrast, one-dimensional
Peierls/Su-Schrieffer-Heeger (PSSH) polarons with interaction originating from displacement-modulated hop-
ping feature a shift of the ground-state momentum to finite values and moderate values of effective mass as
coupling is increased [D. J. J. Marchand et al., Phys. Rev. Lett. 105, 266605 (2010)]. Based on Diagrammatic
Monte Carlo method, we investigate whether unusual properties of PSSH polarons depend on the type of the
displacement-modulated hopping and to what degree they survive in higher dimension. We study two different
PSSH models: with bosonic degrees of freedom residing on sites (model A) and bonds (model B) of the
two-dimensional square lattice. For model A, we find that in both adiabatic and intermediate regimes, the
momentum of the ground state experiences a continuous transition from zero to a finite value as a function
of coupling strength. The transition is driven by quadratic instability of the dispersion function, implying that
effective mass diverges at the critical point, and then decreases in an anisotropic fashion with increasing coupling.
Unexpectedly, for model B, the momentum of the ground state always stays at zero and the effective mass
increases monotonously with coupling. The increase is far from exponential and tends to level off at strong
interaction, resulting in relatively light polarons. Having light polarons in the strong coupling regime is crucial
for the bipolaron mechanism of high-temperature superconductivity [J. Sous, M. Chakraborty, R. V. Krems, and

M. Berciu, Phys. Rev. Lett. 121, 247001 (2018)].

DOL: 10.1103/PhysRevB.104.035143

I. INTRODUCTION

Polarons form a special class of stable quasiparti-
cles emerging as a result of renormalization—often quite
dramatic—of bare particle properties by a quantum environ-
ment. Depending on the nature of the particle, environment,
and type of coupling, there are numerous examples of dif-
ferent polarons across all fields of physics: electron-phonon
polarons [1-7], spin polarons [8—10], Fermi polarons [11-14],
protons in neutron rich matter [15], etc. Over the last
two decades, a number of accurate and numerically exact
methods have been devised to study the polaron and bipo-
laron problems, including variational exact diagonalization
[16-18], limited phonon basis exact diagonalization [19],
matrix-produce-state techniques [20,21], momentum average
techniques [22,23], and Monte Carlo methods [24-29] .

One of the reasons the electron-phonon polaron problem
keeps attracting a lot of attention is the search for the bipo-
laron mechanism of high-temperature superconductivity when
T. is determined by the Bose condensation of preformed
electron pairs. However, reaching large values of 7, for bipo-
larons in models with strong density-displacement coupling is
problematic because of exponentially large effective masses
[30-32]. To see why, consider the Holstein model [5] on the

2469-9950/2021/104(3)/035143(9)

035143-1

simple cubic lattice when
H :He+th+Hintv

H,=—t Y (cje;+Hc),

<ij>
Hyy = wpn »_ (bb; +1/2), (1)
Hip = gz cleX;, Xi=b;+b], @)

with the frequency of the local phonon mode w,, much
smaller than the particle bandwidth W = 12¢. Here, b, (c;) are
the optical phonon (electron) annihilation operators on site i,
t is the hopping amplitude between the nearest neighbor sites
(we use it as the unit of energy), and g is the strength of the
electron-phonon interaction (EPI) of the density-displacement
type. On the one hand, by treating EPI perturbatively, one
obtains light polarons with slightly renormalized band bottom
Eg ~ —W/2 — cg?/W, where c is a numerical coefficient of
the order of unity. On the other hand, a localized electron
gains interaction energy Ej,. = —g*/wph, and the overlap in-
tegral between the phonon states adjusted to different electron
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positions is given by o(g) = exp[—(g/a)ph)z]. At the single
polaron level, these considerations imply that at g~ g; =
VopnW/2 < W the light polaron state is replaced with the
heavy one characterized by exponentially small effective hop-
ping t,(g1) = te~ /2@ or exponentially large effective mass
m* = 1/2a’t, where a is the lattice constant chosen to be the
unit of length, see Ref. [32]. The self-trapping crossover—
from light to heavy polaron—is sharp and takes place when
the light polaron state is still in the perturbative regime, mak-
ing the entire argument quantitatively accurate.

When these considerations are generalized to the tightly
bound bipolaron state that gains interaction energy E, =
—4g /wpn, one finds that the transition to the heavy bipo-
laron state takes place at even weaker coupling, g ~ g, =
VW /2 < g1, but the estimate for the effective hopping
of bipolarons barely changes, #,(g;) = t}?(gz)/ (g% [wph) =
(1/3)te"/2@m (in this regime, bipolarons move by first break-
ing the pair, see Ref. [31]). Once bipolarons are formed, their
effective mass keeps increasing exponentially with g>. Since
T, is inverse proportional to m*, the conventional bipolaron
mechanism is not viable. Repulsive Coulomb interactions
push the value of g, further upwards.

Remarkably, the situation radically changes when the
dominant EPI originates from the displacement-modulated
hopping, or Peierls/Su-Schrieffer-Heeger (PSSH) coupling
[33-36]:

mt—gz CC+HC ( <l]>—

<lj>

<”>) (model A). (3)

Here, Xf"j> = bfij T+ (bfij ") is the dimensionless dis-
placement of the optical mode vibrating along the < ij >
bond, i.e., we now have d bosonic modes on each site in d
dimensions. In d = 1, both the polaron and bipolaron states
were found [28,37] to remain relatively light even in the strong
coupling regime because electrons can gain interaction energy
only by moving between the lattice sites. Following existing
convention, we define the dimensionless coupling constant as

I wph

with strong coupling regime corresponding to A 2 1. This
potentially opens the door for the bipolaron mechanism of
high-temperature superconductivity [37]. PSSH bipolarons
are also supposed to be less sensitive to local repulsive in-
teractions of the Hubbard type.

However, the results reported in Refs. [28,37] were limited
to the one-dimensional chain, and bipolarons were studied
only in the antiadiabatic regime wy, = 3t ~ W, when the
phonon degrees of freedom should be rather considered as
“fast” than “slow” with respect to the electron motion. Thus,
before the discussion of (and search for) the bipolaron mecha-
nism of high-temperature superconductivity can be projected
on realistic materials, one needs to understand (i) to what
extent the intriguing results for PSSH polarons (including
the change of the ground state momentum) survive in higher
dimensions, (ii) whether the picture holds in the most relevant
adiabatic regime wy, < W, and (iii) how sensitive it is to
model variations.

Indeed, an alternative way to model the displacement-
modulated interaction is by placing optical phonon degrees
of freedom on lattice bonds [38]

Hy =g Y (cle;+He)Xoj» (model B),

<ij>
X<1]> - b<1]> + b<lj> (5)

Despite close similarities, including severe sign problem in
the momentum representation, models A and B have different
microscopic structure, and thus may radically deviate from
each other at strong coupling.

In this work, we employ the diagrammatic Monte Carlo
(DiagMC) method to study ground-state properties of two-
dimensional PSSH polarons in models A and B, in both
adiabatic and antiadiabatic regimes. The DiagMC technique
for polarons is well established [24,26-29] and its advantage
over the path integral representation for PSSH polarons with
phonon residing on lattice sites comes from much better han-
dling of sign-alternating contributions in momentum space.

Having light polarons in the strong coupling regime is
crucial for the bipolaron mechanism of high-temperature su-
perconductivity [37]. With this context in mind, the central
quantity of our interest is the effective mass, which we ex-
tract from the energy dispersion (obtained from the polaron
Green’s function). Our main result is that two-dimensional
PSSH polarons, regardless of the model, have relatively light
effective masses at strong coupling even in the adiabatic
regime wyp/W < 1. We did not find evidence for exponential
growth of m* up to the largest coupling constant we were able
to simulate reliably, in sharp contrast with properties of the
Holstein polarons.

It turns out that the two PSSH models, despite similarities
in the type of EPI, have radically different properties in the
ground state at strong coupling. In model A, in both adiabatic
and intermediate regimes, the momentum of the ground state
experiences a continuous transition from zero to a finite value
as a function of coupling strength. The transition is driven
by quadratic instability of the dispersion function, implying
that effective mass diverges at the critical point, and then
decreases in an anisotropic fashion with increasing coupling.
An alternative scenario of a transition to a finite-momentum
ground state is the scenario of competing sectors, when the
energy at a certain finite momentum drops below the energy
of the zero-momentum state. Our data does not support the
competing sectors scenario.

Unexpectedly, for model B, the momentum of the ground
state always stays at zero and the effective mass increases
monotonously with coupling. The increase is far from expo-
nential and tends to level off at strong interaction, resulting in
relatively light polarons.

The rest of the paper is organized as follows. In Sec. II,
we reformulate our models in momentum representation and
describe the configuration space of Feynman diagrams sim-
ulated by the DiagMC method. In Sec. III, we introduce the
protocol of the Green’s function data analysis that allows us
to extract polaron energies and Z factors for various momenta.
In Sec. IV, we render the theory of anisotropic effective mass
with emphasis on the case of quadratic instability in the Dyj-
symmetric system and the corresponding fitting ansatzes. In
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FIG. 1. Diagrammatic expansion for the polaron Green’s func-
tion. Straight (wavy) lines represent bare particle (phonon) propaga-
tors Gy (Dy), and dots stand for interaction vertexes (see text).

Sec. V, we present results for the ground-state properties and
discuss how they change with the model and adiabatic regime.
We conclude and discuss perspectives in Sec. VI.

II. DIAGRAMMATIC MONTE CARLO SETUP

In momentum representation, the noninteracting system is
characterized by the tight-binding dispersion relation

ex = —2t[cos(kca) + cos(kya)]

with the bandwidth, W = 8¢, and effective mass at zero mo-
mentum, my = 1/ 2ta?, for the particle, and two dispersionless
optical modes wq q = wpy for lattice vibrations. The corre-
sponding adiabatic parameter is then defined by y = wp,/8t.
We consider ¢ as the unit of energy.

The interaction term for both PSSH models can be written
as

Hy =V~ 12 Z [Mo(k, Q) ¢ _yci bl g +Hel  (6)
k,q.o

Here, V is the number of lattice sites, « = 1, 2 labels vi-
brational modes responsible for modulation of the hopping
amplitude along bonds in directions % and J, respectively. The
key difference between the PSSH and Holstein models is that
in the former the interaction amplitude, M, (k, q), depends
explicitly on the incoming electron momentum. In Holstein
and Frohlich models, this dependence is absent, leading to
the sign-free diagrammatic expansion because the product of
amplitudes corresponding to the creation and annihilation of
the phonon excitation is trivially positive: M,(q)M}(q) =
|M,(q)|?. This is no longer the case for PSSH models. Here
the product M, (k,, q) M} (k,, + q, q) is sign-alternating (for
higher order diagrams; see Fig. 1) as is easily seen from
explicit expressions

M, (k, q) = 2ig[sin(ky, — go) — sin(ky)] (model A), (7)

M, (K, q) = 2gcos(ky — qy/2) (model B). ®)

As a result, the Monte Carlo simulation of the diagrammatic
expansion in the momentum representation suffers from the
sign problem, which, however, is not as severe as in the
path-integral representation for model A because the product
of vertex functions groups together 16 sign-alternating con-
tributions. The other advantage is that size effects are absent
altogether.

The diagrammatic expansion for the particle Green’s func-
tion is illustrated in Fig. 1. Each contribution is a product of
functions associated with the graph elements: straight lines
represent bare particle Green’s functions,

Go(ky, Ty — 75—1) = exp{—[e(Kky) — ul(zy — T—1)},

wavy lines represent bare phonon propagators,

Do(a, q¢, T — T5) = expl—wpn (T — T5)1,

and dots stand for the interaction vertexes: amplitudes
M, (k, q), or their complex conjugates. The configuration
space sampled by the DiagMC method includes the polaron
momentum Kk, the graph duration in imaginary time t, the
diagram order n (number of phonon lines), indexes ¢y, ..., o,
and momenta qy, ..., q, of the phonon lines (particle mo-
menta are then fixed by the conservation laws), and the set
of imaginary time points 7y, ..., Ty, for interaction vertexes.
The rest of the technique—except for data processing that
needs to be modified for the sign-alternating expansion and
is described next—is standard and closely follows detailed
descriptions provided in Refs. [24,26].

III. GREEN’S FUNCTION DATA ANALYSIS

The diagrammatic expansion for G(k, ) for lattice po-
larons converges for any values of momentum and imaginary
time because the factorial number of different diagram topolo-
gies, (2n — 1)!!, is well overcompensated by the integration
measure of time-ordered interaction vertexes, o t2"/(2n)!
(after momentum integration all functions remain nonsingular
on the 7 axis). For sign-positive expansions, this observation
implies that highly accurate data for G(t) can be obtained
for long values of T when projection to the ground state
properties is perfect for all practical purposes. The average
expansion order for G(7) does increase linearly with 7, but the
computational cost of sampling the corresponding contribu-
tions with small error-bars is very mild due to self-averaging
effects (multiple repeated instances of the proper self-energy
insertions).

The situation radically changes for sign-alternating series
because now Monte Carlo sampling comes with much larger
error bars that grow exponentially with the diagram order.
Thus, for a given simulation time, precise data can be obtained
only up to some limited diagram order (in practice itis n < 50
in the strong coupling regime), and as a consequence, only
up to some limited imaginary time ty,. This situation is
illustrated in Fig. 2 for model A in the adiabatic regime y =
1/16. The coupling strength was chosen to be slightly larger
than the critical value for transition to the ground state with
finite momentum (see Sec. VA), A = 2.074 > A, =~ 2.01. For
relatively short imaginary time t = 3.5 (still larger than a)[;ql),
the exponential convergence is evident, and extrapolation to
the infinite diagram order limit by fitting the data for n > 13
to the logistic function,

y(x) = (x =1/n),

a
1 4 be—¢/*

results in an accurate answer G(k, T = 3.5) = 0.4209(5) for
k = (0.157, 0). For the same parameter set at T = 6.23, the
Green’s function convergence is achieved with visibly larger
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FIG. 2. Green’s function dependence on the inverse expansion
order for model A in the adiabatic regime y = wyn/W = 1/16 with
A =2.074, u = —4.88, and k = (0.157, 0). Simulation data in (a),
(b), and (c) show how extrapolation of the infinite diagram-order
limit is done for t = 3.5 (a) and t = 6.23 (b), but becomes problem-
atic at longer times, t = 6.6 (c), due to large sign-related statistical
errors. The black dotted line is the fit to the logistic function.

statistical error bars to which one has to add a comparable
extrapolation error, G(k, T = 6.23) = 0.367(2); see Fig. 2(b).
Finally, at T = 6.6, see Fig. 2(c), the statistical errors become
too large before the convergence is reached, at which point
we have established the largest simulation time suitable for
further analysis (7.x = 6.5 for the parameter set discussed).

To extract the polaron energy, E(k), and Z(k) factor at
momentum k from the Green’s function dependence on imag-
inary time, see Fig. 3, we perform the following analysis. In
the asymptotic limit T — oo, this dependence is governed
by the ground state in the corresponding momentum sector,
as follows from the spectral Lehman representation. For the
stable (nondecaying) quasiparticle state, we have

Gk, T — 00) = Z(k)e E®—nT )

In the absence of additional stable quasiparticle states, the
spectral density is zero up to the threshold, Ey, = E(K) + wph,
for emission of the optical phonon. Thus the leading finite-t
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FIG. 3. Extrapolated Green’s function dependence on imagi-
nary time for model A in the adiabatic regime y = 1/16 when
A =2.074, u = —4.88, and k = (0.157, 0). The black dotted line
is a fit to the exponential dependence with leading correction:
f(t) = 0.34513%90%617[1 4 1.19966¢~%57], see Eq. (10). Each point
is based on the infinite diagram-order extrapolation shown in Fig. 2.
Error bars are shown and are smaller than the symbol size.

correction to Eq. (9) starts with and additional exponential
factor e~“". Since our data for sign-alternating expansions
cannot be extended to arbitrary long imaginary times, con-
trary to the situation for Frohlich and Holstein polarons, the
corresponding correction is included in fitting the data at large
enough times:

Gk, 7> wy') = ZK)e FOHT 1 4 Cemm™]. (10)

A typical example is presented in Fig. 3. The quality of the fit
(dotted line) ensures that there are no additional stable states
with measurable Z factors at energies E < Ey,. The final result
for k = (0.157, 0) extracted from this set of data is E(k) =
—4.883(2), and Z(k) = 0.345(3).

Our attempts to reduce the severity of the sign-related prob-
lem by grouping diagrams, sampling the proper self-energy
instead of the Green’s function and employing the skeleton
formulation with self-consistent feedback in the form of the
Dyson equation, produced data of the same quality as sam-
pling the bare Greeen’s function expansion.

IV. PRINCIPAL EFFECTIVE MASSES

A. General relations

At the point of extremum (a minimum, a maximum, or a
saddle point) k = ko, the energy E (k) can be expanded as

1
Ek) = E(ko) + 5 ;Qi,s,-s,- + o), (1)
where 5 = k — K¢ (in components: & = k; — ky;) and

9’E
dk;dk;

Qi =0ji = (12)

k=K
The inverse principal values of the real symmetric tensor Q;;
are called principal effective masses, mi"), v=1,2,...,d.
The corresponding unit eigenvectors /") define (the directions
of) the principal axes of the tensor Q; ;, implying the following
representation:

d ), 0)
n’n.
Qij = — (13)
J ; miv)
With this parametrization, Eq. (11) becomes
d -
(€ - ﬁ(v)]Z 5
Ek) = E(ko) + Y o Hod) a4
v=1 *

In a typical situation like ours, the principal axes, A",
are known a priori by the symmetry of the problem, and the
principal effective masses are readily found by one of the two
simple procedures based on Eq. (14). The first procedure is
a direct numeric evaluation of l/mfk") from the second-order
partial derivative of E (k) along the principal axis n'") taken
at point ko, which is also found numerically. The second
procedure is ﬁttin% the data for E(K) to the ansatz (14) with
ko, E (kop), and mi” treated as free fitting parameters.

On approach to the point of quadratic instability, the tensor
Q;; vanishes and ansatz (14) becomes progressively poor. The
procedure of finding k, also becomes problematic in view
of the dispersion E(k) flattening at small momenta. In this
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situation, we fit E(k) with a more complex ansatz properly
capturing the quadratic instability, compute Q;; analytically,
and obtain the principal effective masses from the formula:

1
oo = m G as)

B. Implications of D4, symmetry

Consistent with the D4, symmetry of the problem, we
observe numerically that dispersion minima always satisfy the
condition

lkoy| = [Kox|. (16)

Reflection about the axis k, = k, (ork, = —k,) preserves the
position of the point ky. The Dy, symmetry then requires that
the principal axes be preserved as well, implying that one can
always choose them as

Al — (L L) a?® = <L _L> (17)
V2 V2) V2T V2)
for non-negative components of kg. When the off-diagonal
element Q,, is zero, the spectrum is degenerate and Eq. (17)
remains one of the valid choices. [Note that Egs. (16) and (17)
hold true also for kg = 0.] In accordance with (15), we then
have

1 1
m = Qxx + Qxy s m = Qxx - Qxy- (18)
* *

We took into account that Qy, = Qy, by the Dy, symmetry.
At kg = 0, the Dy, symmetry enforces

On =0 (at kg =0), 19)
leading to the isotropic effective mass:
1 1
O] = e} = O (at ko =0). (20)

C. Quadratic instability in the D,,-symmetric case

The quadratic instability of the ko = O energy minimum
in the Dy4,-symmetric system is captured by the following
polynomial form:

E(k) = Eg+A(k; + k) + B(k{ +&)) + Ckik; . (21)

The critical point is the point where the coefficient A nul-
lifies, changing its sign from positive (stable minimum at
ko = 0) to negative (maximum at ky = 0). On approach to
the critical point, the description of transition—evolution of
the energy minima and effective masses—in terms of Eq. (21)
becomes asymptotically exact because it is nothing but the
Taylor expansion of E(k) in powers of k, and k, up to all
the leading/relevant terms. An important assumption (verified
numerically) is that the quartic part is stable. Rewriting the
quartic part as
B(k! +KY) + CI2K = B(K? — &)’ + (C + 2B)KK,

x Ny

we see that the necessary and sufficient condition for the
quartic form to be stable is:

B>0 and C> —2B. (22)

By rewriting the quartic part as
B(k! + k) + CIZK2 = B(kZ +K2)° + (C — 2B)K2K?,

we see that the sign of (C — 2B) controls the positions of
the energy minima. For C < 2B, the minima are along the
diagonal directions

|k0x| = |k0y|
Otherwise they are along the X and ¥ axes

ko - lkoy] = 0 (C > 2B). (24)

(C < 2B). (23)

At C = 2B, we would need to take into account higher order
terms in the Taylor expansion. Our numerics is consistent with
the case (23).

Solving for the minima (23) and then using (18) to calcu-
late the principal masses, we get

1 1
k=0, —p5=-—G=24 A=0), (25)

ni, ni,

|A]
=k =3 4SO @9

1 m 2B—-C

=4|A|], — = —— (A <0). 27
m Al m® 2B+ C As0 @0

D. Trigonometric ansatz

In terms of asymptotically exact semianalytic description
of the transition, an interesting alternative to the polynomial
ansatz (21) is the trigonometric ansatz

E(K) = a+ b(cosk, + cosky)
+ c(cos 2k, + cos 2ky) + d cos k, cos ky, (28)

where the coefficients a, b, c, d are obtained by fitting expres-
sion (28) to the numeric data for E (k) at appropriately small
values of k in the vicinity of the transition. Qualitatively, the
forms (21) and (28) are equivalent, since they have exactly
the same—minimum necessary—number of independent pa-
rameters. At the quantitative level, the ansatz (28) may work
better, because, as opposed to (21), it features proper period-
icity in the reciprocal space, meaning that on departure from
the region of small k’s its higher order in k terms may better
capture the actual dispersion relation.

Here we present the expressions for the points of minima
and the principal effective masses in terms of the coefficients
a, b, c,d. As before, we confine ourselves to the relevant to
our simulations case when the points of energy minima obey
Eq. (16) and the relations (17)—-(20) apply.

We have
k=0 at 4c+b+d <0, 29)
1 1
m=F=|4c+b+d| (ko = 0), 30)
* *
b
COSkoxz—m at 4C+b+d>0, (31)
1 (4c +d)?* — b?
— = — (k 0), 32
ey g e #0 (32)
(1)
my dc —d
— = —— (kK 0). 33
5= acra ®FO (33)
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FIG. 4. Ground state energy as a function of coupling strength A
for model A in the adiabatic, y = 1/16, (squares, upper curve) and
intermediate, y = 3/8, (circles, lower curve) regimes.

The critical point corresponds to

dc+b+d = 0. (34)

V. RESULTS AND DISCUSSION
A. Model A: vibrational modes residing on lattice sites

In model A, particle hopping is modulated by the rela-
tive displacement of atoms located at lattice sites. Previous
work [28] found that in 1D the ground state is located at
zero momentum only when the coupling is weak enough.
Above the critical value A., the ground state shifts to finite
values of k. As the coupling constant is increased further, the
quasiparticle residue quickly decays to zero, but the effective
mass goes through a maximum (divergence) and decreases
back to relatively small values. Our simulations confirm that
at the qualitative level this picture holds in 2D, and light
polarons exist at strong coupling in 2D as well with one im-
portant distinction: in this regime, the effective mass becomes
anisotropic.

In Fig. 4, we show the ground state energy as a function
of A for two values of the adiabatic ratio y = wpn/W. The
upper and lower curves correspondtoy = 1/16and y = 3/8,
respectively. As we enter the strong coupling regime, both
curves suggest that Egs(A) has a kink at some critical value:
Ao & 2 for adiabatic and A, &~ 1 for intermediate regimes.
This behavior is typical for “first-order” transitions but—as
we argue below—in the present context, it is more accurately
described by the quadratic instability of the energy dispersion,
implying a continuous transition.

The panels (a) and (b) in Figs. 5 and 6 display the polaron
energy dispersion, E (k)—for two characteristic directions in
the momentum space—at various coupling parameters. At
weak coupling, the minimum at k = 0 is unique. On approach
to the critical value A = A., the function E (k) flattens out,
leading to heavy polaron states, and then develops a minimum
at a finite momentum k = kj, which lies on the diagonal
ky = k. The magnitude of the new ground state momentum kg

E = E(k,,0) E = E(ky, ky = kz)
E o E -
a . b
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FIG. 5. Polaron properties in the adiabatic regime y = 1/16 for
model A at different couplings. [(a) and (b)] Energy dispersion up
to the decay threshold. Top to bottom: A = 0.16, 0.36, 0.64, 1.0,
1.44,1.742, 1.96, 2.074, 2.31, and 2.56. (¢) Ground state momentum
kox. The semianalytic solid line is produced by jointly fitting the
dispersion functions as explained in the text. (d) Zgs factor. The
vertical dashed line indicates the critical coupling A, = 2.01(1).

increases with coupling, and the quasiparticle residue quickly
drops to very small values; see panels (c) and (d) in Figs. 5 and
6. Due to momentum conservation, the different momentum
states cannot be mixed, and the transition is sharp, even if the
dispersion relation changes continuously.
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FIG. 6. Polaron properties in the intermediate regime y = 3/8
for model A at different couplings. [(a) and (b)] Energy dispersion
up to the decay threshold. Top to bottom: A = 0.167, 0.327, 0.5,
0.667, 1.025, 1.127, 1.307, 1.5, 1.815, and 2.16. (c) Ground state
momentum ko,. The semianalytic solid line is produced by jointly
fitting the dispersion functions as explained in the text. (d) Zgs factor.
The vertical dashed line indicates the critical coupling A, = 0.94(2).
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With our numeric resolution, it is hard to unquestion-
ably distinguish—by the brute force—between a continuous
and a weak discontinuous transitions. Both scenarios are al-
lowed because at small momenta the dispersion relation can
be expanded only in even powers of k, and k,, as dictated
by lattice symmetries. Since we do not find evidence for a
metastable minimum of E (k) emerging at A < A, the transi-
tion most likely goes through the continuous scenario when
the quadratic form becomes nonpositive with stabilization
provided by quartic terms.

The crucial piece of evidence strongly supporting this
scenario is provided by successfully fitting numeric data for
E (k) in the vicinity of the critical point by the polynomial
and trigonometric ansatzes, Egs. (21) and (28), describing the
transition driven by quadratic instability (in a D4j,-symmetric
system). In the vicinity of the critical point, we used the most
conservative fitting protocol requiring that the free parame-
ters in Egs. (21) and (28) are smooth structureless functions
of A across the transition point. Specifically, we employed
parabolic (and even linear in some cases) ansatzes for these
functions with the coefficients of corresponding polynomials
being extracted from jointly fitting dispersion relations E (k)
for a set of A’s in the vicinity of A.. We found all our data
consistent with such fitting. Along with strongly supporting
the continuous scenario, our protocol naturally produces semi-
analytic results for the evolution of ky and principal masses
across the critical point; see solid lines in panels (c) in Figs. 5
and 6 and in Fig. 7. In particular, note that semianalytic curves
for ko, are perfectly consistent with the evolution of kg, at
A > X, found from the energy minimuma at a given value of
A

In the adiabatic regime, y = 1/16, we used ansatz (21). By
the above-described joint fitting protocol, the coefficients E,
A, B, and C were found to obey

y =1/16:  Ey= —0.42(3)A> 4 0.86(4)x — 4.89(10),
(35)
A =[2.01(1) — A][0.86(4) — 0.27(2)A], (36)
B =0.03(1)x + 0.01(1), (37)
C = —0.40(5)22 4 1.91(5)» — 2.28(2). (38)

In the intermediate regime, y = 3/8, we also employed the
trigonometric ansatz (28). The joint fitting protocol resulted
in

y=3/8: a=-76Q2)\*+11.6(3)r —7.02), (39)
b =5.85(6)A> — 10.64(8)A + 3.44(5), (40)
¢ = —1.67(1A* + 3.34(10)x — 1.28(10), @1
d = 0.67(3)x — 0.78(2). 42)

To extract the principal mass(es) from E(k) at a given
value of A, we used the following procedure. At any A < A,
we fitted the low-k part of E(k) with Egs. (21) and/or (28)
and then used the relations (25), (27) and/or (30), (32)—(33),
respectively. Equations (21) and/or (28) work for any A < A,

0.0 0.5 1.0)\1.5 20 25

(b) 1.2
1.0°
s 0.8 =, i
=06 i 4
S04 % 5
w 7
0.2’ %\R"‘F
0.0 ‘ f
0.0 05 10
A

1.5 2.0

FIG. 7. Principal effective masses as functions of coupling
strength A for model A in the adiabatic, y = 1/16 (a), and intermedi-
ate, y = 3/8 (b), regimes. Open symbols are used for the data points
obtained by fitting with the ansatz (28). The data shown with closed
symbols are extracted by fitting with the generic finite-k, ansatz (14),
with the principal axes (17). The blue up-triangles stand for 1/m{",
the inverse principal effective mass along the diagonal; the orange
down-triangles represent 1/m?, the inverse principal effective mass
perpendicular to the diagonal. The semianalytic solid lines are pro-
duced by jointly fitting the dispersion functions as explained in the
text.

since they properly capture the Taylor expansion of E (k) at
k = 0 up to the quartic terms inclusively. At A > A, the range
of applicability of such a protocol is finite, but is still no-
ticeably larger that the range of applicability of semianalytic
relations (35)—(38) and/or (39)—(42); see Fig. 7. When fitting
with ansatzes (21) and/or (28) becomes poor, we fit with the
generic finite-k( ansatz (14) with the principal axes (17). The
data produced with all the three protocols demonstrate perfect
consistency; see Fig. 7.

The most significant quantitative difference between the
adiabatic and intermediate regimes is the values of the ef-
fective mass at strong coupling—for y = 3/8 the heaviest
effective mass is within 20% of the bare mass value.

B. Model B: Vibrational modes residing on lattice bonds

In model B, particle hopping is modulated by the displace-
ment of atoms located at lattice bonds. We find that despite
close similarities between models A and B in terms of physics
involved, fine details of the coupling vertex matter, both qual-
itatively and quantitatively.
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~10- ]

FIG. 8. Ground state energy as a function of coupling strength A
for model B in the adiabatic, y = 1/16 (squares, upper curve), and
intermediate y = 3/8 (circles, lower curve), regimes.

The quadratic-instability transition is absent in model B
up to the largest coupling constant simulated, and the ground
state is always located at zero momentum. Since properties
of the sign-alternating expansion are more “forgiving” in this
case, we were able to obtain data for significantly larger
ground state energy shifts, see Fig. 8. The Egs(1) curves
indicate that the ground state evolves smoothly with coupling.
The energy dispersion data presented in panels (a) and (c¢) in
Fig. 9 unambiguously confirm this conclusion by demonstrat-
ing that the minimum at k = 0 is unique and its properties do
not undergo rapid changes. This is further evidenced by the
Z-factor curves, see panels (b) and (d) in Fig. 9.

In the absence of quadratic instability, the effective mass
renormalization in model B remains modest all the way into
the strong coupling regime, and, similarly to model A, appears
to level off as A is increased, see Fig. 10, in both adiabatic
and intermediate regimes. In Holstein model, for y = 1/16
the value of my/m* would be exponentially suppressed to near
zero for the same values of Egs.

Different properties of PSSH polarons in models A and
B can be explained for large wpy/t as follows. In model A,
virtual excitation of the local phonon mode leads to the effec-
tive next-nearest-neighbor (n.n.n) hopping amplitude with the
negative sign [39]. Indeed, consider a double-hopping event
from site i to site i + 1 with simultaneous excitation of the
atomic vibration on site i 4+ 1 in the direction of hopping, let
it be X, and then to site i + 2 (in the same direction) with
de-excitation of the same vibrational mode. (There are no
nonzero matrix elements to achieve the same goal for diago-
nal n.n.n. double-hopping amplitudes.) Since matrix elements
+g for this process have opposite signs, the second-order
result for the effective transition amplitude is negative, f, &
& Jwpnh < 0. [Recall that Hamiltonian matrix elements and
hopping amplitudes have opposite sign, see Eq. (43)]. The
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FIG. 9. Polaron properties in the adiabatic, y = 1/16, (top) and
intermediate, y = 3/8 (bottom), regimes for model B. (a) Energy
dispersion up to the decay threshold. Top to bottom: A = 0.16, 0.36,
0.64, 1.0, 1.44, 1.96, 2.56, 3.24, 4.0, and 4.84. (b) Ground state
Zgs factor. (c) Energy dispersion up to the decay threshold. Top
to bottom: A = 0.167, 0.427, 0.667, 1.307, 2.16, 2.94, 3.84, 4.507,
5.227, 6.0, and 6.827. (d) Ground state Zgs factor.

dispersion relation based exclusively on ¢ and #, amplitudes
E(k) — Ey = — 2t[cos(k.a) + cos(k,a) — 2]

— 2n[cos(2k.a) + cos(2kya) — 2], 43)

has four symmetry-related minima with |ko,| = |koy|) fort, <
—t /4. In Eq. (43) the new minima “emerge” from k = 0.
This argument does not work for model B, where de-
excitation of the vibrational mode after the first hopping event
can only happen if the particle hops back to the same site;

105

FIG. 10. Effective mass as a function of coupling strength for
model B in the adiabatic, y = 1/16, (green squares) and intermedi-
ate, y = 3/8, (orange circles) regimes.
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i.e., no large longer ranged negative hopping amplitudes are
generated.

VI. CONCLUSION

We investigated properties of polarons for two different
two-dimensional PSSH Hamiltonians modeling the electron-
phonon interaction originating predominantly from hopping
modulation by lattice vibrations. Despite qualitative differ-
ences in some ground state properties such as finite versus
zero momentum, the two models share an important feature:
even in the adiabatic regime of small (compared to band-
width) phonon frequencies, the anisotropic effective mass
renormalization is rather modest at strong coupling, in sharp
contrast with exponentially large effective mass observed in
the Holstein model. Light PSSH polarons, and subsequently
bipolarons (so far they were systematically studied only in one
dimension [37]), offer a new perspective on the question of
bipolaron mechanism of high-temperature superconductivity
by eliminating the most serious obstacle—exponentially large
bipolaron effective masses when they become energetically
stable. The other advantage comes from fundamentally non-
local structure of polaronic states in PSSH models, where
electrons gain energy by hopping between the lattice site. It

is thus expected that PSSH bipolarons will be less sensitive to
the repulsive local interelectron interactions. The correspond-
ing analysis is an important direction for future work.

Since the superconducting transition temperature for bipo-
larons increases with their density one might assume that it is
highest at half-filling. This is not necessarily the case because
of competing insulating crystalline states that emerge at com-
mensurate filling factors [38]. The highest 7. may correspond
to a doped system.

Note added. After submission, Ref. [40] was brought to our
attention by its authors. It focuses on the bond PSSH model
B in one dimension and also finds that for this model the
effective mass does not increase exponentially with coupling
for a similar coupling strength.
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