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1. Introduction

This article deals with modelling and analysis of lyotropic chromonic liquid crystals, whose
phases are found in biological systems, such as condensed DNA in vitro and in the spooling
arrangements of double-stranded (ds)DNA in bacteriophage viruses, known to attack bacteria.
We study equilibrium configurations of (ds)DNA in capsid domains, formulated as free boundary
problems of the proposed packing energy. The very large bending resistance of the (ds)DNA
inside the capsid allows for a well ordered, spool-like arrangement near the capsid boundary,
subsiding into a disordered, isotropic core towards the centre of the capsid, whose interface with
the former organized part is unknown. In our analysis, we treat it as a free boundary. We apply
methods of calculus of variations to show existence of a unique energy minimizer corresponding
to the concentric, azimuthal, spool-like configuration. We also address toroidal structures made
by DNA in free, in vitro solutions as well as those found in chromonic samples of dyes and food
additive compounds, whose sizes are about 10° to 10° times larger than their DNA analogues.

In addition to nucleotide, proteins, DNA and RNA, materials such as dyes, food additives
(e.g. the dye Sunset Yellow), and pharmaceutical products also form chromonic structures with
sizes about 10° times larger than those of their biological counterparts [1,2]. The chromonic
denomination of liquid crystals emerges directly from the discovery that clustered DNA, in free
solution and in viva, forms liquid crystal phases [3-5].

Lyotropic chromonic liquid crystals (LCLCs) differ significantly from the typical liquid crystals
found in displays, which have long, rod-like molecules and change phase at well-known
temperature thresholds. On the other hand, LCLCs consist of water-soluble, plank-like molecules
with rigid cores and ionic groups at the periphery that can reversibly assemble into columns by
stacking face to face; the length of these columnar aggregates varies strongly with temperature,
concentration, and ionic content [6]. As the concentration of these molecules increases, the
columns tend to elongate and align parallel to each other, forming a columnar nematic phase.
As the concentration further increases, the more organized hexagonal columnar phase appears
with the long axes of the columns forming a two-dimensional hexagonal lattice (figure 1).
With the addition of condensing agents, such as (PEG) Polyethylene glycol and spermidine, the
columns rearrange into toroidal aggregates. Double-stranded DNA in free solution also forms
toroidal aggregates in the presence of condensing agents, but with clusters of sizes five orders of
magnitude smaller than the former.

Another important natural setting in which the hexagonal columnar structure is exhibited is
in bacteriophage viruses, where the (ds)DNA is tightly packed within. These viruses consist of a
protein shell, capsid, and a tail with protein receptors or a connector structure used in infecting
bacteria (figure 2). The life cycle of bacteriophages begins when DNA is spooled into an early
form of capsid using a molecular motor while still in a bacterial host cell. The fully formed
bacteriophages then destroy the host and leave to seek a live bacterium in which to replicate.
Once the receptors on the tail detect a viable host, a reaction occurs that causes the DNA to be
injected into the host, using the built up pressure within to release it. The bacteriophages take
over the DNA replication mechanism of the host and copy their own DNA, which occurs rapidly
since the viruses have much smaller genomes than the mechanism is made to handle, and the
process begins again.

Bacteriophages are unique in that, with few exceptions, only their genome enters the host
cell; in almost all other viruses, the entire virus structure enters the cell cytoplasm [11]. This
suggests that the DNA within the bacteriophage capsid must be optimally packed for ejection,
with pressures strong enough to inject the genome into the host cell. Typical bacteriophages
measure about 50 nm in diameter and sustain internal pressures of around 30 to 60 atmospheres.
This build up of pressure is caused by the confinement imposed on the DNA by the capsid, the
bending rigidity of the DNA filament, and the electrostatic self-repulsion between the highly
negatively charged DNA segments. The arrangement of the DNA inside the capsid encompasses
a compactly packed, ordered region starting at the capsid wall, with a disordered, isotropic
core formed to relieve the high bending energy due to the large persistence length of the DNA,
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Figure 1. Chromonic molecule of disodium cromoglycate, Sunset Yellow and mesophases, it forms in water through
aggregation [2] (a). Experimental image of a DNA toroidal condensate from [7] (). (Online version in colour.)
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Figure 2. Density profile of the T5 virus [8] (a). Cryo-EM reconstruction of the T4 virus [9]. The DNA segments in the spooling
configuration are perpendicular to the image, along the direction of the vector n, showing the orthonormal set (n, m, p) (b). The
image on (c) shows the connector structure of the €15 virus [10]. The connector is the structure that includes the core proteins,
portal, fibre and adaptor. (Online version in colour.)

comparable to the capsid size. The proposed model, with energy contributions assigned to both
the ordered and disordered regions, follows the point of view that the phase transition solid to
fluid, as named by some authors, is an important functional feature of the bacteriophages [12],
and especially relevant to the packing and release events.

It is predicted that technologies using phages—such as delivering genes that cause toxicity to
target cells, inhibiting bacterial processes like replication, and detecting pathogens in hospital
surfaces and food preparation—could aid or replace antibiotics in impeding highly resistant
strains of disease causing bacteria [13]. With the number of potential applications of both
naturally-occurring and synthesized bacteriophages growing every day, the ability to understand,
accurately describe, and simulate certain phenomena associated with these objects is of increasing
interest [14].

Mathematical models have been proposed to describe the packing of DNA in viruses
[5,11,15-17] with energy functionals taken from the study of DNA molecules in free solution
that do not account for possible liquid crystalline phases. Other research approaches that also
incorporate liquid crystal phases but not necessarily within an energetics perspective have been
developed [18,19], as well as works based on DNA helical arrangements [20]. In previous work,
we investigated a model of liquid crystals with variable degree of orientation that enabled a
characterization of the disordered core in terms of the nematic order parameter, and also allowing
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for the identification of defects. The main feature of the study was the setting of a finite-element
algorithm as a main tool for prediction and design [21].

The utility of a well-tuned continuum model includes the ability to accurately and
reproducibly predict features of the system, such as pressure within a capsid, equilibrium shapes
of aggregates, or the amount of disordered material coexisting with ordered material.

The energy density of a chromonic liquid crystal includes the Oseen-Frank energy of the
nematic liquid crystal phase that penalizes bending of the columns, together with an elastic
energy that accounts for distortions of the cross-sectional lattice perpendicular to the columnar
directions at each point of the domain. Chromonic configurations are described by a set of linearly
independent unit vectors, n, m and p. The nematic director n represents the average direction of
column arrays at a point, and m and p denote the lattice vectors of the local cross-section. As in
the modelling of rigid rod systems, defects correspond to points, lines, or surfaces with n =0, that
is where the order is lost, with the material becoming locally isotropic. The main difficulty with
the Oseen-Frank theory used in our work is in the modelling of two-dimensional configurations
since it assigns infinite energy to point defects in the plane. In this paper, we also ignore the
presence of defects and knots in the viral genome arrangements.

In addition to the Oseen-Frank energy that penalizes bending of the columnar axes, the elastic
energy that we adopt to model distortions of the columnar cross-sections is motivated by the form
proposed by de Gennes [22] but formulated to describe elastic materials made of filaments. Hence,
we write it in terms of gradients of the lattice vectors m and p, with the resulting expression
involving the bulk and shear moduli of the chromonic material. The total energy to describe DNA
viral packing also includes the penalty associated with the isotropic core and the surface energy
of the interface between the ordered and the disordered part of the configuration.

The analysis addresses the minimization of the packing energies subject to multiple
constraints, either in their exact or in their relaxed form. These leads to a free boundary problem
for a polyconvex energy functional. The constraints involved are of geometric type, including
those that reflect the rigidity of the material to splay and twist deformations, the hexagonal
structure of the lattice, and the conservation of mass. The elastic energy is particularly relevant to
the modelling of DNA encapsidation, due to the polymeric structure of the DNA molecule, with
persistence length of the same order of magnitude as the capsid size. This results on high bending
configurations of the well-ordered DNA region and forces a disordered core, towards the centre
of the capsid, that we take as being in the isotropic liquid crystal phase. We assume that the capsid
is an axisymmetric domain and neglect its polyhedral structure. Although some viruses present a
chiral arrangement, this analysis focuses on standard spooling configurations around the capsid
axis. In fact, it is found that among the set of admissible configurations, the planar, azimuthal,
spool-like configuration is the unique minimizer. The shape of the core depends on the physical
parameters of the model, and in particular, the bending rigidity of the DNA.

Determining the appropriate parameter ranges of the effective coefficients of the model
involves three types of data. First of all, the size of the disordered core and density graphs
revealing the ordered and disordered mass distribution in the capsid are available, for some
viruses, as (CryoEM) cryogenic electron microscopy images. The length of the genome L, the
effective DNA filament diameter d (it accounts for electrostatic repulsion), its persistence length
L, and the size of the capsid R, are also available for many viruses. In particular, these values
allow us to estimate the bending modulus K3. We also appeal to the dimensional estimates of the
compression and shear moduli of the hexagonal elastic energy, C and B, respectively, in terms of
K3 as proposed in [23]. We explore values for the isotropic modulus v and the surface tension o
using Onsager’s theory of rigid rods [24]. Finally, by finding the optimal size of the disordered
core and matching its imaging value, we complete the selection of the effective coefficients of the
model for a set of four viruses.

Among the most relevant shortcomings of the proposed model, we mention the fact that
the distance, d, between neighbouring DNA segments within the ordered region of the capsid
is not constant. In the case of toroidal domains, this has been pointed out in recent work by
Barberi et al. [25]. Such a distance is also very sensitive to changes in ionic conditions [26].

LLLOOZOC “6L€ ¥ 205 ‘Suif J1yqesyjeunofBioBuiysigndianosiedos H



Downloaded from https://royalsocietypublishing.org/ on 24 June 2021

Incorporating the Lénard-Jones potential used in the latter reference to the present model would
allow us to treat d as an additional scalar variable, coupled with the bending energy through
the constant K3, and therefore having a direct impact on the core size. Furthermore, the ability
to increase d plays a main role in genome delivery, as a mechanism fostering the solid-to-liquid
transition, relevant to a successful infection [12]. A second shortcoming is neglecting possible
defects that naturally occur in hexagonal chromonic lattices as well as ignoring the role of chirality
[27,28]. These may affect the genome’s delivery process leading to potential jamming.

This article is organized in the following way. In §2, we provide some background on LCLCs
phases and present the model to be studied. We also provide modelling examples of in vitro
DNA toroidal clustering. We first analyse limiting cases in which either the bending or surface
tension is dominant, produce examples of equilibrium shapes for each setting, and compare
them to experimental measurements. We find that the bending energy dominates in the case of
DNA clusters whereas surface tension prevails in the case of chromonic dyes [6,29]. A modified
model for DNA packed in a bacteriophage capsid is presented in §3, as well as an explanation
of prior work in this area, describing the location of the DNA filament, and accounting for
the self-repulsion of the spooled DNA. In §4, we consider a class of spheroidal disordered
cores and prescribe the tangent field n to the DNA segments. This provides an energy that is
minimized with respect to the disordered core size, and it is subsequently applied to determining
the parameters of the model. In §5, we analyse the free boundary problem with the director
field n and the graph of the boundary of the disordered core as unknowns. We show that the
Lagrangian of the energy function is polyconvex for which lower semicontinuity and existence
of minimizer of the total energy can be established. We finally show uniqueness of minimizer,
with the azimuthal, spool-like configuration being the one of the lowest energy. We estimate the
shape of the inner disordered core in the case that the bending effects dominate and show that it
is never spherical (except when the energy involves surface tension only). The paper closes with
concluding remarks in §6.

Let us conclude the introduction stating the Oseen—Frank energy of nematic liquid crystals. Let
n € §?, that is, a unit vector field. The total energy of a nematic liquid crystal occupying a domain
U C R3 is given by E(n) = J2 Wor(n, Vn) dx,

2WoEg(n, Vn) :J {K1(V . n)2 + Kpy(n -V x n)2 + Kzln x V x nf?
u

+ (Kz + Ka) (tr(Vn)* — (V - n)?) } dx, (1.1)
where the Frank elasticity constants satisfy the inequalities,

K1 >0,Ky >0, K3 >0,Kp > |Ky|,2K; = Ky + Kj. (1.2)

2. Lyotropic chromonic liquid crystals

The hexagonal columnar phase of chromonic liquid crystals can be characterized by an
orthonormal set of vectors {n, m, p}, the director n describing the average direction of alignment
of the columnar axes, and the remaining pair of lattice vectors encoding the geometry of the
orthogonal cross-section. The energy involves three main contributions, one associated with the
director n, postulated as the Oseen-Frank energy of the nematic phase, subject to constraints. A
second contribution, relevant to domains with free boundary, is the surface energy that expresses
the cohesive property of the material in the columnar phase. The third contribution penalizes
the distortion of the cross-sectional lattice points is a two-dimensional, solid-like, elastic energy
function. Let the material parameters satisfy K3, 0 > 0 and set the saddle splay constant K4 =0 in
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the Oseen—Frank energy. In a domain §2, with free boundary 952, we have

Eehr =J (K3|n XV x nf? + WHeX(Vu)) dx + o Area(d2), 2.1)
2

V.-n=0inf£2, n-Vxn=0in £, (2.3)

n-v=00nds2, (2.4)

Vol(§2) =V, (2.5)

with Vj constant and where u € span{m, p} represents the plane displacement vector. The positive
constants K3 and o denote the bending and surface tension moduli, respectively. The boundary
condition (2.4) is still assumed if the boundary is fixed, in which case the constraint (2.5) becomes
obsolete. The first and third terms, together with the constraints and ignoring WHeyx, have been
applied in the experimental studies of chromonic domains [2,7], formed by DSCG and Sunset
Yellow, where the elastic energy does not seem to be relevant due to the very weak elastic moduli
of those materials [6]. Well-known forms of WHex can be found in the works by de Gennes
and Kléman [22,30], appropriate to small displacements and bending deformations, followed by
the nonlinear elastic expressions by Oswald & Pieransky [31]. The role of WHex becomes more
prominent in applications to DNA clustering. In this work, we propose an alternate form of
WHex appropriate to materials made of (DNA) elastic filaments. Also, an alternate free energy
expression to account for the cohesiveness of the columnar phase has been used in studies of
DNA packing [32].

The role of the constraints is to express the large resistance to splay and twist deformation
of the molecules. Specifically, splay of a liquid crystal is zero whenever dislocations do not occur,
that is, the same number of filaments that enter a unit area exit that cross-section. In the case of the
hexagonal columnar phase, non-zero splay would allow for deviations from the lattice structure.
Twist is prohibited because of its incompatibility with the two-dimensional lattice order in planes
perpendicular to the director. Setting V - V x n =0 is a necessary and sufficient condition for the
envelopes of the director to be perpendicular to a family of surfaces. An approximation to the
constraint model can be achieved through relaxation. That is, to take into account the dominance
of the splay and twist constants over the bending one by requiring

K1, K2 > K. (2.6)

In §5, the relaxed form of the constraints (2.6) is used, instead of the exact requirement.
We propose a form of Whey, partially motivated by the energy of smectic liquid crystals, that
takes into account the elastic material being made of filaments. Let us then assume that

Wtex(n, m, p) :JQ [BIV(m — p)2 + CIV(m + p)} dx @7)

and

m=nxp,n-p=0,|m=1=|p/=in|, (2.8)

where the constants B > 0 and C > 0 represent shear and compressible moduli, respectively. The
expression (2.7) has been obtained from the hexagonal energy proposed by de Gennes ([22,23])
which is formulated in terms of the displacement vector u associated with deformations in the
lattice plane. Such an energy contains two terms, penalizing the shearing and compression of the
lattice. In our case, we have used the same energy but expressing u in terms of the lattice vectors,
and have taken into account the constraints in (2.8). The latter has the effect of suppressing lower
order terms in m and p (that is, non-gradient terms). We also arrived at our energy expression
starting from the energy of the smectic A, in the case that two families of orthogonal layers
(perpendicular to the lattice vectors) are present in the material, and with the DNA filament
determined by their intersections.
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We conclude this section recalling a fundamental result in the analysis of energy minimization
of nematic liquid crystals.

Theorem 2.1 ([33]). Let U € R® be an open and bounded set, with Lipschitz boundary dU. Suppose
that the Frank constants satisfy the inequalities (1.2). Let the admissible set be

A(ng) = {ne H'U, S?): trace of n = ny)

is non-empty. Then for any Lipschitz function ng : 8U —> S2, the functional E(n) = I Wor(n, V) dx
admits a minimizer in A(ng). Furthermore, if n is a minimizer of E(-), then n is analytic on U /Z for some
relatively closed subset Z of U which has one-dimensional Hausdorff measure zero.

Remark 2.2. It is important to emphasize that the inequalities (1.2) guarantee the coercivity of
E(n).

Remark 2.3. Let us consider the energy Whex in the case that p is a prescribed constant vector,
p = e;. Steps analogous to those that lead to the conclusion of theorem 2.1 also prove the existence
and partial regularity of minimizers of the energy E = fu {Wor(n, Vn) + Wiex(m, Vm)} dx, in
the admissible set Ay = {n,m € H (i, S?) : trace of n =ng, trace of m =my, subject to (2.8)}, for
a given pair of unit vector fields, mg, ng € HY\W), satisfying mg - ng =0.

(@) DNA toroidal clusters

We consider a special class of energy minimizers of the problem (2.1)-(2.5) and construct some
examples. First, we recall that a universal or general equilibrium configuration is an orientation
pattern which may occur in the absence of externally applied body forces, regardless of the form
of an admissible energy density W(n, Vn) [34]. For the Oseen-Frank energy Wor and for all
values of K;, Marris [35] found that the set of universal solutions includes vector lines arranged
in concentric circles. They are critical points of the Oseen-Frank energy (1.1) in the bulk, and, in
particular of the problem (2.1)—(2.5).

Let as consider a toroidal domain, §2, formed by revolving an elliptic disc, with semiaxes a > 0
and b > 0, and perpendicular to the xy-plane, about the z-axis. The radii R, r > 0 are as shown in
(figure 3). Let us consider the new set of toroidal coordinates (r, y,6) defined as

x=(R+rcosy)cost, y=(R+rcosy)sind, z=rsiny; 0<0,y <2x. (2.9)

We assume that the director field lines follow plane, concentric circles as n = (—sin#8, cos6,0). A
long but straightforward calculation brings the total energy (2.1) to the form

272ab b2
E=k3— "2 45 |8mare. [ J1-2 ], (2.10)
R+ VRZ — 12 ( e( a? )

subject to the constraint Vol(£2) =272abR=Vy. This constraint, along with the natural
requirement that a > b >d/2, where d is the diameter of a DNA segment, dictates the following
restrictions to be satisfied by the remaining parameters: a = V) /ZanR, d/2<b<R, b<R<
2Vo/m%d?. Here, E(k), k% :=1 — (b*/a?) is the complete elliptic integral of the second kind. Upon
using the previous relations between a,b and R, we arrive at expressing the energy (2.10) as
E = E(b, R). We summarize the results of its minimization in the following table (the unit of length
is nm): (see table 1) We find that the value /K3 = 0.05nm ™! gives the optimal values

a=1755nm, b=16.77nm and R =33.83nm,

which correspond to a torus with outer and inner radii 101.2nm and 34.1 nm, respectively. This
agrees with the dimensions of the shapes reported in [7], indicating that the bending energy
dominates over the surface one in DNA toroidal aggregates.
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A

Figure 3. Toroidal domain £2. (Online version in colour.)

Table 1. Dimensions of tori formed for different ratios of 3 /o
K5/0 a b R
K;=0,0=1 29.2520 18.4460 18.4460
0.1 28.9096 18.5516 18.5582
1.0 26.6371 19.1047 19.5584
50 22.2264 19.0459 23.5120
10.0 19.8736 18.1872 27.5370
=10= 1.4000 1.4000 5077.7112

Likewise, taking o/K3z =20 nm~!, we arrive at the optimal values
4=29.22pum, b=1845721pm and R =18.45727 pum,

with the centre hole having practically disappeared as observed in experimental reports on Sunset
Yellow chromonic liquid crystals [2]. We corroborate the trend indicating that in toroidal shapes
of the latter, the surface energy dominates over bending in (3.1). However, we caution that the
scope of domain formation in LCLCs is very complicated, with the previous finding showing
only a very partial outlook.

3. DNA encapsidation

We now develop and analyse a model of DNA encapsidation based on the energy form (2.1)
together with the constraints (2.2)—(2.4), with the appropriately modified volume relation, given
below in (3.2). We include a bulk energy penalty of the disordered core, that is now an unknown
of the proposed free boundary problem. We develop a strategy of parameter identification that
includes information from Cryo-EM imaging.

We now describe our approach to modelling the packing of DNA within bacteriophage capsids
using modelling techniques developed for liquid crystals. As mentioned in the previous section,
the proposed model assumes that packed DNA forms chromonic liquid crystal phases. This is
a natural assumption especially considering that chromonic liquid crystals are precisely named
after DNA structures. Suppose B is the axisymmetric capsid domain and 2y is the isotropic core
region, an unknown of the problem. The domain containing the ordered liquid crystal phase
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Table 2. Physical measurements of four different bacteriophages. The symbol L, denotes the persistence length of a DNA chain
of length L, effective diameter d, molar concentration ¢ in a sphere-like capsid of radius R, with a measured radius r, of the
disordered core. mg represents the linear density. T4 [36,37]; T5 [8]; T7 [38]; €15 [39].

virus L, (nm) d (nm) C L (nm) R (nm) re/Re my (Mm=2)
2137 55047.6 40.00 ) 0.550 x 10"

is defined as £2:= B\ £2¢. Then, to take into account the cross-sectional elastic energy (2.7), we
modify the form (2.1) to

Ecap :JQ K3|n x V x n|> dx + B|V(m + p)[?

CIV(m — p)[? + vVol(£2) + o Area(d£2)) (3.1)

and

Vol(£2) + Vol(£29) = Vol(B). (3.2)

(2.2)—(2.4). The positive constants v represents the isotropic moduli of the DNA, that accounts for
the energy of the disordered DNA in the inner core. Substituting the constraint (3.2) directly into
the energy, dividing through by K3 and dropping the constant term vol(53), we get

B C v
Ecap =K3 ”Q <|n x V xn|* + K—3|V(m+p)|2 + !V - P - E) dx

+ 7 Area(d2) (3.3)
Ks

with constraints (2.2)—(2.4), together with the orthogonality relations m=n x p, n-p=0, |m|=
I=Ipl.

From now on, we restrict ourselves to studying azimuthal configurations around the axis of
the capsid, p =e,. Using the identity (n-V x n)2 + |n x V x n|? 4 tr(Vn)? = |Vn|?, the energy
function (3.3) becomes

Ecap = A L? (|n XV xnf2 +K (tr(Vn)z +(n-V x n)2) )dx + %Area(aﬂo), (3.4)

v
A
where
K3
A=K3+B+C, K:l—Z. 3.5)
The energy of the problem involves four effective parameters A, K, v and o, with the first one
giving the energy scale. Next, we describe our strategy to estimate parameter values relevant
to bacteriophage viruses. Following Tzlil et al. [11] and subsequently [32], we take the bending
constant K3 as

K3 = KBTmeo, (3.6)

where L, denotes the persistence length of the DNA and m its length density, with dimensions of
one over the square of the length. For instance, for the T4-virus, we estimate mg = 1/(x(d/2)%) =
3.183 x 1017 m~2, with values for other viruses also shown in table 2.

We take guidance from the theory of Onsager for lyotropic liquid crystals, in order to obtain
estimates for the isotropic modulus v and the surface tension o, and assume that they are
functions of the (DNA) molar concentration c (rather, its dimensionless form, scaled by the factor
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4/ (ndL%)) [24]. We then adopt the expressions

KgT

KgT
V= vo(c)% and o =oy(c) Lod .

C

(3.7)

We assign the diameter d of the DNA and its persistence length L, to those of a rod-like molecule,
respectively, of the original Onsager theory. In particular, the form of o corresponds to the surface
tension modulus of rigid rods between the nematic and isotropic phases. This seems appropriate
to the present problem since we also encounter a surface separating an ordered region from a
disordered one.

To the best of our knowledge, there is no theory that establishes the forms of the scaling
coefficients vp(c) and B(c), even for lyotropic liquid crystals. However, many works in the
literature derive estimates valid in certain rod concentration regimes [40]. For instance, in
the case of large concentration of rods, Onsager derived the form vp=In(c/47) — 1+ c [24].
Likewise, for rod systems in the same high concentration regime, ¢ can be approximated as
o0 =KpT(0.257/L,d) [41].

In order to find the appropriate range of values for the parameters B and C, we refer to data
on experimentally measured values of the pressure inside the capsid, near the wall. We first
estimate such pressure values for different viruses (§4), in the case B=0=_C, that is, ignoring
the transversal elastic energy Wrex. This yields the quantities Py shown in table 2, differing in
a factor between 100 and 1000 from experimentally measured values. We address such an issue,
by including the role of Whex. For this, we appeal to the expressions proposed by Kléman &
Lavrentovich, for columnar liquid crystals ([23], ch. 5), where the orders of magnitude of the
transverse elastic moduli are compared to K3. In our case, this argument leads to the relations

R.A\2
B+ C=6Kj3, 8:=(M+a<dc>>. (3.8)

(Recall that R, denotes the capsid radius and d the DNA diameter). We find that, to arrive at the
orders of magnitude of the experimentally predicted pressure values, we must take o between
0.1 and 10, varying among the viruses under consideration. For instance, in terms of § and for the
T4-virus, we find that § =2.8 x 10%. The expressions A = (1 + §)K3 of the energy scale ) and K=
8/(1 + 8) in (3.5) immediately follow from (3.8). In §4, we calculate the pressure near the surface
of the capsid and show that is proportional to A, as expected. This provides the second source of
information to complete the selection of parameters.

4. Optimal spheroidal core size and pressure parameter studies

The goal of this section is to apply the previously developed model to predict the size of
the spheroidal core region of disordered DNA at the centre of the bacteriophage capsid. The
purpose of choosing a simple geometric setting is to provide model validation and a parameter
assessment. We will first neglect the cross-sectional elastic energy in the model. This will lead
to good predictions of the core size but yield pressure values near the capsid surface of two
orders of magnitude smaller than the experimentally measured ones. We will conclude the section
calculating the pressure corrections upon including the cross-sectional free energy.

We take the capsid B to be a sphere of dimensionless radius 1, truncated at the poles,
at a distance 0 <h <1, h=1, from the equator. We assume that the core £y is a truncated
prolate spheroid with semiaxes 0 <a <1 and 1, respectively, with a being the unknown of the
problem. Its cross-section in the xz—plane is given by the truncated ellipse (x?/a%) + z> = 1. Their
representations in cylindrical coordinates are

B:[(r,e,z): 0<r<vi-2, 0§0<2n,—h§z§h]

and
20={(r,0,2): 0=r=<rz), 056 <2w,~-h<z=<h},
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Figure 4. Prescribed capsid geometry (a). Energy plot for the T5 virus (). (Online version in colour.)

Table 3. The quantities vy and oy represent dimensionless forms of the isotropic and surface moduli as in (3.7). The values
shown are obtained by parameter fitting so that the disordered core size r, predicted by the model (given in §4 as the
dimensionless quantity a) falls into the range of values r, experimentally obtained from Cryo-imaging analysis. The pressure Py
shown in this table has been calculated with the model that ignores the columnar transverse energy (84), resulting in values of
order of magnitude 0.01 of those reported in experimental measurements [42].

virus Vo 0y Py (atm) I exp (nm) r. model (nm) error (%)

T4 2319 0.388 29 22.00 22.80 35
TR oo fo s S s
T o o o g o
s T e e e Jo

with 7, =a+/1 — z2. The surface area of the truncated spheroid with semi-axes {a,b =1} is

ﬁ arcsin (\/1 — a2>> —27(1 —h). 4.1)

Let 2=B\ £y denote the dimensionless region where the DNA is ordered. The DNA
configuration is assumed to be a azimuthal which is concentric in the xy-plane about the z-axis
so that n=eg almost everywhere, where {e;, ey, e;} is the standard basis for R3 in cylindrical
coordinates. The total energy restricted to the given domains is (3.2), and taking into account that
the domains 2, B and £§2¢ are dimensionless, is

Area (0829) =2na? (1 —+

Ecap(a) = .Lz (K3|n x V xn2— v) dx + o Area(952p)

h p/1-22 271 1 v o
=K J J J (—— —r) do6 drdz + — Area(ds2 }
3{ iz lo \2r T Ks K, readsio)

- K3nh{ In (%) - I_%hl(a) + K%hz(a)} +031 - h) (4.2)

h(a):= <1 - éh2> (1—a%), ha):= zh—“ (a +

! arcsin (\/ 1- az)) . (4.3)
V1—a2
The energy function (4.2) for data corresponding to the T5-virus is shown in figure 4. Calculations
of the energy minimizing value a for several viruses are shown in table 2 (see table 3).

Let us now consider the energy (4.2) and estimate the pressure near the capsid wall for the
azimuthal configuration n = eg. For this, we calculate the variation of the energy (3.4) with respect
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to x which yields the elastic forces. As expected, we find the value Py(r) :==K3 /r%, when cross-
sectional forces are neglected. In particular, the dimensional expression for the pressure at the
capsid surface is Po(Rc) = Ky Tmo(Lp /R%). The values found for different viruses are shown in
table 2. As previously mentioned, the pressure Py, as calculated here, is under-predicted by about
a factor of 100 (see table 3). The adjustment of K3 as A = (1 + §)K3, leading to the same scaling
for P= (1 + 8)Py, provides the value (1 + 8) required to bring the pressure to the experimentally
measured range. This completes the evaluation of the model parameters.

5. Freeinner boundary

In this section, we study the well-posedness of the free boundary problem corresponding to the
energy (3.1) for axisymmetric domains. Images of bacteriophage viruses portray axisymmetric
capsids and disordered core regions, often faceted. Here, we ignore the facet structures and
consider smooth domains. A goal of the analysis is to justify the spooling assumption often made
in viral studies, and, in particular, as in the previous section. We also ignore possible defects in
the director field n.

We consider a set of spherical coordinates {(r,¢,0):0<r, 0<¢ <z, 0<6 <27} and the
corresponding orthonormal basis {e;, es,eq}. We let Ca(a,b) denote the space of absolutely
continuous functions on the interval (4, b). We assume the capsid, B, to be the unit sphere with
centre at the origin, and open sets £2, £20 C B, £2 N 29 = ¥. Here, §2 denotes the upper half region
where the DNA is ordered, and §2y, also an open set, represents the upper hemisphere of the
disordered core. We assume that the contact surface between them is the graph of a function,
represented in spherical coordinates by an positive function p € C4(¢*, 5), p=p(#),0 < ¢* < ¢ <
%, so that

.Q:{(r,¢,9):0<p(¢)<r<1,¢*<¢<%,O<9<27r} (5.1)

and

Qoz{(r,¢>,9):O<r<p(¢),0<¢<%,0<9<27T}. (5.2)

We interpret the conical region corresponding to 0 < ¢ < ¢*, subtending an arch of dimensionless
length 0 < €* << 1, as the neck of the capsid, so that €*/¢* = O(1) approximately represents the
radial length of that structure. Here, we ignore the neck’s role as possible spooling site and
note that it serves to prevent the singularity that would otherwise occur at ¢ =0. (A different
interpretation of ¢* is given in [11], where it is being associated with an empty region on top of
the disordered core, where the pressure approaches 0. The value ¢* = 0.005 radians is assigned to
the T4-virus.) We consider the relaxed form of the energy (3.1), given by

2 /2 1
Ecap = JO J J » Wor(n, Vn) 72 sin ¢ dr d¢ d6 + vVol(£2) + o Area(d52), (5.3)
T Jp

with the constants of the Oseen—Frank energy satisfying the relations (2.6). We again apply the
volume constraint (3.2) directly into the energy (5.3) and suppress the constant capsid volume
term to get

2w (7/2 (1
Ecap = Jo J J ” (Wor(n, Vn) — v) 72 sing drde df + o Area(d £2)). (5.4)
*Jp

Remark 5.1. We point out that, as a consequence of the inequalities (1.2), the functional Ecap is
also coercive in H(£2). Indeed, Wog(n, Vn) — v > k|Vn|? — v holds, which implies that

|, Wor(n, vr) = vy ax= ki g, — v Vol(3)

where k > 0 is the coercivity constant corresponding to WoE.

LLLOGCOZ ‘6L 205 ° Subi 1144 e1sfouinol/bio'Busiqndigaposiefor



Downloaded from https://royalsocietypublishing.org/ on 24 June 2021

r=r, r=1 s=r, s=1

Figure 5. Visualization of coordinate change from free to fixed boundary. The parameter ry > 0is an unknown. (Online version
in colour.)

We consider liquid crystal configurations of the form n = sin gey + cos pey, where ¢ = ¢(r, ¢)
is the angle of the molecules at (7, ¢, 0) from horizontal. The energy in terms of ¢ is the following

Ky . cos¢ 2 >
Ecap = JQ {r_2 (COS Ypy + Sln¢m) + Kag; 5)
K3 K 2
+ 23 4 38 (gin ©Py — COS @ C?S AN v} 1 sing drdgds (5.6)
2 72 sin ¢

/2
+ 270 L* pJP2@) + (7 (@) sin g do. (57)

Next, we carry out a nonsingular change of variables that transforms the free boundary into a
fixed one. A new radial coordinate s is defined so that the outer radius r =1 remains fixed and
the inner one is mapped to a constant radius r, as in figure 5. We let rg so that 1 > rg =€*/¢p* > 0,
where ¢* and €* are given in (5.2) and the paragraph thereafter. Specifically, let

as

5= c(1-1) = s()=—c1(1 =12 +c (5.8)
and
s(p) =10 &s(1) =1 = ¢, = ﬁ, o=1 (5.9)

Therefore, s=1— (1 — r9)(1 — r)?/(1 — p)2 and the new coordinates (s, ¢,0) are related to the
previous ones (7, ¢,6) by

r=1- A=) -p2/U—r0), p=0, 0=0.

In these coordinates,

2r /2 1
Ecap = .[0 L* J (Wor(n, Vn) — v) rz(s); sin ¢ dsd¢df + o Area(d2p). (5.10)

o
With the coordinate transformation defined above and ¢(r, ¢) > ¢(s(r, ¢), ¢), then

0 _A35+A_2(1—S)p/A+A
‘/’r—‘/’sar, (Pd)—(ﬂsad) P = 1—p Ps T Pop-
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So the Oseen—Frank energy terms become
3 2 s\
Ecap = L? {K1 [cos 1 <¢5£ + (/3¢> +sing cot¢] + Kor(s) ((ﬁsa—i>
K K ing (¢
+ K3 + 3[Sm<ﬂ<¢sa¢

/2
+2m0 [ pPw) + (@) sing dg

2
=J {K1 [cos@ (M(—p/tﬁs) + (ﬁ¢> + sin@cotd)] +
2 I-p

2
9 + ¢¢> —Ccos¢ C0t¢] — vrz(s)} gsin¢dsd¢d9

2
+ Ky (2v (1;2}1 —9) —2(1—s)> 92

—2(1 — 2
+ K3 [sin(i) <%ps)(—p/¢)s) + g?>¢> — cosé)cotgb]

2
ol =S _sing@-p)
Y (1 \/:(1 p)) ; 2,/ =rg)(1 —5) dsdpdd
+JQ T2 PP + (@) singdsdpds (5.11)

= JQ Wcap((/A)s, (/A’q), p/, @, p) d5d¢d9 (512)

Let us now establish the boundary conditions to be satisfied by the fields of the problem.

P(%)ﬂo, 4 (%)=0, (5.13)
0,99 =0 (1, 2) =0, re@e)) (5.14)
and o19=0, Lpa=0 se(s"7), 615

where v is the unit normal vector to the inner boundary p =p(¢). The first equation in (5.13)
conveys the north pole structure of the capsid (i.e. the neck) into the bulk, and the second one
expresses the symmetry of the whole configuration with respect to the equatorial plane. Equations
(5.14) and (5.15) express the requirement that the director field be tangent to each, the outer and
the inner boundary. These conditions reflect the fact that proteins in the capsid tend to enforce
tangentiality of the DNA on the capsid boundary. We now set up the admissible set for the
minimization of the energy. Let us fix 0 < ¢ arbitrarily small, and define the admissible sets for
the relaxed and constraint problems, respectively,

Ap = [(p,(p) cH! (¢*, %) x HY(Q):e <p<1—eand (513) — —(5.15) hold] (5.16)

and

Al ={(p,p)€A::V-n=0=n-V x nin 2}. (5.17)

We point out that both sets are non-empty. Indeed, the pair consisting of ¢ =0 and p(¢) =1y
belongs to both sets. In order to prove the existence of a minimizing pair (p, ), we need to assert
the lower semicontinuity of the energy functional Ecap in A; and Ag. First of all, let us recall the
following definition.
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Definition 5.2 ([43]). Consider the functional I[u] = fu L(x,z,x)dx, U C R". A Lagrangian L is
called polyconvex if L has the form

L(P,z,x)=F(P,detP,z,x), PeM"™, zeR" xeld
and for each fixed z, x, the joint mapping (P, r) — F(P, 1, z,x) is convex.
In order to apply the previous definition to our problem, we let

0 p’f(b)

L=Wep, z=(p,9), x=(,¢), P=|.
cap o) (s,9) ((Ps o

) , detP=—p'¢s. (5.18)

The following well-known lemma is needed in establishing necessary and sufficient conditions
for the polyconvexity of the Lagrangian Weap.

Lemma 5.3 ([43]). Let f be a twice-differentiable function on an open convex set U C R". Then f(u, x)
is convex with respect to w on U if and only if its Hessian matrix is positive semidefinite for every x € U.

Lemma 5.4. The Lagrangian Weyy is polyconvex in A, and also in A,

Proof. To show polyconvexity in Ag, we calculate the Hessian of Wcap with respect to the
variables (¢, @s, §p, —p'@s), and show that the eigenvalues are nonnegative. Let

sin ¢
2/ = ro)1 = )1 — pP
Then, the non-zero terms of the Hessian are
92w, 3
P _ i P sing,
R BT RNk

l:=

azwcap \/— 2
2 =B (V= =9 - -91-p)"¢
92w,
% =2(1 - p)*(Ky cos? ¢ + K3 sin §)¢,
8g0¢
P Weap F*Weap
_ = P — _4(1 —5)(1 — p)(Kq cos® ¢ + Kz sin® §)e,
090p3(—p'¢s)  3(—p'9s)30g P
32,
—— P =8(1 —5)*(Ky cos? ¢ + Kz sin? )L.
(—p'Ps)
Therefore, replacing ¢ with its full expression, the matrix has eigenvalues
Mm=0, A 7 ’ in ¢
=U, = smao,
T T I e
sin R .2 A
A3 = ¢ . <8(1 —5)24+2(1-— p)2> (Ky cos? ¢ 4 K3 sin® §)

2,/(1 —ro)(1 —5)(1 — p)?

and ham n 8K (VI =9~ (-9 ),
2,/(1 — 1)1 —9)(1 — p)?

where the sin¢ factor is strictly positive since 0 <¢* <¢ <7 —¢*. Being that all of the
eigenvalues are nonnegative, we can conclude that the Hessian is positive semidefinite. Hence,
the result follows by lemma 5.3. The analogous conclusion for A follows immediately from the
previous calculation. [ |

Theorem 5.5. Suppose that the inequalities (1.2) for the Frank constants hold. For each pair of constants
€*,¢* as in (5.2), there exist a minimizing pair (¢,p) of the enerqy (5.7) in the admissible set (5.16).
Furthermore, p € Ca(¢p*, 1 /2). The same conclusions hold for the analogous problem in AC.
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Proof. Let {px, gx} be a minimizing sequence in A; for the functional (5.11). By the coercivity of
the functional and the fact that A is non-empty, together with the Poincaré inequality, it follows
that this sequence has bounded H' norm. So, it has a subsequence that converges weakly to
a limit (¢, p) e Hl(¢*, 7) x HY(£2) and, so, strongly in L2. Since Weap (6.11) is polyconvex, the
corresponding energy is weakly lower semicontinuous. Hence Ecap(p, &) = inf(, y)c 4, Ecap(p, ¢)-
The absolute continuity of p(¢) is an immediate consequence of the fact that p e H'(¢*, 7).
Reversing the change of variables (5.9) the result applies to the energy in the form (5.7). The
conclusions can be immediately applied to the problem in AS. Indeed, by the properties of the
minimizing sequences, formulated in vector form, for convenience, we have that V - n—~V. n
andnj~VXn]-—\ﬁ~V><ﬁ,asj—>oo,hold. |

Let us now turn to the energy minimization problem under the constraints (2.3).

Corollary 5.6. Suppose that the assumptions of theorem (5.5) hold. Let (pj, ¢;) € Ac) be a sequence
of minimizers for Ecqp in (5.7) with Frank constants {(K],KJZ,K]E,,)} satisfying (1.2) and such that
lim;_, oo K]1 =o0. Then there is a subsequence (f)jz,gf)jl) € A such that fJ]-z —p™ and éjl — 9> as
j = oo where (p™°, p) satisfy V - n™ = cos 9P @y° + sing™ cot¢ =0. The analogous result holds as

lim; ., o K]2 = oo, where now the limit is twist free, that is, satisfies n® - V x n*° = ¢, =0.
Proof. From the energy form (5.7), we obtain the following relation

Ecap(pj, §j) + vVol(2(pj, §)) < Ecap(p, @) + vVol(2(p, ¢))

—J &<COS + sin COS¢)2
Tal? $be (psinq)

K3

Kz (. S ¢
T—Z + r—z SN Y@y — COS @

CO:

sin ¢
/2

v2m0 [ )+ (/@) sing . 5.19)

Taking the special pair from A, such that ¢ =0 and substituting it on the right-hand side of the
previous inequality, we get

2
+ Kz(p,2 + ) } ? sin ¢ drd¢dé

Ky . . cose\> v
JQ { 7 (cos @j9j, +sin (pjm> + Kyt 7 sin¢ drdgdé
K] /2
< JQ 723 csc? ¢ 2 sin g drdgdd + 2o le P/ P2(@) + (P (¢))? sin ¢ dop. (5.20)
The conclusions follow by separately taking limits as K]1 — oo and I(J2 — 00, respectively. n

Of course, the energy may have many critical points. A configuration of interest in this work is
the planar, azimuthal, spool-like configuration n = eg, which corresponds to ¢ = 0. This solution
satisfies the boundary conditions, splay and twist constraints, and the Euler-Lagrange equations
for ¢ (omitted), and thus, the question of whether this configuration has the least energy begs
to be addressed. In theorem 5.7, we show that it does indeed have the least energy among
configurations that we consider.

This result was anticipated due to the fact that the packing is at near-crystalline density,
which leaves little room for randomness in the configuration. Theoretical works done by
experimentalists, such as [11,16,44], assume this configuration without remark. In fact, in
theorem 5.7, we will demonstrate that even with weaker boundary information, as long as it
is satisfied by n = ey, the solution ¢ = 0 will have lower energy than a non-constant minimizer ¢*,
such that ¢ =0, when each is paired with a fixed free boundary p* that corresponds with ¢*.
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Theorem 5.7. The function ¢ =0 is the unique minimizer in AS for a given boundary function p*.
Moreover, for 0 < o << K3, v, the minimizing profile corresponding to ¢ = 0 is of the form

p) = \/?cscqﬁ +0 (K%) . (5.21)

In particular, the spherical profile p(¢) = ro, constant, is the minimizer only in the case K3 =0=v.

Proof. Suppose (p*,¢*) € AS is a minimizing pair for Emp such that ¢* #0. Suppose also
that ¢ =0. Let n* =sinp*ey + cos p*ey. We first compare the energy for n* with that of ey =
sin(0)ey + cos(0)eg, ignoring the free boundary contribution:

2
Ecap(n®) — Ecap(eg) = JQ K3 { [1 + (sin ¢*py — cosp* cot ¢) } - [1 + cot? d;] } sin ¢ drd¢dé
2
=Kj3 J [ﬁof - (COS ga*go;‘, + sin ¢* cot d)) ] sin ¢ drd¢do
Q

=K3J IVe*? 12 sing drdpdo >0,
2

and only equals zero if ¢* = 0. Thus, ¢ =0 is the unique minimizer in A for a given p*.
Therefore, what remains is to determine minimizing free boundary functions p that pair with
¢ =0,i.e.n=egy. The energy is

/2 27 1l /2
Ecap(es) = K3 J J J (cscp — vi? sing) drdode + 2o J py/p? + (p))?sing d¢
* J0 Jp(9) "

/2 2 27y 3 .
=J (27tK3 csctp(l—p) — T(l —p°) + 2wopy/p? + (P/)2> sing dg. (5.22)
¢*

To learn about minimizers, we find the Euler-Lagrange equation for p. To do so, we take fixed
qge Hé(q&*, 7/2) and let

/2

i(e)=2m J

o*

(Ks s (1 —p — eq) — % (1 -+ eq)3)

+o(p+ 66i)\/ (p+en?+ @ + 6q/)2) sin¢ dg.

Then,

/2 ’ ' 2 AV
i/(o)zzﬂj {—Kgcscqu-}—vpz—o(pp) +02p +(p) ppC0t¢:|qsin¢d¢

' VP + () P2+ @)

Therefore, any minimizing p must satisfy

/

/ 2 N2 /

K3csc2¢:vp2—a dd +02p + )" —pp C0t¢. (5.23)
VP + () VP + )

The expression (5.21) follows immediately from the previous equation, by a boundary layer
asymptotic analysis calculation, guaranteeing the first boundary condition in (5.13) to hold. (The
second boundary condition is already satisfied by the leading term.) |

6. Conclusion

One main issue not treated in this article is the reconstitution of the DNA filament. Indeed, we
note that the recovery of the filament from a minimizing set {n, m, p} is the Lagrangian version
of the Eulerian problem studied here. In still unpublished work, the authors follow two different
reconstruction approaches, one, from the point of view of non-smooth dynamical systems and
transport problems, and the second one, using Monte Carlo methods.
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In the future, we also envision applying methods of data science that would allow for a
consistent and comprehensive parameter identification, specially in view of wider applications
of phage technologies.
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