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Abstract
We discuss a class of models for particulate gels in which the particle contacts are described
by an effective interaction combining a two-body attraction and a three-body angular
repulsion. Using molecular dynamics, we show how varying the model parameters allows us
to sample, for a given gelation protocol, a variety of gel morphologies. For a specific set of the
model parameters, we identify the local elastic structures that get interlocked in the gel
network. Using the analytical expression of their elastic energy from the microscopic
interactions, we can estimate their contribution to the emergent elasticity of the gel and gain
new insight into its origin.

Keywords: particulate gels, short-range attraction, bending rigidity, coordination number,
network topology, elastic modulus

(Some figures may appear in colour only in the online journal)

1. Introduction

Soft particulate gels can form in a wide range of colloidal
suspensions of particles, particle agglomerates or droplets
[1–11]. The combination of attractive inter-particle interac-
tions, that drive the particle aggregation, with increasing coop-
erative dynamics, that lead to kinetic arrest, results into the
self-assembly of an interconnected space-spanning network
structure, which can be very soft but ultimately has solid-like
elastic properties [12, 13]. These gels have relevance to a wide
variety of industries and technologies, ranging from food or
personal care products to drug delivery or other biomedical
applications [8, 9, 11, 14].

In spite of their relevance, the mechanics and rheology of
these materials is still hard to predict, because the extreme
variability of microstructural characteristics makes it diffi-
cult to identify common underlying mechanisms. Extensive
work has been devoted to characterizing gel morphologies
and processes that can initiate gel formation, from irreversible
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and diffusion limited colloidal aggregation with fractal-like
microstructures [15, 16], to phase separation or microphases
[8, 11, 17, 18]. Extensive work exists also on the cooperative
and glassy microscopic dynamics associated to gel formation
[6, 13, 19–21], elucidating how this is a common trait for
these systems, quite independently from the specific mecha-
nism that initiates gelation. Different gelation processes, how-
ever, can change the amount of stress heterogeneities frozen-
in in the gel structure upon solidification. The possibility to
relax those stresses through the elasticity stored in the gel
network can make the glassy dynamics of soft gels quite dis-
tinct, with faster-than-exponential relaxations and intermittent
spatio-temporal correlations [22–24]. Extensive experimental
work and more recent simulation studies have addressed the
connections between microstructure and rheological behav-
ior [6, 25–27], also considering hydrodynamic interactions
through the solvent in which the particles are embedded
[28–30]. The outstanding questions at this point include iden-
tifying a possible common origin of the solid-like mechanical
response across materials apparently very different and under-
standing the emergence of rigidity and of stress localization
[31, 32].
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Figure 1. Different examples of particle contacts that can give rise to bending rigidity in colloidal gels. (a) Particles with rough surfaces get
interlocked. (b) Heterogeneous surface patches lead two particles to stick at specific sites. (c) Relative rotation of particles with surfaces
grafted by polymer chains in close contact can be hindered by the chain overlap.

Here we are interested especially in these last two issues
and in the contributions that numerical simulations of sim-
ple but judiciously designed statistical mechanical models can
give [33]. To this aim, we have designed a model for soft
particulate gels that can cover a range of interparticle inter-
actions and can be studied through coarse-grained molecu-
lar dynamics (MD) simulations, where different gelation pro-
cesses can be mimicked. This approach seems promising to
explore how different gel morphologies can emerge due to the
interplay between microscopic interactions and kinetic pro-
cesses. It has already proven successful in disentangling the
role of structural and stress heterogeneities in the microscopic
glassy dynamics [24, 34, 35] and linear or non-linear rheol-
ogy [25, 36–38] of colloidal gels, providing useful insight into
experimental observations.

In this paper, we study how the specific ingredients of
the microscopic model translate into the elasticity of different
parts of the gel structure, and how varying the model parame-
ters allows us to obtain a range of gel microstructures relevant
to real materials. The paper is organized as follows. Section 2
introduces the model, and the simulation method used for
the gel preparation. Section 3 describes the changes in gel
microstructures by varying the model parameters. In section 4,
we discuss the elasticity of different structural elements of
the gel starting from the microscopic interactions, and ana-
lyze their contribution to the gel network elasticity. Finally,
section 5 contains conclusions and an outlook.

2. Model choice and numerical simulations

The net attractive interactions between particles or particle
agglomerates in solution usually originate from surface forces
such as those described by the Derjaguin, Landau, Vervey, and
Overbeek theory [39, 40] with van der Waals forces being
the main source of attraction [40]. In some cases they can
also originate from an entropically favored depletion, from
the interparticle gaps, of small non-adsorbing polymers added
to the suspension, as described by the Asakura–Oosawa the-
ory [41]. While these theories usually capture the energy
scales and interaction ranges measured in experiments, they
are intrinsically mean field in nature and do not include aspects
of the particle surfaces that can become important once the
particles are in close contact, a regime important for gel
formation.

In many real materials, the particle surfaces are not smooth
or homogeneous (see cartoons in figure 1). When particles with
surface irregularities or aggregates of particles come in con-

tact, the surface roughness or a local deformation can lead to
the interlocking of the surfaces (see figure 1(a)). In some cases,
surface irregularities are present in the form of surfaces patches
that behave as specific binding sites (figure 1(b)). In other
cases, colloidal particles are sterically stabilized by adsorbed
or grafted polymer chains (figure 1(c)), which can hinder rel-
ative sliding or rotation. The same can happen for compact
aggregates of irregular shape or fractal-like flocs with reduced
connectivity. All these different cases can lead to an effective
bending rigidity of parts of the gel structure, as the gel self-
assembles. There is evidence of these phenomena from con-
focal microscopy images in experiments, showing that local
coordination of particulate gels can be limited to 2–4 con-
tacts even when there is not a clear fractal characteristics of
the gel structure. Optical tweezers experiments have proven
that strands of aggregated colloidal particles can sustain finite
torques, and it has been recently shown that the mechani-
cal contacts between colloidal particles can be solid-on-solid
contacts, which stiffen over time [3, 4, 42–45].

A physical model for computer simulations that has the
goal to gain new insight into the gel mechanics and the under-
lying microscopic mechanisms should include these possible
effects. However, to be able to effectively perform large scale
simulations and extended spatio-temporal analysis of micro-
scopic processes, one would like to avoid a fully atomistic
description of the particle contacts. With this in mind, we
have introduced a class of microscopic models for soft par-
ticulate gels that features a short-range attraction, similar to
the one predicted by several theories of colloidal interactions,
and an additional term that depends on the angle between
particle bonds, to include the energy costs associated with
the constraints of the particle relative motion imposed by
the nature of the surface contacts [19, 34, 35, 46]. In previ-
ous studies, we have shown how this approach can help to
understand the microscopic origin of the complex relaxation
dynamics [19, 34, 35], aging [24] and mechanical response
[25, 36–38, 47] in colloidal gel networks. These studies have
demonstrated that the dynamical and mechanical properties
in these materials emerge from mesoscale structural charac-
teristics of the gel networks, providing an explanation to the
observation of common traits found across different materi-
als. Recent numerical studies from different groups have also
confirmed that including similar constraints, in addition to the
attraction strength and range that can be justified with existing
theories of colloidal interactions, is essential to properly repro-
duce the characteristics of the mechanics of soft particulate
gels [29, 48–55].
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Figure 2. (a) Two-body potential u2 as a function of distance between two particles, r in units of a particle diameter d, and (b) Main:
three-body interaction u3 for r = r′ = rmin (both bonds at the minimum of the attractive well) and θ = 65◦ as a function of angle between
the neighboring bonds, θ. Other parameters are B = 67.27, and w = 0.30. Inset: radial modulation Λ(r) as a function of distance.

2.1. Numerical model

The model consists of N identical particles each of diameter d,
and described as point-like, whose coordinates are {ri}, with
i = 1, . . . , N. They interact via a potential energy [24, 25, 34]:

U (r1, . . , rN) = ε

⎡⎣∑
i> j

u2

(ri j

d

)
+

∑
i

j,k �=i∑
j>k

u3

(ri j

d
,

rik

d

)⎤⎦ ,

(1)
where ri j = r j − ri is the vector separation between two par-
ticles i and j, ε is the depth of the attractive well in u2, used
as unit energy in the simulations. For colloidal suspensions,
the value of d is generally in the range 10–100 nm and ε �
1–100 kBT [2, 3], where kB and T indicate the Boltzmann
constant and the room temperature.

The two-body term u2 in equation (1) is a Lennard-Jones
(LJ) like potential, and is a combination of a repulsive core and
a narrow attractive well. For particles separated by a distance
r (here and in the following, distance is expressed in units of
d), it is written in the form:

u2(r) = 23

(
1

r18
− 1

r16

)
(2)

for computational convenience. The values of the exponents
18 − 16 in this generalized LJ form have been chosen to pro-
duce a short range attractive well (less than 1.5 particle diame-
ters, with a minimum rmin ∼ 1.06d), which is plotted in figure
2(a).

The three-body term u3 in equation (1) represents the angu-
lar repulsion (directional interaction) which constrains the pos-
sible configurations of particles bonded to a central one, pro-
viding bending rigidity to inter-particle bonds r and r′ depart-
ing from the same particle (see figure 2(b)). The functional
form of this term has been implemented, again considering
computational efficiency, as:

u3(r, r′) = BΛ(r)Λ(r′) exp

[
−
(

r · r′

rr′
− cos θ

)2
/

w2

]
(3)

where B, θ and w are dimensionless parameters. The parame-
ter B represents the strength of this interaction term. With this
specific form we aim at maintaining the possibility of a range

of allowed configurations, without imposing only one specific
angle. The radial modulation function Λ(r) is plotted in figure
2(b) (inset) and decays smoothly as,

Λ(r) = r−10
[
1 − (r/2)10

]2H(2 − r), (4)

whereH is the Heaviside function. The functionΛ(r) vanishes
at a distance 2d, but, combined with u2, it effectively cancels
out the attraction u2(r) producing a repulsion that vanishes at a
distance � d or leaves an attractive well basically identical to
u2, depending on the angle in the exponential term of equation
(3). That is, the additional repulsion introduced by Λ(r) is able
to cancel out the attractive well (in the angular range needed),
while retaining the continuity of energy and force required by
the MD method.

In figure 2(b), the three-body potential u3 is plotted as a
function of the bending angle θ by fixing the bond distances
at the minimum of the potential well, i.e. r = r′ = rmin. The
height of the peak is determined by the parameter B and rep-
resents the strength of angular repulsion. The peak location is
determined by the angle θ̄ and its width is determined by w.

In order to illustrate how the combination of u2 and u3

works, let’s consider the case where all parameters have been
fixed as in figure 2. In figure 3(a), we consider a bond vec-
tor r formed by two particles, 1 and 2, which are within dis-
tances corresponding to the attractive well. A third particle,
3, approaches particle 1 from a direction such that the vec-
tor distance r′ from particle 1 to 3 forms an angle θ with r.
If the incoming particle is within the range of interaction with
particle 1, it experiences an attractive interaction given by the
two-body term, u2(r), and an angular repulsion given by the
three-body interaction u3(r, r′, θ) that involves both bonds r′

and r. Due to the angular modulation of u3(r, r′, θ), the parti-
cle 3 will be bonded to 1 or 2 only for certain range of angles θ
where the net interaction is attractive. The range of the angles
for the net attraction is controlled by the parameters B and θ
in equation (3). For the choice of B = 67.27 and θ̄ = 65◦ used
in the figure, 3 can not be simultaneously bonded to 1 and 2.
All angles θ smaller than θ are disfavored when r′ is within
the range of interaction with 1 because, for smaller θ, parti-
cle 3 will be sufficiently close to particle 2 to experience the
short-range repulsion from u2(r′′). On the other hand, if par-
ticle 3 approaches 1 at smaller angles, but at distances larger
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Figure 3. (a) Illustration of the interactions for a particle 3 approaching two particles 1 and 2 previously bonded. (b) Contour plot of the
potential energy experienced by an incoming particle when it approaches an existing bond at different distances and angles. The color is blue
when the potential energy is −1 and is red for +1 or higher.

than the range of interaction, it will be close enough to par-
ticle 2 to remain bonded there. In this case, the interactions
between 1 and 3 becomes negligible. To summarize, when the
particle 3 enters the region of the bond between 1 and 2, the
total potential felt utotal is obtained by summing up all two- and
three-body interactions:

utotal = u2(r′) + u3(r, r′, θ) + u2(r′′) + u3(r, r′′, θ′)

+ u3(r′, r′′, π − θ − θ′) (5)

We can rewrite this potential energy as utotal =
∑

u2(r, r′, θ) +∑
u3(r, r′, θ), considering that r′′ =

√
r2 + r′2 − 2rr′ cos θ

and θ′ = cos−1[(r − r′ cos θ)/(
√

r2 + r′2 − 2rr′ cos θ)].
In figure 3(b), we fix the distance between particles 1 and

2 at r = rmin and show the contour plot of utotal(rmin, r′, θ),
using x = r′ cos θ and y = r′ sin θ for the same choice of B,
θ̄ and w. The colors highlight the modulation from attraction
to repulsion depending on distance and angles, as particle 3
approaches 1 and 2. It is symmetric with respect to the origi-
nal bond formed by particles 1 and 2 i.e., particle 3 can equally
stick to any of the other two particles depending on the direc-
tion as dictated by the region in blue, where the potential is
attractive.

In section 3 below, we will discuss further how changing
the parameters B, θ̄ and w can change these potential energy
profiles and hence modify the type of structures obtained in the
simulations.

2.2. Numerical simulations of gel preparation

In the MD simulations, we use N = 16 384 particles in a cubic
box of size L and number density N/L3. If we consider each
particle to be a sphere of diameter d, we can define an approx-

imate solid volume fraction φ = Nπd3/6
(Ld)3 . Here we discuss gels

at volume fractions φ = 5%, 7.5%, 10%, 15%. We use peri-
odic boundary conditions and solve the equations of motion
with the interactions described in section 2.1 and a time step
δt = 0.005τ0 (τ0 =

√
md2/ε is the usual MD time unit).

The initial gel configurations are prepared in two steps.
The first step involves cooling of a system of particles

previously equilibrated at a reduced temperature kBT/ε = 0.5
in a gas phase to a temperature kBT/ε = 0.05, low enough
for the particles to aggregate and form a gel network. We use
NVT equilibrium MD simulations, with a Nosé–Hoover (NH)
thermostat and a cooling rate of Γ = ΔT

Δt ≈ 10−4 ε/kBτ0. We
have verified that, in this temperature regime, the microstates
obtained do not significantly depend on the dynamics used,
for the cooling rate we consider here. Using the simple NVT
MD in this context is therefore more convenient, because it
reduces the simulation time with respect to a more physical
Langevin dynamics. Then, we let the system further equilibrate
at kBT/ε = 0.05 with the NH thermostat for another 106 MD
steps until all the structural quantities reach a steady state and
any further aging of the gel takes place over much longer time
scales.

In the second part of the gel preparation, we use instead a
damped dynamics to drive the gel network, formed at finite
temperature, to a local minimum that more likely corresponds
to a mechanically stable configuration. This is done by drain-
ing the kinetic energy to ∼ 10−10 of its initial value with an
overdamped dissipative dynamics:

m
d2ri

dt2
= −ζ

dri

dt
−∇riU (6)

where m is the mass of the particle and ζ is the drag coefficient
for the solvent [25, 36]. We used m/ζ = 1 in all the simu-
lations discussed here. This part could be, in principle, also
achieved by minimizing the total energy of the system with
a conjugate gradient algorithm. However, we have previously
found that using a damped dynamics is actually more efficient
with very soft gels, as discussed in [25, 35, 36]. For simplicity,
we have therefore used this damped dynamics for the energy
minimization in all simulations.

Starting from different initial positions and velocities at
high temperature, we generate 5 statistically independent sam-
ples with this same two-step procedure and use them to per-
form ensemble averages of all quantities studied here. For each
samples, we study its steady-state dynamical evolution using
the Langevin dynamics which includes the effect of the solvent
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Table 1. Simulations performed.

Structure Preparation Data production

Network Nosé–Hoover + dissipative Langevin (3 × 106 MD steps)
Isolated strands Dissipative Langevin (2 × 108 MD steps)

and of thermal fluctuations, given by the equation:

m
d2ri

dt2
= −ζ

dri

dt
−∇ri U + Fri (t), (7)

where m/ζ = 1. Fri is a random force that introduces
the thermal fluctuations and sets the temperature T through
the equation: 〈Fi

r(t)F
j
r(t

′)〉 = 2ζkBTδi jδ(t − t′). To sample the
bond angle distributions in gel networks, we run these sim-
ulations at kBT/ε = 10−4 for 3 × 106 MD steps. The distri-
bution of coordination number z and contour length lC of the
gel strands are computed for 5 independently generated con-
figurations at their energy minima, since there is no change
during the dynamics over the simulation window considered
here. The distribution of coordination numbers z is defined by
p(z) = Nz/N, where Nz is the number of particles that have
specific coordination number z and N is the total number of
particles. The elastic moduli G0 of gel networks at different
volume fractions are computed for 3 independently generated
configurations also at their energy minima by applying an
oscillatory shear strain and measuring the stress response as
described in [33, 47].

We use a slightly different procedure to prepare an iso-
lated chain or strand, since in this case the particles are
placed in a chain to start with. Then, we minimize the
configuration energy with the damped dynamics (equation
(6)) used for the gels, and then use the Langevin dynamics
(equation (7)) to sample the configurations at fixed kBT/ε,
for 2 × 108 MD steps, and obtain the bond angle distributions
and the persistence length. In a 3 particle strand, the bond
angle distributions are computed at temperatures kBT/ε =
10−5, 10−4, 10−3, 10−2. The persistence length is determined
from a 50-particle strand, by computing the correlation in
the angles of successive bonds along the strand [35, 37]. All
the simulations have been performed using a modified ver-
sion of LAMMPS [56] that includes the interactions discussed
in section 2.1. All simulations performed are summarized in
table 1.

3. Varying the model parameters

Now we discuss the implications of the parameters choices
for B, w and θ in u3 in terms of how they modify the poten-
tial energy profiles shown in figure 3(b) and the gel struc-
tures obtained in the simulations. Figures 4(a)–(c) show con-
tour plots for utotal and snapshots of gels, all at a volume
fraction φ = 7.5% and obtained with the procedure described
in section 2.2, with decreasing B (left to right) while keep-
ing θ = 65◦ and w = 0.3. The plots (a), (d) and (g) corre-
spond to the same set of parameters discussed in section 2.1.
With decreasing B, the repulsive barrier shown in figure 4(b)
becomes weaker while the region in blue, corresponding to

the attractive well in the contour plots, becomes wider, i.e.
decreasing B also changes the angular modulation of the u3

term. A consequence is that the resulting gel structures will
change from a thin, space filling network with coordination
number z mostly 2 or 3 as also seen in [3, 4, 42, 57, 58], to
locally compact aggregates with higher z and large pores typ-
ical of phase separation as found in [8, 17, 18, 59, 60]. The
distribution p(z) of the coordination numbers z, for each of the
structures are plotted in figures 4(g)–(i).

To further elucidate the role of the angle parameter θ̄ and its
implications for the possible gel microstructures, we compare
simulations performed, for the same preparation protocol, with
θ̄ = 65◦ and θ̄ = 75◦, while the others parameters are kept as
in figure 3.

Figure 5 (top) shows the corresponding contour plots of the
potential energy utotal, indicating how shifting the value of the
angle θ̄ toward higher values decreases the region where bond-
ing to the central particles can occur. We expect therefore that
gels are less likely to form in this case, since three-coordinated
structures are limited. The simulation snapshots and distribu-
tions of z in figures 5(e) and (f) indeed show that the fraction
of particles with z = 3 is greatly reduced with increasing θ.
Particles prevalently aggregate into strands that are one parti-
cle diameter thick and have much weaker tendency to branch,
and hence of forming a gel network. The persistence length
and the average contour length lC of these particle strands are
compared in figure 5(g). The structures obtained at θ̄ = 75◦

are softer since lC > lp in contrast to one obtained for θ̄ = 65◦

where the two length-scales are comparable, feature similar
to semiflexible networks [14, 61, 62]. Finally, we can also
vary the parameter w, which sets the width of peak of u3 (see
figure 2(b)). Decreasing w makes the peak narrower, result-
ing in a sharper transition from attraction to repulsion when
we consider the effective potential represented in the contour
plot of figure 3(b). For smaller w, the region in blue (where
the attraction dominates) in the contour plots becomes wider,
favoring locally more compact microstructures. Hence, w can
be used together with B, θ̄ and the cooling rate Γ, to tune the
gel microstructure.

To summarize, the discussion in this section elucidates how
varying the parameters in the model and in particular those
entering the three-body term, changes the potential energy sur-
faces that drive the particles self-assembly and provides con-
straints to the local structures, as indicated by the contour plots
for utotal. We can think of these local structures as the build-
ing blocks of the mesoscale gel network, hence the changes of
the potential energy surfaces have also implications for the gel
self-assembly as in fact demonstrated by the snapshots.

Ultimately, the gel structures depend of course on the kinet-
ics of the self-assembly and on the gelation protocol. We can
vary the gelation protocol, for example, through changing the
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Figure 4. Potential energy contour plots for B = 67.27, 10 and 1 in (a)–(c), Simulation snapshots of gels, each at a volume fraction
φ = 7.5% corresponding to above values of B in (d)–(f) where the color code represents the local coordination number z, and the
distribution of z of the final gel structures in (g)–(i). The distributions are obtained by averaging over 5 independently generated structures
and the error bars (obtained from sample-to-sample fluctuations) are smaller than the bar thickness.

cooling rate or other aspects of the procedure described in
section 2.2. However, understanding how specific microscopic
interactions can modify the local structures and promote dis-
tinct gel characteristics such as local coordination, mesoscale
aggregates or specific ranges of pore size distributions can help
systematically tune the gel structure. To build the link between
the microscopic interactions and the emerging elasticity of the
gel network, a first step is to consider what are the mechanical
properties of the local structures which are eventually embed-
ded in the gel. Therefore, in the remainder of the paper, we
study the elasticity of local elementary structures that tend to
form for the set of potential parameters used in figures 2, 3
and 4(a), (d) and (g). We analyze how the elasticity of these
local structures can be estimated, and discuss how they can
contribute to the emerging elastic properties of the gel network.

4. Elasticity of local structural elements and their
contribution to the gel network elasticity

We now consider the specific set of parameter values
B = 67.27, θ = 65◦ and w = 0.30. This set has been used in

various other works to produce gels with open network struc-
tures as demonstrated above, also comparing dynamics and
mechanical response with experiments [24, 25, 35–38, 47]. In
these gels, the building units are strands that are one particle
diameter thick (particles in strands have coordination number
z = 2) and are connected through branching points (that have
coordination number z = 3). Hence, here we examine how the
elasticity of the gel networks for this choice of the parameters
may result from the elastic properties of these local structural
elements.

Previous studies have shown that these structural elements
can contribute to both stretching and bending terms in the
overall linear and non-linear response of the gel network
[25, 36]. Similar to semiflexible filaments in biopolymer net-
works, stretching and bending contributions to elastic stresses
are comparable in the linear regime, whereas stretching
becomes prevalent in the non-linear regime [61].

4.1. Stretching and bending moduli of particle strands

To estimate the stretching modulus of the gel strands, let
us consider two bonded particles separated by a distance

6
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Figure 5. Potential energy contour plots for θ̄ = 65◦ and 75◦ in (a) and (b), corresponding simulation snapshots of gels, each at a volume
fraction φ = 7.5% in (c) and (d), and the distribution of coordination number z in (e) and (f). The distributions here are obtained by
averaging over 5 independently generated structures and the error bars are smaller than the bar thickness. The persistence length lp and
contour length lC of the strands for the above two angles θ̄ in (g). Here the data refer to kBT/ε = 10−2.

corresponding to the minimum of the attractive well in u2,
(rmin = ( 18

16 )1/2d ≈ 1.06d) (see figure 2(a)). To estimate the
stretching force constant (ks), we consider a stretch dr and,
within a harmonic approximation, compute the curvature

ks =

[
d2u2(r)

dr2

]
r=rmin

=
736ε

d2

(
d

rmin

)18

. (8)

The total energy of a strand made of N bonds and stretched
from its original length L0 = Nrmin by δL = Ndr is given by

Ustretch =
1
2

ksrmin(Nrmin)(δL/L0)2 (9)

=
1
2

ksrmin

∫
ds(δL/L0)2. (10)

By comparing the stretching energy typically used for a
semiflexible polymer strand [61, 62], the stretching modu-
lus of a strand in our microscopic model is σS = ksrmin =
736ε

d (d/rmin)17, giving us σS ≈ 273ε/d for the set of micro-
scopic parameters considered here. The stretching mode
becomes dominant at larger deformations when the bonds can
no longer reorient and need to be stretched out to accommodate
the deformation, contributing to the nonlinear elasticity.

Bending one of the particle strands also costs energy. For a
strand composed of Np particle bonds, the total bending energy

7
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Figure 6. (a) The potential energy profile for a three-particle strand is shown in blue line and the fit of the bending FENE potential in red
dashed line (b) The contour plot of the same energy Ust for different distances and angles with the color code representing the energy values.

Ust can be computed as:

Ust =

Np−1∑
i=1

kθ,st

2
(θi+1 − θi)2 (11)

=

Np−1∑
i=1

kθ,st

2

⎛⎝ ∂
̂

t
∂s

⎞⎠2

i

(rmin)2 =

∫
ds

kθ,strmin

2

⎛⎝ ∂
̂

t
∂s

⎞⎠2

,

(12)

where t̂ = ∂�r/∂s is the unit vector tangent to the strand and kθ,st

is the bending force constant of the strand. From this expres-
sion, the bending modulus of our strand is κst = kθ,strmin [61,
62].

For each segment of three particles, if the bond angle is
changed by δθ = π − θ from its equilibrium configuration to
a new configuration (see figure 3(a)), the energy of its new
configuration is:

Ust = 2u2(r) + u2 (2r cos
(
δθ/2

)
+ u3(r, r, π − δθ)

+ 2u3(r, 2r cos
(
δθ/2

)
, δθ/2). (13)

The curvature of this function provides the force constant kθ,st

in response to the bending of a three particle segment.
The energy profile of Ust(θ) is plotted in figure 6(a): it

is relatively flat in the middle and non-harmonic. The curva-
ture changes slowly close to the minimum (θ = 180◦) while it
grows rapidly for angles approaching θ = 140◦. This nonlin-
ear dependence can be well approximated by a finitely exten-
sible nonlinear elastic (FENE) type of potential of the form
Ust = − 1

2 KbΔθ2
max ln[1 − ( θ−θ0

Δθmax
)2], typically used for semi-

flexible polymers [63]. The fit shown in the plot (dashed line)
corresponds to the parameters θ0 = 180◦,Δθmax ∼ 68◦ and
Kb = 0.11ε, from which we obtain the microscopic bending
force constant kθ,st ≈ Kb ≈ 0.11ε and the bending modulus
κst ≈ 0.12εd.

Figure 6(b) shows the contour plot of Ust for a strand made
of three particles as in figure 3(a), varying the distance and
the bond angle of particle 3, with the color providing infor-
mation on the energy values. The plot shows that the energy

Figure 7. The energy profile for Ust (left axis) in blue solid line. The
bond angle distributions (right axis) for three-particle strand for
different thermal fluctuations. The dashed lines represent the
prediction from Boltzmann probability distribution.

profile is symmetric along the direction θ (as seen in figure
6(a)) but is instead asymmetric along r, indicating that the cur-
vature of Ust along θ, and hence the bending modulus, varies
with the particle separation, as a result of the strong overall
dependence of the microscopic interactions on interparticle
separation. We have tested these calculations using MD simu-
lations of three particle strand segments to compute the distri-
bution of bond angles obtained with different amount of ther-
mal fluctuations. The results are shown in figure 7 for different
ratios kBT/ε. With increasing thermal energy, the distributions
become wider and extend to smaller angles, but in all cases fol-
low a Boltzmann probability distribution for bending angles of
the form p(θ)dθ ∼ sin θ exp[−Ust(θ)/kBT]dθ.

4.2. Stretching and bending moduli of branching points

In the case of a branching point, a particle is bonded to three
other particles (with roughly the same bond lengths r) as repre-
sented in figure 8. Planar branching configurations are shown
in figures 8(a) and (b). The case of a non-planar branching

8
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Figure 8. (a) Planar branching point: the particle labeled 1 at the center is a branching point, and it is bonded to three other particles 2, 3 and
4 with all at a distance r. (b) Representation of the distances and angles for the calculation of energy. (c) 3D representation of planar and non
planar branching points: the four light green particles lying on XY-plane form a planar configuration. The three green particles and a dark
green particle form a non-planar configuration. The position of the dark green particle is represented in polar coordinates (r, θ,ϕ).

point is illustrated in figure 8(c). Here four particles shown
as light green spheres initially form a planar configuration in
the XY plane. The configuration becomes non-planar when the
particle labeled 2 moves to the position represented by the dark
green sphere and the thicker bond. This out-of-plane position
can be expressed in terms of polar coordinates (r, θ,ϕ), where
r is the radial distance, θ the polar angle and ϕ the azimuthal
angle. The potential energy of a branching configuration can
be expressed in terms of distances and angles labeled in figure
8(b) as a sum of u2 and u3 terms as: Ubr = U2,br + U3,br. The
total u2 potential is computed for all interaction pairs:

U2,br = 3u2(r) + u2(r1) + u2(r2) + u2(r3) (14)

with the following distances

r1 = 2r sin

(
θ1

2

)
, r2 = 2r sin

(
θ2

2

)
, r3 = 2r sin

(
θ3

2

)
(15)

Let us consider first the case of a planar branching point as in
figure 8(b), so that θ3 = 2π − (θ1 + θ2). To compute U3,br, we
need to consider the total u3 potential for a given triangle by
taking the u3 terms from equation (5). In such case, the total u3

potential is the sum of contributions from three small triangles
formed by the particles 1–2–3, 1–3–4 and 1–2–4, and a larger
triangle formed by particles 2–3–4 as follows:

U3,br = u3(r, r, θ1) + u3(r, r, θ2) + u3(r, r, θ3)

+ 2u3(r, r1, θ′1) + 2u3(r, r2, θ′2) + 2u3(r, r3, θ′3)

+ u3(r1, r2, θ′1 + θ′2) + u3(r1, r3, θ′1 + θ′3)

+ u3(r2, r3, θ′2 + θ′3) (16)

with distances and angles for a planar branching point:

ri = 2r sin

(
θi

2

)
, θ′i = (π − θi)/2, i = 1, 2, 3. (17)

Using equations (14)–(17), the resulting potential Ubr is there-
fore only a function of three variables r, θ1 and θ2. It is com-
puted as a function of the angles θ1 and θ2 by fixing the dis-
tance r = rmin in order to generate a 3D plot in figure 9(a)
and a contour plot, with the color code representing the poten-
tial energy values, shown in figure 9(d). These plots indicate
that the minimum of the potential energy depends on the com-
bination of θ1 and θ2 with the global minimum at θ = θ1 =
θ2 = 120◦. The energy profile along the diagonal θ1 = θ2 =
120 + θ is shown in figure 9(b), it is approximately harmonic
and the microscopic bending force constant can be estimated
from the curvature at the minimum of the well. The energy pro-
file is also dictated by the distance r and varies asymmetrically
as shown in figure 9(e).

We estimate the effective response of a planar branching
point to bending by assuming that the two angular degrees of
freedom in a planar branch respond in a manner similar to two
springs in series, so that their combination is dominated by the
softest of the two. In this approximation, the effective bending
force constant is given by the sum of the inverse of the two
spring constants along the principal directions of the Hessian
Hi j = ∂θi∂θ jUbr(θ1, θ2). That is, we calculate k−1

θ,br = 1/H11 +
1/H22 using a discretization along two directions θ1 and θ2 in
figure 9(a) as follows:

k−1
θ,br =

(
Ubr(r, θ1 + δθ1, θ2) + Ubr(r, θ1 − δθ1, θ2) − 2Ubr(r, θ1, θ2)

δθ2
1

)−1

+

(
Ubr(r, θ1, θ2 + δθ2) + Ubr(r, θ1, θ2 − δθ2) − 2Ubr(r, θ1, θ2)

δθ2
2

)−1

(18)

with δθ1 = 0.01◦ and δθ2 = 0.01◦ the spacing between angles
on the calculation grid. The curvature is computed on the
grid from angles θ1 = θ2 = 115◦ to θ1 = θ2 = 125◦ in figure
9(a), and its value is determined to be kθ,br ≈ 5.44ε. The
bending modulus is then given by κbr = kθ,brrmin ≈ 5.77εd, a
value approximately 54 times higher than the bending mod-
ulus for a strand. These results suggest that increasing the

9
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Figure 9. Energy profiles for a branching point. (a) The total potential energy Ubr as a function of two angles θ1 and θ2 in a planar branching
point, with all the particle distances are fixed at r = rmin. (b) Ubr as a function of angle θ along the diagonal θ1 = θ2 = 120 + θ. (c) The
total potential energy Ubr in a non planar branching point, with all the particle distances fixed at r = rmin. (d) The total potential energy
contour for varying angle θ and distance r, for the planar case. (e) The contour of total potential energy Ubr as a function of two angles θ1
and θ2 in the planar case. (f) The contour of total potential energy Ubr as a function of θ and ϕ in a non planar branching point (with all the
particle distances fixed at r = rmin).

amount of branching points should dramatically increase the
gel modulus, as indeed found in simulations [36].

For non-planar branching configurations, particles are no
longer restricted to a single plane and the angles are not bound
by the constraint θ1 + θ2 + θ3 = 360◦. We can determine the
angle between each of the neighboring bonds in figure 8(c) in
terms of the angles θ and ϕ. Using the same convention for
angles and distances as in the planar case, the central angle
of a triangle formed by particles 3–1–4 is θ2. Considering
the center of the central particle 1 in the branching point at
the origin of the Cartesian coordinate system C1(0, 0, 0), we
can write the coordinates of the centers of the other parti-
cles in figure 8(c) as C4(r, 0, 0), C3(r cos θ2, r sin θ2, 0) and
C2(r sin θ cosϕ, r sin θ sinϕ, r cos θ). We can now express the
central angle of a triangle formed by the particles 2–1–3 in
terms of (θ, ϕ) as θ1 = cos−1(sin θ cos(θ2 − ϕ)). Similarly for
the triangle 2–1–3, we obtain θ3 = cos−1(sin θ cosϕ). This
allows us to determine all the angles and distances in each of
the triangles. Finally, the total energy of a non-planar branch-
ing point in equations (14) and (16) is a function of only θ2, θ
and ϕ. In figure 9(c), we plot the total potential energy Ubr as a
function of θ and ϕ for θ2 = 120◦. The potential is asymmetric
along the θ and ϕ directions and the minimum of the poten-
tial is at θ = 90◦ and ϕ = 240◦ which corresponds to a planar
branching point (see figure 9(f)). We compute the energy sur-
face curvature from figure 9(c) as done for the planar branching
point and find the curvature along θ to be knp

θ ≈ 0.66ε, and
along ϕ to be knp

ϕ ≈ 10.88ε. We combine again these two cur-
vatures as springs in series to obtain knp

br ≈ 0.62ε. All bending
constants estimated for the different types of local structures
are summarized in table 2.

Table 2. Estimated bending constants for different local
structures.

Local structure Symbol Estimated value

Strand kθ,st 0.11 ε
Planar branching point kθ,br 5.44 ε
Non-planar branching point knp

θ,br 0.62 ε

4.3. Gel elasticity

We now complement the insight obtained from the energy pro-
files for the different local structures (strands and branching
points) with the one obtained from MD simulations of gel net-
works for the choice of parameters of interest here, which cor-
respond to a gel made of one particle thick strands connected
by branching points.

All calculations and estimates made in sections 4.1 and
4.2 correspond to the elastic properties of isolated strands or
branching points. In the simulations, we can investigate instead
how the bond angle distributions change for strands (coordi-
nation number z = 2) and branching points (z = 3) that are
embedded in gel networks where they experience topological
constraints due to the fact that they are connected to each other
and coupled across the network. In figure 10(a), we see that the
bond angle distribution for the strands changes significantly
with the solid volume fraction φ of the gel network, with a
peak that shifts to smaller angles with increasing φ. Hence,
when connected in the network, the bending stresses expe-
rienced by the strands can be very different. In figure 10(b)
we show the distributions of bond angles obtained from the
branching points of the gel network in the MD simulations.
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Figure 10. (a) The distribution of bond angles for an isolated strand and for strands in networks at different volume fractions φ. (b) Main:
the distributions of bond angles that correspond to the branching points. Inset: the distribution of sum of three angles at a single branching
point where the sum equal to 360◦ corresponds to a planar branching point.

The distributions of angles over different branching points is
obtained in terms of the sum of all three angles formed at
the central particle, shown in the inset of figure 10(b). The
sum equal to 360◦ corresponds to planar configurations. We
can see that the fraction of non-planar configurations increases
with increasing the gel volume fraction and has stronger tails
for sum of angles smaller than 360◦ for φ = 0.15. These dis-
tributions are always strongly peaked at θ = 120◦, indicating
that most branching points configurations can be well cap-
tured by the simple planar approximation at low enough vol-
ume fractions. The tails of these distributions, however, clearly
widen for gels at higher particle volume fractions, which also
correspond to an increase of the density of branching points
[36]. The data at the highest φ considered is clearly distinct.
The changes with φ in the two sets of distributions plotted in
figure 10 indicate that increasing the particle volume fractions
and density of branching points introduces stronger constraints
on the angles of the local structures that compose the gels. The
constraints are mainly topological in nature, i.e. they emerge
from the topology and connectivity of the gel network rather
than from the direct steric or bonding interactions between the
particles in each elements. These findings suggest that, for both
strands and branching points, displacements and fluctuations
must be increasingly hindered and correlated upon increasing
the gel volume fraction. Such effects should have an impact on
the gel elasticity, suggesting that the network elasticity can not
be anymore obtained just from that of the isolated structural
elements.

To estimate the different contributions of the bending elas-
ticity of the isolated structural elements to the total elasticity
of the network, we can consider, in a first approximation, that
the contribution of branching points is given by their elas-
tic energy per unit volume, and is obtained as a discrete sum
over the different angles in both the planar branching and non-
planar branching points. Therefore, we sum over the angle
distributions (figure 10(b)) to obtain

Kbr =
1

2V

∑
θ

[nθkθ,br(θ − θ0)2 + nnp
θ knp

br (θ − θ0)2], (19)

where kθ,br = 5.44ε is the bending force constant for a planar
branching point and knp

br = 0.62ε for the non-planar branching
points (see table 2), θ0 is the position of the peak in the distribu-
tion, nθ and nnp

θ are the counts for each angle θ respectively in a
planar and non-planar case and V is the volume of the simula-
tion box. We also estimate the bending elasticity contribution
from the strands using the bond angle distributions in figure
10(a). For each bond angle θ, if there are nθ three-particle seg-
ments in the strands from which we collect the distribution, the
elastic energy density of the strands is obtained by summing
over the distribution as

Kst =
1

2V

∑
θ

nθkθ,st(θ − θ0)2, (20)

where kθ,st = 0.11ε is the bending force constant for three-
particle strands obtained from the energy profile in figure 6(a),
and θ0 = 180◦ is the angle corresponding to the minimum of
the same energy profile. Finally, we also consider the total
elastic contribution from strands and branching points in the
limiting cases of the two springs of moduli Kst and Kbr either
in parallel giving Kp

total = Kst + Kbr or in series with 1/Ks
total =

1/Kst + 1/Kbr.
The comparison between the plateau modulus obtained

from the linear viscoelastic response of the gels [36] and the
estimates of the elastic energy density obtained from strands
and branching point is shown in figure 11, as a function of
the solid volume fraction in the gels. The plateau moduli vary
in the range G0 ∼ [10−4–1]ε/d3, which, for colloidal parti-
cles with d ∼ 100 nm and ε ∼ 10kBT would correspond to
G0 ∼ [5 × 10−3–50] Pa, in relatively good agreement with
typical values in experiments [6, 11, 38, 44, 64, 65]. We can
see that the total estimated elastic energy density is largest
when the contributions from strands and branching points are
combined as two springs in parallel Kp

total and smallest when
they are connected in series Ks

total. For all volume fractions, the
main contribution to the modulus seems to be the one of the
gel strands, which can be understood by considering that the
strands are the majority component of the gel and that their
bending costs less energy than for the branching points, hence
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dominating the linear response of the system. At low enough
volume fractions, the bending energy of the strands seems to be
enough to make up for the macroscopic behavior of the mate-
rial. Upon increasing the volume fraction, however, it becomes
clear that, while the contribution of the branching points is still
lower in magnitude, they play a leading role: the dependence
of the elastic modulus of the gels on the volume fraction is
much stronger than the one of the elastic energy density due to
the strands bending and seems to follow the same dependence
of the bending energy density of the branching points. While
the bending of the strands may be the main source of elastic-
ity, the contribution of the branching points increases dramati-
cally because, with increasing the volume fraction, not only the
amount of branching point increases but also the connections
between them (and hence their coupling) become important.
The effect of feedback and coupling of the local structures is
obviously not contained in the estimates of the elastic proper-
ties of the isolated element contributions. The comparison in
figure 11 suggests that when we estimate the modulus by just
summing up, as independent, the contributions of strands and
branching points in the gel, we cannot account for the modulus
actually measured in the viscoelastic tests. Only at low enough
volume fraction are the two estimates close, as it is reason-
able to expect. The same elastic contributions, obtained from
isolated elastic elements can be mechanically combined in dif-
ferent ways in the gel network. For example, if we combine
the different elastic contributions of the elastic elements (Kst

and Kbr) as all springs in parallel or all in series, we obviously
obtain very different values of the elastic modulus, either com-
pletely dominated by the strands or by the branching points
stiffness (see figure 11). This simple example indicates how
the modulus of the network can depend strongly on the way the
different elastic elements are combined through the network
architecture. However, the specific combination correspond-
ing to a certain network architecture is simply not known, nor
there is an obvious way to predict it, because of the disorder
and heterogeneities.

The results in figure 11 show how the single components we
have identified in the gel networks are in fact not independent
and they can only be approximated as such in the limit of very
dilute and tenuous gels, i.e. at low enough φ. With increas-
ing φ, not only there are more branching points, but also the
way they are distributed and constrained by the network topol-
ogy is different, as indeed indicated by the distribution of bond
angles in figures 10(a) and (b). Hence the missing contribu-
tion to the modulus must be the coupling between the different
components through the network architecture, that can only
be neglected when the gel is sufficiently dilute and its struc-
ture sufficiently tenuous. The data in figure 11 also suggest
a power law dependence of the various contributions and of
the gel elastic modulus on the particle volume fraction (with
the caveat that our range of volume fractions here is relatively
limited). Such dependence is quite common in colloidal gels
although exponents reported in experiments are often between
∼ 3–4 [1, 15, 66–70] and usually associated with fractal struc-
tures. The gel structures considered here are not self-similar
and the values we find are closer to those reported in [71–74]
corresponding to quite higher values of the exponent.

Figure 11. Shear modulus of the gel networks measured from linear
oscillatory rheology as a function of the volume fraction φ
(squares). The value reported here corresponds to the low frequency
plateau obtained from the viscoelastic spectrum measured on 3
independently generated samples. The triangles symbols correspond
to the contribution of respectively strands (up) and branching points
(down), estimated using their bending moduli and the distribution of
angles obtained from the simulations. The circle and diamond
symbols correspond to the total contribution from the combination
of strand and branching point contributions as two springs in series
and parallel respectively.

5. Conclusions

Particle contacts in soft particulate gels can be dominated
by surface roughness, sticky patches or other surface hetero-
geneities that modify the local energy profiles of the aggre-
gated structures. The complex nature of these contacts can
therefore play a role in the gel morphology and ultimately
affect the gel mechanics, for example introducing an effective
resistance to bending of the bonds between particles or of parts
of the gel structure. To capture these features, we have pro-
posed a class of effective interactions models that include, in
addition to the usual short range attractive interaction term typ-
ical of gelling colloidal suspensions, a three-body term which
depends on the angle between bonds departing from a central
particle and introduces bending costs in the elastic energy of
particle aggregates. These interactions are expressed in a math-
ematical form that is computationally convenient and allows
for large scale simulations.

The different gels formed in the numerical simulations have
helped us elucidate how different model parameters control the
formation of different types of particles aggregates, leading
to a range of gel morphologies. Varying the model parame-
ters, therefore, we can span from gels made of thin strands
connected through branching points to gels featuring thick
branches and large pores.

For gels made of semi-flexible strands connected by
branching points, we have computed bending costs for both
these types of elastic elements directly from the microscopic
interactions. By comparing our analytical calculations with the
gel plateau moduli obtained through linear viscoelastic tests,
we gain new insight into how these distinct elastic elements
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contribute to the emerging gel elasticity. Our calculations and
numerical simulations indicate that the mechanical coupling
of strands and branching points across the network, which is
determined by the network topology and connectivity, dom-
inate the dependence of the gel modulus on gel density or
particle volume fraction.
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