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ABSTRACT
Hardware accelerators built with SRAM or emerging memory de-
vices are essential to the accommodation of the ever-increasing
Deep Neural Network (DNN) workloads on resource-constrained
devices. After deployment, however, the performance of these ac-
celerators is threatened by the faults in their on-chip and off-chip
memories where millions of DNN weights are held. Different types
of faults may exist depending on the underlying memory technol-
ogy, degrading inference accuracy. To tackle this challenge, this
paper proposes an online self-test framework that monitors the
accuracy of the accelerator with a small set of test images selected
from the test dataset. Upon detecting a noticeable level of accuracy
drop, the framework uses additional test images to identify the
corresponding fault type and predict the severeness of faults by
analyzing the change in the ranking of the test images. Experi-
mental results show that our method can quickly detect the fault
status of a DNN accelerator and provide accurate fault type and
fault severeness information, allowing for subsequent recovery and
self-healing process.

CCS CONCEPTS
• Hardware → Self-checking mechanisms; Error detection
and error correction; System-level fault tolerance.
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1 INTRODUCTION
Deep Neural Network (DNN) has become the go-to solution for
many real-world applications, such as face recognition, object de-
tection, disease classification, and self-driving vehicles. Most DNNs
maintain a tremendous number of weights and perform intensive
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convolutional operations during inference, which are computa-
tion/memory intensive and energy-hungry. To accommodate DNN
applications on resource-constrained edge devices, many DNN ac-
celerators have been developed, including both traditional ASIC
and FPGA-based accelerators [23] as well as emerging processing-
in-memory (PIM) accelerators [18].

When deployed on a hardware accelerator, the accuracy of the
DNN model is challenged by various types of faults in the underly-
ing on-chip and off-chip memories. On one hand, traditional SRAM
and DRAM are facing elevated levels of transient and intermittent
faults due to their shrinking feature size which accentuates the
impact of process variation, voltage and temperature fluctuation,
and in-progress wear-out. On the other hand, emerging PIM ac-
celerators tend to leverage non-volatile memories (NVM), such as
Phase Change Memory (PCM), Resistive RAM (RRAM), and Spin-
Transfer Torque RAM (STT-RAM), which also exhibit high levels
of faults due to immature fabrication, imprecise programming, pro-
cess variations, and aging. These faults together result in temporary
or persistent variations in the well-trained DNN weights, which
noticeably degrade the accuracy of the DNN model if they cannot
be detected and corrected in time.

To tackle the aforementioned fault-induced accuracy drop, it
is desirable to monitor the health of the hardware accelerator af-
ter deploying the DNN model on it. Unfortunately, this cannot
be achieved by defect-aware remapping or retraining [3, 15, 21],
which are designed to tolerate permanent detects before deploying
the DNN model. Error correction codes (ECC) or checksums are
also not preferable, as they add non-trivial overhead of hardware,
energy, and timing to the accelerator. To reduce such overhead, one
possibility is to develop a few test inputs whose inference results
are sensitive to the faults in the underlying accelerator [14, 16].
Including more test inputs can potentially increases test accuracy,
but imposes more test overhead. However, previous work [14, 16]
fall short of analyzing the impact of test size and the sensitivity of
these test images to different fault types and rates.

Unlike previous work which only checks whether an accelerator
is faulty or not [14, 16], in this work we propose a comprehensive
self-test framework which adopts a two-stage test and diagnosis
process and offers three functions: fault detection, fault type iden-
tification, and fault severeness prediction. We propose three ap-
proaches that select different test images for these functions. For
fault detection, we select images that are generally sensitive to dif-
ferent types of faults, whereas for fault type identification, we select
images most sensitive to a specific type of fault. For fault severeness
prediction, we select images whose output ranking is sensitive to
the fault rate. We perform comprehensive experimental studies on
the quality of the three types of test images, and further examine
the impact of test data size on test accuracy and test overhead. The
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proposed self-test framework is well suited to resource-constrained
accelerators as it requires no hardware support, imposes minimum
test overhead, and targets the most representative quantization
levels (8-16 bits) of DNN accelerators.

The rest of this paper is organized as follows: Section 2 briefly
reviews the related work on DNN accelerators, focusing on fault
tolerance and testing. Section 3 describes the proposed self-test
framework as well as the three test image selection approaches.
Section 4 presents the evaluation setup and results, while Section 5
concludes the paper.

2 RELATED WORK
DNN accelerators are susceptible to various types of faults in their
on-chip and off-chip memories where millions of DNN weights
are held. Traditional SRAM and DRAM suffer from faults and de-
fects caused by Electro-Migration (EM), Time-Dependent Dielectric
Breakdown (TDDB), Negative Bias Temperature Instability (NBTI),
Hot-Carrier Injection (HCI), etc [5]. The emerging NVMs used by
PIM accelerators also suffer from high levels of faults [2, 12, 22]
due to immature fabrication, imprecise programming, process vari-
ations, and aging. For instance, programming of an RRAM cell does
not set the conductance to the expected value, but rather on a nor-
mal distribution within the objective range [1]. Moreover, process
variations make certain cells weaker than the others initially, more
sensitive to drifting and thermal noise, or more limited by retention
time or endurance [6]. These faults can accumulate to a high level,
leading to a noticeable drop in DNN model accuracy [8, 13].

Recently researchers started to investigate errors in DNN accel-
erators. One group of work identifies important weights and relies
on remapping and/or retraining process to prevent these weights
from being mapped to faulty cells [3, 15, 21]. These techniques are
mostly designed to tolerate permanent detects in the accelerator
before deploying the DNN model onto it. They detect faults by
writing a value to a cell and reading it back [10, 20], which de-
stroys the original weight value in the cell and hence cannot be
used for detecting transient or intermittent errors when the accel-
erator is in-use. Another set of previous work generates a small
set of testing images that can be utilized for fast fault detection
during the inference phase. For example, [14] proposes adversarial
example testing that can detect soft errors using a set of adver-
sarial images, generated by adding perturbations to the original
image. While effective, this method is dataset-specific and imposes
extra overhead for generating adversarial images. The work most
related to this work is [16], which selects from the original test
dataset a set of images with less-confident prediction (based on the
logit value of the confidence of output classes), denoted as corner
data. However, the work does not analyze the sensitivity (i.e., detec-
tion capability) of the selected test set to different fault types and
different fault rates. In comparison, this work presents three test
image selection approaches for different purposes of fault detection,
fault type identification, and fault rate estimation. Our work also
needs a much smaller test set than [16], making it more suitable to
resource-constrained accelerators.

Compared to fault detection, fault rate estimation is a much more
challenging task. In [7], it is observed that in a faulty network, not
only the accuracy drops, but many test images are misclassified as

the same label. A label-stuck method is then proposed to estimate
the fault rates. Our work differs from [7] in that it checks not the
labels but the ranking of the output classes to determine how severe
the faults are and how urgent the recovery is needed.

3 PROPOSED SELF-TEST FRAMEWORK
This section first presents a functional overview of the proposed
self-test framework, then explains the three different test image
selection approaches, and finally gives the fault detection, fault
type identification, and fault severeness prediction algorithms.

3.1 Framework Overview
The proposed self-test framework leverages the fundamental in-
ference capability of a neural network accelerator. It employs a
small set of test images whose inference results of the fault-free
network are known a priori. By running these images through the
accelerator, its healthiness can be determined quickly.

Fig. 1 presents an overview of the proposed framework, com-
posed of two major parts, namely, test image selection and self-test
procedure. Test image selection is performed once the network is
trained and is carefully designed to down select the network’s orig-
inal test images to generate three small test sets, namely, general,
fault type specific, and fault rate sensitive test images. These test
sets are stored in the accelerator to be used during the self-test
procedure. To minimize test overhead, each set only contains a very
small number of images. The self-test procedure is periodically
activated when the accelerator is in use, i.e., after deploying the
well-trained neural network model. As Fig. 1 shows, the procedure
leverages the general test images to perform fault detection. If the
top-1 classification result of any image changes, the accelerator is
considered faulty and the following two functions are activated to
obtain more specific fault information: Fault type identification aims
to predict the most possible fault type (among𝐾 target types), while
Fault severeness prediction compares and analyzes the ranking of
image output classes in the fault-free and faulty models to predict
fault severeness.

The output of the self-test procedure indicates whether the accel-
erator is faulty and predicts the fault type and severeness. As Fig. 1
shows, a fault-free accelerator continues its normal operation until
the next test cycle, while a faulty accelerator utilizes the predicted
fault type and severeness to invoke a proper recovery plan. Such
information is vital since not all types/severeness of faults are fixed
in the same way. For example, some types of faults can only be
fixed by writing the correct value back to the memory cell while
the negative impact of other faults (e.g., resistance drifting in PCM
and RRAM) can be mitigated via adding/subtracting a value from
the computation outcome. In terms of fault severeness, a relatively
healthy accelerator (with low fault rates) can go through an error
correction procedure leveraging ECCs in the memory (if available)
to ensure its correct operation, while an accelerator whose fault
rate exceeds ECC capability would demand reprogramming of all
its memory cells.

3.2 Test Image Selection
To minimize test overhead, the self-test procedure is designed to
be relatively straightforward and the test set size is kept as small
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Figure 1: Overview of proposed self-test fault detection and diagnosis framework

as possible. The accuracy of the self-test procedure depends on the
quality of the test images. To select the most suitable images for
each of the three test functions, our framework follows a set of
different rules and selects test images in three steps: (1) mimicking
the behavior of faulty accelerators with a set of synthetic fault maps
that are randomly generated following different combinations of
fault models and fault rates; (2) evaluating the original test set (e.g.,
10,000 images) on these faulty accelerators and collecting their
classification results, (3) interpreting the classification outcome by
introducing and utilizing the notion of sensitivity.

Definition 3.1. Given a trained neural network model with 𝑇
images in the original test dataset, the sensitivity of test image 𝐼 to
fault type 𝑓 is formulated as:

(𝑆𝑓 )𝐼 = 𝑁𝑑𝑒𝑣/𝑁𝑚𝑎𝑝𝑠 (1)

where 𝑁𝑚𝑎𝑝𝑠 is the number of synthetic fault maps generated1 and
𝑁𝑑𝑒𝑣 is the number of times that image 𝐼 changes its classification
results (from the fault-free network). Since 𝑁𝑑𝑒𝑣 ≤ 𝑁𝑚𝑎𝑝𝑠 , we have
0 ≤ (𝑆𝑓 )𝐼 ≤ 1.

General test images: As the primary goal of this set is to
quickly check whether the accelerator under test is faulty or not,
it should contain a minimum set of images that are sensitive to all
𝐾 different fault types. To this end, we define a General Score (𝐺𝑆)
to quantitatively measure the general sensitivity of an test image 𝐼
from the original test dataset 𝑇 :

𝐺𝑆𝐼 =
𝐾∑
𝑓 =1

(𝑆𝑓 )𝐼 − 𝜎𝐼 (2)

1If the accelerator is exposed to 𝐾 potential fault types and 𝑛 synthetic fault maps are
randomly generated for each fault type, then we have 𝑁𝑚𝑎𝑝𝑠 = 𝐾 × 𝑛.

where 𝜎𝐼 is the standard deviation of the sensitivity values of image
𝐼 to different fault types, as shown below:

𝜎𝐼 =

√√√
1

𝐾 − 1

𝐾∑
𝑓 =1

|(𝑆𝑓 )𝐼 − 𝜇 |2, 𝜇 =
1
𝐾

𝐾∑
𝑓 =1

(𝑆𝑓 )𝐼 (3)

By subtracting 𝜎𝐼 , the 𝐺𝑆 score favors images that have similar
high sensitivity scores across all fault types. The general test image
set is created by selecting images with the highest 𝐺𝑆 scores from
the original test dataset 𝑇 .

Fault type specific test images: The primary goal of this set is
to pinpoint the most likely fault type out of 𝐾 possible candidates.
Again, the image selection process is based on the sensitivity scores.
An image 𝐼 suitable for pinpointing fault 𝑓 should have a high
sensitivity score (𝑆𝑓 )𝐼 but low scores (𝑆 𝑗 )𝐼 for any other fault type
𝑗 . Specifically, we use two thresholds to filter out suitable images:
𝑇ℎ𝑓 and𝑇ℎ 𝑗 . An image that is sensitive to fault 𝑓 and insensitive to
fault 𝑗 should have 𝑆𝑓 ≥ 𝑇ℎ𝑓 and 𝑆 𝑗 ≤ 𝑇ℎ 𝑗 . The images that fulfill
these two conditions can be ranked based on a Type Specific Score
(𝑇𝑆𝑆):

(𝑇𝑆𝑆𝐼 )_𝑓 =
(𝑆𝑓 )𝐼 −𝑇ℎ𝑓
1 −𝑇ℎ𝑓

+
∑
𝑗 ̸=𝑓 (1 − (𝑆 𝑗 )𝐼 /𝑇ℎ 𝑗 )

𝐾 − 1
(4)

The first part of the 𝑇𝑆𝑆 score measures the sensitivity of image
𝐼 to fault type 𝑓 . Since𝑇ℎ𝑓 ≤ (𝑆𝑓 )𝐼 ≤ 1, the value of the first part is
in the range of [0, 1]. The higher the (𝑆𝑓 )𝐼 , the higher the𝑇𝑆𝑆 score.
In comparison, the second part of Eq. (4) measures the sensitivity
of image 𝐼 to the other fault types. Since 0 ≤ (𝑆 𝑗 )𝐼 ≤ 𝑇ℎ 𝑗 , the value
of the second part is also in the range of [0, 1]. The lower the (𝑆 𝑗 )𝐼 ,
the higher the 𝑇𝑆𝑆 score. By combining the two parts, Eq. (4) is
effective in filtering out test images specific to a given fault type,
i.e., those with the highest 𝑇𝑆𝑆 scores.



ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Fanruo Meng, Fateme S. Hosseini, Chengmo Yang

dog

Original Low fault

1

2

3

4

5

bird

High fault

cat

dog

bird

Figure 2: Impact of fault rate on output ranking change

The size and quality of the fault type specific test sets are largely
affected by the two thresholds 𝑇ℎ𝑓 and 𝑇ℎ 𝑗 . While the ideal case
desires higher 𝑇ℎ𝑓 and lower 𝑇ℎ 𝑗 values, in reality the sensitivity
scores (𝑆𝑓 )𝐼 and (𝑆 𝑗 )𝐼 are usually positively correlated and hence,
the two thresholds should be adjusted in the same direction. In-
creasing 𝑇ℎ𝑓 and 𝑇ℎ 𝑗 will make the test set more specific, while
decreasing 𝑇ℎ𝑓 and 𝑇ℎ 𝑗 will make the set more sensitive2.

Ideally, for𝐾 possible fault types,𝐾 subsets of test images should
be filtered out, each containing images that are only sensitive to a
specific fault type. Our study shows that this is feasible for most
fault types except for random faults. As random faults have no
particularity, images that are sensitive to random faults are also
sensitive to other faults. As a result, our framework generates 𝐾 − 1
sets of test images each targeting non-random types of faults. If no
specific fault type is detected, the fault type is classified as random.

Fault rate sensitive images:When the fault rate in the acceler-
ator increases, it is expected that more images will be misclassified.
However, it is extremely costly and time-consuming to store the
original test set𝑇 in the accelerator and run each test image to mea-
sure the fault rate. Instead, we develop a test image down selection
approach based on rank distribution diversity check. The observation
is that a higher fault rate causes not only more severe accuracy drop
but also a more random guess among the possible output classes.
The change in output class rank is illustrated in Fig. 2. An image
labeled ‘cat’ is classified correctly in the fault-free network but
misclassified in the faulty networks. A small distortion in weight
values typically causes the image to be misclassified to an originally
higher-ranked label (e.g., ‘dog’). As the fault rate increases, how-
ever, the image can be misclassified into a lower-ranked class (e.g.,
‘bird’). The higher the fault rate, the more diverse the classification
outcome. To illustrate such correlation, Fig. 3 presents the deviation
in output class ranking of all the test images of CIFAR-10 dataset,
with 0.1% and 2% of random bit flips injected into the NN model
(16-bits). At a higher fault rate, the distribution of ranking moves
more towards the lower end, indicating that the faulty network is
more confused.

To filter out test images, we generate synthetic fault maps follow-
ing two different fault rates, 𝑙𝑜𝑤𝐹 and ℎ𝑖𝑔ℎ𝐹 (e.g., 0.1% vs 2%). For
each image, its top-1 label in the faulty network is found and the
corresponding rank in the original network is collected. An image
𝐼 is sensitive to fault rate changes if its rank (𝑅𝑙𝑜𝑤𝐹 )𝐼 is less than a
threshold𝑇ℎ𝑙 and its rank ((𝑅ℎ𝑖𝑔ℎ𝐹 )𝐼 is larger than a threshold𝑇ℎℎ .

2Test sensitivity is the ability to correctly identify those NN models with the fault type
(true positive rate), whereas test specificity is the ability to correctly identify those
without the fault type (true negative rate).
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Figure 3: Rank distribution of faulty outputs in the origi-
nal Cifar-Net classification. Column 𝑟 shows the number of
images classified by the faulty network as a particular class
whose rank in the original network is 𝑟 .

Algorithm 1 Self-Test Procedure
1: Apply general test images
2: if classification result of any image changed then
3: Accelerator is faulty
4: for all 𝑓 = 1 to 𝐾 − 1 (fault types) do
5: Apply test image of fault type 𝑓
6: if classification of 𝑡𝑓 % or more images changed then
7: add 𝑓 to accelerator major fault type
8: if accelerator major fault type is 𝜙 then
9: accelerator major fault type = default (random)
10: Apply fault rate sensitive test images
11: if Severe Score is higher than 𝑠ℎ𝑖𝑔ℎ then
12: Fault severeness = high
13: else if Severe Score is lower than 𝑠𝑙𝑜𝑤 then
14: Fault severeness = low
15: else
16: Fault severeness = medium
17: else
18: Accelerator is fault-free

The images that fulfill these two conditions can be ranked based
on a Rate Sensitive Score 𝑅𝑆𝑆 :

𝑅𝑆𝑆𝐼 = [𝑇ℎ𝑙 − (𝑅𝑙𝑜𝑤𝐹 )𝐼 ] + [(𝑅ℎ𝑖𝑔ℎ𝐹 )𝐼 −𝑇ℎℎ] (5)
For a given fault rate, typically 𝑛 different synthetic fault maps

are randomly generated. The scores (𝑅𝑙𝑜𝑤𝐹 )𝐼 and (𝑅ℎ𝑖𝑔ℎ𝐹 )𝐼 are the
average scores across all 𝑛 fault maps.

3.3 Self-test Procedure
With the three sets of test images selected following the approaches
described above, the proposed self-test procedure can be conducted
in three steps, shown in Algorithm 1. The algorithm begins with
evaluating the general test images on the accelerator. If the clas-
sification result of any of these images changes, the accelerator is
marked faulty, and the fault type identification and fault severeness
prediction functions are executed (lines 2-16). Otherwise, the algo-
rithm terminates by classifying the accelerator as fault-free (lines
17-18).

An accelerator diagnosed as “faulty” is evaluated by 𝐾 − 1 fault
type specific test images. For a fault type 𝑓 , if the classification
results of 𝑡ℎ𝑖𝑔ℎ% or more of its fault specific test images change
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than the other faults, 𝑓 is considered one of the accelerator’s major
fault type. On the other hand, if this condition does not hold for any
of the 𝐾 − 1 fault types, the accelerator’s fault type is predicted as
random (lines 4-9). Meanwhile, an accelerator diagnosed as “faulty”
is also evaluated with the selected fault rate sensitive test images.
For each image, the ranking of its top-1 label in the original network
is collected. For a set with𝑚 images, this gives a total number of
𝑚 ranking values. The severe score is defined as the sum of the
average 𝜇𝑚 and standard deviation 𝜎𝑚 of these𝑚 values:

𝑆𝑒𝑣𝑒𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 = 𝜇𝑚 + 𝜎𝑚 (6)

A higher severe score indicates that the change in output class
ranking is both more significant and more diverse, indicating higher
fault rates which probably demand more costly recovery process.
The severe score is compared with two thresholds 𝑠ℎ𝑖𝑔ℎ and 𝑠𝑙𝑜𝑤 to
classify the accelerator into low, medium, and high levels of fault
severeness (lines 10-16).

4 EXPERIMENTAL EVALUATION
4.1 Experiment Setup
The proposed self-test frameworkwas implemented in Keras [4] and
evaluated for CIFAR-10 [11] dataset which contains 50,000 training
and 10,000 testing images in 10 classes. To show the general applica-
bility of the proposed framework, we trained two different models,
Cifar-Net and VGG-16 on the CIFAR-10 dataset, which achieve a
top-1 accuracy of 78.28% and 99.32%, respectively. Since most DNN
accelerators utilize quantized weight values to eliminate expensive
floating-point arithmetic operations and reduce the model size, we
also quantized weight values to four different levels (8–16 bits) for
both CIFAR-Net and VGG-16. Each of the quantized models were
evaluated under three potential fault types:
Random: This models the impact of transient and persistent faults
on NN accelerators by flipping bits at randomly selected positions.
Each bit of each weight is given a predefined rate 𝑝 to be flipped.
Worst-case: This is designed to simulate fault injection attacks [17,
24] where the attacker intentionally causes the biggest damage. It
randomly selects weights according to a predefined rate 𝑝𝑚𝑠𝑏 , and
flips the most significant bit (MSB) of the selected weights.
Imprecise Programming & Drifting: This model simulates im-
precise programming and drifting of the weight values over time,
which are common errors in many emerging devices such as PCM
and RRAM [9, 19]. The drifted weight value 𝑤𝑑 is modeled with
a parameter 𝛽 which follows a Gaussian distribution identified by
standard deviation 𝜎 , as shown in Eq. (7). Imprecise programming
can be modeled with a zero 𝜇 and non-zero 𝜎 .

𝑤𝑑 = 𝑤 (1 + 𝛽), 𝛽 ∼ N (𝜇, 𝜎2) (7)

We performed two sets of fault injections. First, one set of syn-
thetic fault maps were generated for the purpose of test image
selection. Specifically, for random, worst-case, and drifting faults,
all the quantized network models were evaluated under 7 fault rates
with 𝑝/𝑝𝑚𝑠𝑏/𝜇 = {0.05, 0.1, 0.2, 0.5, 1, 2, 5}%. For each quantization
and fault rate combination, 20 different fault maps were randomly
generated to mitigate the influence of random variation. Then, an-
other set of synthetic fault maps were generated for evaluating the
quality of the selected test images. These fault maps followed a
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Figure 4: Fault detection accuracy (measured with false neg-
ative rate) vs model accuracy with different fault rates.

more diverse set of fault rates, ranging from 0.01% to 5%. For each
quantization and fault rate combination, 5 different fault maps were
randomly generated. Overall, a total number of 3×4×7×20 = 1680
fault maps were generated for selecting the three sets of test images,
while 3 × 4 × 9 × 5 = 540 fault maps were generated for evaluating
them.

4.2 Experimental Results
Fault detection: For both Cifar-Net and VGG-16, images with top
5–20 GS scores were selected for fault detection based on Eqs. (2)
and (3). They were evaluated with fault maps of 0.01% to 0.1% fault
rates, as it is more challenging to detect models with small fault
rates. Fig. 4 shows the accuracy trend and the false negative rates3
for different sizes of the test set (5–20 images). A larger test set
is expected to improve test accuracy (by reducing fault negatives)
while increasing test overhead. As Fig. 4(a) shows, when the fault
rate is larger than 0.02%, the proposed general test set is more
accurate than the CPT-50 set proposed in [16]4. When the fault rate
is 0.01%, the test set needs to include 20 images to achieve low fault
negative rate. This, however, does not mean that the proposed test
images are insensitive to accuracy drop, as the inference accuracy
only drops negligibly at that rate. The results of VGG-16 in 4(b)
show similar trends: by enlarging the test set, the false negative
rate decreases from 0.05 to 0.02. Overall, a test set of 15 images is a
good option for balancing false negative rate and test cost, and its
size is only 30% of the CTP-50 set [16].
3A false negative occurs if none of the selected test images is misclassified.
4We compared to CPT-50 for Cifar-Net but not VGG-16 as only the results of Cifar-Net
were reported in [16].
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Table 1: Confusion matrix of Cifar-Net fault diagnosis
Real/Predicted Random Drifting Worstcase

Random 0.38 0.46 0.15
Drifting 0 1 0

Worst-case 0.44 0.11 0.45

Table 2: Confusion matrix of VGG-16 fault diagnosis
Real/Predicted Random Drifting Worstcase

Random 0.6 0.09 0.31
Drifting 0.18 0.54 0.28

Worst-case 0.33 0.04 0.63
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Figure 5: Fault severeness prediction for Cifar-Net

Fault type identification: We selected two different sets of
fault type specific images, one for drifting and one for worst-case,
each containing 5 images. The corresponding thresholds were set as
𝑇ℎ𝑓 = 0.8 and 𝑇ℎ 𝑗 = 0.6, while the fault rate covered a large range
of 0.05% to 5%. We conducted the diagnosis procedure following
Algorithm 1. The confusion matrices are shown in Tables 1 and 2.
Each row represents a real fault type, while each column represents
a predicted fault type. As shown, the diagnosis accuracy of Cifar-Net
and VGG-16 are respectively 61% and 59%. Among the three fault
types, random and worst-case faults are less distinctive and about
33-40% of fault maps are mis-classified as one another. The drifting
test set of Cifar-Net is more sensitive (i.e., few false negatives),
while the drifting test set of VGG-16 is more specific (i.e., few false
positives). The relatively low accuracy is due to the randomness in
generating the fault maps.

Fault severeness prediction: 5 images were selected based on
Eq. (5) to monitor the fault severeness of the accelerator, following
the method described in Algorithm 1. The prediction results are
shown in Fig. 5. When the fault rate is 0.05%, all the fault maps
are identified as low severeness. As the fault rate increases to 0.1%,
some fault maps are identified as medium/high severeness. When
the fault rate increases beyond 1%, the inference accuracy drops
to 10% which is equal to random guess accuracy, and the scores of
different output classes also become closer. As a result, the majority
of fault maps are identified as higher or medium severeness.

5 CONCLUSIONS
In this paper, we proposed a comprehensive self-test framework
integrating fault detection, fault type identification, and fault severe-
ness prediction for NN accelerators at run-time. We proposed three
algorithms to down select the original test datasets into three small
yet effective test image sets. We evaluated the effectiveness of our

selected test images and the proposed self-test framework on CIFAR-
10 dataset and two network topologies. With only 30 images, the
framework achieves high accuracy in fault detection and acceptable
accuracy in fault diagnosis and severeness prediction. Outcome of
the self-test framework can be used to guide the recovery process
of a faulty accelerator.

6 ACKNOWLEDGMENTS
This work is supported by Semiconductor Research Corporation
grant #2964.001 and National Science Foundation grant #1909854.

REFERENCES
[1] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov. 2012. High precision tun-

ing of state for memristive devices by adaptable variation-tolerant algorithm.
Nanotechnology 23, 7 (2012), 075201.

[2] C. Chen, H. Shih, et al. 2015. RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme. IEEE Trans. Comput. 64, 1
(2015), 180–190.

[3] L. Chen, J. Li, et al. 2017. Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar. In Design Autom. & Test in Europe
(DATE). 19–24.

[4] F. Chollet et al. 2015. Keras. https://github.com/fchollet/keras
[5] C. Constantinescu. 2003. Trends and challenges in VLSI circuit reliability. IEE

Micro 23, 4 (2003), 14–19.
[6] B. Feinberg, S. Wang, and E. Ipek. 2018. Making memristive neural network

accelerators reliable. Intl. Symp. High Perform. Comput. Archit. (HPCA) (2018),
52–65.

[7] Z. He, A. S. Rakin, et al. 2020. Defending and harnessing the bit-Flip based
adversarial weight attack. In Comput. vision and pattern recognition (CVPR).

[8] S. Hong, P. Frigo, et al. 2019. Terminal brain damage: exposing the graceless
degradation in deep neural networks under hardware fault attacks. In USENIX
Security Symp. (USENIX). 497–514.

[9] D. Ielmini, A. L. Lacaita, and D. Mantegazza. 2007. Recovery and drift dynamics
of resistance and threshold voltages in phase-change memories. IEEE Trans.
Electron Devices 54, 2 (2007), 308–315.

[10] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu. 2015. Modeling, detection, and
diagnosis of faults in multilevel memristor memories. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst. 34, 5 (2015), 822–834.

[11] A. Krizhevsky, V. Nair, and G. Hinton. 2010. CIFAR-10 (Canadian Institute for
Advanced Research). (2010). http://www.cs.toronto.edu/~kriz/cifar.html

[12] B. Li, Y. Wang, Y. Chen, H. H. Li, and H. Yang. 2014. ICE: Inline calibration for
memristor crossbar-based computing engine. In Design Autom. & Test in Europe
(DATE). 1–4.

[13] S. Li, D. Niu, et al. 2017. DRISA: A DRAM-based reconfigurable in-situ accelerator.
In Intl. Symp. Microarchitecture (MICRO). 288–301.

[14] W. Li, W. Wang, H. Li, and X. Li. 2019. RRAMedy: Protecting ReRAM-based
neural network from permanent and soft faults during its lifetime. In Intl. Conf.
Comput.-Aided design (ICCAD). 91–99.

[15] C. Liu, M. Hu, J. P. Strachan, and H. Li. 2017. Rescuing memristor-based neuro-
morphic design with high defects. In Design Autom. Conf. (DAC). 1–6.

[16] Qi. Liu, W. Wen, and C. Yang. 2019. Monitoring the health of emerging neural
network accelerators with cost-effective concurrent test. In Design Autom. Conf.
(DAC). 91–99.

[17] Y. Liu, L. Wei, B. Luo, and Q. Xu. 2017. Fault injection attack on deep neural
network. In Intl. Conf. Comput.-Aided design (ICCAD). 131–138.

[18] A. Shafiee, A. Nag, et al. 2016. ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. Comput. Archit. News 44, 3 (2016),
14–26.

[19] A. M.S. Tosson, M. Anis, and L. Wei. 2016. RRAM refresh circuit: A proposed
solution to resolve the soft-error failures for HfO2/Hf 1T1R RRAM memory cell.
In Great Lakes Symp. on VLSI (GLSVLSI). 227–232.

[20] A. J. Van de Goor and Y. Zorian. 1994. Effective march algorithms for testing
single-order addressed memories. Journal of Electronic Testing 5, 4 (1994), 337–
345.

[21] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang. 2017. Fault-tolerant training
with on-line fault detection for RRAM-based neural computing systems. InDesign
Autom. Conf. (DAC). 1–6.

[22] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y.
Xie. 2015. Overcoming the challenges of crossbar resistive memory architectures.
In Intl. Symp. High Perform. Comput. Archit. (HPCA). 476–488.

[23] C. Zhang, P. Li, et al. 2015. Optimizing FPGA-based accelerator design for deep
convolutional neural networks. In Intl. Symp. FPGAs (FPGA). 161–170.

[24] P. Zhao, S Wang, et al. 2019. Fault sneaking attack: A stealthy framework for
misleading deep neural networks. In Design Autom. Conf. (DAC). 1–6.

https://github.com/fchollet/keras
http://www.cs.toronto.edu/~kriz/cifar.html

