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Abstract
Over the last 10 years, learning analytics have provided educators with both dashboards
and tools to understand student behaviors within specific technological environments.
However, there is a lack of work to support educators in making data-informed design
decisions when designing a blended course and planning appropriate learning activities.
In this paper, we introduce knowledge-based design analytics that uncover facets of the
learning activities that are being created. A knowledge-based visualization is integrated
into edCrumble, a (blended) learning design authoring tool. This new approach is
explored in the context of a higher education programming course, where instructors
design labs and home practice sessions with online smart learning content on a weekly
basis. We performed a within-subjects user study to compare the use of the design tool
both with and without visualization. We studied the differences in terms of cognitive
load, controllability, confidence and ease of choice, design outcomes, and user actions
within the system to compare both conditions with the objective of evaluating the
impact of using design analytics during the decision-making phase of course design.
Our results indicate that the use of a knowledge-based visualization allows the teachers
to reduce the cognitive load (especially in terms of mental demand) and that it
facilitates the choice of the most appropriate activities without affecting the overall
design time. In conclusion, the use of knowledge-based design analytics improves the
overall learning design quality and helps teachers avoid committing design errors.

Keywords Designanalytics .Blended learning .Concept-level visualization .Knowledge-
based analytics . Authoring tool . Learning design . Smart learning content
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Introduction

Data analytics applied to education, especially in the form of learning analytics (LA),
has attracted the attention of learning technology researchers and practitioners over the
last ten years (Papamitsiou et al. 2020). Learning analytics allows instructors to
evaluate how students are learning within a learning context and provides them with
data-based evidence to improve the overall quality of the learning experience (Lockyer
and Dawson 2011; Joksimović et al. 2019). In comparison with educational data
mining, LA presents a more human-led mixed method orientation to explore and
inform upon educational data using several data analysis techniques, which goes
beyond data mining (Reimann 2016). As the field broadened, it has become customary
to recognize different categories of data analytics that can be relevant in the educational
domain and to distinguish each category by its targeted group of users or tasks. This
paper focuses on design analytics, which is one of the least explored areas within this
broad research field.

We adopt the definition of the term “design analytics” as the “metrics of design
decisions and related aspects that characterize learning designs” (Hernández-Leo et al.
2019). A learning design (LD) is an explicit representation of a lesson plan created by a
teacher (Persico et al. 2013). Authoring tools can assist teachers in the creation of
learning designs, which can lead to computational representations of the elements
within a learning design that can be automatically analyzed. Some representations are
generic or neutral, which are those that enable only some options for structural analysis
of a course (e.g. the number of tasks, time planned for a set of tasks, etc.). Other
representations are specific to pedagogical approaches or subject matter concepts and
enable a more detailed level of analysis. Analyses of these representations can support
teachers’ awareness and reflection about the accumulated decisions taken along the
learning process to inform pending decisions toward completion of the course designs
(Hernández-Leo et al. 2019).

This paper proposes an approach for fine-grained design analytics that focus on
visualizing critical metadata associated with smart learning content to support its
authoring. Our proposed visualization covers various aspects of metadata, such as the
type of learning content, the nature of knowledge supported, and a list of specific
knowledge concepts that a specific fragment of learning content seeks to reinforce. In
Albó et al. (2019), we carried out a first exploration of knowledge-based design
analytics with a group of ten participants from a single university. The number of
participants in the previous research was a limitation, as it was too small to draw
general conclusions. In this paper we have extended the study by doubling the number
of subjects and by diversifying the sample population (subjects from two different
universities and subjects with different cultural backgrounds). Moreover, we provide
more insights regarding users’ feedback analysis as well as complementary instruments
to gather more data from the participants’ performances (the use of a second post-task
questionnaire to evaluate the controllability, confidence, and ease of choice levels using
the system).

In this experimental study, we aim to explore the value of knowledge-based design
analytics of supporting instructors during the design process. Up to now, most studies
in the field of design analytics have mainly focused on analysing systems that provide
teachers with information at the course and activity levels (using a coarse-grained
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focus): information about the sequence/structure of the activities within the course,
types of learning tasks, learning goals, and use of learning spaces (Cross et al. 2012;
Villasclaras-Fernández et al. 2013; Laurillard et al. 2018; Martinez-Maldonado et al.
2017). While considerable efforts were spent on concept-level knowledge visualiza-
tions in the field of open learner modeling to help students in tracking their knowledge
and selecting relevant activities (Bull 2020; Guerra et al. 2018), very little is currently
known about whether (and how) a knowledge-based approach (using a fine-grained
focus) applied to design analytics could also serve by informing teachers during the
design of their courses, increasing their efficiency and precision in taking design-
decisions (e.g. facilitating the selection of the most appropriate activities to ensure that
all concepts related to a given topic or learning objective are covered). To provide new
insights into this topic, our research aims to study the differences of using versus not
using knowledge-based design analytics, in terms of instructors’ cognitive load, con-
trollability, confidence, easiness of choice, design outcomes, and user actions within
the system. We compare both conditions with the goal of evaluating the impact of using
design analytics during the decision-making phase of course design. Although this
study is contextualized in a programming course that uses smart learning content, it is
hoped that this research will contribute to a deeper understanding of how using
information (metadata) that characterizes (open) educational resources could generally
be used to support the teachers’ course-design process.

The structure of the paper is as follows. Section 2 provides a review of related work
about design analytics in learning design authoring tools, and open learner modelling
and navigation support for smart learning content. In Section 3, we explain what we
mean by knowledge-based design analytics and introduce its implementation in a
learning design authoring tool that supports teachers in selecting smart learning content.
Sections 4 and 5 present the design and results, and Section 6 details our conclusions
and some potential areas for future work.

Related Work

Design Analytics in Learning Design Authoring Tools

The term design analytics, at the intersection of LD and data analytics, was coined and
defined in the Analytics Layers for Learning Design (AL4LD) framework proposed by
Hernández-Leo, et al. (Hernández-Leo et al. 2019). The framework is built on existing
learning design tooling that includes features that align with the concept of design
analytics. In contrast to the term “learning analytics,” which is focused on measuring
learners’ behaviour and performance (Joksimović et al. 2019), design analytics mea-
sures the characteristics of the pedagogical intent in a learning design (Hernández-Leo
et al. 2019). These characteristics or data classes include the goals (i.e., objectives,
learning outcomes) of the design, which are usually framed using taxonomies (such as
competence frameworks, learning objectives taxonomies, local curriculum); types of
learning tasks (Sergis and Sampson 2017); social planes (individual, collaborative,
collective) (Dillenbourg and Hong 2008); places and tools suggested to complete the
tasks (Goodyear and Carvalho 2014); or the time expected for students to complete the
tasks.
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As with the broad desire of the artificial intelligence (AI) community for providing
transparency into decision-making processes, design analytics can be useful in provid-
ing awareness about the properties of the learning design; for example, to support the
authoring process. For instance, by monitoring the accumulated design decisions made
during the authoring of a learning design, design analytics can inform the pending
design decisions during the authoring process (Hernández-Leo et al. 2019). Also, in
alignment with proposals that connect learning design with learning analytics (Sergis
and Sampson 2017; Michos and Hernández-Leo 2020; Milligan et al. 2020), design
analytics can offer frameworks for interpreting learning analytics.

An example of design analytics is provided by Web Collage, which analyzes the
accumulated design aspects specified by the teacher when completing a template that is
based on a collaborative learning flow pattern (Villasclaras-Fernández et al. 2013).
With this analysis, the tool computes and visualizes alerts that point teachers to pending
actions needed to complete the design, as required by the design guidelines that
underpin the pattern (Villasclaras-Fernández et al. 2013).

The idea of learning design analytics can be also observed in the Activity or
Pedagogy Profile tool, which enables the creation of a bar chart representation to help
teachers describe the distribution of tutorials and directed study modules (Cross et al.
2012). The profile represents tasks across six activity types in a detailed unit-by-unit or
week-by-week analysis. The tool was created to be helpful at different stages within the
design process, from first ideas through evaluation and review. Moreover, the analytics
bar charts can be shared with learners and other stakeholders to express how learners
are expected to spend their time in terms of balance and shape of the expected learning
activity.

Another example is the Learning Design Support Environment (LDSE or the
Learning Designer). The LDSE provides an analysis of the properties of the designs
being created by the teacher with the environment as a learning design tool (Laurillard
et al. 2013; Laurillard et al. 2018). In particular, it generates charts that visualize the
proportion of time that students are expected to spend on the diverse types of tasks that
are planned in the design, from “acquisition” to more active forms of “inquiry,
discussion, production and practice”. This information serves as feedback to teachers
about the nature of the learning experience that the learning design proposes.

The Educational Design Studio (Martinez-Maldonado et al. 2017) is a physical
environment for multiple designers working in teams that is equipped with wall
projectors, whiteboards, a digital tabletop, and other tools. These various displays allow
for several representations of the designs being created. The environment collects data
from the designs and generates various charts; for example, the proportion of learning
tasks distributed in the learning spaces (for example, tasks occurring at the lecture
room, at the lab, or online). This information enhances awareness of the broad view and
the progress of their designs while building and editing individual tasks, as well as
facilitating comparison between designs.

The concept of design analytics has been more extensively exploited in the
edCrumble learning design tool. edCrumble is a pedagogical planner that provides a
visual representation of the learning designs, strongly characterized by data analytics,
that can facilitate the planning, visualization, understanding, and reuse of complex
blended learning designs (Albó and Hernández-Leo 2018). Specifically, the decision-
making that occurs during the design process is supported by design analytics that
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result from the design of the activities sequenced in a timeline. The design analytics
provided give more information about the following categories: in-class/out-of-class
time analytics, tasks’ cognitive process, type of student work, teacher presence, and
task evaluation mode. In each category, it is possible to have different visualizations:
global time analytics, analytics that depend on the activities’ type (in or out-of-class),
and analytics that depend on the overall learning objectives.

In this paper, we present our attempt to further expand the design analytics compo-
nent of edCrumble in order to support teachers at an extremely fine-grained knowledge-
based design level, which refines the “goals” data class of the AL4LD framework
(Hernández-Leo et al. 2019). The new design analytics proposal will account for the
metadata that comes from the new integration of smart learning content into the
resources’ panel.

Concept-Level Open Learner Modelling and Navigation Support

Blended learning approaches usually attempt to focus each of their different learning
contexts on the activities that could be performed most efficiently in this context. For
example, lecture classroom time could focus on the explanation of complicated topics
and discussions and a lab session could focus on solving sample problems during
which the help of a human teaching assistant might be necessary, while online learning
might be devoted to self-study, self-assessment, and practice. As the complexity of
learning tools increases, the online component of blended learning is increasingly
focused on practicing with so-called smart learning content (Brusilovsky et al.
2014). Each element of this smart content is a relatively complex interactive activity,
which engages students in exploration and provides real-time performance feedback.
For example, in the area of computer science education, some previously explored
types of smart content included interactive animations, worked examples, parameter-
ized semantics questions, Parson’s puzzles, and programming problems. As each smart
learning content item is relatively complex and advanced, it usually allows a student to
practice a number of different course concepts or skills, which could be introduced in
different lectures or course units. This complex nature of smart learning content makes
it hard for the student to accurately track progress and to select the most relevant
learning content item for further practice.

To improve student knowledge-tracking ability during their work with smart learn-
ing content, several researchers have suggested concept-level open learner models
(OLM) (Bull and Kay 2007; Bull 2020). A concept-level OLM recognizes the presence
of multiple domain knowledge components (KC), such as concepts and skills, and
visualizes student knowledge progress separately for each of these skills. Made popular
by the field of intelligent tutoring systems as skillometers (Corbett et al. 2000), concept-
level OLMs have become popular in other types of e-learning systems. While the
primary focus of such OLMs is student knowledge visualization, many existing
concept-level OLMs directly or indirectly support learners in selecting the most
relevant learning activities (Bull et al. 2016). A brief review of different concept-
level OLM visualizations on which we focused can be found in Bull et al. (2018).

More recently, a similar research stream on student-facing dashboards has been
established within the field of learning analytics (Bodily and Verbert 2017). Typically,
student-facing dashboards visualize learning progress in terms of learning activities
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rather than on the level of concepts and other units of domain knowledge, which makes
them considerably different in nature from OLMs (Bodily et al. 2018). A notable
exception are several projects that attempt to visualize learner progress on the level of
relatively coarse-grained domain knowledge units, such as top-level learning objectives
(Grann and Bushway 2014; Papanikolaou et al. 2003; Loboda et al. 2014). Yet, even
these projects offer no support for selecting most relevant learner activities. A good
analysis of similarities and differences between OLMs and learner-facing dashboards is
provided in Bodily et al. (2018).

Our own work has prompted us to explore visual interfaces, which combine topic-
level open learner modeling with navigation support in order to help learners in
selecting the most relevant learning content (Sosnovsky and Brusilovsky 2015). Most
recently, we explored student-focused concept-level knowledge visualization to help
students in tracking their knowledge and selecting relevant smart content (Guerra et al.
2018). In this paper, we attempt to further expand the application area of concept-level
knowledge visualization by exploring its value in a different context—helping instruc-
tors select appropriate learning content in a blended learning context.

Knowledge-Based Design Analytics for Blended Learning

The key concept behind knowledge-based design analytics is to visualize the concept
coverage of individual learning activities, as well as learning sessions (such as a lecture,
a lab, or at-home practice), to help instructors in creating balanced learning designs. A
learning activity is usually associated with metadata, which describes its type, engaged
concepts or learning objectives, expected time to complete, and other aspects. This
metadata is critical to create balanced learning designs. For example, learning practice
prepared for a specific lecture should offer a balance of examples and problems, rather
than over-focusing on only one of these types of activities, and should cover all critical
concepts introduced during the lecture, rather than over-focusing on some of them.
Such a balance is usually difficult to achieve without supporting the instructors with
appropriate design analytics.

In this section, we present the design of a knowledge-based design visualization
component that extends the design analytics offered to the users of edCrumble. To
demonstrate the power of this concept-based approach, we apply it to a relatively
challenging design context: developing lab and practice sessions for an introductory
programming course that uses smart learning content. This context is challenging, since
these kinds of smart content are of a different nature (examples vs. problems) and cover
different kinds of programming knowledge (program comprehension vs. program
construction). Moreover, each content item engages students in practicing a number
of different programming concepts.

To support teachers in adapting this complex context, our designed visualization
offers a knowledge-based visualization of a learning session being arranged and allows
teachers to compare the constructed session on the concept-level by using a mirrored
bar chart visualization (i.e., balance of concepts between problems and examples).
First, we chose a bar graph because early research in human perception has shown that
length (as used in bars) is one the graphical representations of numerical data that leads
to fewer biases in judgment (Cleveland and McGill 1984) in comparison to other visual
features, such as angle or area. This has been confirmed by later research, which has
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shown that basic information-seeking tasks (e.g. finding max./min. values) are gener-
ally better supported by using bar charts than radar charts, despite perception differ-
ences among users (Toker et al. 2012), or that bar charts are visual representations that
allow users to complete different tasks (e.g. characterize data distribution or finding
clusters) in the shortest time and with the most accuracy in comparison to other
visualizations, like pie or line charts (Saket, Endert and Demiralp 2018). Furthermore,
the bar chart approach for showing the distribution of concepts in a programming
domain was defined after a previous series of user studies (Guerra et al. 2018). Second,
the mirrored layout was grounded by previous findings in information visualization
research, which show that correlation tasks (i.e. easily detecting if two data distributions
were similar or not) are better supported when presented through graphs with a
mirrored layout (Ondov et al. 2018) and that the visual system’s capability for detecting
differences between two regions is more efficient when they are shown as mirror
images of each other, as compared to repeated translations of each other (Treder 2010).

We explain the behavior of this visualization with the following scenario. The
process of adding a new activity to a learning session starts with selecting the type of
learning activity to add. To support the programming context, six types of smart
learning content for introductory programming (Table 1) have been integrated into
the resources panel of the design tool (Fig. 1 A).

By clicking on each resource tab, the system shows a list of the corresponding
activities available for this content type. Users can select the preview button to open
and try each activity and thus make an informed decision when selecting activities for a
new session. When an activity is judged to be suitable to be used in the design, users
can drag and drop the activity’s icon to the open session (lecture, lab or practice) in the
editor (Fig. 1 B). Once an activity has been aggregated into the design, the design
analytics panel (Fig. 1 C) offers a short animation that allows the user to visualize the
activity’s contribution, in terms of concept-level knowledge coverage (knowledge
gained upon its completion).

Each bar on the concept-level knowledge visualization chart (Fig. 1 C) represents a
domain concept, and its length represents how frequently the concept will be practiced
by the learner when working with the selected session content (which could be also
considered to be an estimation of knowledge gained after completing the session). The
name of concepts that the instructor should target when designing for a specific lecture
(such as lecture 4, with its subsequent lab-4 and practice-4 sessions) are highlighted in
yellow for facilitating their coverage (see the seven concepts highlighted in Figs. 1 and
2). The concepts shown to the left of the highlighted concepts are those that were
targeted by the previous lecture, whereas those placed to the right are the ones that have
not yet been introduced in past lectures. The system also offers the possibility of
previewing the contribution of a candidate activity to the overall design by situating
the mouse over it, before dragging and dropping it into the selected session. The system
then shows the preview of its contribution to learning different concepts by adding
striped bars to the visualization, as a short animation is shown when bars are added
(Fig. 2 left).

In the analytics panel, we can find three tabs that offer different types of concept-
level comparisons, depending on the sessions and the activities’ types and knowledge.
These comparisons help to balance the concept coverage of selected content by content
type, session type, or covered knowledge. The first tab, “Type of session” (Fig. 2 left)
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allows a user to compare the overall concept-contribution of the activities selected,
depending on which type of session they have been placed. It also offers the possibility
of switching among three comparisons (Lecture/Lab, Lecture/Practice, and Lab/
Practice sessions). The second tab ‘Examples/Problems’ (Fig. 2 right) offers a unique
comparison between these two types of activities, but gives the option of filtering the
results by visualizing only Lab, Practice, or both. The same applies for the third tab,
‘Comprehension/Construction’.

Exploring the Value of Knowledge-Based Design Analytics

Participants and Sample

It is challenging to evaluate a system focused on instructors as users, due to the limited
availability of qualified participants. For our study, we recruited a total of 20 domain
experts (12 female) who were sufficiently qualified as introductory programming
instructors. All the instructors were computer or information science PhDs or postdoc
students from two public universities in the United States (10) and Spain (10).
Eligibility criteria required individuals to have knowledge in programming languages

Table 1 Smart learning content integrated into the learning design tool, distinguishing between examples and
problems and construction and comprehension types

ID Title Type Description

WebEx Annotated Examples Example Compr. Annotated program examples. Students can click each
line of code to see the related explanation for that
line (Brusilovsky, 2001).

AnimEx Animated Examples Example Compr. Animated program execution examples, which
visualize line-by-line execution of a piece of code
(Hosseini et al., 2016).

PCEX Program Construction
Examples

Example Constr. Interactive program construction examples.
Each example provides a goal that specifies
the given example’s functionality. Users
can click on each line of code to see explanations
(Hosseini et al., 2018).

PCEXch Program Construction
Challenges

Problem Constr. Small problems to help students develop program
construction skills. Each challenge is a code
example with 1-3 removed lines. Students need
to drag and drop candidate lines to complete
a program to achieve the provided goal
(Hosseini et al., 2018).

Quizjet Parameterized
Problems

Problem Compr. Parameterized problems for self-assessment of student
knowledge of programming semantics. Students are
asked to predict the final value of a program output
(Hsiao et al., 2010).

PCRS Programming
exercises

Problem Constr. Coding exercises with automatic assessment.
The system asks the user to complete
a partial code skeleton and then checks
the submitted answer using a set of tests
(Zingaro et al., 2013).
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and experience as instructors or teaching assistants. Their ages ranged from 24 to 36
(M = 30.5, SE = 0.81) and they had between 1 and 13 years of teaching experience
(M = 3.70, SE = 0.81). The scores (on a six-point scale) of how often their teaching
tasks had implied in selecting what activities and what type of teaching resources would
be used during the course were (M = 4.0, SE = 0.33; M = 4.1, SE = 0.35), respectively.
The scores (on a five-point scale) related to the instructors’ background knowledge of
programming in general, in Java, and interpreting graphs were (M = 4.30, SE = 0.15;
M = 3.60, SE = 0.20; M = 4.0, SE = 0.13) respectively. In addition to the 20 instructors,
two teaching assistants were recruited as pilot users to test and refine the procedure;
however, their work has not been considered in our final analysis. All 22 subjects were
compensated for their participation in the study.

Design and Procedure

To assess the value of the design analytics that were provided, we compared the
interface without the visualizations (baseline interface) to the one with the visualiza-
tions (visualizations interface). Due to the size of our sample, we used a within-subjects
design. Instructors were asked to perform two different tasks with the system and all of
them experienced both treatments. The order of treatments was randomized to control
for the effect of ordering (half of the instructors started the study using the baseline
interface) and each participant did each task with just one treatment. The tasks were
designed within the context of a higher education programming course (JAVA course)
of 15 weeks: each week had a lecture and a lab session in class, and practice time at
home. Our study was focused on the third and fourth weeks (the editor was prepared
with the sessions of these two weeks to allow instructors to design within this
framework) and asked instructors to perform realistic design tasks to target concepts
explained specifically in Lecture 4, which is described as follows. Task 1: Design a
Lab session for Lecture 4 using eight (problems) activities in total. a) Try to ensure that
the practice session covers key concepts introduced during the class (as shown by
lecture examples). b) Try to strike a balance between problems that focus on program

Fig. 1 Screenshot of the learning design tool’s editor. (A) Resources panel with the 6 categories of smart
learning content; (B) Editor for the selected session in the timeline; (C) Design analytics’ visualizations; (D)
Timeline with the in-class and out-of-class sessions
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comprehension and program construction. Task 2: Design a Practice session for the
Lecture 4 using 20 (examples and problems) activities in total. a) Try to ensure that the
practice covers key concepts introduced at the class (as shown by lecture examples). b)
Try to ensure a balance of examples and problems. c) Make sure that the student will
have a chance to practice both program comprehension and program construction
skills. The order of the tasks was not randomized, since we considered the second task
to be an extension of the first (albeit one with a higher difficulty). Instructors received
two training sessions, one about the use of the design tool itself and the other about the
use of the visualization. The group that started the study with the baseline interface
received the tool training before the first task and the visualization training before the
second task, while the group that started with the visualization received both training
sessions before the first task. During the tasks, instructors had access to help files on the
six types of activities, with a short description of each one that indicated the categories
to which they belonged, such as examples/problems and construction/comprehension.
After each task, we asked instructors to complete a post-task questionnaire. At the end
of the study, instructors filled out a final questionnaire.

Data Collection and Analysis

We collected the action logs of the instructors while they interacted with the system.
Above all, we focused on the actions that took place within the resources panel and the
visualizations tabs. Moreover, we also gathered the learning design outcomes generated
during the study to assess the instructors’ performance on the tasks. After each task, we
used two questionnaires. The first one was the NASA-TLX questionnaire (Hart 2012)
which aimed to measure the instructors’ cognitive load of the tasks’ performances. We
used a paper version of the questionnaire that included both known parts (rating and
weights). The second post-task questionnaire had the objective of evaluating and
comparing the controllability, confidence, and ease of choice levels using the system
with the two treatments (see questions in Table 2). On the other hand, the final
questionnaire asked instructors to provide their feedback about the use of visualizations
and the design tool. It had two open questions to ask instructors about their preferences
between the two treatments, as well as which interface they found to be more efficient
in performing the given tasks and why. The third question asked instructors to order the

Fig. 2 Design analytics provided in concept-level visualizations. Left: Activity contribution split by the type
of session (i.e., lecture on top, lab on the bottom). Right: Activity contribution split by content type (i.e.,
examples on top, problems on the bottom. Striped bars (left) indicate a preview of the contribution of a
potential addition of a new resource
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three types of visualizations by their level of usefulness. Next, seven items were
presented to instructors for gathering their feedback about the visualizations (all of
them were on a seven-point Likert scale: strongly disagree: 1, strongly agree: 7). A final
open question gave instructors the opportunity to provide general suggestions or
comments.

Internal consistency reliability (Cronbach’s alpha) was calculated for each of the
three scales in the post-task questionnaire: controllability was 0.697, confidence was
0.743, and choice was 0.657. These correlation coefficients indicated that the scales
exhibited acceptable internal consistency reliability with a sample size of 20 partici-
pants. In the case of the final questionnaire, the internal consistency reliability was
0.781. T-tests analysis were performed comparing both treatments in doing each task
(between-subjects) and comparing both treatments considering both tasks together
(within-subjects) to explore for significant differences. All the qualitative data (open
questions) were coded with inductive thematic analysis driven by our research aims.
Finally, codes of instructors were used for reporting the results (e.g., U1: instructor/user
1).

Results

Cognitive Load

The first result of the NASA-TLX questionnaire indicates that the second task
(TLX index of 52.9) presented more difficulties for the instructors than the first
task (TLX index of 42.4). This is an expected result that validates the design of
the study, which ordered the tasks by its level of difficulty (not randomized).
Table 3 shows the adjusted and weighted ratings for each of the two tasks and for
both tasks together. Global TLX indexes indicate that, in both tasks, the perceived

Table 2 Post-task questionnaire items and questions. Seven-point scale (strongly disagree:1, strongly
agree:7).Questions (R) are reversed coded

Item ID Statement/Question

Controllability 1 It was easy to find and add a proper activity to the design.

2 It was hard to use the design editor to achieve my design goals. (R)

3 I feel in control using the design editor to select the most appropriate activity.

Confidence 4 I think that with the activities I have selected, I have successfully covered the concepts
of the lecture.

5 I have little confidence in the design decisions I have made to accomplish the task. (R)

6 I think I have achieved a very good balance between the activities according to the
tasks goals.

7 I changed my mind several times before making a decision. (R)

8 I think I chose the best activities from the options available.

Easiness of
Choice

9 Selecting the best activity was very easy.

10 Comparing the different types of activities was very easy.
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workload was higher when instructors did not use visualizations. The perceived
mental demand (MD) is always higher without visualization, and this difference is
significant when comparing all tasks’ performances together (Medvis = 150,
Mednovis = 267.5, p = 0.004, Wilcoxon). According to Grier (2015), the overall
range scores observed in the literature regarding the weighted NASA-TLX is 8 to
80 (M = 48.74, SD = 14.88). Thus, our results would be near to the mean score.
Even when comparing the literature scores obtained from computer activities
related tasks (Grier 2015), the global indexes found in our study can be considered
mid-workload levels. The result of the comparison reinforces the importance of
balancing the amount of information that the visualization offers to the users,
since the results show that they are cognitively loaded in performing the design
tasks. Thus, the fact of offering more information through a visualization needs to
be carefully balanced and the results show that our visualization accomplishes this
goal, since it is not adding more cognitive workload but that it has just the
opposite effect.

Controllability, Confidence and Easiness of Choice

The results of the second post-task questionnaire (seven-point Likert scale; see ques-
tions in Table 2) are presented in Table 4. The statistical analysis reveals a significant
difference in the Easiness of Choice item when performing task 2 (Medvis= 5.75,
Mednovis = 3.30, p = 0.017, Mann Whitney U) and when comparing both treatments
that consider both tasks’ performances together (Medvis = 5.5, Mednovis = 3.4, p =
0.002, Wilcoxon). Visualizations easily facilitated the selection of the best activities
and supported the comparison of the different types of activities. For the instructors, it
was easier to select and compare the most appropriate activities for their designs by
using the visualizations compared with not using the visualizations. Results did not
indicate significant differences regarding either Controllability and Confidence items.

Action Analysis

The click data collected when instructors worked on the tasks provided an objective
measure of how the two conditions (both with and without the visualization) affect the
way subjects use the system. Results of the action analysis (Table 5) reveal a significant
difference between the number of clicks performed for previewing the activities in both
tasks. The number of clicks being significantly higher in the case of not using the
visualizations (task 1: Medvis = 3.0, Mednovis = 19.5, p = 0.003, Mann Whitney U; task
2: Medvis = 2.0, Mednovis = 33.0, p = 0.002, Mann Whitney U). When considering the
time needed to perform the two tasks, there were no significant differences between the
two treatments. The use of the visualization did not significantly increase or decrease
the design time compared with the condition without the visualization.

Design Outcomes

The learning designs collected after instructors completed the tasks provide an objec-
tive measure of how the two treatments affected the way subjects designed the two
sessions (the lab and practice sessions required in the two tasks, respectively). As
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Table 6 shows, the presence of visualization slightly increased the instructors’ ability to
focus on the concepts of the target (statistically significant in task 1) and immediate
previous lectures when selecting activities (OnTopicCurrent and OnTopicPrevious).
Notwithstanding the above, the most impressive difference between the conditions was
the almost complete disappearance of concepts that had not yet been introduced during
the lectures (OutTopic). The presence of these “future” concepts in practice and lab
sessions is undesirable, since the students have not yet been introduced to them; yet

Table 3 Results of the NASA-TLX questionnaire. Adjusted ratings considering weights

Task 1 Task 2 Both tasks

Between subjects Between subjects Within subjects

Vis.
M (SE)
n=10

noVis.
M (SE)
n=10

p Vis.
M (SE)
n=10

noVis.
M (SE)
n=10

p Vis.
M (SE)
n=20

noVis.
M (SE)
n=20

p

Mental
Demand (MD)

162.5
(32.9)

250
(28.8)

– 175
(36.5)

265
(38.8)

– 168.7
(23.9)

257.5
(23.6)

*

Physical
Demand (PD)

60
(32.9)

43.5
(28.9)

– 33
(19.2)

66
(31.1)

– 46.5
(18.8)

54.7
(20.8)

–

Temporal
Demand (TD)

66.5
(24.5)

79.5
(28.3)

– 100.5
(43.1)

117
(34.0)

– 83.5
(24.4)

98.2
(21.9)

–

Performance
(OP)

96.5
(11.4)

92
(28.2)

– 83.5
(21.0)

88.5
(19.1)

– 90
(11.7)

90.2
(16.6)

–

Effort
(EF)

150
(35.6)

137.5
(18.3)

– 193
(32.7)

225.5
(41.4)

– 171.5
(24.0)

181.5
(24.2)

–

Frustration
(FR)

73.5
(40.3)

60.5
(20.4)

– 130.5
(45.5)

108
(52.0)

– 102
(30.3)

84.2
(27.7)

–

Global
TLX index

40.6
(4.8)

44.2
(2.1)

– 47.7
(7.0)

58.0
(5.9)

– 44.1
(4.2)

51.1
(3.4)

–

Higher values in each row/condition are highlighted. *p = 0.004; p < 0.05; Wilcoxon Test

Table 4 Results of the Post-Condition questionnaire

Task 1 Task 2 Both tasks

Between subjects Between subjects Within Subjects

Vis.
M (SE)
n=10

noVis.
M (SE)
n=10

p Vis.
M (SE)
n=10

noVis.
M (SE)
n=10

p Vis.
M (SE)
n=20

noVis.
M (SE)
n=20

p

Controllability 5.3 (0.30) 5.3 (0.25) – 5.2 (0.32) 4.2 (0.51) – 5.2
(0.05)

4.8
(0.52)

–

Confidence 4.3
(0.35)

5.0
(0.23)

– 5.0
(0.25)

4.2
(0.48)

– 4.7
(0.32)

4.6
(0.39)

–

Easiness of choice 4.5
(0.34)

3.8
(0.36)

– 5.3
(0.36)

3.4
(0.55)

* 4.9
(0.44)

3.6
(0.18)

**

Higher values in each row/condition are highlighted. *p = 0.017; p < 0.05; Mann Withney U **p = 0.002;
p < 0.05; Wilcoxon Test
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instructors frequently miss these unwanted concepts when selecting learning content.
As our data shows, knowledge-based design analytics did help designers to avoid these
future concepts in their designs. When instructors used the baseline interface, they
introduced, on average, a significantly higher number of future concepts (M = 5.7,
SE = 1.41, p = 0.002 in task 2; M = 9.2, SE = 3.13, p = 0.003 in task 2). When using the
visualization, cases of introducing future concepts practically disappeared (0 in task 1;
M = 0.7, SE = 0.37 in task 2).

Consider the overall distribution of the concept coverage from the learning
design outcomes. Figure 3 shows how many times concepts have been practiced in
the designed sessions, on average, depending on the tasks and the treatments.
Results show that using the visualization approach has a positive impact on
concept-level balance when it is necessary to select just a few activities (Task
1), as the educator needs to be more precise when selecting the best ones for their
class. This is confirmed by the statistical test presented in Table 6 (Medvis = 12;
Mednovis = 11; p = 0.029; Mann Whitney U). However, when the instructor can
select a higher number of activities (Task 2), the probability of covering the
necessary concepts by chance is higher and the presence of visualizations has a
lower impact on improving the concept-level balance. However, the selection of a
higher number of activities in the second task without using the visualizations led
users to introduce a higher number of future concepts. In both cases, the number
of future concepts selected was reduced drastically when using the visualizations.

Figure 4 presents the balance of concepts from the design outcomes, depending
on the characteristics of the smart learning content. Contrary to expectations, the
difference for the balance of example versus problem activities between using or
not using visualizations is very low, and this balance is also very low in the case
of balancing comprehension versus construction activities. We can observe only a
moderate improvement of the balance and coverage of the previous concepts in
both graphs when using visualizations, as well as a reduction of future concepts,
as discussed above. These results are not entirely surprising. As the instructors

Table 5 User actions with the system while performing each task during the two treatments

With Visualization Without Visualization p

Task Action M (SE) M (SE)

T 1 Total actions 146.9 (27.13) 166.1 (39.00) –

Click preview activity 6.7 (2.88) 30.2 (10.37) *

Add activity 12.6 (1.86) 14.1 (2.64) –

Delete activity selected 4.9 (2.19) 6.6 (2.96) –

Time Spent (min) 15 (1.78) 20 (4.81) –

T 2 Total actions 230 (23.24) 217.1 (14.00) –

Click preview activity 5.6 (2.85) 34 (7.3) **

Add activity 26.3 (1.67) 24.1 (1.3) –

Delete activity selected 6.4 (1.84) 4.7 (1.5) –

Time Spent (min) 22 (3.08) 19.6 (1.90) –

Higher values in each row/condition are highlighted. *p = 0.003;**p = 0.002;p < 0.05; Mann Whitney U
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were domain experts, they were able to understand the type and the most essential
concepts of each activity by carefully reviewing its content and were sufficiently
successful in balancing the number of activities added to the design (as tasks were
required). As the log data shows, by previewing the activities, the instructors were
able to achieve a reasonable balance, however, at the price of a higher cognitive
load. With the visualization, however, the instructors were able to reach a slightly
better balance by using visual previews rather than content previews and with a
lower cognitive load.

User Feedback Analysis

In the final questionnaire, 19 out of the 20 instructors stated that they preferred to use
the interface with the visualization. Only one participant stated that they preferred the
condition without the visualization ‘Because with the visualizations I feel very frus-
trated trying to fulfill all the requirements even when it’s impossible to entirely balance
everything. I also gave less relevance to the activity itself (almost never checked the
example) when using the visualizations, making the entire decision to be based on the
visualizations’ (U12). Notwithstanding the above, all 20 participants said that this
condition allowed them to more effectively design their sessions. The visualizations
were easy to understand and were useful in deciding which activity to choose; they
helped instructors to check whether they were doing well enough in designing the
course, as well as thinking about how knowledge was balanced. Regarding their
preference about the three visualizations’ tabs, 12 instructors out of 20 found the “Type
of session” comparison to be more useful. However, five instructors indicated the
“Construction vs. Comprehension” comparison as their preferred option, and three
other instructors selected the “Examples vs. Problems” comparison as their favorite.
We can conclude that all three types of comparison were meaningful for the instructors
in order to create their course designs. Table 7 shows the user responses to the two open
questions of the final questionnaire and the main themes identified from the inductive
thematic analysis.

The most frequently identified themes regarding why instructors preferred using the
visualization were: first, the provision of topic coverage awareness as well as their ease
of comparison and balance (f = 9); second, the easiness of activities’ selection process

Table 6 The outcomes of learning designs. Average number of times concepts were selected depending on
their type (current lecture-related concepts; from previous lectures or from future lectures) and the tasks
performed. *Mann Whitney U

With Visualization Without Visualization p

Task Selected concepts M (SE) M (SE)

T 1 OnTopicCurrent 12.4 (0.54) 10.4 (0.58) *0.029

OnTopicPrevious 9.4 (0.93) 8.7 (0.88) –

OutTopic (future) 0 5.7 (1.41) *0.002

T 2 OnTopicCurrent 29.2 (1.05) 28.5 (0.95) –

OnTopicPrevious 27.7 (2.47) 23.3 (1.49) –

OutTopic (future) 0.7 (0.37) 9.2 (3.13) *0.003
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(f = 4); and third, the possibility of previewing the effects/results of the activity
selection before adding the activity into the design (f = 2). Moreover, results indicate
that visualizations allowed instructors to more effectively design the sessions by
improving the accuracy in making design decisions and by easing the balance of the
different types of activities (both with f = 5), together with a better awareness of the
knowledge-contribution depending on the types of activities (f = 4). Interestingly,
whereas the action analysis revealed no significant differences between the two treat-
ments regarding the time needed to perform the tasks, three instructors expressed time
saving as a positive aspect in favor of using visualizations. Similarly, three instructors
commented that visualizations provided them more confidence in making design
decisions, while the post-task questionnaire revealed no significant differences between
the two conditions regarding confidence items.

Figure 5 presents the response distribution of the nine agreement Likert scale
items (strongly disagree: 1, strongly agree: 7) that formed part of the final

Fig. 3 Average number of times that a concept is practiced during Task 1 (left) and Task 2 (right) (extracted
from the learning designs outcomes) depending on the learning design conditions (either using or not using the
visualizations). Activities can practice a concept more than once and can practice more than one concept at the
same time. Note that there are 13 previous concepts, 8 current concepts, and a counter for future concepts

Fig. 4 Average number of times that a concept is practiced during Task 2 (extracted from the learning design
outcomes), depending on the learning design conditions (using or not using the visualizations). Note a
comparison of example activities versus problem activities (left) and comprehension versus construction
(right)
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questionnaire. The majority of participants stated that visualizations helped them
in thinking about how the knowledge and type of activities were balanced
throughout the course, as well as to avoid choosing activities not aligned with
the lectures’ concepts (70% strongly agreed with these three statements). Strongly
agreement percentages were lower when stating that visualizations helped in the
awareness of the content involved in each of the topics of the course (45%) and in
supporting the decision about which activity to choose (40% strongly agreed and
45% agreed). Overall, participants were satisfied with the visualizations provided
(45% strongly agree and 45% agreed).

Finally, the users provided a number of useful suggestions (see Table 8), which we
will consider for future work. As the feedback shows, the three most frequently
repeated suggestions are: helping to prevent selection of the same activity twice using
some visual indication (#1); sorting/filtering the activities in the resources panel (#2);
and adding some indicator of complexity to candidate activities (#3). All three sugges-
tions could further reduce users’ overall memory load in the process of learning content
selection. In particular, the suggestion of providing an explicit indicator of activity
complexity correlates well with the results of our earlier studies of concept-level
problem visualization with student users. While in both cases a concept profile of a
problem provides some indication of activity complexity (the more concepts are
involved, the more complex the problem is), processing this information for many
problems in a row was a challenging cognitive task. As we discovered, best results
were achieved when students received additional support through a” gauge” that
directly visualized activity complexity, thus shortcutting the process of complexity
estimation (Guerra-Hollstein et al. 2017). We hope to explore similar designs for
instructor-facing design analytics in our future work.

Discussion, Conclusions, and Future Work

This paper proposes and studies an approach for fine-grained knowledge-based design
analytics that is focused on visualizing critical metadata associated with smart learning
content. Among metadata aspects covered by our visualization are the type of learning
content, the nature of knowledge supported by it, and the list of specific knowledge
concepts that a specific fragment of learning content allows students to practice. The
visualization has been integrated into a (blended) learning design authoring tool. We
expected that the concept-level design analytics would help instructors in selecting the
most appropriate learning content and would result in designing more balanced learning
sessions. We performed a within-subjects user study contrasting conditions both with and
without the visualization. Our results indicate that the use of knowledge-based design
analytics may reduce the cognitive load of design tasks, especially in terms of mental
demand.We also demonstrated that the use of design analytics has facilitated the selection
of the most suitable activities without significantly affecting the overall design time.

When examining the overall design outcomes, the most prominent finding was an
almost complete disappearance of activities that required the use of future (not yet
studied) concepts from learning sessions designed with the help of visualization.
Selecting content that requires prior knowledge of future concepts is usually a design
error, and the presence of concept-level design analytics helped users to avoid these
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errors. In addition, our results hint that the visualization may have a higher impact on
the concept-level balance when it is necessary to select just a few activities, as the
instructor needs to be more precise in selecting the best ones. In contrast, when the
instructor can select a higher number of activities, the probability of covering the
concepts by chance is higher and the visualizations have a smaller impact on improving
the overall balance among concept levels.

A combination of quantitative and qualitative data collected in our study indicated that
the most important impact of the provided visualization was a significant reduction of a
designer’s mental load in the process of selecting the most appropriate activities through
visual help in knowledge balancing and preventing activity selection errors (70% of strong
positive answers). In contrast, they were only 40–45% of strong positive answers about the
value of visualization as a whole, which indicates that other decision-making needs were not

Table 7 Responses to the open questions of the final questionnaire

Questions (N) Themes identified f Users’ excerpts (User ID)

Why do you
prefer the
condition with
the
visualization?

(N=19)

Topic coverage awareness,
easy comparison, and
balance.

9 “It was easier to see which topics I was covering, it
also contributed to keeping a balance between
them.” (U15)

Easy selection of activities. 4 “It helped me with selecting tasks easier.” (U1)

Previsualization of the
effects/results of activity
selection.

2 “It is quicker and easier to see the results of activity
selection than going inside of activities one by one.”
(U4)

Provision of extra
information.

1 “More information, even if it is not used, is better in
my opinion.” (U7)

Overall picture of the design. 1 “I had a better overall picture of my course design and
was able to focus on what needs more attention for
the student.” (U10)

High level of control for
avoiding future concepts.

1 “I felt more in control of not including a topic students
will learn later in the course about.” (U16)

Time saving. 1 “There was no need to look at the exercises saving a
great deal of time.” (U18)

Why do you
think that the
condition with
the
visualization
allowed you to
design the
sessions
more
effectively?

(N=20)

Accuracy in making design
decisions.

5 “...the design conditions can be met more accurately
with the charts.” (U12)

Easy balance of types of
activities.

5 “I could keep a balance between the types of activities
I could include.” (U15)

Awareness of
knowledge-contribution
depending on the types of
activities.

4 “I could see how examples or problems contribute to
different goals of the task.” (U1)

Time saving. 3 “I was more efficient with the visuals because I was
faster and more sure about my design.” (U10)Confidence. 3

Easy previsualization of the
effect/results of activities
selection.

2 “I had to only look at the topics that will be covered to
know if this example or problem has to be included
in this lecture’s lab or practice or not.” (U2)

Awareness of what is
missing in the design.

2 “Seeing the distributions of the concepts allows me to
determine which concepts I still need to at least
provide some practice for.” (U7)

Comfortability. 1 “It was more comfortable and faster.” (U19)
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fully supported by the current visualization. The analysis of free-form feedback uncovered
some of these needs, such as remembering which activities were already selected and

Fig. 5 Final questionnaire (N = 20). Items are based on seven-point Likert scale (strongly disagree: 1, strongly
agree: 7)

Table 8 Users’ suggestions extracted from the last open question of the final questionnaire

# Themes identified Suggestion f Users’ excerpts (User ID)

1 Prevention of
repetition in the
selection of
activities.

Highlight the activities already
selected or/and warning when
repetition occurs.

3 “Facilitate the detection of repeated
activities.” (U14)

2 Sorting/filtering
activities in the
resources panel.

By alphabetical order, by tags, by
concepts related to the design.

3 “...sorting problems with concepts related
to design can make it less effort.” (U6)

3 Indication of the
activities’
complexity level.

For instance, by using a star rating
mechanism.

2 “There is nothing in the system that shows
how hard or easy a certain example is. It
would be good to have something like a
star rating for each task that shows how
hard/easy that task is.” (U9)

4 Provision of
meaningful labels
to the activities.

Labels related to concepts that can
be found in the activities.

1 “... labelling activities with respect to key
concepts covered in the lecture, such as
do while loop, may be helpful (...) for
some of them it is not clearly
understandable from the label of the
activity and you need to go inside and
inspect the alternative activities one by
one.” (U4)

5 Inspection of several
activities’ codes at
the same time.

Mechanism for previewing the
codes of several activities on
the same screen.

1 “... easy comparison between codes by
showing multiple codes in one screen
could be awesome to compare how
similar and different are 5 while loop
codes say.” (U5)

6 Recommendation
activities to be
selected.

Highlight activities that cover
concepts that need to be
covered in a particular design.

1 “In the future maybe you can suggest or
highlight the activity types which are
unbalanced within my design.” (U13)
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assessing difficulty of the learning activities. This feedback provides ideas for futurework on
improving the visualization of the proposed design analytics.

Interestingly, the presence of the visualizations seems to have changed the behavior
of instructors in the process of selecting the activities and has enabled them to focus
more on previewing their contribution to the target design using visualization and to
spend less time examining their content. While the increased reliance on the visually
presented metadata was a positive factor and was the likely reason for improved
performance and decreased cognitive load, it might negatively affect the results of
the design if the quality of metadata is low, which is a known concern in learning object
repositories (Palavitsinis et al. 2014). On the other hand, the expected popularity of the
visual metadata-driven design process might deliver a long term positive impact on the
quality of learning object metadata. Given that one major cause of poor metadata
quality is frequently the low perception of the value of metadata by the instructors who
supply but never use it, the increased recognition of medata as a valuable source of
design analytics for the instructors themselves could be a “game changer”.

Another interesting observation is an apparent disagreement between log data and
user feedback with respect to time spent on task. While we found no significant time-
on-task differences between the two treatments, three instructors expressed time saving
as a positive aspect in favor of using visualizations. We could offer two possible
contributing factors. One is a likely difference between instructors in their ability to
understand and use visualization, which might stem from individual differences (i.e.,
spatial ability) and experience with similar interfaces. Indeed, while the average time on
task was about one-quarter (5 min) less for the group that used visual analytics, large
variability of time spent between instructors along with a relatively small number of
subjects prevented this difference to become significant. Another possible source is the
possible “flow” effect (Csikszentmihalyi 2008), which could impact skilled instructors
for whom the work with visualization will become not just more productive, but more
enjoyable. Further studies will be required to investigate these issues in more detail.

Our ability to make these interesting observations stresses the importance of
collecting and analysing multiple sources of data - in our specific case, the log data on
how the analytics was used, the self-reported questionnaires from users, and qualitative
feedback from the users. By triangulating data, we were better able to explore and
compare perceptions of the users and their interactions logged by the system.

Despite the fact that this study is contextualized in a programming course that uses
specific smart learning content, our findings provide light on how the use of
knowledge-level metadata associated with any type of (open) educational resource
could be used to support teachers in the course-design process. The results indicate
that providing fine-grained design analytics based on the conceptual knowledge of the
learning materials can improve the design support. The findings of this study suggest
that learning design authoring tools that consider coarse-grained design analytics would
benefit from complementing their existing analytics with the fine-grained approach
presented in our research.

While the obtained results are encouraging and the prospects for its broader appli-
cability are good, caution should be applied when interpreting and generalizing these
results. We remind that our study has been done in a very specific context (a college-
level programming course) with a small cohort of instructors. Thus, future research will
be necessary to explore and evaluate the use of knowledge-based design analytics in
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other educational contexts, using a larger sample size, and while comparing different
types of visualizations. Moreover, further research may explore the connection of
design analytics with learning analytics extracted from the existing usage of smart
learning content in real educational scenarios.
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