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ABSTRACT
Individual differences have been recognized as an important factor
in the learning process. However, there are few successes in using
known dimensions of individual differences in solving an impor-
tant problem of predicting student performance and engagement
in online learning. At the same time, learning analytics research
has demonstrated that the large volume of learning data collected
by modern e-learning systems could be used to recognize student
behavior patterns and could be used to connect these patterns with
measures of student performance. Our paper attempts to bridge
these two research directions. By applying a sequence mining ap-
proach to a large volume of learner data collected by an online learn-
ing system, we build models of student learning behavior. However,
instead of following modern work on behavior mining (i.e., using
this behavior directly for performance prediction tasks), we attempt
to follow traditional work on modeling individual differences in
quantifying this behavior on a latent data-driven personality scale.
Our research shows that this data-driven model of individual differ-
ences performs significantly better than several traditional models
of individual differences in predicting important parameters of the
learning process, such as success and engagement.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; • Applied computing → Interactive learning environ-
ments; • Information systems→ StructuredQuery Language.
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1 INTRODUCTION
Individual differences have been recognized as an important fac-
tor in the learning process. A wide range of cognitive, personal,
motivational, and other dimensions of individual differences was
introduced by researchers in the areas of cognitive science and ed-
ucational psychology [36]. However, traditional dimensions of indi-
vidual differences haven’t yet proven their value in addressing the
needs of modern e-learning. In particular, there are few successes in
using these differences in solving the important problem of predict-
ing student performance and engagement [1, 16, 56]. At the same
time, e-learning research has demonstrated that the large volume of
learning data collected by modern e-learning systems could be used
to recognize student behavior patterns and connect these patterns
with measures of student performance [8, 26, 27, 31, 41, 47, 52]. Our
paper attempts to bridge these research directions. We use logs of
student practice in an online practice system to identify patterns
of student behavior and to reveal latent groups that exhibit consid-
erably different practice behavior. We use these groups to model
latent individual differences as a continuous behavior scale, similar
to traditional models of individual differences, such as the achieve-
ment goal orientation framework and the self-esteem scale [23, 50].
In our study, this data-driven model of individual differences per-
formed significantly better than traditional models of individual
differences in predicting learner success and engagement.

2 RELATEDWORK
2.1 Individual Differences and Academic

Achievement
Individual differences have been the focus of research on educa-
tional psychology and learning technology [36]. Numerous works
have attempted to discover and examine various dimensions of indi-
vidual differences, find their connections to academic achievement,
and address these differences in order to better support teaching
and learning. A learner’s position within a specific dimension of
individual differences is usually determined by processing care-
fully calibrated questionnaires and placing the learner on a linear
scale, frequently between two extreme ends. In this section, we
briefly review several dimensions of individual differences that are
frequently used in learning technology research.

Self-efficacy refers to one’s evaluation of their ability to perform
a future task [6] and is shown to be a good predictor of educational
performance [12, 48]. Students with higher self-efficacy beliefs are
more willing to put effort into learning tasks and persist more, as
compared to students with lower self-efficacy. Self-esteem repre-
sents individuals’ beliefs about their self-worth and competence
[44]. Some studies have shown the positive effect of self-esteem
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on academic achievement, while other studies have pointed out
how academic achievement affects self-esteem [7, 20]. Researchers
also stated the indirect effect of low self-esteem on achievement
through distress and decreased motivation [40]. Learners can also
differ by their achievement goals, which guide their learning behav-
iors and performance by defining the expectations used to eval-
uate success [38]. Studies have demonstrated the positive effects
of achievement goals on performance [32, 39]. There are several
known questionnaire-based instruments to capture achievement
goals [23, 45].

Another important group of individual differences is related to
metacognition, which plays an important role in academic perfor-
mance [22]. In particular, students who successfully distinguish
what they know and do not know can expand their knowledge
instead of concentrating on already mastered concepts [55]. It has
been shown that high-achieving students are more accurate in
assessing their knowledge [21]. To measure some metacognitive
differences, Tobias and Everson [54] proposed a knowledge moni-
toring assessment instrument to evaluate the discrepancy between
the actual performance of students and their own estimates of their
knowledge in a specific domain.

2.2 User Behavior Modeling and Performance
Prediction

The rise of MOOCs has led to increased attention to learner data
collected by MOOCs and similar online learning systems. The origi-
nal motivation could be traced to the surprisingly high dropout rate
of early MOOCs, which was hard to explain. Since MOOCs usually
recorded full traces of learner behavior producing rich data for a
large number of students, it was natural to use this data to predict
dropouts [5] and performance [2, 15]. This appealing research direc-
tion quickly engaged researchers from the educational datamining
community who were working on log mining and performance pre-
diction in other educational contexts and led to a rapid expansion of
research that connected learner behavior with learning outcomes
in MOOCs and beyond.

While the first generation of this research focused on one-step
MOOC performance prediction from learning data [2, 10, 11, 15],
the second generation attempted to uncover the roots of perfor-
mance differences to better understand the process and improve
predictions. The core assumption of this stream of work was the
presence of latent learner cohorts that exhibited similar behavior
patterns and the connection of these patterns to performance and
outcomes. While the idea of cohorts was pioneered by in the first
generation research, the early work on cohorts attempted to define
them using either learner demographic [30] or simple activity mea-
sures [2, 52]. In contrast, the second generation research attempted
to automatically discover these cohorts from available data. Over
just a few years, a range of approaches to discover behavior patterns
and use them to cluster learners were explored. This included vari-
ous combinations of clustering [9, 35], transition analysis [9, 27],
Markov models [26, 31, 52], matrix factorization [41, 46, 47], tensor
factorization [59], and sequence mining [8, 31, 35, 46, 58], which is
reviewed in more detail in the next section.

2.3 Sequential Pattern Mining
In educational research, mining sequential patterns has become
one of the common techniques to analyze and model students’ ac-
tivity sequences. This technique helped researchers to find student
learning behaviors in different learning environments. Nesbit et al.
[49] applied this technique to find self-regulated behaviors in a mul-
timedia learning environment. In [42], authors identified the most
frequent usage interactions to detect high/low performing students
in collaborative learning activities. To find differences among pre-
defined groups (e.g. high-performing/low-performing), Kinnebrew
et al. [37] proposed a differential sequence mining procedure by
analyzing the students’ frequent patterns. Herold et al. [33] used
sequential pattern mining to predict course performance, based on
sequences of handwritten tasks. Guerra et al. [29] examined the stu-
dents’ problem solving patterns to detect stable and distinguishable
student behaviors. In addition, Hosseini et al. [35] used a similar
approach to [29] and detected different student coding behaviors
on mandatory programming assignments, as well as their impact
on student performance. Venant et al. [58] discovered frequent
sequential patterns of students’ learning actions in a laboratory
environment and identified learning strategies that associated with
learners’ performance. Recently, Mirzaei et al. [46] explored specific
patterns in learner behavior by applying both sequential pattern
mining and matrix factorization approaches.

3 SYSTEM AND DATASET
We explored the prospects of data-driven modeling of individual
differences by examining student behavior and learning outcomes
in an online practice system for SQL programming. The system
was available over several semesters to students taking a database
class. The non-mandatory nature of the system allowed students
to decide when and how much to practice and increased their
chances to expose individual differences through their practice
behavior. In addition to the logs of online practice, the dataset
used for our study included data from pre-tests, post-tests, and
several questionnaires that all focused on individual differences.
This section explains in detail the nature of the practice system and
components of the dataset. The next section (Section 4) explains
how this original dataset was augmented with a new data-driven
dimension of individual differences distilled from the log data.

3.1 The Course and the Online Practice System
In this study, we use data collected from four semesters of classroom
studies in a graduate level Database Management course at a large
North American university. Learning Structured Query Language
(SQL) was one of the objectives of the course. The structure of
the course remained the same for all four semesters, including the
syllabus and the grading policy.

The SQL practice system [13] was offered to all classes as a
non-mandatory tool for learning and self-assessment. The system
provided access to two types of interactive learning content: SQL
problems focused on SQL SELECT statements and annotated exam-
ples of SQL statements [14]. The content was grouped into topics,
and each topic had multiple problems and examples. Students could
choose the topic and the content to practice in any order. To en-
courage the students to explore the practice system, one percentage
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point of extra credit was provided to the students who solved at
least 10 SQL problems.

The problems were designed to help students practice their SQL
code writing skills. Each problem was parameterized; i.e., gener-
ated from a set of pre-defined templates with randomly selected
parameters. This design allowed students to practice the same prob-
lem multiple times. The correctness of their responses was tested
against a fixed database schema and immediate correct/incorrect
feedback was provided. The problem tool also had a unique feature,
called query execution mode, which allows students to execute their
SQL queries multiple times to see the actual query result tables
while working with the problems. After checking their query re-
sults, students could submit their final query and get immediate
feedback from the tool. As another content type, annotated examples
offered worked examples of SQL code augmented with explana-
tions, which students could examine interactively, line by line. The
students practiced with 46 problem templates and 64 annotated
examples with 268 distinct explanation lines.

3.2 The Dataset Collection
KnowledgeMetrics: To measure overall knowledge improvement
throughout the course, a pre-test and a post-test were administered,
and normalized learning gain (NLG) was calculated as the ratio of
the actual gain to the maximum possible gain:

NLG = (post − pre)/(max_possible_post − pre) .
Each test had 10 questions that required writing SQL statements.
Reported pre- and post-test scores ranged between 0 and 10.
Individual Differences:We collected gender data, and used sev-
eral instruments to measure individual differences. To measure
global self-worth, we used a 10-item Rosenberg Self-Esteem Inven-
tory [50]. Responses (α = .82) were converted to a continuous scale
where higher scores indicate higher self-esteem (SE). To perform a
Tobias-Everson knowledge monitoring assessment (KMA) [54], we
asked students’ estimates about their answers to pre-test problems.
Then, based on correct and incorrect answers and estimates, a score
was computed that ranges from -1 to 1, where a score of 1 indicates
that the student knows perfectly what they know or do not know.
Activity Logs: We collected students’ timed interaction logs with
the online practice system for each of the four consecutive semesters.
The logs offer a detailed view of student interaction, including each
attempt to solve a problem and access to each example line. The
data collected from the first three semesters were used for our data-
driven behavioral modeling, and we refer to these three semesters
as the modeling dataset. Interaction logs collected during semester
4 were used as a test dataset.

Throughout the paper, we used the term incoming differences to
refer to the gender, pre-test scores, SE, and KMA scores collected
at the start of the course. We consider post-test scores and NLG
to be the performance measures. Table 1 presents the summary
about the participation, incoming differences, performance, and
practice system usage for each semester. In our dataset, no student
took the course in multiple semesters. Also, note that some stu-
dents didn’t respond to instruments and pre/post tests. In this table
and the remaining analysis, we only used the data collected from
students who gave their consent and who tried the practice system
by attempting at least one SQL problem and viewing at least one

example. Detailed filtering process shared along with the reported
analyses. For practice system usage, we reported the average num-
ber of attempted distinct problems, viewed distinct examples, and
explanation lines, as well as the average number of query execution
requests.

4 MODELING LATENT INDIVIDUAL
DIFFERENCES FROM PRACTICE
BEHAVIOR

The goal of the work presented in this paper is to build a data-
driven model of individual differences by processing and under-
standing learners’ behavior within the practice system. In essence,
we wanted to augment various dimensions of incoming individ-
ual differences already present in our dataset (i.e., gender, pre-test
scores, SE and KMA) with another dimension distilled from data,
and to compare the value of these dimensions in predicting per-
formance and engagement. Given the non-mandatory nature of
the practice system, students accessed practice problems and exam-
ples without predefined order or deadlines. We expected that this
freedom of access increased the chance for latent learning-related
dimensions of individual differences to be exposed through practice
behavior and captured by behavior modeling. Past success of be-
havior mining approaches based on sequence mining encouraged
us to apply sequence mining to discover behavior patterns and
to use it for modeling latent individual differences. A distinctive
feature of our approach among other sequence-mining approaches
is representing the behavior of individual learners as a stable vector
of behavior micro-patterns. The micro-patterns are used to dis-
cover latent groups of learners with similar behaviors. By following
traditional questionnaire-based approaches to model individual dif-
ferences, we considered these latent groups as opposite points on a
latent behavioral scale and attempted to position every learner on
this scale. This section presents the main steps of our approach in
detail.

4.1 Learning Action Labeling
The first step in sequential pattern mining is to label students’ prac-
tice actions and define the specific action sequences to be mined.
We believed that the sequence of interactions with learning ac-
tivities and transitions between the activities (i.e., examples and
problems) were critical in modeling individual differences. To pur-
sue this idea, we performed a labeling process that highlights these
critical interactions. We started the labeling process by mapping
each student action to a unique label. Table 2 lists key learning
actions and the corresponding labels used in the labeling process.
As described earlier, practice activities were grouped into several
SQL topics. To access a list of activities for a topic, a student opens
a topic. Once the topic is opened, learners can work with activities
of the topic in any order. With this design, student work with a
topic becomes a unit of practice. To reflect this, we formed behavior
sequences corresponding to learners’ work with individual topics:
all learning actions between two topic openings are considered to
be one sequence, and each sequence starts with the topic opening
label topic-o. We also introduced labels for opening and working
with each type of content (i.e., ex-o, ex-line). If a student performed
a content action after opening a content item (attempting a problem
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Table 1: Summary statistics of the collected dataset. Mean and (SD) are reported.

Incoming Differences Performance Practice System Usage

Semester N Female SE KMA Pre-test Post-test NLG Problems Examples Lines Query Executions

Semester 1 44 54% 20.7(4.2) .5(.4) 1.1(1.1) 5.1(1.5) .46(.13) 31.2(17.7) 50.4(19.6) 123.6(69.4) 55.6(60.7)
Semester 2 22 42% 21.2(4.7) .7(.3) 2.2(2.1) 4.8(2.2) .33(.21) 31.2(16.1) 51.7(14.3) 108.8(72.3) 53.4(66.5)
Semester 3 22 55% 22.6(3.3) .4(.6) .9(1.0) 4.6(1.7) .41(.17) 39.1(12.6) 59.6(10.1) 134.3(70.9) 52.0(51.3)

Semester 4 36 NA NA NA 1.9(1.9) 5.2(2.2) .40(.24) 33.0(17.4) 51.2(19.0) 132.6(65.5) 57.8(75.6)

Table 2: List of labels and the corresponding learning actions
that were used in the labeling process.

Pattern Label Learning Action
topic-o Opening a topic.
prob-s Successful problem solving attempt.
ex-o Opening an example activity.
prob-f Failed attempt for a problem.
ex-line Viewing an explanation line.
query-o Opening query execution mode.
prob-o Opening a problem.
query-e Checking query results in query execution mode.

or viewing an explanation line), we collapsed labels for content
opening and kept the labels for the actual learning actions. For
example, a sequence {prob-o, prob-o} means that a student opened
two problems consecutively without trying to solve any of them.
In addition, we distinguished a failed and a successful problem
solving attempt from one another to differentiate learning actions
that occurred after either a failed or a successful attempt.

One of the challenges of sequence analysis of learning data is
the presence of repetitive learning actions, such as a row of failed
problem solving attempts, or a row of multiple line explanation
views where exact number or repetition is not essential, but the
relative scale of repetition is. To address it, we collapsed these se-
quences so that we can capture what actually happened after these
repetitive actions. In this process, we first generated all sequences
with repetitive labels. Then, we calculated the median length of
repeated labels for all students. Then, we went over the original
action sequences and replaced each repetitive label with a single
uppercase version of that label if the length of that repetition was
greater than the median length, or with a single lowercase label
otherwise. At the end of this process, each label could represent one
or more consecutive repeated actions, depending on the median
length. Only ex-line and query-e had a median length of two, while
others had a median length of one. As the result of the labeling
process, 3432 sequences were generated from interaction logs of 88
students in the modeling dataset.

4.2 Sequential Pattern Mining
To discover the frequent patterns in student action sequences, we
used the SPAM sequence mining algorithm [4, 24]. The sequences
generated after the activity labeling process were used for min-
ing frequent patterns. To reveal sequences that could highlight
individual differences, we set the minimum support for the SPAM

algorithm at 0.5% . Due to our labeling process with repetition re-
duction, the sequences used in the mining process were already
dense in information. Even if some sequences were not frequently
followed (not having high levels of support), they could be im-
portant in revealing discriminative practice behaviors. The SPAM
algorithm discovered 169 frequent patterns that appeared at least
in 0.5% of sequences (18 sequences). All discovered patterns consist
of two or three consecutive learning actions, as we did not include
any gap constraint to the SPAM algorithm. Table 3 shows the top 5
most frequent patterns.

Table 3: Discovered top 5 frequent patterns with sequence
explanations and frequency of occurrence. Lowercase ac-
tions mean that the repetition of that action is less than or
equal to the median repetition length, while uppercase ac-
tions mean the opposite.

Pattern Freq. Explanation

{topic-o, EX-LINE} 4.8% Opening a topic followed by viewing a
long sequence of line explanations.

{topic-o, ex-line} 2.7% Opening a topic followed by viewing a
short sequence of line explanations.

{topic-o, prob-o} 2.5% Opening a topic followed by problem
openings without any attempt.

{prob-f, query-e} 2.3% Failed attempt followed by query exe-
cutions.

{topic-o, EX-O} 2.2% Opening a topic followed by a long se-
quence of example openings without
line viewing.

Out of 88 students, 82 students had at least one frequent pattern
after the mining process. We further filtered out students with
less than 25 frequent patterns (Q1: 45.75, Med: 97.00, M: 103.20)
to have a fair amount of representation of practice behavior by
the discovered frequent patterns. After the filtering process, the
number of students with frequent patterns dropped to 75.

4.3 Modeling Individual Practice Behavior with
Frequent Patterns

We built an individual behavior profile for each student as a fre-
quency vector using the discovered 169 frequent patterns. Each
position in this vector represents how many times the correspond-
ing frequent pattern appears in the practice work of the modeled
student. To eliminate any possible impact of the amount of prac-
tice, we normalized the frequency vectors per student and now
the resulting vectors represent the probability of the occurrence of
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each frequent pattern. This approach was first introduced in [29]
and successfully used to model learner behavior in [35]. Following
these works, we called the individual behavior profile the practice
genome.

To make sure that the constructed probability vectors repre-
sented a sufficiently stable profile of individual practice and could
reliably distinguish students from each other, we checked the sta-
bility of the practice genome, as suggested in [29]. Following the
suggested procedure, we split students’ sequences into two halves
using two approaches: (1) by random split, and (2) by temporal split.
In the random-split approach, we shuffled students’ topic-level
sequences randomly and divided them into halves. In the temporal-
split approach, we first ordered the sequences based on time and
divided the sequences into early and late halves. For either split
approach, we built separate practice “half-profiles” from each of the
halves and calculated the pairwise distances for the whole set of
‘half-profiles” using the Jenson-Shannon (JS) divergence (as we are
calculating the distance between two probability distributions). To
assert profile stability, the distance between the two “half-profile”
vectors of the same student (self-distance) should be smaller than
the distance to half-vectors of other students (others-distance). If
this expectation holds, then we would find strong empirical evi-
dence that the practice profiles (genomes) do represent some stable
individual behavior that distinguishes a particular student from
others.

To evaluate this expectation, we conducted a paired t-test to
compare the calculated self-distances to others-distances for both
random-split and temporal-split approaches. The random-split self-
distances (M = 0.35, SD = 0.11) were significantly smaller than
the random-split other-distances (M = 0.46, SD = 0.05); t(79) =
−7.531,p < .001. Similarly, the temporal-split self-distances (M =
0.42, SD = 0.11) were significantly smaller than the temporal-split
other-distances (M = 0.48, SD = 0.05); t(76) = −5.034,p < .001.
These findings showed that the practice genomes constructed with
the frequent patterns were stable in representing students’ practice
behavior and were successful in distinguishing students from each
other. This property opens a way to use genomes for modeling
individual differences.

4.4 Discovering Latent Groups of Learners
Based on Practice Behavior

Given the stability of individual genome profiles, our next step was
to discover behavioral clusters that group students with similar
behavior profiles. The clustering was performed in two steps. First,
we mapped the higher-dimensional practice genomes (i.e., 169 di-
mensions of the probability vectors) into a two-dimensional space
by using a dimensionality-reduction technique. Next, we clustered
students using the lower-dimensional representation of the practice
profiles. The main rationale behind following a two-step cluster-
ing approach was that the low-dimensional representation enabled
us to convert categorical cluster representation into a continuous
behavioral scale, as explained in Section 4.7. In our approach, we
fixed the number of clusters to two (k = 2) by analyzing the higher-
dimensional practice genomes using silhouette method [51] and
gap statistics [53].

During the first step of the clustering process, we used t-Stochastic
Neighbor Embedding (t-SNE) [57], a non-linear dimensionality-
reduction algorithm that is mainly used to explore high-dimensional
data, to project practice genomes to 2-D points. t-SNE minimizes
the objective function using a randomly-initiated gradient descent
optimization. Thus, each run of t-SNE generates a different pro-
jection. For the results presented in this paper, we first applied a
grid-search technique to tune hyper-parameters (e.g., exaggeration
factor, perplexity, theta) and selected the projection that leads to the
most distinct cluster separation (in Step 2), based on the frequent
patterns. Thus, for the grid-search and the projection selection, we
executed the first and the second step of the clustering process
together for each run.

During the second step of the clustering process, we applied
partition around medoids (PAM) clustering to the 2-D results of t-
SNE projections. To judge the cluster separation for the grid-search
and projection selection, we performed a differential sequence min-
ing approach [37] to compare the mean probability (ratio) of each
frequent pattern between the discovered clusters (k = 2) using
multiple t-tests at α = 0.05 and counted the number of significantly
different patterns between each cluster. Based on this approach, we
selected the 2-D t-SNE projection. The selected t-SNE projection of
the practice behaviors and the PAM clustering results are presented
in Figure 1a. After clustering, there were 38 and 37 students in
clusters 1 and 2, respectively.

4.5 Practice Behaviors Discovered by Clusters
In this section, we review behavioral differences between the clus-
ters by comparing frequent patterns exhibited by students in each
cluster. To achieve this, we calculated the average ratio (probability)
of frequent patterns in both clusters. In Figure 1b, we plotted the
average ratio of 20 patterns that had the highest absolute ratio
difference between two clusters and sorted them by the difference
of the absolute ratio. In the figure, there are 10 patterns that more
frequently occurred in Cluster 1 (top half of the the graph) and 10
patterns that more frequently occurred in Cluster 2 (bottom half of
the graph). The significantly different patterns are labeled with a
star.

As shown in the figure, students in two clusters exhibited consid-
erably different practice behavior. Students in Cluster 1 significantly
more frequently opened and explored examples right after they
began to work with a topic (e.g.,{topic-o, EX-LINE}, {topic-o, ex-o}).
Moreover, they switched more frequently from viewing explana-
tions to successful problem solving, suggesting that they valued
examples as a preparation tool for problem solving (e.g., {EX-LINE,
PROB-S}, {topic-o, EX-LINE, PROB-S}). The students in this cluster
were also engaged significantly more frequently in a sequence of
uninterrupted problem solving attempts, in which a sequence of
failed attempts was followed by a sequence of successful attempts
(e.g., {PROB-F, PROB-S}, {PROB-F, prob-s}).

In contrast, students in Cluster 2 interleaved attempts to solve
problems by using the query execution mode. As seen in the figure,
all 10 “distinguishing” patterns that involved the query execution
mode (e.g., query-e) were significantly more frequent in Cluster
2. For example, when Cluster 2 students failed on a problem, they
checked their query results in the query executionmode to get more
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(a) (b)

Figure 1: (a) Student practice behavior representation on 2-D t-SNE projection with PAM clustering results (k=2). The red cir-
cle represents the mean Euclidean distance of all students to the Cluster 1 medoid (the filled red square), and the blue circle
represents the mean Euclidean distance of all students to the Cluster 2 medoid (the filled blue triangle). (b) Frequent pat-
tern comparison between clusters, sorted by mean ratio (probability) difference. Stars denote significantly different patterns
between two clusters, based on the results of the t-test.

detailed feedback (e.g., {prob-f, query-e}, {PROB-F,query-e}). Further,
they typically managed to solve problems after using the query
execution mode (e.g., {query-e, prob-s}, {query-e, PROB-S}, {prob-
f, query-e, prob-s}. In some cases, they used the query execution
mode even after successfully solving a problem (e.g., {prob-s, query-
e}), suggesting that at particular cases they wanted to verify their
correct queries by checking the actual query result.

Table 4: Summary of the incoming differences and perfor-
mance for the clusters. Mean and (SD) are reported.

Incoming Differences Performance
Clusters N Female SE KMA Pre-test Post-test NLG
Cluster 1 38 56% 21.2(4.2) .53(.44) 1.2(1.5) 5.2 (1.6) .45(.14)
Cluster 2 37 44% 21.7(4.4) .60(.45) 1.4(1.6) 4.8 (1.9) .39(.20)

In summary, by clustering practice genomes, we discovered two
divergent practice behaviors. To simplify the difference, Cluster 1
students tended to learn by consuming SQL knowledge encapsu-
lated in examples and then applying it to practice problems. Clus-
ter 2 students preferred to “generate” SQL knowledge through
their own experience obtained by experimenting with various SQL
queries, which they used as exploration, debugging, and verification
tools.

4.6 Connecting Clusters to Incoming
Differences

While the discovered clusters revealed some divergent learning be-
havior, it was important to check whether the observed differences
could be explained through already collected incoming individual
differences (i.e., gender, pre-test scores, SE, and KMA). If this con-
nection could not be established, we could hypothesize that the
observed differences reflect some latent dimension of individual dif-
ferences that could be used to construct the new scale. To connect
the obtained clusters to incoming differences, we checked whether
there were any other noticeable differences between clusters in
terms of individual differences or prior knowledge. We summarized
these comparisons in Table 4. For each measure, we only considered
students with available data. As seen in the table, the clusters were
balanced according to the incoming differences. The percentage of
female students were 56% and 44%, respectively. The mean scores
of SE, KMA, and pre-test were also very similar, and we did not find
any statistically significant differences. We also did not find any
significant differences between clusters based on post-test scores
and NLG. Further, using pre-test, KMA, SE scores, and gender, we
fitted a binomial generalized linear model to predict categorical
cluster assignments. Compared to an intercept-only model that
used the likelihood ratio test, incoming differences did not improve
the overall fit of the model (χ2(3) = 1.383,p = .710) and achieved a
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(a) (b)

Figure 2: Students are divided into five bins based on their Euclidean distances to cluster medoids. Bins are numbered from 1
to 5 in increasing average distance for (a) Cluster 1 medoid (M1) and (b) Cluster 2 medoid (M2).

very low area under the ROC curve (AUC) of 0.587, which suggests
that cluster assignments cannot be fully explained by the incoming
differences.

4.7 Developing a Data-Driven Behavioral Scale
In the last step of the behavior modeling process, we attempted to
refine the categorical cluster assignments into a continuous behav-
ioral scale (metric) that can model individual differences reflected
in the practice behavior, similar to traditional scales of individual
differences. For example, the SE scale is not a categorical scale
(e.g., high/low SE), but rather a continuous representation of global
self-worth. We believed that a binary categorization simplifies the
observed variability in practice behavior.

To follow existing “bi-polar” scales of individual differences, we
attempted to quantify the position of a student with respect to each
main practice behavior (depicted by the clusters) as the Euclidean
distance from the student’s 2-D point to the cluster medoids found
by the PAM clustering algorithm. Thus, we modelled the practice
behavior of a student using two numerical values: (1) distance to
the first cluster medoid (M1), and (2) distance to the second cluster
medoid (M2).

To investigate how distances to cluster medoids captured dif-
ferences among students (i.e., incoming differences, engagement,
and performance), we divided students into five bins using dis-
tances. The bins are numbered from 1 to 5 in increasing average
distance for M1 and M2, where bin 1 is the closest group to the
medoids, as illustrated in Figure 2. As Table 5 shows, grouping
based on distance to M1, the average number of distinct explana-
tion lines viewed drops considerably as the distance increases, and
we found a significant negative correlation (r = −.48,p < .001). We

also found a weak positive correlation with the average number
of query executions (r = 0.23,p = .04), but there is no constant
decrease or increase regarding this usage metric. For other usage
metrics, incoming differences, and performance measures, we did
not find any significant correlation with the distance to M1. Thus,
with the increase of the distance to M1, the number of distinct
line views decreases and the number of query executions increases.
For grouping based on the distance to M2, we found a significant
negative correlation between distance and the number of distinct
problems attempted (r = −.30,p = .009), and between distance and
the number of query executions (r = −68,p < .001). We also found
a significant positive correlation with the NLG (r = 0.24,p = .038).
Thus, we can summarize that when students move away from M2,
the NLG increases while they attempted fewer distinct problems
and performed fewer number of query executions.

The correlations summarized in this section overlaps with the
main behavioral patterns described in Section 4.5, where students
in Cluster 1 were more concentrated on examples and students in
Cluster 2 were performing more query executions. It is important
to highlight that we did not find any significant correlation between
distance and the incoming differences. Using pre-test scores, KMA,
SE scores and gender, we predicted distance values by fitting a
linear regression model. However, we did not find any significant
predictive model. This means that we cannot explain distances
to cluster medoids and the attributed practice behavior by the
incoming differences.
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Table 5: Summary of grouping based on distances to the cluster medoids. Mean values are reported.

Incoming Differences Performance Practice System Usage

Dist. to M1 N Female SE KMA Pre-test Post-test NLG Problems Examples Lines Query Exec.

Bin 1 12 40% 21.80 .46 1.17 5.40 .49 41.50 60.50 170.00 51.25
Bin 2 23 55% 21.65 .57 1.37 4.96 .41 37.00 56.13 152.39 35.30
Bin 3 21 56% 21.68 .65 1.24 4.78 .41 35.76 56.47 141.86 90.14
Bin 4 12 42% 20.17 .50 1.17 4.83 .41 41.08 56.00 93.75 81.92
Bin 5 7 50% 21.67 .59 1.71 5.17 .39 35.28 52.43 61.57 61.57

Dist. to M2 N Female% SE KMA Pre-test Post-test NLG Problems Examples Lines Query Exec.

Bin 1 11 44% 22.27 .59 .45 4.27 .40 42.18 58.73 156.72 153.36
Bin 2 20 53% 21.89 .59 1.82 4.73 .34 42.35 57.55 124.80 86.65
Bin 3 16 43% 19.93 .51 .81 5.00 .46 36.81 55.19 123.81 38.31
Bin 4 16 43% 21.00 .63 2.06 5.80 .48 34.63 56.31 125.13 31.50
Bin 5 12 70% 21.17 .49 .83 4.96 .45 32.17 55.08 156.42 16.42

5 PREDICTING ENGAGEMENT AND
PERFORMANCE

In this section, we evaluate the predictive power of the continuous
behavioral metric on various engagement and performance mea-
sures. Performance represents the outcomes of the learning process
and is the most typical measure of the learning process. Engage-
ment is a less traditional group of metrics, yet it remains essential
in the context of non-mandatory learner-driven practice. While
practicing with interactive learning content is usually beneficial
for the growth of learner knowledge, many students tend to ignore
the opportunity to practice or practice very little. In this context,
the engagement with practice becomes a critical parameter of the
learning process. The ability to connect individual differences with
engagement is important to predict the outcomes of the learning
process and to plan interventions.

We compared the relative predictive power of the behavioral
metric (i.e., distance to cluster medoids) against the incoming indi-
vidual differences (i.e., gender, pre-test scores, KMA, and SE scores)
and the categorical behavioral cluster representations. Further, we
checked the transferability of the constructed behavioral metric
using the test dataset.

To perform these comparisons, we fitted multiple regression
models to separately predict each outcome measure and compared
the overall fit of models using likelihood ratio tests. Moreover,
we compared the relative importance of features based on the re-
gression estimates. We used negative binomial generalized linear
models to predict count outcome variables due to over-dispersion.
For other measures, we fitted simple linear regressions. We consid-
ered adding a random effect to the regression models to account
for the variability in semesters, but given the very low estimated
variance of the random effect, we continued with only the fixed
effects models. In addition, we checked regression assumptions,
including the multicollinearity, by calculating the variance inflation
factors (VIF) and made sure that none of the features had

√
V IF > 2.

5.1 Performance and Engagement Measures
Learner engagement, an important factor in the learning process,
has been extensively discussed in the research literature [3, 28]. In
modern e-learning, engagement is frequently approximated by the
amount of student voluntary work (i.e., work not directly required
and graded). For example, in MOOCs, engagement is frequently as-
sessed by the fraction of watched videos, the number of attempted
quizzes, or the number of posts to a discussion forum [2, 17, 18].
Similarly, online practice systems generally measure learner en-
gagement through the amount of voluntary practice with examples
and problems [19, 34]. Following this practice, we approximated
engagement as the amount of students’ non-mandatory work with
different learning activities available in the practice system. The
measures that we used for engagement are: (1) the total number of
learning actions performed calculated by summing up the number
of problem solving attempts (regardless of correctness), the number
of query execution attempts, the number of annotated examples
viewed, and the number of line explanations viewed (referred as
total-actions); and (2) the total number of distinct learning activities:
problems, annotated examples, and line explanations (referred as
dist-content). Note that the total-actions measure counts duplicate
accesses to the same learning content, such as opening the same
example or attempting to solve the same problem more than once.
Thus, this metric reflects the overall levels of engagement with
the practice system. On the other hand, dist-content incorporates
uniqueness of the learning content and reflects overall content cov-
erage by a student. To measure student performance, we used (3)
post-test scores and (4) NLG as the objective performance metrics
collected outside the practice system.

5.2 Predicting Engagement
For engagement prediction analyses, we used 70 students’ data from
the modeling dataset who filled out the survey, took the pre-test,
attempted at least one problem, and viewed at least one example
in the practice system. Table 6 presents the summary of the fitted
models for engagement measures.
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We started our analyses by predicting the total number of learn-
ing actions performed in the practice system (total-actions). Results
indicated that the incoming individual differences did not improve
the overall fit of the model when compared to an intercept-only
model(χ2(4) = 5.230,p = .265). However, the model with distance
to medoids as features (distance-model) fitted data significantly bet-
ter than both the intercept-only model (χ2(2) = 14.744,p < .001)
and the model that used the incoming differences (incoming-model)
as features (χ2(2) = 9.514,p = .009). Moreover, the distance-model
also fitted data significantly better than the model that used cate-
gorical cluster labels (cluster-model) (χ2(1) = 12.191,p = .001). We
further fitted a separate model with both distance measures and
individual differences together as features (full-model) to compare
relative regression coefficients. In this model, distance to M1 and
distance to M2 were the only significant predictors of total-actions,
where moving away from both medoids was associated with a fewer
number of actions. We can conclude that the distance to M2 had a
slightly higher negative effect on total-actions.

As a second task, we fitted models to predict the total number
of distinctly accessed learning contents (dist-content). Similar to
the results for total-actions, none of the student individual differ-
ences significantly predicted dist-content and did not improve the
overall fit of the model, as compared to an intercept-only model
(χ2(4) = 4.146,p = .387). On the other hand, we found out that
the distance-model fitted the engagement data significantly bet-
ter than the intercept-only model (χ2(2) = 10.575,p = .005), the
cluster-model (χ2(1) = 10.557,p = .001), and the incoming-model
(χ2(2) = 6.428,p = .004). Next, we fitted a model with both distance
and incoming differences together (full-model) and found that only
the distance measures were significant predictors. Here, we saw
that the distance to M1 had a higher negative impact on dist-content,
as compared to the distance to M2, which was based on regression
coefficients.

In summary, students whowere close toM2 performedmore total
actions, which can be explained by the overall practice behavior
of Cluster 2: they failed more on problem attempts and used query
execution more frequently, as compared to Cluster 1. Students who
were close to M1 covered more unique content in total, such as
viewing more explanation lines.

5.3 Predicting Performance
In this section, we advanced to learning outcome prediction by
predicting both post-test scores and the NLG. For performance
prediction analyses, we used the same set of students in the en-
gagement prediction, but excluded four students who did not take
the post-test and who had zero learning gain. Finally, we used 66
students’ data for learning outcome prediction.

In learning outcome prediction, we used the same features that
we explored in engagement prediction. Moreover, we wanted to
control for the students’ “amount of practice” by adding system
usage metrics to our regression models as additional features. We
considered the total number of distinct problems attempted, distinct
examples viewed, and distinct explanation lines viewed as possible
features. We performed a backward step-wise feature selection
process and found out that the total number of distinct problems
attempted(DPA) was the only feature that significantly predicts the

post-test scores (after controlling by the pre-test scores) and NLG.
Thus, we added this usage metric as a feature to all our regression
models. The summary of the fitted models is presented in Table 6.

To predict post-test scores, in addition to the DPA feature, we
added pre-test scores to control for the levels of prior knowledge.
First, we fitted a regression model by adding remaining features for
incoming differences; i.e., KMA and SE scores (incoming-model).
Compared to a regression model with pre-test scores and DPA as
features, the incoming-model did not fitted the data better (χ2(3) =
0.326,p = .955) and none of the features related to incoming differ-
ences were significant, except for the pre-test scores (B = 0.620, t =
5.824,p < .001) and DPA (B = 0.216, t = 2.128,p = .037). On the
other hand, we replicated the similar analysis by fitting a model
with distance to medoids as features (distance-model), and found
out that the distance-model fitted the data significantly better than
the incoming-model (χ2(1) = 4.928,p = .026), and better than
the model that added binary cluster assignments as a feature to
pre-test scores and DPA (χ2(1) = 4.121,p = .042). Next, we fitted
a model with all features together (full-model), and these results
indicated that after pre-test scores and DPA, the distance to M2
was a significant predictor, but that the distance to M1 was not.
Thus, after controlling for the prior knowledge and the number
of distinct problems attempted, the distance to the second cluster
medoid significantly predicts post-test scores.

In predicting NLG, we did not include pre-test scores as a feature,
since it was used to calculate NLG. Similar to post-test prediction
results, in separate models, we discovered that none of the incom-
ing differences and binary cluster labels were significant predictors.
However, themodel with distance features (distance-model) showed
that distance to M2 significantly predicted NLG after controlling for
the DPA. We further fitted a model with all features together (full-
model), and again, only DPA and distance to M2 were significant
predictors. Given the positive sign of the M2 regression coefficients
in both post-test and NLG predictions, we concluded that the dis-
tance from the Cluster 2 medoid is associated with higher learning
performance.

5.4 Transferability of Learning Outcome
Prediction

In this section, we assess the transferability of our behavior model-
ing approach by predicting the learning outcomes of students in
a test dataset that was not used to discover the latent groups and
build the behavior scale. In addition, to assess whether the behavior
modeling approach can be used for the practical needs of predicting
student performance well before the course is finished, we only
used students’ action sequences from the first half of the course.
There were 36 students who used the practice system (attempted
at least one problem and viewed at least one example) in the test
dataset. We filtered out students who did not take both pre- and
post-tests and who did not have any frequent patterns that could
be used to build the practice genome. After this filtering process,
27 students remained.

The main challenge in this process was projecting new students’
practice genomes on an already constructed 2-D tSNE projection,
as shown in Figure 1a, because the t-SNE algorithm learns a non-
parametric mapping. To overcome this challenge, we trained a
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Table 6: Summary of fitted regression models to predict engagement and performance measures in the modeling dataset.

Dependent variable:

total-actions dist-content Post-test scores NLG

distance-model full-model distance-model full-model distance-model full-model distance-model full-model

Pre-test scores −.002 .0001 .611∗∗∗ .587∗∗∗
Gender (M) .124 .050 .112 .258
SE score .097 .071 −.031 −.075
KMA score −.071 −.053 −.012 −.019
DPA .293∗∗∗ .291∗∗∗ .354∗∗∗ .353∗∗∗
Dist. to M1 −.216∗∗∗ −.207∗∗∗ −.201∗∗∗ −.196∗∗∗ .124 .124 .194 .184
Dist. to M2 −.292∗∗∗ −.289∗∗∗ −.121∗∗ −.121∗∗ .264∗∗ .266∗∗ .365∗∗ .361∗∗

Adjusted R2 .435 .409 .104 .083
Log Likelihood -485.570 -483.257 -412.689 -410.900
Akaike Inf. Crit. 977.141 980.513 831.378 835.801
F Statistic 13.486∗∗∗ 7.434∗∗∗ 3.527∗∗ 1.984∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

multivariate regression model to predict the location (x and y coor-
dinates) of new practice genomes on a 2-D map using the practice
genomes from the modeling dataset. This way, we can predict new
students’ locations and calculate their distances to the same cluster
medoids.

Using the first-half sequences, we discovered 109 frequent pat-
terns following the same approach presented in Section 4, where
102 of the patterns overlapped with the previously discovered pat-
terns and 49 of them overlapped with the previously discovered
top-50 frequent patterns in the modeling dataset. To build the model
and not overfit the modeling dataset, we only used these overlap-
ping frequent patterns as features and further reduced this set to 28
patterns by applying a multivariate backward step-wise feature se-
lection procedure. The final trained model explained the variance in
the coordinates reasonably well (x: adj .R2 = 0.89, y: adj .R2 = 0.83)
and convinced us to proceed. Using this model, we predicted the
locations of new students on the 2-D map and calculated Euclidean
distances to both medoids.

Similar to the analyses in Section 5.3 to predict post-test scores,
in addition to the DPA feature, we added pre-test scores to con-
trol for levels of prior knowledge. Since we did not have individ-
ual incoming difference measures for these students, we can only
report prediction results of the distance measures on this new
dataset. Our results indicated that the overall model was signif-
icant (F (4, 22) = 5.365,p = .004,adj .R2 = 0.40). Compared to the
same model fitted in the modeling dataset, we lost 3.4% in explained
variance (based on adj. R2, 0.435 in modeling dataset and 0.401 in
test dataset), but this finding could simply be a result of using only
half-sequences of students. Based on the regression results, simi-
lar to our previous findings, the distance to M2 was a significant
predictor(B = 0.642, t = 2.588,p = .017) but not the distance to
M1 (B = −0.357, t = −1.312,p = .203). In NLG prediction, we
found a similar trend where the distance to M2 was a significant
feature (B = 0.605, t = 2.072,p = .049) but not the distance to
M1 (B = −0.525, t = −1.758,p = .092). These results indicate that
the model of practice behavior that was built by using the model-
ing dataset represents a reasonably stable dimension of individual

differences that could be used in new datasets to predict learning
outcomes.

6 DISCUSSIONS AND CONCLUSION
In this paper, we proposed a data-driven approach to reveal and
model latent individual differences in online practice behavior. Us-
ing three semesters of log data from an online practice system,
we revealed latent clusters of learners with different behavior and
converted categorical cluster assignments into a continuous scale
representing individual differences in practice behavior. We evalu-
ated this scale against the original dataset and examined the trans-
ferability of our modeling approach against a new semester-long
dataset. Our findings showed that the data-driven behavioral metric
can predict both learners’ engagement within the online practice
system and their learning outcomes. In contrast, categorical cluster
assignments were not equally successful in predicting the overall
levels of performance and engagement. This data suggests that the
discovered “practice behavior” should be modeled on a continuous
scale.

Our results showed that “closeness” to one of the cluster medoids
was associated with higher learning outcomes. However, we ob-
tained this result after controlling for the practice “efforts”. This
finding indicates that learning outcomes are not defined solely by
the sheer amount of practice efforts, but also by how a student
practiced.

The reported results are interesting and important, but our study
does have limitations. The first group of limitations is related to
the measures applied. Based on multiple regression analysis, we
showed that traditionally modelled individual differences, such as
self-esteem (SE) and knowledge monitoring assessment (KMA),
were not effective in both engagement and performance prediction.
This finding is supporting the prior research showing that SE has
no impact on performance [7]. However, the SE measure used in
this study focuses on global self-worth. More specific self-concept
constructs had a stronger relationship to traditional levels of aca-
demic achievement [43]. In addition, we administered KMA on
SQL problems that required students to write short SQL statements
without having any options to select. We believe that the nature of
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such problems might reduce the predictive power of KMA. Other
modified versions of similar measures could be used [25] or knowl-
edge assessment could be monitored during usage of the practice
system. In addition, the performance measures that we used in this
paper were based on pre/post tests rather than on actual course
grades, due to having no access to this information.

Since the practice system offered as a non-mandatory resource,
our analyses are subject to self-selection bias, where we can only
observe the practice behavior of students who decided to use the
system. The design of the practice system adds another limitation
to our findings, where students had freedom to choose topics and
content on which to work freely. In addition, we collected the data
from similar student cohorts attending the same graduate-level
course at a large North American university. The results presented
in this paper might not be transferable to other cohorts or cultures.
Similar studies and analyses should be conducted in other courses
and in other cultures in different settings to assess the generality
of the study results. Finally, we only reported associations between
behavior and learning outcomes, not claiming any causality. In
our future work, we plan to apply this modeling approach to a
newer version of the practice system that has more types of learning
content, explore cultural differences, incorporate other self-reported
measures, and check the differences among practice behaviors in
the presence of different engagement manipulations.
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