Explainable Recommendations in a Personalized
Programming Practice System

Jordan Barria-Pineda! ¥, Kamil Akhuseyinoglu! ¢, Stefan Zelem—éelap2)

2

Peter Brusilovsky!) Aleksandra Klasnja Milicevic? ¥, and Mirjana

Ivanovic?
! University of Pittsburgh, Pittsburgh, PA, USA
jab464@pitt.edu
2 University of Novi Sad, Novi Sad, Serbia

Abstract. This paper contributes to the research on explainable edu-
cational recommendations by investigating explainable recommendations
in the context of personalized practice system for introductory Java pro-
gramming. We present the design of two types of explanations to justify
recommendation of next learning activity to practice. The value of these
explainable recommendations was assessed in a semester-long classroom
study. The paper analyses the observed impact of explainable recommen-
dations on various aspects of student behavior and performance.

Keywords: Educational recommender systems - Explanations.

1 Introduction

The popularity of recommender systems in everyday-life activities encouraged
researchers from several areas to explore the applications of recommender tech-
nologies to education [20,8]. Over the years, this stream of research gradually
expanded to cover a variety of recommendation types from recommending a
discussion thread, to suggesting the next problem to solve, to recommending
courses to take [7]. It can be observed, however, that a recent major trend in
the field of recommender systems — explainable recommendations — is currently
underrepresented in educational recommender systems. Our work attempts to
bridge this gap by exploring explainable recommendations specifically adapted
to an educational context, where the main reason to recommend content is the
learner’s knowledge state, rather than taste or interests. We present a design
of knowledge-based recommendations augmented with visual and verbal expla-
nations. These technologies were integrated into an online personalized practice
system and explored a semester-long study in a classroom context. The study
examined how students use recommendations and explanations and assessed the
impact of these technologies on various aspects of the educational process.

2 Related Work

Over the last decade, explainable recommendations emerged as a major trend
in the area of recommender systems [15]. Tintarev and Masthoff [19] define ex-

https://orcid.org/0000-0002-4961-4818
https://orcid.org/0000-0002-7761-9755
https://orcid.org/0000-0002-2394-3445
https://orcid.org/0000-0002-1902-1464
https://orcid.org/0000-0002-8023-4776
https://orcid.org/0000-0003-1946-0384

2 Jordan Barria-Pineda et al.

planations as “item descriptions that help the user to understand the qualities of
the item well enough to decide whether it is relevant to them or not”. Research
has shown that presenting explanations to users can increase the persuasive-
ness of the recommended items as well as users’ trust and satisfaction with the
recommender system [10,14]. While being popular in domains where recommen-
dations are based on interests and taste such as movies or songs [15], explainable
recommendations remain understudied in the online learning domain.

One of the challenges of transferring explanation approaches accumulated
in the area of traditional recommender systems [10,15] to the area of educa-
tional recommendations is the different nature of these recommendations, which
are typically based on the learner’s knowledge state rather than user interests
or taste. Given this, explanations of educational recommendations have to be
designed afresh rather than re-used from the taste-based domains. At the same
time, the “knowledge-based” nature of educational recommendations offers a new
opportunity. Learner models that are used for generating educational recommen-
dations carry a much higher explanation potential than user profiles applied by
traditional recommender systems [9]. While user profiles are notoriously hard
for users to understand or control [2], the long history of AI-Ed research on open
learner models (OLM) demonstrates that learner models could serve as a means
to understand and control the behavior of adaptive educational systems [5,4].
Moreover, OLMs have shown their effectiveness in facilitating navigation and
supporting metacognitive processes of planning, monitoring, and reflection [5].

We believe that the large body of OLM research offers an excellent starting
ground for the design of explainable educational recommendations. Moreover, as
argued by [6,17] insights learned from OLM research can be used for a broader
goal to improve interpretability in Al-driven educational systems. Yet to com-
plete the task, a layer of visual or verbal explanations should be built on the top
of OLM to produce explainable recommendations. The work in this direction is
at the very beginning and we could cite only a few motivating cases. Putnam
and Conati [16] investigated the value of having explanations for automatically
generated hints in an Intelligent Tutoring System (ITS). Barria-Pineda et al. [3]
and Abdi et al. [1] were the first to explore the effects of using an OLM as
the basis of justifying learning content recommendations. Most recently Zhou et
al.[21] found that explaining the decisions of an ITS to students could improve
the student-system interaction in terms of their engagement and autonomy.

3 Java Personalized Programming Practice System

To explore the value of explainable recommendations in online learning, we im-
plemented content recommendations for Java Personalized Programming Prac-
tice System (JP3). JP3 is an online personalized system offering students in in-
troductory Java programming courses to practice their skills using several types
of interactive learning content. The system is designed as a non-mandatory prac-
tice and self-assessment tool that each student could use for individual needs. In
this section, we present the design of content recommendations in JP? and the
mechanism for generating recommendations, and their explanations.

Explainable Recommendations in Personalized Programming Practice 3

3.1 Explainable Recommendations in JP3

JP? provides access to three types of Java learning content: worked examples,
challenges - faded examples where students have to complete missing parts of
the code [12], and short coding problems [22]. The learning content in JP? is
grouped into topics (e.g., variables, if-else, etc.) that follow the chronological
order of the course. To start practicing, the student has to select one of the
topics as the current goal. After opening a topic, the student can see the list
of available practice content for this topic along with personalized guidance for
choosing the most appropriate activity (Fig. 1). The personalized guidance is
based on a concept-level overlay model of student’s Java knowledge. The model is
built by observing student behavior in the system and represents the probability
of students knowing each Java concept. To make this learner model “open” to
the student, it is visualized as a bar chart on the bottom part of the activity
selection interface. Each bar depicts one concept. The height and the color of the
bar indicate the estimated mastery of this concept: the higher and the greener is
the bar, the higher is the mastery estimation; whilst the lower (below the origin)
and the redder is the bar, the lowest is the estimated mastery. Concepts are
arranged along the x-axis following the order of topics where they are introduced.
Concepts introduced in the current topic are emphasized by a dashed rectangle.

The personalized guidance is offered by recommendations and explanations.
Recommendations suggest the three most relevant learning activities in the topic

Recommended Activities All Activities

1. Swapping the First and Last Characters ofa Examples -....

String i Challenges
2. Repeating the Last Character of a

) VO

tqg® *1

String Lﬂ* Coding
3. Adding One String in the Middle of
— This activity is recommended because:
Another gﬂ‘) * Itlooks like on average you have a
underswnu-ng in the main
prerequisite concepts.

s You have a mnppurtunily for
increasing your knowledge on key
concepts intraduced in this topic.

Max prob. Current topic: Strings
of mastery
(100%) » & r—————= [
& [|
| |
| |
ge
Uncertain I ¥ I
prob. of | | |
mastery []
o I l |
Loy |
o
I I
I I
Min prob. % o O R
of mastery 4’0% "ﬁ-% "bﬁ%%
(0%) a,

Fig. 1: Visualization for Strings topic in JP? with recommended content shown
as a list (left) and with stars. The learner mouses over the top recommendation
and JP3 (1) highlights in the OLM the estimated knowledge of concepts linked
to this item (see bar chart) and (2) shows a verbal explanation (see yellow box).

4 Jordan Barria-Pineda et al.

given the current state of the learner model. Recommendations are provided as
a ranked list on the left and also in navigation support form as stars of different
sizes placed over the recommended activities. As explained in the next section,
the recommendation approach favors activities that combine sufficient levels of
prerequisite knowledge (concepts to be learned in earlier topics) with a good
opportunity to master target knowledge (concepts introduced in the topic).

Explanations are offered in visual and verbal form. Following Tintarev and
Masthofl’s guidelines for explanations of recommendations [18], explanations at-
tempt to increase the transparency of the recommendation process. Given the
nature of JP3 recommendations, both types of explanations focus on highlighting
the balance between prerequisite and target knowledge associated with an activ-
ity. Visual explanations are provided when student mouses over an activity
cell by highlighting names and bars of concepts that can be practiced through
this activity. The visualization stresses whether the student has sufficient pre-
requisite knowledge to attempt the activity and how much this activity could
improve the target knowledge. As we see in Fig. 1, the top recommended prob-
lem (large star) pointed by the mouse involves five concepts. Two prerequisite
concepts (addition and subtraction) to be learned in the earlier topics are al-
ready mastered making the student ready to attempt the problem. At the same
time, three target concepts (substring, charAt, length) are not yet well-learned
making the problem a good opportunity to improve this knowledge.

Verbal explanations attempt to convey the same idea of readiness and rel-
evance through natural language (yellow box on the right of Fig. 1). A typical
explanation was composed of two sentences where the first explains the system’s
assessment of the prerequisite knowledge for the examined activity while the
second assesses its learning opportunity. To stress how positive is each part of
the assessment, the focus keyword of each part (e.g., good, fair) is marked by
the green color of different intensity. The darker the green is, the more posi-
tive is the assessment. Our original intention was to make verbal explanations
accessible along with visual explanations on mouse-over, however, we were con-
cerned that it will make it hard to examine the usage of each type separately.
To support our study needs, we implemented two ways to access verbal explana-
tions: explanations on mouse-over (expOnMouseover) where verbal explanations
were presented along with visual by mousing-over the recommended activity in
the grid and explanations on-click (expOnClick) where verbal explanations were
accessed by clicking on why icon next to the recommended activity in the list.

3.2 The Implementation of Explainable Recommendations

Knowledge Modeling: JP? uses an ontology of Java concepts as the core for
its knowledge representation. Each learning content item in JP? is linked to
the ontology concepts automatically using a concept parser [13]. A Bayesian
Network [11] is used to maintain a probabilistic overlay student model for these
concepts. The network was initially trained with data collected through JP?3 in
earlier classroom studies. The knowledge estimates are seeded based on students’
performance in the pretest. Every time a student attempted a challenge or a

Explainable Recommendations in Personalized Programming Practice 5

problem while practicing with JP?3, the system updated the probability estimates
related to the concepts linked to that activity. Simply, the probability estimates
increase when the student’s answer was correct and decreased otherwise.
Recommendation Approach: JP3 content recommendation algorithm max-
imizes the balance between the opportunity to improve knowledge of target
concepts and the necessity of sufficient knowledge on prerequisite concepts that
are needed to solve the activity correctly. A concept associated with an activity
is labeled as a prerequisite if it is expected to be mastered in the chronologi-
cally earlier topics and as a target if it is the topic where the concept is first
introduced. The recommendation algorithm uses the concept-level knowledge es-
timates taken from the student model and generates content recommendations
according to the following rules: (1) only non-completed activities are recom-
mended; (2) examples have recommendation priority when they introduce a new
concept that has not been practiced before; (3) for challenges and problems, a
recommendation score is calculated using the Equation 1,

1
rec score;; = N (Z wp * Op; + Zwt * (1 — 9tj)> (1)
p t

where p represents the prerequisite concepts and ¢ represents the target concepts
associated with activity . 6,; and 6;; are the knowledge estimates of student j
for both types of concepts. w denotes the topic-level importance of the concepts
(either p or t) calculated by the tf-idf approach (i.e., the more unique a concept
in a topic, the higher its importance) and W is the sum of the weights for the
associated concepts (both prerequisite and target ones). Finally, N denotes the
total number of concepts associated with activity ¢. Learning activities are sorted
based on these scores and top-3 items are recommended to the learner.

Verbal Explanations: To generate verbal explanations for recommendations,
we calculate the average proficiency for both the top three prerequisite and target
concepts (, and 6;). Based on these proficiency estimations, we generate short
paragraphs for each part of the verbal explanations. Table 1 presents samples
of verbal explanations for several thresholds. The thresholds and wording were
selected to offer a qualitative explanation of numerical values and were not used
to drive the recommendation process. A recommended example was justified by
stating that “it presents concept(s) that are new to you (e.g. concept_name)”.

Table 1: Rules for generating explanations for educational recommendations
Verbal explanation template for prerequisite concepts 0y >.6/0, >.75 |0, >.95
It looks like on average, you have a ... understanding in |good |proficient|excellent
the main prerequisite concepts.
Verbal explanation template for target concepts 0 <.6|0; <.4 0 <.2

You have a ... opportunity for increasing your knowledge |fair |good excellent
on key concepts introduced in this topic.

4 Study

To assess the impact of explainable educational recommendations, we performed
a semester-long classroom study. The study was conducted with 86 undergradu-

6 Jordan Barria-Pineda et al.

ate students taking a Java Programming course at a Furopean university. After
taking an online pretest designed to assess their prior knowledge, each student
was given access to the JP3.The use of JP? was non-mandatory, so there was no
penalty to those who did not use the system. In contrast, to encourage JP? use,
10% extra credit was added to their final course grade if they viewed at least
80% examples, solved at least 70% of challenges, and 60% of coding problems.
At the end of the term, an online post-test (isomorphic to the pretest) was taken.
Pretest scores show that a high proportion of students had an medium level of
proficiency in Java, given that the median grade in the pretest was 5 out of 10.
Students were randomly assigned to one of two explanatory treatments described
in section 3.1: expOnMouseover (n = 45) or expOnClick (n = 41). Student ac-
tions in JP3 were logged. The logs included content openings, problem solving
attempts, mouse-overs (with duration) on recommended and non-recommended
activities, and access to verbal explanations on-click. As the summary of activi-
ties shows (Table 2), on average, students opened and attempted a large fraction
of available learning activities.

4.1 Value of Recommendations

To assess the impact of recommendations on engagement, we contrasted student
engagement with recommended and non-recommended activities on two levels:
(1) attempting the learning activity once it is opened (conversion rate) and (2)
keep working on the activity after the first attempt until solving it correctly (per-
sistence rate). To reliably assess the impact of recommendations, we considered
(1) topics with more than 6 activities and (2) students’ actions until more than
3 activities left to be completed in a topic to eliminate cases where students had
no other choice than to select a recommended item.

We fit a series of mixed-linear models to predict conversion and persistence
rates by using the pretest score, the type of learning activity (recommended
or non-recommended) and the interaction (int) between these two variables as
independent variables. We add student ids as a random effect. In this and fol-
lowing analyses we use common notation to report significance levels of variables
within models: p < .05 —*, p < .01 —**, p < .001 —***. We found a significant
model for the conversion rate in coding problems (p < .001), which revealed that
the probability of attempting a problem once it is opened depends on the start-
ing knowledge of the student measured by the pre-test (B;,:=-.025%). We also
found significant main effects (Bpretest=-04***,8,e.=.13%). More exactly, low-
pretest learners exhibited significantly higher conversion rates on recommended
items while high-pretest students demonstrated higher chances of attempting

Table 2: Summary of students’ activity in JP? (Mean(SD))

Number of |Mouse-overs’ |Explanati-|Activities |Activities |Activities
mouse-overs|duration (sec)|ons’ clicks [opened |attempted|solved

Coding (n=46) 37.3(27.3) 1.42(.31)]2.98(2.19)|19.5(13.3)|13.7(10.3) | 8.1(7.7)
Challenges (n=76)| 53.5(37.1) 1.34(.36) |3.18(1.98)|33.2(12.7)| 30(11.9) |28.4(11.4)
Examples (n=>55) | 39.3(30.1) 1.36(.31) |4.86(3.05)|25.4(11.1)| 22.3(8.7) |20.5(8.12)

Explainable Recommendations in Personalized Programming Practice 7

non-recommended ones. On one hand, it indicates that students with lower do-
main knowledge relied considerably on system recommendations when selecting
content to practice. On the other hand, it hints that JP? underestimated the
knowledge of high-pretest students since a considerable proportion of their Java
learning happened before the course and was not accurately modeled. No signif-
icant model was found for conversion on challenges and examples. Conversion
rates were uniformly very high for all students indicating that they were less
picky when selecting low-effort activities.

We found similar results when checking the impact of recommendations on the
success rate of attempted coding problems (i.e., where conversion was reported).
We fit the same model as used for conversion rates, but including success rate
as the dependent variable (p < .05). We found a significant interaction between
pretest and the presence of recommendation (8=-.016%*). We also found signif-
icant main effects (Bpretest =.018%,5rcc=.13**). The data shows that learners
with lower pretest exhibited much higher success rates when working on recom-
mended coding problems while for students with high pretest scores there was
almost no difference. A similar model for challenges (p < .001) failed to reveal
an impact of recommendations. The only factor that affected the success rate
of students was the pretest (5=.03***) — high-pretest students exhibited higher
success rates with challenges.

For persistence rate, only pretest acted as a significant predictor (8 = 0.08**)
for the model (p < .001) — the higher the pretest, the more persistent students are
in coding problems, regardless if they were recommended or not. No significant
model was found for explaining persistence on challenges and examples.

4.2 Value of Explanations

The first step of assessing the value of explanations is to examine whether they
were used or not. As Table 2 shows, on-click explanations were requested for
about 16% of attempted activities, which is a considerable usage. To assess
whether students were “processing” mouse-over explanations for recommended
content as well, we contrasted the duration of mouse-overs on recommended and
non-recommended activities. For this analysis, we excluded “short” mouse-overs
(< 1 sec.), which were likely generated “on passing” and provided too little
time to pay attention to either visual or verbal explanations. We found that
students took on average more time on mousing over recommended items than
non-recommended ones, which suggests that they paid attention to explanations
of recommended activities (p < .001). Moreover, we found that this difference
was lower for expOnClick who can only check visual explanations on mouse-over
(Mgigy = .051) and higher for ezpOnMouseover (Mg;sy = .181), who receive
both explanation types on mouse-over. A greater additional time spent by ez-
pOnMouseover students (p = .033) hints that they paid attention to both verbal
and visual explanations.

Next, we checked whether inspection of explanations (measured as the mean
duration of mouse-overs on learning content) was associated with adoption of ei-
ther recommended or non-recommended activities. We fit two multiple regression
models: (a) predictors: pretest score and mouse-overs’ duration on recommended

8 Jordan Barria-Pineda et al.

items, outcome: percentage of the total items accessed by the learner which were
recommended ones; and (b) predictors: pretest score and mouse-overs’ duration
on non-recommended items, outcome: percentage of the total items accessed by
the learner which were non-recommended ones. For (a), we found that both
pretest score ($=-2.01*) and mean mouse-over duration on recommended ac-
tivities (8=31.8%) were significant predictors of commitment with these type of
items (F(2,58) = 10.93, adj.R? = .25, p < .001). Similarly, for (b) we found that
pretest score (8 =2.09%) and average mouse-over duration on non-recommended
activities (8=-37.19*) were correlated with the adoption of non-recommended
content for practicing (F(2,58) = 6.78, adj.R?> = .16, p = .002). The data shows
that the ability to examine explanations of recommended problems increases stu-
dent’s motivation to attempt these problems. On the other hand, the ability to
inspect explanations of non-recommended problems decreases learner’s chances
to attempt those items. These results also reiterate that low-pretest students
chose to work more on recommended content, in contrast to high-pretest stu-
dents who decided to perform a self-guided exploration of the content instead. We
did not find any influence of mouse-over duration on challenges or examples.
To assess if the difference in how to access explanations in the expOnClick
group influenced students’ engagement with the learning activities, we analyzed
if the number of clicks performed by a learner correlated with students’ engage-
ment in working on JP3. We divided students into low and high “explanation
requesters”, according to the median of explanations’ clicks (considering the
three types of learning content). We found that these two different groups sig-
nificantly differ on the number of attempts on coding problems (p < .01), where
high explanation requesters exhibited a much higher average number of attempts
on coding problems (Med = 33) than low explanation requesters (Med = 20).

4.3 Students’ Work in JP2 and Course Performance

To assess the educational value of practicing with JP3, we examined the corre-
lation between the work of students within JP3 and their performance in the
course throughout the term. In this study, we had access to two classroom test
scores that evaluated students’ performance (Test! in the first half and Test2
in the second half of the course), and the post-test scores that were not graded.
To prepare data, we counted the number of successful and failed attempts on
learning activities and calculated the average success rate per week. To account
for the regularity of practice performance, we calculated the skewness of the
distribution of weekly success/failure attempts. We repeated the same calcula-
tions for the number of sessions in JP3 per week. Skewness can tell us if the
work/performance of students was concentrated at the start (positive skewness)
or the end (negative skewness) of the course. In our multiple regression mod-
els, we added pretest scores to control for the prior knowledge. We performed
a step-wise feature selection process for each prediction model. While we con-
sidered these metrics for all the types of learning content, only performance on
coding problems added predictive power to the models, while variables related
to work on challenges and examples did not. It is consistent with the fact that,

Explainable Recommendations in Personalized Programming Practice 9

given the incentives for getting extra-credit and the lower efforts associated with
completing challenges and examples, all learners achieved a uniformly high com-
pletion level at the end of the term.

We first predicted scores in Test! and found a significant overall model
(F(3,42) = 6.328, adj.R? = .26, p < .001) where average success rate was the
only significant predictor (8=.44***). Second, we fitted a model to predict Test2
scores and results indicated a significant model (F(3,41) = 5.616, adj.R*> =
.24, p = .003) with only pretest-score as a significant predictor (8 =.44) among
other predictors. Finally, we predicted post-test scores (F(3,52) = 8.018, adj.R? =
.28, p < .001) and found that pretest scores (8 =.36%) , skewness of incorrect
coding attempts (8 =-.58*%) and average success rate (5=.2%) were significant
predictors of post-test scores.

5 Summary and Discussion

In this paper, we presented the design of an online programming practice system
JP? augmented with explainable recommendations of learning content to prac-
tice. The recommendations were generated by optimizing the balance between
the current level of prerequisite knowledge and the opportunity of practicing
new concepts. As input, the explainable educational recommender module uses
the state of student knowledge of Java concepts estimated by a student model
based on the observable student performance. Explanations were generated in
two different forms (see Fig. 1): (1) visual explanation through a concept-level
OLM which showed the estimations of the learner’s knowledge on the concepts
associated with each learning item (2) verbal explanation describing the bal-
ance between prerequisites and potential for new knowledge acquisition (only
for recommended content). We also presented a semester-long study where JP3
was used as a learning support tool for an intermediate programming class. Our
goal was to investigate how recommendations and explanations affect different
aspects of student work with the learning content in a free practice mode.

Our data showed that students invested their time to access and inspect
the explanations of the recommendations. The average time spent on mousing
over activities was significantly higher for recommended activities than for non-
recommended ones. Moreover, students in the expOnMouseover group exhibited
longer mouse-overs on recommended items than expOnClick learners, since the
first group was able to observe both visual and verbal explanations when mous-
ing over recommended activities and needed more time to process it.

By examining the effect of recommendations on student behavior, we ob-
served that recommendations affected student selection and engagement with
high-effort (coding problems) and low-effort activities (challenges and examples)
differently. While for low-effort activities, learners’ behavior was not influenced
significantly by the recommendations, the conversion for coding problems (mak-
ing at least one attempt on an opened problem) was significantly and positively
influenced by the presence of a recommendation. This effect seems to be me-
diated by the students’ prior knowledge. As we observed, low-pretest students,
exhibited a higher level of trust in the recommendations and the willingness

10 Jordan Barria-Pineda et al.

to work with recommended problems. Moreover, we found that students with
lower prior knowledge achieved a higher success rate on solving recommended
coding problems than on non-recommended ones. These results indicate a bet-
ter match of recommended problems to student knowledge. In contrast, students
with a higher level of starting knowledge exhibited higher conversion rates on
non-recommended problems. This situation might be explained by the fact that
the learner model was initialized using results of a relatively small 10-problem
pretest that underestimated the knowledge of students with a high level of pro-
ficiency in Java. Given the transparent OLM, these students might have noticed
that the recommendations were generated using an incomplete model and pre-
ferred to select the content to practice themselves. In this sense, the explanations
still achieved their goal to help students in selecting the right content to practice,
in this case, revealing that recommended content is not adequate and helping
them to make their own choice with OLM-based visualization.

On top of the effect of recommendations, we also observed that inspection of
the explanations affected student engagement with learning content. The more
time students spent while mousing over the recommended activities, the more
they were willing to open them. In contrast, the more time student spent on in-
specting visual explanations for non-recommended activities, the less they were
inclined to open them. In this aspect, student behavior was also influenced by
their starting level of knowledge. The students with high pre-test scores exhib-
ited lower ratios of engagement with the recommended activities. This behavior
is likely to have the same roots as discussed above for conversion data.

By putting together all these results, we can conclude that explainable rec-
ommendations can support students working with a programming practice sys-
tem, most noticeably affecting the learners who are novices in programming and
have the highest need for help in choosing activities to practice. The presence
of recommendations and explanations could increase student engagement with
knowledge-relevant learning content leading to a higher success rate and an in-
creased opportunity to learn. In turn, it was exactly the success rate in problem-
solving within JP? that impacted students’ knowledge progress throughout the
term, as it was positively correlated with student performance on intermediate
evaluations and also on the post-test at the end of the class. Altogether, our
explainable recommendation approach has the potential to positively impact
students activity within JP3 by pushing them to practice more, focusing on the
most appropriate high-effort learning materials, and at the same time providing
them with the opportunity for reflecting on the appropriateness of the content
for supporting each step of their learning.

However, this study has several limitations. In particular, we were not able to
reliably track student work with visual and verbal explanations using logs, as we
use only mouse-over time as a proxy of attention. In the future, we need to better
assess the impact of explanations by running studies where visual attention of
students can be captured (e.g. eye-tracking controlled study). Also, more efforts
are needed to define strategies that could make recommendations more relevant
and useful for learners with higher initial levels of knowledge.

Explainable Recommendations in Personalized Programming Practice 11

References

10.

11.

12.

13.

14.

15.

Abdi, S., Khosravi, H., Sadiq, S., Gasevic, D.: Complementing educational recom-
mender systems with open learner models. In: Proceedings of the Tenth Interna-
tional Conference on Learning Analytics Knowledge. p. 360-365. LAK 20, ACM,
New York, NY, USA (2020)

Ahn, J.W., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for
adaptive news systems: help or harm? In: the 16th international conference on
World Wide Web, WWW ’07. pp. 11-20. ACM (2007)

Barria Pineda, J., Brusilovsky, P.: Making educational recommendations transpar-
ent through a fine-grained open learner model. In: Workshop on Intelligent User
Interfaces for Algorithmic Transparency in Emerging Technologies at the 24th
ACM Conference on Intelligent User Interfaces, IUI 2019. vol. 2327. CEUR (2019)
Bull, S.: There are open learner models about! IEEE Transactions on Learning
Technologies 13(2), 425 — 448 (2020)

Bull, S., Kay, J.: SMILI: A Framework for Interfaces to Learning Data in Open
Learner Models, Learning Analytics and Related Fields. International Journal of
Artificial Intelligence in Education 26(1), 293-331 (2016)

Conati, C., Porayska-Pomsta, K., Mavrikis, M.: AI in education needs inter-
pretable machine learning: Lessons from open learner modelling. arXiv preprint
arXiv:1807.00154 (2018)

Drachsler, H., Verbert, K., Santos, O., Manouselis, N.: Panorama of recommender
systems to support learning. In: Recommender Systems Handbook, pp. 421-451.
Springer, Berlin (2015)

Erdt, M., Fernandez, A., Rensing, C.: Evaluating Recommender Systems for Tech-
nology Enhanced Learning: A Quantitative Survey. IEEE Transactions on Learning
Technologies 8(4), 326-344 (2015)

Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Per-
sonalized Information Access, Lecture Notes in Computer Science, vol. 4321, pp.
54-89. Springer-Verlag, Berlin Heidelberg New York (2007)

Gedikli, F., Jannach, D., Ge, M.: How should I explain? A comparison of differ-
ent explanation types for recommender systems. International Journal of Human
Computer Studies 72(4), 367-382 (2014)

Hosseini, R.: Program Construction Examples in Computer Science Education:
From Static Text to Adaptive and Engaging Learning Technology. Doctoral dis-
sertation (2018)

Hosseini, R., Akhuseyinoglu, K., Petersen, A., Schunn, C.D., Brusilovsky, P.: Pcex:
Interactive program construction examples for learning programming. In: Proceed-
ings of the 18th Koli Calling International Conference on Computing Education
Research. pp. 5:1-5:9. ACM (2018)

Hosseini, R., Brusilovsky, P.: Javaparser: A fine-grain concept indexing tool for
java problems. In: The First Workshop on Al-supported Education for Computer
Science (AIEDCS 2013). pp. 60-63 (2013)

Kulesza, T., Stumpf, S., Burnett, M., Yang, S., Kwan, I., Wong, W.K.: Too much,
too little, or just right? Ways explanations impact end users’ mental models. Pro-
ceedings of IEEE Symposium on Visual Languages and Human-Centric Comput-
ing, VL/HCC pp. 3-10 (2013)

Nunes, I., Jannach, D.: A systematic review and taxonomy of explanations in
decision support and recommender systems. User Modeling and User-Adapted In-
teraction 27(3-5), 393-444 (2017)

12

16.

17.

18.

19.

20.

21.

22.

Jordan Barria-Pineda et al.

Putnam, V., Conati, C.: Exploring the need for explainable artificial intelligence
(XAI) in intelligent tutoring systems (ITS). In: Joint Proceedings of the ACM IUI
2019 Workshops co-located with the 24th ACM Conference on Intelligent User
Interfaces (ACM IUI 2019), Los Angeles, USA, March 20, 2019 (2019)

Rosé, C.P., McLaughlin, E.A., Liu, R., Koedinger, K.R.: Explanatory learner mod-
els: Why machine learning (alone) is not the answer. British Journal of Educational
Technology 50(6), 2943-2958 (2019)

Tintarev, N., Masthoff, J.: Designing and Evaluating Explanations for Recom-
mender Systems. In: Recommender Systems Handbook, Second Edition, vol. 2,
pp. 479-510 (2010)

Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for rec-
ommender systems: Methodological issues and empirical studies on the impact of
personalization. User Modeling and User-Adapted Interaction 22(4-5), 399-439
(2012)

Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, 1.,
Duval, E.: Context-aware recommender systems for learning: A survey and future
challenges. IEEE Transactions on Learning Technologies 5(4), 318-335 (2012)
Zhou, G., Yang, X., Azizsoltani, H., Barnes, T., Chi, M.: Improving student-system
interaction through data-driven explanations of hierarchical reinforcement learning
induced pedagogical policies. In: Proceedings of the 28th ACM Conference on User
Modeling, Adaptation and Personalization. p. 284-292. UMAP ’20, ACM, New
York, NY, USA (2020)

Zingaro, D., Cherenkova, Y., Karpova, O., Petersen, A.: Facilitating code-writing
in pi classes. In: Proceeding of the 44th ACM Technical Symposium on Computer
Science Education. p. 585-590. SIGCSE ’13, ACM, New York, NY, USA (2013)

	Explainable Recommendations in a Personalized Programming Practice System

