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Abstract 

The relative fit of two nested models can be evaluated using a chi-square difference statistic. We 

evaluate the performance of five robust chi-square difference statistics in the context of 

confirmatory factor analysis with non-normal continuous outcomes. The mean and variance 

corrected difference statistics performed adequately across all conditions investigated. In contrast, 

the mean corrected difference statistics required larger samples for the p-values to be accurate. 

Sample size requirements for the mean corrected difference statistics increase as the degrees of 

freedom for difference testing increase. We recommend that the mean and variance corrected 

difference testing be used whenever possible. When performing mean corrected difference testing, 

we recommend that the expected information matrix is used (i.e., choice MLM), as the use of the 

observed information matrix (i.e., choice MLR) requires larger samples for p-values to be accurate. 

Supplementary materials for applied researchers to implement difference testing in their own 

research are provided.  

 

Keywords: structural equation modeling, nested models, chi-square difference test, non-normal 

data. 
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Chi-square Difference Tests for Comparing Nested Models: 

An Evaluation with Non-normal Data 

Structural equation modeling (SEM) is a general statistical framework appropriate for 

modeling multivariate datasets. Over the past few decades, SEM has been steadily gaining in 

popularity among applied researchers across a broad range of scientific disciplines. One of the 

essential and frequently used features available within the SEM framework is the statistical 

evaluation of how well hypothesized models fit the observed data. 

Maximum likelihood (ML) is the most widely used estimation method for modeling 

continuous data within the SEM framework (Maydeu-Olivares, 2017). When the model is 

correctly specified and data follow a multivariate normal distribution, the minimum of the ML fit 

function can be used to construct a chi-square distributed test statistic, thus enabling a statistical 

evaluation of the fit of the model to the data at hand. The assumption of multivariate normality, 

however, need not be tenable in empirical research (Cain, Zhang, & Yuan, 2017; Micceri, 1989). 

If data are not normal, relying on the normal-theory ML statistic to evaluate model fit may result 

in erroneous statistical conclusions (Hu, Bentler, & Kano, 1992; Satorra, 1990; Satorra & 

Bentler, 1994). To address this problem, various corrections to the chi-square test statistic have 

been proposed. Specifically, the chi-square statistic can be corrected so that in large samples it 

agrees in mean with a chi-square distribution (Asparouhov & Muthén, 2005; Satorra & Bentler, 

1994; Yuan & Bentler, 2000), or it can be corrected so that it agrees in both mean and variance 

(Asparouhov & Muthén, 2010; Satorra & Bentler, 1994). In large samples, the mean and 

variance corrected chi-square statistics should be superior over the less computationally 

expensive mean corrected chi-squares (Asparouhov & Muthén, 2013). Maydeu-Olivares (2017) 

summarizes the various mean and mean and variance corrected chi-square statistics proposed in 
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the literature. In a simulation study, he also shows that mean and variance corrections provide 

more accurate p-values than mean corrections when assessing the absolute (i.e., model-data) fit 

of the model. In this article, we refer to these corrected chi-square statistics as robust chi-square 

statistics. 

  Chi-square tests can also be used to compare the fit of two models that are nested. There 

are many applications in which this is of interest (e.g., Elkins et al., 2018; Lai et al., 2015; Pappu 

& Quester, 2016; Schivinski & Dabrowski, 2016; Wingate & Bourdage, 2019). In particular, 

testing for differences in fit is routinely performed in the measurement invariance literature (e.g., 

Guhn, Ark, Emerson, Schonert-Reichl, & Gadermann, 2018; Hawes et al., 2018; Huhtala, 

Kangas, Kaptein, & Feldt, 2018; Jenkins, Fredrick, & Nickerson, 2018; Krieg, Xu, & Cicero, 

2018). 

Consider two models, Model 0 and Model 1, with degrees of freedom df0 and df1, 

respectively, where df0 > df1. Model 0 is nested within Model 1 if the mean and covariance 

structures implied by Model 0 can be reproduced exactly by fitting Model 1 (Bentler & Satorra, 

2010).  Using ML, and if the normality assumption holds, the difference in model fit can be 

conveniently tested by computing the difference between chi-square statistics of the two nested 

models under consideration. When the larger model (Model 1) is correctly specified, the 

difference statistic asymptotically follows a chi-square distribution. If the chi-square difference 

statistic cannot be rejected, the more parsimonious model (Model 0), should be preferred over 

the less restricted one (Model 1).  

  If the normality assumption does not hold, the difference between the two robust fit 

statistics will not be chi-square distributed, thus compromising the accuracy of statistical 

conclusions (Satorra, 2000). To facilitate appropriate statistical testing for differences in fit under 
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non-normality, several corrections to the chi-square difference statistic have been proposed (e.g., 

Asparouhov & Muthén, 2006; Asparouhov & Muthén, 2010; Satorra, 2000; Satorra & Bentler, 

2001; Satorra & Bentler, 2010). To date, the two most commonly utilized options among applied 

researchers have been the two versions of Satorra-Bentler mean-adjusted chi-square difference 

statistic (Satorra & Bentler, 2001, and Satorra & Bentler, 2010). Surprisingly, notwithstanding 

the frequent and ongoing application of these two corrected statistics, only two studies have 

thoroughly assessed their performance under non-normality: Chuang, Savalei, and Falk (2015), 

and Brace and Savalei (2017). The results of both studies reinforced concerns regarding the 

application of uncorrected difference statistics to non-normal data and provided evidence of the 

robustness to non-normality of the Satorra and Bentler (2001) and (2010) corrections under a 

variety of plausible research scenarios, gently favoring the more recent one.  

However, these recent studies did not include an investigation of the mean and variance 

adjusted difference statistics (Asparouhov & Muthén, 2006, 2010), which may perform better 

than the mean corrected difference statistics currently in use in applications. Accordingly, the 

current investigation is aimed at addressing this gap in the literature to date. The remaining of 

this paper is organized as follows. First, we describe the mean, and mean and variance 

corrections to chi-square statistics for comparing nested models. Next, we summarize previous 

studies on the behavior of mean corrected difference statistics when data is non-normal and 

emphasize the rationale for investigating the performance of the mean and variance corrected test 

statistic. Afterwards, we present the results of a simulation study comparing the performance of 

Asparouhov and Muthén’s (2006, 2010) mean and variance adjusted difference chi-square to 

Satorra and Bentler’s (i.e., 2001, 2010) mean adjusted difference statistics with respect to both 

empirical Type I error rates and power. Finally, we discuss the results and provide some 
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recommendations for substantive researchers. In the supplementary materials to this article, we 

provide a worked out example in order to facilitate the application of the discussed methods.  

Mean, and Mean and Variance Corrections to Chi-square Statistics for Comparing Nested 

Models 

In this article we focus on structural equation models for continuous outcomes estimated 

by ML as this is the most commonly used setup in applications. Under a multivariate normality 

assumption, and when no constraints are imposed on the means, the ML fit function is given by: 

 1( , ( )) log ( ) log ( ( ))MLF tr p        S S S , (1) 

where S  is the sample covariance matrix, ( )  is the model implied covariance matrix,   is the 

vector of model parameters with length q, and p is the number of observed variables. Within this 

setup, the most widely used test statistic used to assess fit of the hypothesized model is the 

likelihood ratio test statistic,   

 ˆ( 1) MLT N F  ,  (2) 

where N denotes sample size, and ˆ
MLF is obtained by minimizing the ML fit function with 

respect to  . If the multivariate normality assumption holds and the model is correctly specified, 

T asymptotically follows a chi-square distribution with degrees of freedom (df) equal to 

( 1) / 2p p q  , hence allowing for statistical evaluation of model fit. In the applied literature, T 

is commonly referred to as the chi-square test statistic. However, if data are not normally 

distributed, T will not be 
2χ distributed. In this case, the chi-square statistic can be adjusted so 

that it matches asymptotically a 
2χ distribution either in its mean (e.g., Satorra & Bentler, 1994; 

Yuan & Bentler, 2000; Asparouhov & Muthén, 2005), or in its mean and its variance (Satorra & 

Bentler, 1994; Asparouhov & Muthén, 2010). The mean adjusted test statistics can be written as 
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T
T

c
  , where c is the scaling correction; the mean and variance adjusted statistic can be written 

as T aT b   (Asparouhov & Muthén, 2010). Two variants of the mean adjusted statistic have 

been proposed. They differ on how c is computed and on their suitability in the presence of 

missing data. The first one was originally proposed by Satorra and Bentler (1994) and can only 

be used with complete data. In widely used Mplus (Muthén & Muthén, 2017) and lavaan 

(Rosseel, 2012) SEM packages, it is obtained when choice MLM is selected. The second one 

was originally proposed by Yuan and Bentler (2000) and later modified by Asparouhov and 

Muthén (2005). It is suitable for both complete and incomplete data, and obtained in Mplus and 

lavaan using choice MLR. The main difference between the MLR and MLM version of the test 

is how the information matrix used in computing the scaling correction is estimated. In MLM, 

the expected information matrix is used, whereas in MLR, the observed information matrix is 

used. The latter should provide more accurate results (Efron & Hinkley, 1978; Maydeu-Olivares, 

2017; Savalei, 2010). A detailed technical account of the differences between choices MLM and 

MLR can be found in Maydeu-Olivares (2017). 

 In applications, it is often of interest to compare the fit of competing models. When the 

comparison between two models involves one model nested within another, a test can be 

performed to determine whether the difference in fit is statistically significant. We use M0 and df0 

to denote the more restricted model to be compared and its degrees of freedom. We denote by M1 

with df1 the less restricted model. M0 will be nested within M1, for instance, if M0 is the result of 

placing constraints on some of the model parameters of M1. Under normality assumptions, and 

for ML estimation, the difference in fit between two nested models can be tested simply by 

subtracting the two chi-square fit statistics: 
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 0 1D T T  ,  (3) 

where T0 and T1 are chi-square statistics for models M0 and M1, respectively. Under these 

conditions, and when both models are correctly specified, D asymptotically follows a chi-square 

distribution with degrees of freedom df = df0 – df1 (Steiger, Shapiro, & Browne, 1985).  

 When data are not normal, D does not result in a 
2χ distributed statistic (Satorra, 2000). 

To account for that, Satorra (2000) developed a scale corrected 
2χ difference test robust to non-

normality. However, his computationally taxing implementation was quickly followed by an 

alternative correction to D that can be conveniently computed from a standard SEM software 

output (Satorra & Bentler, 2001). The scale corrected difference test statistic is given by 

 01
01

D
D

c
 , 0 0 1 1

01
0 1

df c df c
c

df df





 , (4) 

where 0c  and 1c   are the scaling corrections for testing the absolute fit of M0 and M1, 

respectively. We note that if  0T , 0T  and 1T , 1T  denote the uncorrected and mean-corrected chi-

square statistics for the two models, respectively, then  0
0

0

T
c

T
  and 1

1
1

T
c

T
  .  We refer to this 

robust difference statistic as DSB1, and consider two variants of it. The first one employs the 

Satorra-Bentler mean-adjusted 
2χ (Satorra & Bentler, 1994) to obtain 0T and 1T . Following 

Mplus/lavaan terminology, we refer to this option in the current study with DSB1MLM. The 

second option considered uses Asparouhov and Muthén’s (2005) mean-adjusted correction to 

obtain 0T and 1T . We refer to this option here with DSB1MLR. We note that what we refer to in 

this paper as DSB1MLM corresponds to the difference statistic DR1 evaluated by Chuang and 

colleagues (2015), and to the DSB1 statistic evaluated by Brace and Savalei (2017).  
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 A drawback of the DSB1 statistic proposed by Satorra and Bentler (2001) is that when 

sample size is small, the correction in (4) can take a negative value leading to a negative estimate 

of the test statistic. To avoid this shortcoming of the scaling correction in (4), Satorra and Bentler 

(2010) proposed another version of mean-adjusted scaling correction that can take only positive 

values. The “strictly positive” Satorra-Bentler corrected difference test statistic is identical to (4) 

 except that c1 in (4) is replaced by 
*

*
*

T
c

T
 , where *T , *T are uncorrected and robust chi-square 

statistics associated with an additional model run (M*) of the less restricted model M1 using the 

parameter estimates of the more restricted model M0 as starting values and with the number of 

iterations set to 0 (Bryant & Satorra, 2012). We refer to this robust difference statistic here as 

DSB10. The DSB10 statistic is asymptotically equivalent to DSB1, yet it is guaranteed to be 

positive (Satorra & Bentler, 2010). As with DSB1, we consider two options of DSB10. The first 

one employs the Satorra-Bentler 2χ (Satorra & Bentler, 1994) to obtain 0T and *T . We refer to 

this option here as DSB10MLM. The second option employs Asparouhov and Muthén’s (2005) 

mean-adjusted correction to obtain 0T  and *T , and we refer to this option here as DSB10MLR. 

We note that what we refer to in this paper as DSB10MLM corresponds to the difference statistic 

DR2 evaluated by Chuang and colleagues (2015), and to the DSB10 statistic evaluated by Brace 

and Savalei (2017). 

 Of focal interest in the current study is, however, the second order (i.e., the mean and 

variance) adjusted difference statistics developed by Asparouhov and Muthén (2010), currently 

implemented in Mplus under the “MLMV” estimator using the “DIFFTEST” command. In 

contrast to the mean corrections, the second order adjustment takes the form D aD b  , where 

a is the scaling correction and b is the shift parameter. In order to match the empirical mean and 
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variance of the difference statistic with those of a chi-square distribution, a and b need to meet 

( )E D df  and ( ) 2Var D df . The second order adjustment (Asparouhov & Muthén, 2010) is 

given by  

 
2

2 2

( )

( ) ( )

df df tr
D D df

tr tr
  

Μ

Μ Μ
,  (5) 

where M is given in formula (9) in Asparouhov and Muthén (2006). We refer to the difference 

statistic in (5) as DMLMV. In Table 1, we summarize the choices of statistics available to 

substantive researchers to test differences in fit between nested models.  

_______________________ 

Insert Table 1 about here 

_______________________ 

Previous research and research hypotheses 

 Chuang and colleagues (2015) compared the Type I error rates between the two Satorra 

and Bentler’s (Satorra & Bentler, 2001, 2010) mean corrected difference statistics, i.e., 

DSB1MLM and DSB10MLM (e.g., the expected information matrix was used in computing this 

statistic), also including the uncorrected statistic (D) suitable for normal data. Within a 

confirmatory factor analysis (CFA) framework, the types of constraints studied included 

constraining factor correlations to 0 or to 1, and constraining loadings to be equal. Both normal 

and non-normal data were considered. Two methods to generate non-normal data were used: the 

method proposed by Vale and Maurelli (1983), and a mixture of normal distributions (i.e., a 

contaminated multivariate normal distribution). In the first case, skewness was set to 2 and 

kurtosis to either 7 or 15; in the second case, skewness was set to 0 and kurtosis to 4.96. Models 

between p = 8 and 12 observed variables were considered, and the degrees of freedom available 

for difference testing ranged from 1 to 5. Sample sizes (N) ranged from 100 to 1,000 
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observations. The uncorrected statistic (D) performed well across conditions involving normally 

distributed data but was consistently overrejecting the true null when data were non-normal. 

Across the conditions involving non-normality, both mean corrected difference statistics 

outperformed the uncorrected test and overall performed reasonably well, with a slight tendency 

of DSB1MLM to underreject and DSB10MLM to overreject.  

 In a follow-up to the study by Chuang and colleagues (2015), Brace and Savalei (2017) 

investigated both Type I errors and power of the two Satorra and Bentler’s mean corrected 

statistics in the context of evaluating measurement invariance in two-group CFA models. As in 

the previous study (Chuang et al., 2015), D, DSB1MLM and DSB10MLM were investigated using 

the same data generating procedures and skewness/kurtosis values. Total sample sizes (N) ranged 

from 220 to 1,760 observations, model size was either p = 8 or 16, and the degrees of freedom 

available for difference testing ranged from 6 to 16. Type I error results revealed that the mean 

corrected statistics overrejected the null hypothesis of overall model fit in the presence of non-

normality in small samples. The overrejection was increasing with the increasing levels of non-

normality and model size. Accurate Type I errors were obtained in most conditions in which the 

smallest sample size (recall that this is a two-group set up) was N = 440. In general, the mean 

corrected difference statistics behaved better than the statistics for overall model fit. As Brace 

and Savalei (2017, p. 477) put it, "rejection rates of scaled difference tests are related to the 

differences in the rejection rates of the corresponding scaled tests of overall model fit". Type I 

errors for DSB10MLM were accurate except for a few conditions involving the smallest sample 

sizes (N = 220). The behavior of DSB1MLM was noticeably worse in small samples.  

We extend previous research by evaluating the performance of the mean and variance 

difference correction. One would expect that the mean and variance corrected test statistics 
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would perform better in large models than statistics that involve only a mean correction. In 

particular, Maydeu-Olivares (2017) showed that when p = 16, both types of robust statistics 

yielded adequate empirical Type I errors when assessing the overall model fit. However, when p 

= 32, the mean and variance corrected test statistic maintained nominal Type I error rates while 

the mean corrected statistics were overrejecting the model. The magnitude of overrejection was 

increasing as the sample size was decreasing. Accordingly, we expect similar behavior of the 

robust difference statistics, that is, more accurate Type I error rates in small samples and for 

large models when MLMV is used.  

In addition, the current study goes beyond previous research by also evaluating the 

performance of the two Satorra-Bentler difference corrections coupled with the Asparouhov and 

Muthén’s (2005) mean adjustment for absolute fit (i.e., DSB1MLR and DSB10MLR). These 

combinations are of particular interest to substantive researchers because MLR is the only option 

currently available for modeling incomplete data. Previous research (Maydeu-Olivares, 2017) 

reports that when assessing the overall model fit, choices MLR and MLM provide similar results, 

except in smaller samples (N  500) where MLM slightly outperforms MLR. Accordingly, we 

expect similar behavior of the difference statistics, namely, more accurate Type I error rates in 

small samples (N  500) when MLM is used.  

Simulation Study 

A simulation study was conducted to assess the performance of five robust difference 

options: DSB1MLM, DSB1MLR, DSB10MLM, DSB10MLR, and DMLMV. The uncorrected difference 

test, D, was also included in the study to serve as a baseline for comparison. The data were 

generated in the context of a two-wave longitudinal one factor model. Put differently, the 

population model is a one factor model measured at two time points. As a result, it has the form 
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of a two factor confirmatory factor analysis (CFA) model with correlated errors to account for 

dependencies across time. We display in Figure 1 one of the models used in our simulation.  

The chi-square difference tests were conducted to examine the equivalence of factor 

loadings across the two occasions. It is important to note that such tests are routinely utilized, for 

example, when researchers test weak factorial invariance across time (Meredith, 1993; Shi, Song 

& Lewis, 2017). When generating data, both factor variances were set to one and the population 

value of the inter-factor correlation was set to 0.30. We set the population values of all factor 

loadings to 0.70, except for the factor loading value for the first indicator of the second factor. 

The value of this factor loading was varied as described below. The population values for 

residual correlations across the two time occasions was set to 0.15. Finally, the error variances 

were set such that the population variances of the observed variables were equal to one.  

______________________ 

Insert Figure 1 about here 

_______________________ 

Study conditions 

The simulation conditions were obtained by manipulating the following five factors: (a) 

level of non-normality, (b) sample size, (c) model size, (d) magnitude of (non)invariance, and (e) 

degrees of freedom of the difference test. 

Level of non-normality. We used three levels of non-normality by manipulating the 

magnitude of skewness and (excess) kurtosis: Normal data (0,0), moderately non-normal (2,7), 

and severely non-normal (2,10). We chose these particular values of skewness and kurtosis to 

match the values used in studies by Chuang and colleagues (2015) and Brace and Savalei (2017). 

Until recently, the standard method for generating non-normal data was based on Vale and 

Maurelli (1983). However, Foldnes and Olsson (2016) have recently shown that the Vale-
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Maurelli method gives an overly optimistic evaluations of the performance of estimators and fit 

statistics. Accordingly, in this paper non-normal data were generated using the procedure 

described by Foldnes and Olsson (2016).  

Sample size. Four typical sample size variants were included in the study: extremely 

small (100), small (200), moderate (500) and large (1,000) sample size.  

Model size. Model size refers to the total number of observed variables (p; Shi, Lee, & 

Terry, 2015, 2018). Two model sizes were considered: small model with five indicators per 

factor (p = 10), and large model with fifteen indicators per factor (p = 30). We chose p = 30 

because Maydeu-Olivares (2017) showed that the behavior of mean corrected test statistics for 

assessing model-data fit deteriorate in models of this (and larger) model size.  

 Magnitude of noninvariance. Three levels of noninvariance were considered by 

manipulating the population values of the first indicator across factors: invariant, small, and large 

noninvariance. For the invariant conditions, all factor loadings were equivalent across two 

occasions (i.e., λ = 0.70). Therefore, rejecting the chi-square difference test implies that a Type I 

error is made. The condition with small noninvariance corresponds to setting the population 

loadings of the first indicator to 0.70 in one factor and to 0.50 in the second factor (Δλ = 0.20). In 

the large noninvariance condition these values were λ = 0.70 and λ = 0.30 (Δλ = 0.40), 

respectively. Under both small and large noninvariant conditions, the probability of rejecting the 

chi-square difference test informs us of the power rates of the test.  

Degrees of freedom of the difference test (df). We manipulated the degrees of freedom of 

the test by varying the number of equality constraints imposed (i.e., the number of tested factor 

loadings). The invariance tests were conducted on the first factor loading and on all factor 

loadings across two occasions. That is, when p = 10 (i.e., five factor loadings loaded on each 
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factor), the difference tests had either df = 1 (small) or df = 5 (large); whereas when p = 30 (i.e., 

15 factor loadings loaded on each factor), the difference tests had either df = 1 (small) or df = 15 

(large). 

In sum, the simulation study consisted of a fully crossed design including three 

distributional shapes (normal, moderately non-normal, and severely non-normal), three 

(non)invariance options (invariance, small noninvariance, and large noninvariance), four sample 

sizes (100, 200, 500, and 1,000), two model sizes (small and large), and two df options (small 

and large). One hundred and forty-four (144) conditions were created (3  3  4  2  2) in total. 

One thousand replications were generated for each condition using the function nnig_sim in the 

miceadds package in R (R Core Team, 2019; Robitzsch, 2019).  

Estimation 

The chi-square difference tests were conducted by comparing two nested models. The 

less restricted (baseline) model 1M  was a two-wave longitudinal CFA model with all parameters 

freely estimated (the factor variances were fixed to one for model identification purposes). The 

more restricted models 0M had either one (the first one) or all factor loadings constrained to be 

equal across occasions. For each dataset, we fitted the nested models and conducted chi-square 

difference tests using ML and the robust ML (i.e., MLM, MLR and MLMV) estimation methods. 

As previously described, for both MLM and MLR, two variants of the mean corrected difference 

tests were computed (i.e., DSB1 and DSB10). In total, the performance of six maximum 

likelihood (ML) based chi-square difference tests (D, DSB1MLM, DSB1MLR, DSB10MLM, 

DSB10MLR, and DMLMV) was compared across the simulated conditions.  

In order to evaluate the performance of different robust chi-square difference tests, 

empirical rejection rates for nominal alpha levels of 5% were computed across all replications 
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within each simulation condition. To reiterate, under the invariant conditions (i.e., the null 

hypotheses are correct), the empirical rejection rates are Type I error rates. When the tested 

factor loadings are noninvariant in the population (i.e., the null hypotheses are wrong) the 

proportions of rejections across all replications are to be interpreted as the power of the chi-

square difference test. All estimations were performed using lavaan 0.6-5 (Rosseel, 2012) except 

for MLMV, for which Mplus 8 (Muthén & Muthén, 2017) was used.  

Results 

 For all of the study conditions all replications successfully converged. Accordingly, 

results for each condition under investigation were based on all 1,000 replications.  

Type I error rates 

For the Type I error rate analysis, we used results involving the invariant population 

model. The less restricted model M1 and additionally restricted models M0 were correctly 

specified in all conditions. In Table 2 and Table 3 we provide empirical Type I error rates of the 

difference tests at the 5% level of significance for small (p = 10) and large models (p = 30) 

respectively. Following Bradley (1978), and taking into account rounding error, we considered 

Type I error rates in [.02, .08] to be adequate. Conditions with Type I error rates outside this 

range are highlighted in Tables 2 and 3. 

Under normality, all examined difference tests performed well across conditions 

involving M0 with a single constraint (df = 1; Tables 2 and 3), regardless of model size and 

sample size. In conditions with small models (p = 10) and M0 with multiple constraints (df = 5; 

see Table 2), the Type I error rates were also appropriate for all examined statistics. Finally, 

conditions involving large models (p = 30) and M0 with multiple constraints (df = 15; Table 3) 

were more challenging for the studied difference statistics to maintain Type I accuracy. In these 
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conditions, the difference statistics involving MLR and MLMV (i.e., DSB1MLR, DSB10MLR, and 

DMLMV) tended to slightly underreject.    

In conditions with non-normal data, the uncorrected difference test (D) did not maintain 

its accuracy and, as expected, was overrejecting the true null, regardless of model size, sample 

size, and degrees of freedom. No large differences in rejection rates were observed across 

conditions involving different model sizes, severity of non-normality, sample sizes, and degrees 

of freedom (see Tables 2 and 3).  

Conversely, in all conditions with non-normal data, the robust difference statistics were 

outperforming the uncorrected option. However, their behavior was differently affected by non-

normality. Both versions of the Satorra-Bentler mean corrected difference statistics (Satorra & 

Bentler, 2001, 2010) were overrejecting the true null in several conditions with non-normal data. 

Conversely, the mean and variance corrected difference statistic (DMLMV; Asparouhov & 

Muthén, 2010) was performing consistently and it was the only option that yielded adequate 

Type I error rates across all non-normal conditions (see Tables 2 and 3). Overall, as 

hypothesized, the mean and variance corrected statistic, DMLMV, outperformed the two Satorra 

and Bentler’s (2001, 2010) mean corrected difference statistics.  

As it can be observed in Tables 2 and 3, with respect to Type I error rates, the main effect 

of Satorra-Bentler (2001) vs. (2010) option was small. A more substantial effect was found for 

the MLM vs. MLR option. Specifically, larger sample sizes were needed for MLR (i.e., SB1MLR 

and SB10MLR) than for MLM options (i.e., SB1MLM and SB10MLM) to reach adequate Type I error 

rates. The model size effect was not observed. As can be seen in Tables 2 and 3, holding all other 

factors constant and simply increasing the number of variables had no effect on the performance 

of the two mean corrected difference statistics. However, the number of degrees of freedom 
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available for difference testing did have an impact on the performance of the robust difference 

statistics. Holding all other factors constant, the larger the number of degrees of freedom, the 

poorer was the performance of the mean corrected statistics. Within the limited conditions of this 

study, the mean and variance difference statistic (DMLMV) seemed robust to this effect. 

Finally, a small interaction effect between the version of the difference statistic, i.e., 

Satorra-Bentler (2001) vs. (2010), and the choice of formula used to obtain the standard errors 

for the model parameters (i.e., MLM vs. MLR) was observed. As it can be seen in Tables 2 and 

3, when there was a difference in Type I error rates between the two Satorra-Bentler difference 

corrections, a slightly more accurate results were observed for the original version when both 

were coupled with the MLM option (i.e., SB1MLM), whereas a slightly more accurate results were 

obtained using the “strictly positive” version when both were coupled with the MLR option (i.e., 

SB10MLR).    

------------------------------------------------------ 

Insert tables 2 and 3 about here 

------------------------------------------------------ 

Power  

Power analysis was based on two population models with one noninvariant factor 

loading. The less restricted model M1 was correctly specified in all conditions. Conversely, both 

more restricted models M0 were misspecified, simulating a small misspecification when the 

difference of the constrained factor loading across occasions was Δλ = 0.20, and a large 

misspecification when the difference was Δλ = 0.40. The power of the difference test thus 

reflects the sensitivity of the test to identify this misspecification in M0.  
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Power results are provided in Tables 4 and 5 for small (p = 10) and large model (p = 30) 

respectively. In the tables, conditions with incorrect Type I error rates identified earlier are 

highlighted. We evaluate only power results in conditions with adequate Type I error rates, that 

is, in those conditions not highlighted in the tables. As expected, power of the difference 

statistics was increasing with the increasing sample size and severity of misspecification and was 

decreasing with the increasing degrees of freedom for the difference test. Overall, we did not 

observe substantial differences in power among difference statistics in conditions with adequate 

Type I error rates (see Tables 4 and 5).  

------------------------------------------------------ 

Insert tables 4 and 5 about here 

------------------------------------------------------ 

Discussion 

Applied researchers are often interested in assessing if a plausible and more parsimonious 

model fits the data as well as the initial model under consideration. If the two models of interest 

are nested and if data are normally distributed, evaluating the difference in model fit can be 

conveniently performed, because the difference in absolute fit of the two models will result in a 

statistic that follows a chi-square distribution. However, if data are not normal, a difference 

statistic obtained by subtracting the two robust absolute fit statistics will not necessarily be chi-

square distributed, requiring a unique adjustment (Satorra, 2000; Satorra & Bentler, 2001). In 

order to facilitate appropriate selection of difference statistics in substantive research, we 

evaluated the performance of several difference options appropriate for non-normal continuous 

outcomes.  
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Of focal interest in the current investigation was the performance of a seldom utilized yet 

potentially advantageous second order adjustment, that is, the mean and variance corrected 

difference statistic proposed by Asparouhov and Muthén (DMLMV; 2010). In order to provide a 

more thorough evaluation of this robust difference statistic, we pitted its behavior against the two 

more popular mean corrected statistics, DSB1 and DSB10, proposed by Satorra and Bentler 

(2001, 2010). The Satorra-Bentler difference statistics can be used in concert with the Satorra 

and Bentler’s (1994) model-data fit statistic appropriate for complete data (MLM), or the 

Asparouhov and Muthén’s (2005) model-data fit statistic appropriate for both complete and 

incomplete data (MLR). Accordingly, the options under investigation were DSB1MLM, DSB1MLR, 

DSB10MLM, DSB10MLR, and DMLMV. We also included in the comparison the uncorrected 

difference statistic (D) as a baseline. We evaluated the chosen options with respect to both Type 

I error rate accuracy and power of the test. 

As expected, our investigation reconfirms that the uncorrected difference statistic can 

only be used with normally distributed data. When data is non-normal, it overrejects the true 

null, informing the researcher than the two models are different (and therefore the more complex 

model should be selected), when in fact the fit of both models is comparable. In the current 

investigation, the two Satorra-Bentler mean corrected difference statistics (DSB1 and DSB10) 

tended to overreject when sample size was small (N < 200). Their performance worsened as 

sample size decreased, kurtosis increased, and the degrees of freedom available for testing 

increased. Conversely and as hypothesized, the mean and variance corrected difference statistic 

(DMLMV; Asparouhov & Muthén, 2010) outperformed the mean corrected options, and also 

provided the adequate Type I error rates across all non-normal conditions investigated. In terms 

of power, and holding Type I errors constant, no substantial differences were found among the 
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difference statistics considered (the uncorrected, mean corrected, and mean and variance 

corrected). Overall, a clear winner among the difference statistics considered in the current 

investigation is the mean and variance corrected difference statistic.  

Among the mean corrected difference statistics studied, choices with MLM outperformed 

choices with MLR, especially in small samples. In contrast to previous studies, we did not find 

the Satorra and Bentler’s (2010) procedure of combining the mean corrected statistics to obtain 

the difference statistic advantageous over the original Satorra and Bentler’s (2001) proposal. 

This simply means that in our simulation setup, the original procedure did not fail (recall that the 

“strictly positive” procedure is essentially a way to obtain the difference statistic when the 

original procedure yields an improper value).  

Limitations and directions for future research 

As in any other simulation study, our conclusions are limited by the conditions included 

in the current investigation. We simulated conditions involving measurement invariance over 

time and found that the computationally more demanding mean and variance difference test 

statistic outperforms statistics that only involve a mean correction. However, nested tests are also 

widely used to assess measurement invariance across populations (e.g., males vs. females). 

Therefore, future research should be aimed at replicating our findings in this setup.  

Moreover, we found that the performance of the mean corrected difference statistics 

worsened as the number of degrees of freedom for the difference test increased. In contrast, the 

mean and variance statistic maintained nominal Type I error rates in all conditions investigated. 

Nevertheless, it is reasonable to suspect that as degrees of freedom increase, p-values obtained 

using the mean and variance corrected difference statistic would eventually break down as well. 
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Accordingly, it would be of interest for future research to consider large models involving larger 

numbers of degrees of freedom for difference testing than those used in the current study.  

It seems of interest to note that the mean and variance difference statistics are also 

available when estimating ordinal factor analysis using polychoric correlations. In this case, 

Mplus implements these statistics for the unweighted and diagonally weighted least squares 

estimators (choices ULSMV and WLSMV in Mplus terminology; see Asparouhov & Muthén, 

2010). Additional research is needed to investigate the performance of the mean and variance 

difference statistics in setups involving ordinal data.  

In closing, we must reiterate that statistical theory for chi-square difference testing relies 

on the assumption that the larger model being compared is correctly specified (Haberman, 1977; 

Yuan & Bentler, 2004), but it may not be able to assess this assumption because of the model 

size effect (Moshagen, 2012). Nevertheless, p-values for difference testing may be accurate even 

when p-values for overall model testing are not (e.g., see Brace & Savalei, 2017; Maydeu-

Olivares & Cai, 2006). Accordingly, chi-square difference testing should be performed with care 

(Yuan & Bentler, 2004). 

Recommendations 

Based on the evidence of the current evaluation, we recommend that the mean and 

variance difference correction be used whenever possible, both for continuous outcomes and 

(pending further evaluation) for ordinal outcomes as well. For continuous outcomes, the mean 

and variance corrected difference test proposed by Asparouhov and Muthén (2010) can be 

conveniently performed in Mplus by selecting as estimator MLMV in concert with the 

DIFFTEST option. For binary and ordinal outcomes, this option is available for estimation 

choices ULSMV and WLSMV. Researchers that do not have access to this software may use the 
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mean corrected difference tests provided their sample is large enough (i.e., N  500). If opting 

for the mean corrected statistics, we recommend that statistics using the expected information 

matrix (MLM in Mplus terminology) are preferred over statistics using the observed information 

matrix (MLR in Mplus terminology), as the latter require larger samples to perform adequately. 

The original Satorra-Bentler mean difference correction (2001) may be preferred over the 

“strictly positive” option (Satorra & Bentler, 2010), unless it yields an improper value. We 

provide as supplementary material a worked-out example and Mplus code for all the evaluated 

robust difference tests so that substantive researchers can conveniently use them in their own 

research.  
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Table 1 

Choices of Chi-square Statistics for Comparing the Fit of Nested Models for Continuous Outcomes 

Difference 
Statistic 

For models 
estimated using 
choice: 

Suitable for: 
Available for models 
with missing data? 

Computable from the 
two models output? 

Reference 

D ML normal outcomes Yes Yes 
Steiger, Shapiro, and 
Browne (1985) 

DSB1MLM  MLM 
non-normal 
outcomes 

No Yes Satorra and Bentler (2001) 

DSB10MLM MLM 
non-normal 
outcomes 

No Yesa Satorra and Bentler (2010) 

DSB1MLR  MLR 
non-normal 
outcomes 

Yes Yes Satorra and Bentler (2001) 

DSB10MLR MLR 
non-normal 
outcomes 

Yes Yesa Satorra and Bentler (2010) 

DMLMV MLMV 
non-normal 
outcomes 

No Nob 
Asparouhov and Muthén 
(2006)  

 

Notes: a It requires an additional run of the less restricted model using the parameter estimates of the more restricted model as starting 

values and with the number of iterations set to 0; b software is needed to compute it, at the time of this writing it is only available in 

Mplus, which directly outputs the difference statistic, df, and p-value (see supplementary materials to this article). 
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Table 2 

Correctly Specified Small Model (p = 10). Empirical Type I Error Rates at the 5% Significance Level 

Distribution   df = 1  df = 5 
Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 
0.0 0.0 100  0.02 0.03 0.03 0.03 0.02 0.03  0.03 0.03 0.03 0.03 0.02 0.03 
0.0 0.0 200  0.03 0.03 0.03 0.03 0.03 0.03  0.02 0.02 0.02 0.02 0.02 0.02 
0.0 0.0 500  0.02 0.02 0.02 0.02 0.02 0.02  0.02 0.02 0.02 0.02 0.02 0.02 
0.0 0.0 1,000  0.03 0.03 0.03 0.03 0.03 0.03  0.02 0.02 0.02 0.02 0.02 0.02 
7.0 2.0 100  0.28 0.06 0.12 0.07 0.08 0.07  0.27 0.08 0.14 0.10 0.12 0.06 
7.0 2.0 200  0.24 0.06 0.09 0.06 0.07 0.06  0.26 0.05 0.09 0.07 0.09 0.04 
7.0 2.0 500  0.27 0.05 0.07 0.06 0.06 0.06  0.27 0.06 0.08 0.07 0.08 0.05 
7.0 2.0 1,000  0.25 0.06 0.06 0.06 0.06 0.06  0.26 0.07 0.08 0.07 0.07 0.05 

10.0 2.0 100  0.25 0.06 0.13 0.07 0.10 0.07  0.27 0.08 0.17 0.12 0.14 0.06 
10.0 2.0 200  0.27 0.05 0.09 0.06 0.08 0.06  0.28 0.05 0.11 0.07 0.09 0.04 
10.0 2.0 500  0.29 0.05 0.08 0.05 0.07 0.05  0.32 0.06 0.11 0.08 0.10 0.04 
10.0 2.0 1,000  0.31 0.04 0.06 0.05 0.05 0.04  0.31 0.06 0.08 0.06 0.07 0.04 

 

Notes: highlighted values fall outside [.02, .08]; p = number of indicators; Kurt = Kurtosis; Skew = Skewness; N = sample size; df = degrees of 

freedom; D = uncorrected ML 
2Δχ ;  DSB1MLM = Satorra-Bentler

2Δχ (2001) with Satorra-Bentler 
2χ (1994);  DSB1MLR = Satorra-Bentler 

2Δχ

(2001) with Asparouhov-Muthén 
2χ (2005);  DSB10MLM = Satorra-Bentler 

2Δχ (2010) with Satorra-Bentler 
2χ (1994);  DSB10MLR = Satorra-

Bentler
2Δχ (2010) with Asparouhov-Muthén 

2χ  (2005);  DMLMV = Asparouhov-Muthén
2Δχ (2010). 
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Table 3 

Correctly Specified Large Model (p = 30). Empirical Type I Error Rates at the 5% Significance Level 

Distribution   df = 1  df = 15 
Kurt Skew N  D DSB1MLMDSB1MLR DSB10MLMDSB10MLR DMLMV  D DSB1MLMDSB1MLR DSB10MLMDSB10MLR DMLMV 
0.0 0.0 100  0.02 0.03 0.02 0.02 0.02 0.02  0.02 0.02 0.02 0.02 0.01 0.01 
0.0 0.0 200  0.02 0.03 0.03 0.03 0.03 0.03  0.02 0.02 0.02 0.02 0.01 0.01 
0.0 0.0 500  0.02 0.02 0.02 0.03 0.02 0.03  0.02 0.02 0.01 0.02 0.01 0.01 
0.0 0.0 1,000  0.03 0.03 0.03 0.03 0.03 0.03  0.02 0.02 0.01 0.01 0.01 0.01 
7.0 2.0 100  0.28 0.09 0.12 0.08 0.09 0.08  0.26 0.13 0.22 0.17 0.18 0.08 
7.0 2.0 200  0.25 0.06 0.09 0.06 0.08 0.07  0.26 0.09 0.15 0.11 0.13 0.05 
7.0 2.0 500  0.30 0.05 0.06 0.06 0.06 0.06  0.26 0.06 0.08 0.06 0.07 0.05 
7.0 2.0 1,000  0.30 0.06 0.07 0.06 0.06 0.06  0.29 0.07 0.08 0.07 0.08 0.04 

10.0 2.0 100  0.26 0.08 0.13 0.08 0.09 0.08  0.28 0.14 0.22 0.17 0.18 0.07 
10.0 2.0 200  0.29 0.07 0.10 0.07 0.08 0.07  0.30 0.10 0.18 0.13 0.15 0.06 
10.0 2.0 500  0.30 0.05 0.08 0.05 0.07 0.05  0.32 0.08 0.12 0.10 0.11 0.05 
10.0 2.0 1,000  0.32 0.05 0.07 0.06 0.06 0.06  0.35 0.07 0.10 0.08 0.09 0.04 

 

Notes: highlighted values fall outside [.02, .08]; p = number of indicators; Kurt = Kurtosis; Skew = Skewness; N = sample size; df = degrees of 

freedom; D = uncorrected ML 
2Δχ ;  DSB1MLM = Satorra-Bentler

2Δχ (2001) with Satorra-Bentler 
2χ (1994);  DSB1MLR = Satorra-Bentler 

2Δχ

(2001) with Asparouhov-Muthén 
2χ (2005);  DSB10MLM = Satorra-Bentler 

2Δχ (2010) with Satorra-Bentler 
2χ (1994);  DSB10MLR = Satorra-

Bentler
2Δχ (2010) with Asparouhov-Muthén 

2χ  (2005);  DMLMV = Asparouhov-Muthén
2Δχ (2010). 
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Table 4 

Misspecified Small Model (p = 10). Empirical Rejection Rates (Power) at the 5% Significance Level  

 Distribution   df = 1  df = 5 
Δλ Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 
0.2 0.0 0.0 100  0.31 0.32 0.31 0.33 0.30 0.33  0.16 0.17 0.15 0.17 0.14 0.16 

 0.0 0.0 200  0.58 0.58 0.57 0.58 0.57 0.58  0.32 0.34 0.33 0.33 0.31 0.32 
 0.0 0.0 500  0.94 0.94 0.94 0.94 0.94 0.94  0.78 0.78 0.77 0.78 0.77 0.77 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  0.99 0.99 0.99 0.99 0.99 0.99 
 7.0 2.0 100  0.47 0.25 0.30 0.27 0.27 0.29  0.46 0.21 0.28 0.25 0.25 0.17 
 7.0 2.0 200  0.58 0.33 0.36 0.35 0.35 0.35  0.56 0.29 0.34 0.33 0.33 0.25 
 7.0 2.0 500  0.83 0.59 0.59 0.61 0.59 0.61  0.81 0.58 0.59 0.60 0.59 0.54 
 7.0 2.0 1,000  0.97 0.88 0.86 0.88 0.87 0.88  0.96 0.87 0.88 0.88 0.88 0.85 
 10.0 2.0 100  0.46 0.23 0.30 0.25 0.27 0.25  0.46 0.20 0.30 0.25 0.25 0.18 
 10.0 2.0 200  0.62 0.34 0.37 0.36 0.35 0.36  0.60 0.30 0.35 0.34 0.34 0.27 
 10.0 2.0 500  0.83 0.59 0.59 0.60 0.60 0.60  0.82 0.56 0.58 0.58 0.58 0.52 
 10.0 2.0 1,000  0.95 0.83 0.81 0.83 0.82 0.84  0.96 0.84 0.83 0.84 0.83 0.80 

0.4 0.0 0.0 100  0.83 0.84 0.84 0.85 0.83 0.85  0.58 0.59 0.58 0.60 0.56 0.58 
 0.0 0.0 200  0.99 0.99 0.99 0.99 0.99 0.99  0.92 0.92 0.92 0.92 0.91 0.92 
 0.0 0.0 500  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.83 0.67 0.63 0.68 0.64 0.69  0.79 0.58 0.59 0.61 0.58 0.53 
 7.0 2.0 200  0.96 0.88 0.84 0.89 0.86 0.89  0.95 0.83 0.82 0.85 0.83 0.80 
 7.0 2.0 500  1.00 1.00 0.99 1.00 0.99 1.00  1.00 0.99 0.99 0.99 0.99 0.99 
 7.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
 10.0 2.0 100  0.82 0.68 0.66 0.70 0.67 0.70  0.79 0.59 0.62 0.64 0.59 0.54 
 10.0 2.0 200  0.96 0.90 0.86 0.89 0.87 0.90  0.95 0.83 0.83 0.84 0.83 0.79 
 10.0 2.0 500  1.00 0.99 0.98 0.99 0.98 0.99  1.00 0.99 0.98 0.99 0.98 0.98 
 10.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 

Notes: highlighted conditions have incorrect Type I errors; p = number of indicators; Δλ = noninvariance; Kurt = Kurtosis; Skew = Skewness; N = sample size; 

df = degrees of freedom. D = uncorrected ML 
2Δχ ;  DSB1MLM = Satorra-Bentler

2Δχ (2001) with Satorra-Bentler 
2χ (1994);  DSB1MLR = Satorra-Bentler 

2Δχ

(2001) with Asparouhov-Muthén 
2χ (2005);  DSB10MLM = Satorra-Bentler 

2Δχ (2010) with Satorra-Bentler 
2χ (1994);  DSB10MLR = Satorra-Bentler

2Δχ (2010) 

with Asparouhov-Muthén 
2χ  (2005);  DMLMV = Asparouhov-Muthén

2Δχ (2010).  
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Table 5 

Misspecified Small Model (p = 30). Empirical Rejection Rates (Power) at the 5% Significance Level 

 Distribution   df = 1  df = 15 
Δλ Kurt Skew N  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV  D DSB1MLM DSB1MLR DSB10MLM DSB10MLR DMLMV 
0.2 0.0 0.0 100  0.35 0.37 0.37 0.36 0.35 0.36  0.06 0.07 0.07 0.07 0.06 0.05 

 0.0 0.0 200  0.65 0.64 0.65 0.65 0.64 0.65  0.15 0.15 0.15 0.15 0.14 0.14 
 0.0 0.0 500  0.98 0.97 0.98 0.97 0.97 0.97  0.61 0.61 0.61 0.61 0.61 0.59 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  0.98 0.98 0.98 0.98 0.98 0.98 
 7.0 2.0 100  0.47 0.26 0.29 0.28 0.27 0.28  0.45 0.26 0.37 0.31 0.33 0.17 
 7.0 2.0 200  0.66 0.39 0.42 0.41 0.40 0.42  0.56 0.32 0.39 0.36 0.37 0.27 
 7.0 2.0 500  0.89 0.65 0.64 0.66 0.64 0.66  0.81 0.62 0.64 0.64 0.64 0.58 
 7.0 2.0 1,000  0.98 0.89 0.89 0.90 0.89 0.90  0.98 0.89 0.89 0.89 0.89 0.87 
 10.0 2.0 100  0.50 0.29 0.34 0.32 0.30 0.31  0.46 0.30 0.38 0.35 0.34 0.21 
 10.0 2.0 200  0.64 0.35 0.40 0.39 0.39 0.40  0.59 0.32 0.41 0.38 0.40 0.26 
 10.0 2.0 500  0.85 0.61 0.62 0.63 0.62 0.64  0.82 0.58 0.61 0.60 0.61 0.50 
 10.0 2.0 1,000  0.97 0.87 0.86 0.87 0.86 0.88  0.97 0.88 0.88 0.89 0.88 0.83 

0.4 0.0 0.0 100  0.90 0.90 0.90 0.90 0.90 0.90  0.40 0.42 0.41 0.43 0.38 0.37 
 0.0 0.0 200  1.00 1.00 1.00 1.00 1.00 1.00  0.83 0.84 0.83 0.84 0.82 0.82 
 0.0 0.0 500  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
 0.0 0.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
 7.0 2.0 100  0.89 0.71 0.70 0.75 0.69 0.76  0.81 0.65 0.72 0.69 0.69 0.55 
 7.0 2.0 200  0.97 0.92 0.89 0.92 0.89 0.92  0.93 0.86 0.87 0.87 0.86 0.81 
 7.0 2.0 500  1.00 1.00 0.99 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 0.99 
 7.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
 10.0 2.0 100  0.86 0.71 0.70 0.75 0.70 0.76  0.78 0.64 0.69 0.68 0.66 0.54 
 10.0 2.0 200  0.97 0.90 0.87 0.91 0.87 0.91  0.94 0.84 0.85 0.85 0.84 0.77 
 10.0 2.0 500  1.00 0.99 0.98 0.99 0.98 0.99  1.00 1.00 0.99 1.00 0.99 0.99 
 10.0 2.0 1,000  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 

Notes: highlighted conditions have incorrect Type I errors; p = number of indicators; Δλ = noninvariance; Kurt = Kurtosis; Skew = Skewness; N = sample size; 

df = degrees of freedom. D = uncorrected ML 
2Δχ ;  DSB1MLM = Satorra-Bentler

2Δχ (2001) with Satorra-Bentler 
2χ (1994);  DSB1MLR = Satorra-Bentler 

2Δχ

(2001) with Asparouhov-Muthén 
2χ (2005);  DSB10MLM = Satorra-Bentler 

2Δχ (2010) with Satorra-Bentler 
2χ (1994);  DSB10MLR = Satorra-Bentler

2Δχ (2010) 

with Asparouhov-Muthén 
2χ  (2005);  DMLMV = Asparouhov-Muthén

2Δχ (2010).
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Figure 1. Small model used in the simulations. 

 

 

 

 

 

 


