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Abstract
The relative fit of two nested models can be evaluated using a chi-square difference statistic. We
evaluate the performance of five robust chi-square difference statistics in the context of
confirmatory factor analysis with non-normal continuous outcomes. The mean and variance
corrected difference statistics performed adequately across all conditions investigated. In contrast,
the mean corrected difference statistics required larger samples for the p-values to be accurate.
Sample size requirements for the mean corrected difference statistics increase as the degrees of
freedom for difference testing increase. We recommend that the mean and variance corrected
difference testing be used whenever possible. When performing mean corrected difference testing,
we recommend that the expected information matrix is used (i.e., choice MLM)), as the use of the
observed information matrix (i.e., choice MLR) requires larger samples for p-values to be accurate.
Supplementary materials for applied researchers to implement difference testing in their own

research are provided.

Keywords: structural equation modeling, nested models, chi-square difference test, non-normal

data.
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Chi-square Difference Tests for Comparing Nested Models:
An Evaluation with Non-normal Data

Structural equation modeling (SEM) is a general statistical framework appropriate for
modeling multivariate datasets. Over the past few decades, SEM has been steadily gaining in
popularity among applied researchers across a broad range of scientific disciplines. One of the
essential and frequently used features available within the SEM framework is the statistical
evaluation of how well hypothesized models fit the observed data.

Maximum likelihood (ML) is the most widely used estimation method for modeling
continuous data within the SEM framework (Maydeu-Olivares, 2017). When the model is
correctly specified and data follow a multivariate normal distribution, the minimum of the ML fit
function can be used to construct a chi-square distributed test statistic, thus enabling a statistical
evaluation of the fit of the model to the data at hand. The assumption of multivariate normality,
however, need not be tenable in empirical research (Cain, Zhang, & Yuan, 2017; Micceri, 1989).
If data are not normal, relying on the normal-theory ML statistic to evaluate model fit may result
in erroneous statistical conclusions (Hu, Bentler, & Kano, 1992; Satorra, 1990; Satorra &
Bentler, 1994). To address this problem, various corrections to the chi-square test statistic have
been proposed. Specifically, the chi-square statistic can be corrected so that in large samples it
agrees in mean with a chi-square distribution (Asparouhov & Muthén, 2005; Satorra & Bentler,
1994; Yuan & Bentler, 2000), or it can be corrected so that it agrees in both mean and variance
(Asparouhov & Muthén, 2010; Satorra & Bentler, 1994). In large samples, the mean and
variance corrected chi-square statistics should be superior over the less computationally
expensive mean corrected chi-squares (Asparouhov & Muthén, 2013). Maydeu-Olivares (2017)

summarizes the various mean and mean and variance corrected chi-square statistics proposed in
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the literature. In a simulation study, he also shows that mean and variance corrections provide
more accurate p-values than mean corrections when assessing the absolute (i.e., model-data) fit
of the model. In this article, we refer to these corrected chi-square statistics as robust chi-square
statistics.

Chi-square tests can also be used to compare the fit of two models that are nested. There
are many applications in which this is of interest (e.g., Elkins et al., 2018; Lai et al., 2015; Pappu
& Quester, 2016; Schivinski & Dabrowski, 2016; Wingate & Bourdage, 2019). In particular,
testing for differences in fit is routinely performed in the measurement invariance literature (e.g.,
Guhn, Ark, Emerson, Schonert-Reichl, & Gadermann, 2018; Hawes et al., 2018; Huhtala,
Kangas, Kaptein, & Feldt, 2018; Jenkins, Fredrick, & Nickerson, 2018; Krieg, Xu, & Cicero,
2018).

Consider two models, Model 0 and Model 1, with degrees of freedom dfo and dfi,
respectively, where dfo > dfi. Model 0 is nested within Model 1 if the mean and covariance
structures implied by Model 0 can be reproduced exactly by fitting Model 1 (Bentler & Satorra,
2010). Using ML, and if the normality assumption holds, the difference in model fit can be
conveniently tested by computing the difference between chi-square statistics of the two nested
models under consideration. When the larger model (Model 1) is correctly specified, the
difference statistic asymptotically follows a chi-square distribution. If the chi-square difference
statistic cannot be rejected, the more parsimonious model (Model 0), should be preferred over
the less restricted one (Model 1).

If the normality assumption does not hold, the difference between the two robust fit
statistics will not be chi-square distributed, thus compromising the accuracy of statistical

conclusions (Satorra, 2000). To facilitate appropriate statistical testing for differences in fit under
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non-normality, several corrections to the chi-square difference statistic have been proposed (e.g.,
Asparouhov & Muthén, 2006; Asparouhov & Muthén, 2010; Satorra, 2000; Satorra & Bentler,
2001; Satorra & Bentler, 2010). To date, the two most commonly utilized options among applied
researchers have been the two versions of Satorra-Bentler mean-adjusted chi-square difference
statistic (Satorra & Bentler, 2001, and Satorra & Bentler, 2010). Surprisingly, notwithstanding
the frequent and ongoing application of these two corrected statistics, only two studies have
thoroughly assessed their performance under non-normality: Chuang, Savalei, and Falk (2015),
and Brace and Savalei (2017). The results of both studies reinforced concerns regarding the
application of uncorrected difference statistics to non-normal data and provided evidence of the
robustness to non-normality of the Satorra and Bentler (2001) and (2010) corrections under a
variety of plausible research scenarios, gently favoring the more recent one.

However, these recent studies did not include an investigation of the mean and variance
adjusted difference statistics (Asparouhov & Muthén, 2006, 2010), which may perform better
than the mean corrected difference statistics currently in use in applications. Accordingly, the
current investigation is aimed at addressing this gap in the literature to date. The remaining of
this paper is organized as follows. First, we describe the mean, and mean and variance
corrections to chi-square statistics for comparing nested models. Next, we summarize previous
studies on the behavior of mean corrected difference statistics when data is non-normal and
emphasize the rationale for investigating the performance of the mean and variance corrected test
statistic. Afterwards, we present the results of a simulation study comparing the performance of
Asparouhov and Muthén’s (2006, 2010) mean and variance adjusted difference chi-square to
Satorra and Bentler’s (i.e., 2001, 2010) mean adjusted difference statistics with respect to both

empirical Type I error rates and power. Finally, we discuss the results and provide some
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recommendations for substantive researchers. In the supplementary materials to this article, we
provide a worked out example in order to facilitate the application of the discussed methods.
Mean, and Mean and Variance Corrections to Chi-square Statistics for Comparing Nested
Models

In this article we focus on structural equation models for continuous outcomes estimated
by ML as this is the most commonly used setup in applications. Under a multivariate normality
assumption, and when no constraints are imposed on the means, the ML fit function is given by:

F,, (S,2(0)) =1og|=(6)| - log|S|+ (S (8)) - p, (1)

where S is the sample covariance matrix, 2(0) is the model implied covariance matrix, 0 is the
vector of model parameters with length ¢, and p is the number of observed variables. Within this
setup, the most widely used test statistic used to assess fit of the hypothesized model is the

likelihood ratio test statistic,

T'=(N-1)F,,, (2)
where N denotes sample size, and FML is obtained by minimizing the ML fit function with

respect to 0. If the multivariate normality assumption holds and the model is correctly specified,
T asymptotically follows a chi-square distribution with degrees of freedom (df) equal to

p(p+1)/2-q,hence allowing for statistical evaluation of model fit. In the applied literature, T’

is commonly referred to as the chi-square test statistic. However, if data are not normally
distributed, 7 will not be )~ distributed. In this case, the chi-square statistic can be adjusted so

that it matches asymptotically a X2 distribution either in its mean (e.g., Satorra & Bentler, 1994;

Yuan & Bentler, 2000; Asparouhov & Muthén, 2005), or in its mean and its variance (Satorra &

Bentler, 1994; Asparouhov & Muthén, 2010). The mean adjusted test statistics can be written as
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T

C

T =— , where c is the scaling correction; the mean and variance adjusted statistic can be written

as T =al +b (Asparouhov & Muthén, 2010). Two variants of the mean adjusted statistic have
been proposed. They differ on how ¢ is computed and on their suitability in the presence of
missing data. The first one was originally proposed by Satorra and Bentler (1994) and can only
be used with complete data. In widely used Mplus (Muthén & Muthén, 2017) and lavaan
(Rosseel, 2012) SEM packages, it is obtained when choice MLM is selected. The second one
was originally proposed by Yuan and Bentler (2000) and later modified by Asparouhov and
Muthén (2005). It is suitable for both complete and incomplete data, and obtained in Mplus and
lavaan using choice MLR. The main difference between the MLR and MLM version of the test
is how the information matrix used in computing the scaling correction is estimated. In MLM,
the expected information matrix is used, whereas in MLR, the observed information matrix is
used. The latter should provide more accurate results (Efron & Hinkley, 1978; Maydeu-Olivares,
2017; Savalei, 2010). A detailed technical account of the differences between choices MLM and
MLR can be found in Maydeu-Olivares (2017).

In applications, it is often of interest to compare the fit of competing models. When the
comparison between two models involves one model nested within another, a test can be
performed to determine whether the difference in fit is statistically significant. We use Mo and dfo
to denote the more restricted model to be compared and its degrees of freedom. We denote by M1
with dfi the less restricted model. Mo will be nested within M, for instance, if Mo is the result of
placing constraints on some of the model parameters of Mi. Under normality assumptions, and
for ML estimation, the difference in fit between two nested models can be tested simply by

subtracting the two chi-square fit statistics:
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D=1,~1, (3)

where 70 and 71 are chi-square statistics for models Mo and M1, respectively. Under these
conditions, and when both models are correctly specified, D asymptotically follows a chi-square

distribution with degrees of freedom df = dfo — dfi (Steiger, Shapiro, & Browne, 1985).

When data are not normal, D does not result in a X2 distributed statistic (Satorra, 2000).

To account for that, Satorra (2000) developed a scale corrected X2 difference test robust to non-

normality. However, his computationally taxing implementation was quickly followed by an
alternative correction to D that can be conveniently computed from a standard SEM software
output (Satorra & Bentler, 2001). The scale corrected difference test statistic is given by

) D o = df,c, —df c,

: ; (4)
01 COI 01 dﬁ) _dﬁ

where ¢, and ¢, are the scaling corrections for testing the absolute fit of Moand M1,

respectively. We note that if 7, 7_"0 and 7T}, 7_1 denote the uncorrected and mean-corrected chi-

0

square statistics for the two models, respectively, then ¢, =—= and ¢, = = . We refer to this

31|23
[

robust difference statistic as DSB1, and consider two variants of it. The first one employs the
Satorra-Bentler mean-adjusted X2 (Satorra & Bentler, 1994) to obtain 7_10 and 7_11 . Following

Mplus/lavaan terminology, we refer to this option in the current study with DSB1mim. The

second option considered uses Asparouhov and Muthén’s (2005) mean-adjusted correction to
obtain 7_10 and 7_11 . We refer to this option here with DSB1mLr. We note that what we refer to in

this paper as DSB1mLm corresponds to the difference statistic Dri evaluated by Chuang and

colleagues (2015), and to the Dsp1 statistic evaluated by Brace and Savalei (2017).
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A drawback of the DSBI statistic proposed by Satorra and Bentler (2001) is that when
sample size is small, the correction in (4) can take a negative value leading to a negative estimate
of the test statistic. To avoid this shortcoming of the scaling correction in (4), Satorra and Bentler
(2010) proposed another version of mean-adjusted scaling correction that can take only positive

values. The “strictly positive” Satorra-Bentler corrected difference test statistic is identical to (4)

£

* T £ g 3 .
except that c1 in (4) is replaced by ¢ = F where 7, T are uncorrected and robust chi-square

statistics associated with an additional model run (M) of the less restricted model M using the
parameter estimates of the more restricted model Mo as starting values and with the number of
iterations set to 0 (Bryant & Satorra, 2012). We refer to this robust difference statistic here as
DSB10. The DSB10 statistic is asymptotically equivalent to DSB1, yet it is guaranteed to be

positive (Satorra & Bentler, 2010). As with DSB1, we consider two options of DSB10. The first
one employs the Satorra-Bentler y* (Satorra & Bentler, 1994) to obtain 7, and 7~ . We refer to
this option here as DSB10mLm. The second option employs Asparouhov and Muthén’s (2005)
mean-adjusted correction to obtain 7, and 7", and we refer to this option here as DSB10mLr.
We note that what we refer to in this paper as DSB10mLm corresponds to the difference statistic
Dr:2 evaluated by Chuang and colleagues (2015), and to the Dsgio statistic evaluated by Brace
and Savalei (2017).

Of focal interest in the current study is, however, the second order (i.e., the mean and

variance) adjusted difference statistics developed by Asparouhov and Muthén (2010), currently

implemented in Mplus under the “MLMV” estimator using the “DIFFTEST” command. In

contrast to the mean corrections, the second order adjustment takes the form D=aD+b , Where

a is the scaling correction and b is the shift parameter. In order to match the empirical mean and
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variance of the difference statistic with those of a chi-square distribution, a and b need to meet

E(D) =df and Var(D)=2df . The second order adjustment (Asparouhov & Muthén, 2010) is

D= | dfz D+df - /df”—a\f)z ()
tr(M”) tr(M”)

where M is given in formula (9) in Asparouhov and Muthén (2006). We refer to the difference

given by

statistic in (5) as Dmumy. In Table 1, we summarize the choices of statistics available to

substantive researchers to test differences in fit between nested models.

Insert Table 1 about here

Previous research and research hypotheses

Chuang and colleagues (2015) compared the Type I error rates between the two Satorra
and Bentler’s (Satorra & Bentler, 2001, 2010) mean corrected difference statistics, i.e.,
DSB1miMm and DSB10MmLM (e.g., the expected information matrix was used in computing this
statistic), also including the uncorrected statistic (D) suitable for normal data. Within a
confirmatory factor analysis (CFA) framework, the types of constraints studied included
constraining factor correlations to 0 or to 1, and constraining loadings to be equal. Both normal
and non-normal data were considered. Two methods to generate non-normal data were used: the
method proposed by Vale and Maurelli (1983), and a mixture of normal distributions (i.e., a
contaminated multivariate normal distribution). In the first case, skewness was set to 2 and
kurtosis to either 7 or 15; in the second case, skewness was set to 0 and kurtosis to 4.96. Models
between p = 8 and 12 observed variables were considered, and the degrees of freedom available

for difference testing ranged from 1 to 5. Sample sizes (N) ranged from 100 to 1,000
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observations. The uncorrected statistic (D) performed well across conditions involving normally
distributed data but was consistently overrejecting the true null when data were non-normal.
Across the conditions involving non-normality, both mean corrected difference statistics
outperformed the uncorrected test and overall performed reasonably well, with a slight tendency
of DSB1mLm to underreject and DSB10mLm to overreject.

In a follow-up to the study by Chuang and colleagues (2015), Brace and Savalei (2017)
investigated both Type I errors and power of the two Satorra and Bentler’s mean corrected
statistics in the context of evaluating measurement invariance in two-group CFA models. As in
the previous study (Chuang et al., 2015), D, DSB1mim and DSB10mLMm were investigated using
the same data generating procedures and skewness/kurtosis values. Total sample sizes (N) ranged
from 220 to 1,760 observations, model size was either p = 8 or 16, and the degrees of freedom
available for difference testing ranged from 6 to 16. Type I error results revealed that the mean
corrected statistics overrejected the null hypothesis of overall model fit in the presence of non-
normality in small samples. The overrejection was increasing with the increasing levels of non-
normality and model size. Accurate Type I errors were obtained in most conditions in which the
smallest sample size (recall that this is a two-group set up) was N = 440. In general, the mean
corrected difference statistics behaved better than the statistics for overall model fit. As Brace
and Savalei (2017, p. 477) put it, "rejection rates of scaled difference tests are related to the
differences in the rejection rates of the corresponding scaled tests of overall model fit". Type I
errors for DSB10mLMm were accurate except for a few conditions involving the smallest sample
sizes (N = 220). The behavior of DSB1mLm was noticeably worse in small samples.

We extend previous research by evaluating the performance of the mean and variance

difference correction. One would expect that the mean and variance corrected test statistics
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would perform better in large models than statistics that involve only a mean correction. In
particular, Maydeu-Olivares (2017) showed that when p = 16, both types of robust statistics
yielded adequate empirical Type I errors when assessing the overall model fit. However, when p
= 32, the mean and variance corrected test statistic maintained nominal Type I error rates while
the mean corrected statistics were overrejecting the model. The magnitude of overrejection was
increasing as the sample size was decreasing. Accordingly, we expect similar behavior of the
robust difference statistics, that is, more accurate Type I error rates in small samples and for
large models when MLMYV is used.

In addition, the current study goes beyond previous research by also evaluating the
performance of the two Satorra-Bentler difference corrections coupled with the Asparouhov and
Muthén’s (2005) mean adjustment for absolute fit (i.e., DSB1mLr and DSB10mLr). These
combinations are of particular interest to substantive researchers because MLR is the only option
currently available for modeling incomplete data. Previous research (Maydeu-Olivares, 2017)
reports that when assessing the overall model fit, choices MLR and MLM provide similar results,
except in smaller samples (N < 500) where MLLM slightly outperforms MLR. Accordingly, we
expect similar behavior of the difference statistics, namely, more accurate Type I error rates in
small samples (N < 500) when MLM is used.

Simulation Study

A simulation study was conducted to assess the performance of five robust difference
options: DSB1mrm, DSB1MmLr, DSB10MmLM, DSB10MLR, and Dmimy. The uncorrected difference
test, D, was also included in the study to serve as a baseline for comparison. The data were
generated in the context of a two-wave longitudinal one factor model. Put differently, the

population model is a one factor model measured at two time points. As a result, it has the form
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of a two factor confirmatory factor analysis (CFA) model with correlated errors to account for
dependencies across time. We display in Figure 1 one of the models used in our simulation.

The chi-square difference tests were conducted to examine the equivalence of factor
loadings across the two occasions. It is important to note that such tests are routinely utilized, for
example, when researchers test weak factorial invariance across time (Meredith, 1993; Shi, Song
& Lewis, 2017). When generating data, both factor variances were set to one and the population
value of the inter-factor correlation was set to 0.30. We set the population values of all factor
loadings to 0.70, except for the factor loading value for the first indicator of the second factor.
The value of this factor loading was varied as described below. The population values for
residual correlations across the two time occasions was set to 0.15. Finally, the error variances

were set such that the population variances of the observed variables were equal to one.

Insert Figure 1 about here

Study conditions

The simulation conditions were obtained by manipulating the following five factors: (a)
level of non-normality, (b) sample size, (c) model size, (d) magnitude of (non)invariance, and (¢)
degrees of freedom of the difference test.

Level of non-normality. We used three levels of non-normality by manipulating the
magnitude of skewness and (excess) kurtosis: Normal data (0,0), moderately non-normal (2,7),
and severely non-normal (2,10). We chose these particular values of skewness and kurtosis to
match the values used in studies by Chuang and colleagues (2015) and Brace and Savalei (2017).
Until recently, the standard method for generating non-normal data was based on Vale and

Maurelli (1983). However, Foldnes and Olsson (2016) have recently shown that the Vale-
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Maurelli method gives an overly optimistic evaluations of the performance of estimators and fit
statistics. Accordingly, in this paper non-normal data were generated using the procedure
described by Foldnes and Olsson (2016).

Sample size. Four typical sample size variants were included in the study: extremely
small (100), small (200), moderate (500) and large (1,000) sample size.

Model size. Model size refers to the total number of observed variables (p,; Shi, Lee, &
Terry, 2015, 2018). Two model sizes were considered: small model with five indicators per
factor (p = 10), and large model with fifteen indicators per factor (p = 30). We chose p = 30
because Maydeu-Olivares (2017) showed that the behavior of mean corrected test statistics for
assessing model-data fit deteriorate in models of this (and larger) model size.

Magnitude of noninvariance. Three levels of noninvariance were considered by
manipulating the population values of the first indicator across factors: invariant, small, and large
noninvariance. For the invariant conditions, all factor loadings were equivalent across two
occasions (i.e., A = 0.70). Therefore, rejecting the chi-square difference test implies that a Type |
error is made. The condition with small noninvariance corresponds to setting the population
loadings of the first indicator to 0.70 in one factor and to 0.50 in the second factor (AA = 0.20). In
the large noninvariance condition these values were A = 0.70 and A = 0.30 (AA = 0.40),
respectively. Under both small and large noninvariant conditions, the probability of rejecting the
chi-square difference test informs us of the power rates of the test.

Degrees of freedom of the difference test (df). We manipulated the degrees of freedom of
the test by varying the number of equality constraints imposed (i.e., the number of tested factor
loadings). The invariance tests were conducted on the first factor loading and on all factor

loadings across two occasions. That is, when p = 10 (i.e., five factor loadings loaded on each
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factor), the difference tests had either df = 1 (small) or df =5 (large); whereas when p = 30 (i.e.,
15 factor loadings loaded on each factor), the difference tests had either df =1 (small) or df =15
(large).

In sum, the simulation study consisted of a fully crossed design including three
distributional shapes (normal, moderately non-normal, and severely non-normal), three
(non)invariance options (invariance, small noninvariance, and large noninvariance), four sample
sizes (100, 200, 500, and 1,000), two model sizes (small and large), and two df options (small
and large). One hundred and forty-four (144) conditions were created (3 x 3 x 4 x 2 x 2) in total.
One thousand replications were generated for each condition using the function nnig sim in the
miceadds package in R (R Core Team, 2019; Robitzsch, 2019).

Estimation
The chi-square difference tests were conducted by comparing two nested models. The

less restricted (baseline) model M, was a two-wave longitudinal CFA model with all parameters

freely estimated (the factor variances were fixed to one for model identification purposes). The

more restricted models M| had either one (the first one) or all factor loadings constrained to be

equal across occasions. For each dataset, we fitted the nested models and conducted chi-square
difference tests using ML and the robust ML (i.e., MLM, MLR and MLMYV) estimation methods.
As previously described, for both MLM and MLR, two variants of the mean corrected difference
tests were computed (i.e., DSB1 and DSB10). In total, the performance of six maximum
likelihood (ML) based chi-square difference tests (D, DSB1mLm, DSB1mLr, DSB10MLM,
DSB10mLr, and DmLmy) was compared across the simulated conditions.

In order to evaluate the performance of different robust chi-square difference tests,

empirical rejection rates for nominal alpha levels of 5% were computed across all replications
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within each simulation condition. To reiterate, under the invariant conditions (i.e., the null
hypotheses are correct), the empirical rejection rates are Type I error rates. When the tested
factor loadings are noninvariant in the population (i.e., the null hypotheses are wrong) the
proportions of rejections across all replications are to be interpreted as the power of the chi-
square difference test. All estimations were performed using lavaan 0.6-5 (Rosseel, 2012) except
for MLMYV, for which Mplus 8 (Muthén & Muthén, 2017) was used.

Results

For all of the study conditions all replications successfully converged. Accordingly,
results for each condition under investigation were based on all 1,000 replications.
Type I error rates

For the Type I error rate analysis, we used results involving the invariant population
model. The less restricted model Mi and additionally restricted models Mo were correctly
specified in all conditions. In Table 2 and Table 3 we provide empirical Type I error rates of the
difference tests at the 5% level of significance for small (p = 10) and large models (p = 30)
respectively. Following Bradley (1978), and taking into account rounding error, we considered
Type I error rates in [.02, .08] to be adequate. Conditions with Type I error rates outside this
range are highlighted in Tables 2 and 3.

Under normality, all examined difference tests performed well across conditions
involving Mo with a single constraint (df = 1; Tables 2 and 3), regardless of model size and
sample size. In conditions with small models (p = 10) and Mo with multiple constraints (df = 5;
see Table 2), the Type I error rates were also appropriate for all examined statistics. Finally,
conditions involving large models (p = 30) and Mo with multiple constraints (df = 15; Table 3)

were more challenging for the studied difference statistics to maintain Type I accuracy. In these
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conditions, the difference statistics involving MLR and MLMV (i.e., DSB1mLr, DSB10MLR, and
Dwmimv) tended to slightly underreject.

In conditions with non-normal data, the uncorrected difference test (D) did not maintain
its accuracy and, as expected, was overrejecting the true null, regardless of model size, sample
size, and degrees of freedom. No large differences in rejection rates were observed across
conditions involving different model sizes, severity of non-normality, sample sizes, and degrees
of freedom (see Tables 2 and 3).

Conversely, in all conditions with non-normal data, the robust difference statistics were
outperforming the uncorrected option. However, their behavior was differently affected by non-
normality. Both versions of the Satorra-Bentler mean corrected difference statistics (Satorra &
Bentler, 2001, 2010) were overrejecting the true null in several conditions with non-normal data.
Conversely, the mean and variance corrected difference statistic (Dmimy; Asparouhov &
Muthén, 2010) was performing consistently and it was the only option that yielded adequate
Type I error rates across all non-normal conditions (see Tables 2 and 3). Overall, as
hypothesized, the mean and variance corrected statistic, DmLmv, outperformed the two Satorra
and Bentler’s (2001, 2010) mean corrected difference statistics.

As it can be observed in Tables 2 and 3, with respect to Type I error rates, the main effect
of Satorra-Bentler (2001) vs. (2010) option was small. A more substantial effect was found for
the MLM vs. MLR option. Specifically, larger sample sizes were needed for MLR (i.e., SB1mLr
and SB10mLr) than for MLM options (i.e., SBImrLm and SB10mLm) to reach adequate Type I error
rates. The model size effect was not observed. As can be seen in Tables 2 and 3, holding all other
factors constant and simply increasing the number of variables had no effect on the performance

of the two mean corrected difference statistics. However, the number of degrees of freedom
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available for difference testing did have an impact on the performance of the robust difference
statistics. Holding all other factors constant, the larger the number of degrees of freedom, the
poorer was the performance of the mean corrected statistics. Within the limited conditions of this
study, the mean and variance difference statistic (DmLmv) seemed robust to this effect.

Finally, a small interaction effect between the version of the difference statistic, i.e.,
Satorra-Bentler (2001) vs. (2010), and the choice of formula used to obtain the standard errors
for the model parameters (i.e., MLM vs. MLR) was observed. As it can be seen in Tables 2 and
3, when there was a difference in Type I error rates between the two Satorra-Bentler difference
corrections, a slightly more accurate results were observed for the original version when both
were coupled with the MLM option (i.e., SB1mrm), whereas a slightly more accurate results were
obtained using the “strictly positive” version when both were coupled with the MLR option (i.e.,

SB10MLR).

Insert tables 2 and 3 about here

Power

Power analysis was based on two population models with one noninvariant factor
loading. The less restricted model M1 was correctly specified in all conditions. Conversely, both
more restricted models Mo were misspecified, simulating a small misspecification when the
difference of the constrained factor loading across occasions was AL = 0.20, and a large
misspecification when the difference was AAL = 0.40. The power of the difference test thus

reflects the sensitivity of the test to identify this misspecification in Mo.
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Power results are provided in Tables 4 and 5 for small (p = 10) and large model (p = 30)
respectively. In the tables, conditions with incorrect Type I error rates identified earlier are
highlighted. We evaluate only power results in conditions with adequate Type I error rates, that
is, in those conditions not highlighted in the tables. As expected, power of the difference
statistics was increasing with the increasing sample size and severity of misspecification and was
decreasing with the increasing degrees of freedom for the difference test. Overall, we did not
observe substantial differences in power among difference statistics in conditions with adequate

Type I error rates (see Tables 4 and 5).

Insert tables 4 and 5 about here

Discussion

Applied researchers are often interested in assessing if a plausible and more parsimonious
model fits the data as well as the initial model under consideration. If the two models of interest
are nested and if data are normally distributed, evaluating the difference in model fit can be
conveniently performed, because the difference in absolute fit of the two models will result in a
statistic that follows a chi-square distribution. However, if data are not normal, a difference
statistic obtained by subtracting the two robust absolute fit statistics will not necessarily be chi-
square distributed, requiring a unique adjustment (Satorra, 2000; Satorra & Bentler, 2001). In
order to facilitate appropriate selection of difference statistics in substantive research, we
evaluated the performance of several difference options appropriate for non-normal continuous

outcomes.
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Of focal interest in the current investigation was the performance of a seldom utilized yet
potentially advantageous second order adjustment, that is, the mean and variance corrected
difference statistic proposed by Asparouhov and Muthén (Dmimv; 2010). In order to provide a
more thorough evaluation of this robust difference statistic, we pitted its behavior against the two
more popular mean corrected statistics, DSB1 and DSB10, proposed by Satorra and Bentler
(2001, 2010). The Satorra-Bentler difference statistics can be used in concert with the Satorra
and Bentler’s (1994) model-data fit statistic appropriate for complete data (MLM), or the
Asparouhov and Muthén’s (2005) model-data fit statistic appropriate for both complete and
incomplete data (MLR). Accordingly, the options under investigation were DSB1mLm, DSB1wMLR,
DSB10mLm, DSB10MLR, and Dmmy. We also included in the comparison the uncorrected
difference statistic (D) as a baseline. We evaluated the chosen options with respect to both Type
I error rate accuracy and power of the test.

As expected, our investigation reconfirms that the uncorrected difference statistic can
only be used with normally distributed data. When data is non-normal, it overrejects the true
null, informing the researcher than the two models are different (and therefore the more complex
model should be selected), when in fact the fit of both models is comparable. In the current
investigation, the two Satorra-Bentler mean corrected difference statistics (DSB1 and DSB10)
tended to overreject when sample size was small (N < 200). Their performance worsened as
sample size decreased, kurtosis increased, and the degrees of freedom available for testing
increased. Conversely and as hypothesized, the mean and variance corrected difference statistic
(DmLmyv; Asparouhov & Muthén, 2010) outperformed the mean corrected options, and also
provided the adequate Type I error rates across all non-normal conditions investigated. In terms

of power, and holding Type I errors constant, no substantial differences were found among the
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difference statistics considered (the uncorrected, mean corrected, and mean and variance
corrected). Overall, a clear winner among the difference statistics considered in the current
investigation is the mean and variance corrected difference statistic.

Among the mean corrected difference statistics studied, choices with MLM outperformed
choices with MLR, especially in small samples. In contrast to previous studies, we did not find
the Satorra and Bentler’s (2010) procedure of combining the mean corrected statistics to obtain
the difference statistic advantageous over the original Satorra and Bentler’s (2001) proposal.
This simply means that in our simulation setup, the original procedure did not fail (recall that the
“strictly positive” procedure is essentially a way to obtain the difference statistic when the
original procedure yields an improper value).

Limitations and directions for future research

As in any other simulation study, our conclusions are limited by the conditions included
in the current investigation. We simulated conditions involving measurement invariance over
time and found that the computationally more demanding mean and variance difference test
statistic outperforms statistics that only involve a mean correction. However, nested tests are also
widely used to assess measurement invariance across populations (e.g., males vs. females).
Therefore, future research should be aimed at replicating our findings in this setup.

Moreover, we found that the performance of the mean corrected difference statistics
worsened as the number of degrees of freedom for the difference test increased. In contrast, the
mean and variance statistic maintained nominal Type I error rates in all conditions investigated.
Nevertheless, it is reasonable to suspect that as degrees of freedom increase, p-values obtained

using the mean and variance corrected difference statistic would eventually break down as well.
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Accordingly, it would be of interest for future research to consider large models involving larger
numbers of degrees of freedom for difference testing than those used in the current study.

It seems of interest to note that the mean and variance difference statistics are also
available when estimating ordinal factor analysis using polychoric correlations. In this case,
Mplus implements these statistics for the unweighted and diagonally weighted least squares
estimators (choices ULSMV and WLSMV in Mplus terminology; see Asparouhov & Muthén,
2010). Additional research is needed to investigate the performance of the mean and variance
difference statistics in setups involving ordinal data.

In closing, we must reiterate that statistical theory for chi-square difference testing relies
on the assumption that the larger model being compared is correctly specified (Haberman, 1977;
Yuan & Bentler, 2004), but it may not be able to assess this assumption because of the model
size effect (Moshagen, 2012). Nevertheless, p-values for difference testing may be accurate even
when p-values for overall model testing are not (e.g., see Brace & Savalei, 2017; Maydeu-
Olivares & Cai, 2006). Accordingly, chi-square difference testing should be performed with care
(Yuan & Bentler, 2004).

Recommendations

Based on the evidence of the current evaluation, we recommend that the mean and
variance difference correction be used whenever possible, both for continuous outcomes and
(pending further evaluation) for ordinal outcomes as well. For continuous outcomes, the mean
and variance corrected difference test proposed by Asparouhov and Muthén (2010) can be
conveniently performed in Mplus by selecting as estimator MLMYV in concert with the
DIFFTEST option. For binary and ordinal outcomes, this option is available for estimation

choices ULSMV and WLSMV. Researchers that do not have access to this software may use the
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mean corrected difference tests provided their sample is large enough (i.e., N > 500). If opting
for the mean corrected statistics, we recommend that statistics using the expected information
matrix (MLM in Mplus terminology) are preferred over statistics using the observed information
matrix (MLR in Mplus terminology), as the latter require larger samples to perform adequately.
The original Satorra-Bentler mean difference correction (2001) may be preferred over the
“strictly positive” option (Satorra & Bentler, 2010), unless it yields an improper value. We
provide as supplementary material a worked-out example and Mplus code for all the evaluated
robust difference tests so that substantive researchers can conveniently use them in their own

research.
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Table 1

Choices of Chi-square Statistics for Comparing the Fit of Nested Models for Continuous Outcomes

Difference FOF models . . Available for models Computable from the
. estimated using Suitable for: . . Reference
Statistic choice: with missing data? two models output?
Steiger, Shapiro, and

D ML normal outcomes Yes Yes Browne (1985)

DSBlmiv  MLM non-normal No Yes Satorra and Bentler (2001)
outcomes

DSB10Mmiv MLM non-normal No Yes® Satorra and Bentler (2010)
outcomes

DSBImir  MLR non-normal Yes Yes Satorra and Bentler (2001)
outcomes

DSB10mik MLR non-normal Yes Yes® Satorra and Bentler (2010)
outcomes

DLty MLMV non-normal No No® Asparouhov and Muthén
outcomes (2006)

Notes: * It requires an additional run of the less restricted model using the parameter estimates of the more restricted model as starting
values and with the number of iterations set to 0; ° software is needed to compute it, at the time of this writing it is only available in

Mplus, which directly outputs the difference statistic, df, and p-value (see supplementary materials to this article).
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Table 2
Correctly Specified Small Model (p = 10). Empirical Type I Error Rates at the 5% Significance Level

Distribution df =1 df=5

Kurt Skew N D DSBIMLM DSB]MLR DSBIOMLM DSB]OMLR DMLMV D DSB]MLM DSBIMLR DSB]OMLM DSBIOMLR DMLMV
0.0 0.0 100 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.03
0.0 0.0 200 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
0.0 0.0 500 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.0 0.0 1,000  0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
7.0 20 100 0.28 0.06 0.12 0.07 0.08 0.07 0.27 0.08 0.14 0.10 0.12 0.06
7.0 20 200 0.24 0.06 0.09 0.06 0.07 0.06 0.26 0.05 0.09 0.07 0.09 0.04
7.0 20 500 0.27 0.05 0.07 0.06 0.06 0.06 0.27 0.06 0.08 0.07 0.08 0.05
7.0 20 1,000 0.25 0.06 0.06 0.06 0.06 0.06 0.26 0.07 0.08 0.07 0.07 0.05
10.0 2.0 100 0.25 0.06 0.13 0.07 0.10 0.07 0.27 0.08 0.17 0.12 0.14 0.06
10.0 2.0 200 0.27 0.05 0.09 0.06 0.08 0.06 0.28 0.05 0.11 0.07 0.09 0.04
10.0 2.0 500 0.29 0.05 0.08 0.05 0.07 0.05 0.32 0.06 0.11 0.08 0.10 0.04
100 2.0 1,000 0.31 0.04 0.06 0.05 0.05 0.04 0.31 0.06 0.08 0.06 0.07 0.04

Notes: highlighted values fall outside [.02, .08]; p = number of indicators; Kurt = Kurtosis; Skew = Skewness; N = sample size; df = degrees of
freedom; D = uncorrected ML Ay ; DSBlywy = Satorra-Bentler Ay (2001) with Satorra-Bentler X (1994); DSBIwmir = Satorra-Bentler Ay’

(2001) with Asparouhov-Muthén X2 (2005); DSB10wmiMm = Satorra-Bentler sz (2010) with Satorra-Bentler xz (1994); DSB10mrr = Satorra-
Bentler Ay (2010) with Asparouhov-Muthén %~ (2005); Dyimy = Asparouhov-Muthén Ay (2010).
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Table 3

Correctly Specified Large Model (p = 30). Empirical Type I Error Rates at the 5% Significance Level

Distribution df=1 df=15

Kurt Skew N D DSB1ymimDSB1MmirDSB10MmimMDSB10Mmr Dmrmy D DSB1mimDSBIMmirDSB10MmimMDSB10Mir Dymimy
0.0 0.0 100 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.0 0.0 200 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
0.0 0.0 500 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.01 0.02 0.01 0.01
0.0 0.0 1,000 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01

7.0 20 100 0.28 0.09 0.12 0.08 0.09 0.08 0.26 0.13 0.22 0.17 0.18 0.08
7.0 20 200 0.25 0.06 0.09 0.06 0.08 0.07 0.26 0.09 0.15 0.11 0.13 0.05
7.0 20 500 0.30 0.05 0.06 0.06 0.06 0.06 0.26 0.06 0.08 0.06 0.07 0.05
7.0 2.0 1,000 0.30 0.06 0.07 0.06 0.06 0.06 0.29 0.07 0.08 0.07 0.08 0.04

10,0 2.0 100 0.26 0.08 0.13 0.08 0.09 0.08 0.28 0.14 0.22 0.17 0.18 0.07
10,0 2.0 200 0.29 0.07 0.10 0.07 0.08 0.07 0.30 0.10 0.18 0.13 0.15 0.06
10,0 2.0 500 0.30 0.05 0.08 0.05 0.07 0.05 0.32 0.08 0.12 0.10 0.11 0.05
10.L0 2.0 1,000 0.32 0.05 0.07 0.06 0.06 0.06 0.35 0.07 0.10 0.08 0.09 0.04

Notes: highlighted values fall outside [.02, .08]; p = number of indicators; Kurt = Kurtosis; Skew = Skewness; N = sample size; df = degrees of
freedom; D = uncorrected ML AXZ ; DSB1mim = Satorra-Bentler AXZ (2001) with Satorra-Bentler Xz (1994); DSB1wmir = Satorra-Bentler sz

(2001) with Asparouhov-Muthén X (2005); DSB10mLm = Satorra-Bentler Ay’ (2010) with Satorra-Bentler a (1994); DSB10mir = Satorra-
Bentler Ay’ (2010) with Asparouhov-Muthén % (2005); Daimy = Asparouhov-Muthén Ay’ (2010).
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Table 4
Misspecified Small Model (p = 10). Empirical Rejection Rates (Power) at the 5% Significance Level

Distribution df=1 df=35
AL Kurt Skew N D DSBlyiy DSBlyigr DSB10mim DSB10yir Dyiwy D DSBlyim DSBlyr DSB10yiy DSB10mig Dy
02 00 00 100 0.31 032 031 0.33 030 033 0.16 0.17  0.15 0.17 0.14  0.16
00 00 200 0.58 058  0.57 0.58 057  0.58 0.32 034 033 0.33 031 032
00 00 500 0.94 094 094 0.94 094 094 0.78 078  0.77 0.78 0.77  0.77
0.0 0.0 1,000 1.00 .00 1.00 1.00 .00 1.00 0.99 0.99  0.99 0.99 0.99  0.99
70 20 100 0.47 025 _ 030 027 027 029 0.46 0.21 0.28 0.25 025  0.17
70 20 200 0.58 033 036 0.35 035 035 0.56 029 034 0.33 033 025
70 20 500 0.83 059  0.59 0.61 059 0.6l 0.81 058  0.59 0.60 059 054
70 20 1,000 097 088  0.86 0.88 087  0.88 0.96 0.87  0.88 0.88 0.88  0.85
100 20 100 0.46 023 030 0.25 027 025 0.46 020 | 030 0.25 025  0.18
100 2.0 200 0.62 034 037 0.36 035 036 0.60 030 035 0.34 034 027
100 20 500 0.83 059  0.59 0.60 060  0.60 0.82 0.56  0.58 0.58 058 052
100 20 1,000 _ 095 083 081 0.83 082  0.84 0.96 0.84  0.83 0.84 0.83  0.80
04 00 00 100 0.83 084  0.84 0.85 083 085 0.58 059 058 0.60 056  0.58
00 00 200 0.99 099  0.99 0.99 099  0.99 0.92 092 092 0.92 091  0.92
00 00 500 1.00 100 1.00 1.00 .00 1.00 1.00 1.00 1.00 1.00 1.00  1.00
0.0 0.0 1,000 1.00 .00 1.00 1.00 .00 1.00 1.00 1.00 1.00 1.00 .00 1.00
70 20 100 0.83 067  0.63 0.68 064  0.69 0.79 0.58 | 0.59 0.61 0.58 053
70 20 200 0.96 088  0.84 0.89 086  0.89 0.95 083 082 0.85 0.83  0.80
70 20 500 1.00 100 0.99 1.00 099  1.00 1.00 099 099 0.99 099  0.99
70 2.0 1,000 1.00 .00 1.00 1.00 .00 1.00 1.00 1.00 1.00 1.00 .00 1.00
100 20 100 0.82 068 | 0.66 0.70 067  0.70 0.79 059 | 0.62 0.64 059 054
100 20 200 0.96 090  0.86 0.89 087  0.90 0.95 083  0.83 0.84 0.83  0.79
100 20 500 1.00 099 098 0.99 098 099 1.00 099 098 0.99 098  0.98
10.0 2.0 1,000 1.00 .00 1.00 1.00 .00 1.00 1.00 1.00 1.00 1.00 .00 1.00

Notes: highlighted conditions have incorrect Type I errors; p = number of indicators; AA = noninvariance; Kurt = Kurtosis; Skew = Skewness; N = sample size;

df = degrees of freedom. D = uncorrected ML AXZ ; DSB1ypm = Satorra-Bentler AXZ (2001) with Satorra-Bentler Xz (1994); DSBI1wmrr = Satorra-Bentler AXZ
(2001) with Asparouhov-Muthén ¥’ (2005); DSB10yiy = Satorra-Bentler Ay’ (2010) with Satorra-Bentler % (1994); DSB10yr = Satorra-Bentler A, (2010)

with Asparouhov-Muthén XZ (2005); Dmrmv = Asparouhov-Muthén sz (2010).
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Table 5
Misspecified Small Model (p = 30). Empirical Rejection Rates (Power) at the 5% Significance Level

Distribution df=1 df=15

AL Kurt Skew N D DSBlyiy DSBlyig DSB10miy DSB10yuir Duiwy D DSBlyim DSBlyr DSB10yiy DSB10mig Dy

02 00 00 100 0.35 037 037 0.36 035 036 0.06 007 007 0.07 0.06  0.05
00 00 200 0.65 064  0.65 0.65 064 065 0.15 0.15 0.5 0.15 0.14  0.14
00 00 500 0.98 097 098 0.97 097 097 0.61 0.61 0.61 0.61 0.61  0.59
0.0 0.0 1,000 1.00 .00 1.00 1.00 .00 1.00 0.98 098  0.98 0.98 098  0.98
70 20 100 0.47 026 029 0.28 027 028 0.45 026 037 0.31 033 0.17
70 20 200 0.66 039 042 0.41 040 042 0.56 032 039 0.36 037 027
70 20 500 0.89 065  0.64 0.66 064  0.66 0.81 0.62  0.64 0.64 0.64  0.58
70 20 1,000 098 089  0.89 0.90 089  0.90 0.98 0.89  0.89 0.89 0.89  0.87
100 20 100 0.50 029 034 0.32 030 031 0.46 030 038 0.35 034 021
100 2.0 200 0.64 035 040 0.39 039 040 0.59 032 041 0.38 040 026
100 20 500 0.85 061 062 0.63 062  0.64 0.82 058 0.6l 0.60 0.61 050
100 20 1,000 _ 097 087  0.86 0.87 086 0.88 0.97 0.88  0.88 0.89 0.88  0.83

04 00 00 100 0.90 090  0.90 0.90 090 090 0.40 042 041 0.43 038 037
00 00 200 1.00 100 1.00 1.00 .00 1.00 0.83 0.84  0.83 0.84 0.82  0.82
00 00 500 1.00 100 1.00 1.00 .00 1.00 1.00 1.00 1.00 1.00 1.00  1.00
0.0 0.0 1,000 1.00 .00 1.00 1.00 .00 1.00 1.00 1.00 1.00 1.00 .00 1.00
70 20 100 0.89 071  0.70 0.75 069  0.76 0.81 065  0.72 0.69 0.69 055
70 20 200 0.97 092  0.89 0.92 089  0.92 0.93 0.86  0.87 0.87 0.86  0.81
70 20 500 1.00 100 0.99 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00  0.99
70 2.0 1,000 1.00 .00 1.00 1.00 .00 1.00 1.00 1.00 1.00 1.00 .00 1.00
100 20 100 0.86 071 _ 0.70 0.75 070  0.76 0.78 0.64  0.69 0.68 0.66  0.54
100 20 200 0.97 090  0.87 0.91 087 091 0.94 084 085 0.85 0.84  0.77
100 20 500 1.00 099 098 0.99 098 099 1.00 1.00  0.99 1.00 099  0.99
10.0 2.0 1,000 1.00 .00 1.00 1.00 .00 1.00 1.00 .00 1.00 1.00 .00 1.00

Notes: highlighted conditions have incorrect Type I errors; p = number of indicators; A\ = noninvariance; Kurt = Kurtosis; Skew = Skewness; N = sample size;

df = degrees of freedom. D = uncorrected ML AXZ ; DSB1mwMm = Satorra-Bentler sz (2001) with Satorra-Bentler Xz (1994); DSBlwmir = Satorra-Bentler sz
(2001) with Asparouhov-Muthén ¥ (2005); DSB10wwny = Satorra-Bentler AY’ (2010) with Satorra-Bentler X~ (1994); DSB10wix = Satorra-Bentler Ay (2010)

with Asparouhov-Muthén X2 (2005); Dmimv = Asparouhov-Muthén sz (2010).



DIFFERENCE TESTS

Figure 1. Small model used in the simulations.
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