

Architecting Analytics Across Multiple E-learning Systems to Enhance Learning Design

Katerina Mangaroska, Boban Vesin, Vassilis Kostakos, Peter Brusilovsky, *Senior member, IEEE*, and Michail Giannakos, *Senior member, IEEE*,

Abstract—With the wide expansion of distributed learning environments the way we learn became more diverse than ever. This poses an opportunity to incorporate different data sources of learning traces that can offer broader insights into learner behavior and the intricacies of the learning process. We argue that combining analytics across different e-learning systems can potentially measure the effectiveness of learning designs and maximize learning opportunities in distributed settings. As a step toward this goal, in this study, we considered how to broaden the context of a single learning environment into a learning ecosystem that integrates three separate e-learning systems. We present a cross-platform architecture that captures, integrates, and stores learning-related data from the learning ecosystem. To demonstrate the feasibility and the benefits of cross-platform architecture, we used regression and classification techniques to generate interpretable models with analytics that can be relevant for instructors in understanding learning behavior and sensemaking of the instructional method on learner performance. The results show that combining data across three e-learning systems improve the classification accuracy compared to data from a single learning system by a factor of 5. Our work highlights the value of cross-platform learning analytics and presents a springboard for the creation of new cross-system data-driven research practices.

Index Terms—Cross-platform analytics, architecture for educational systems, distributed learning settings, distance education.

I INTRODUCTION

DIGITAL learning has grown significantly with the rapid expansion of Information and Communication Technology (ICT) and the concept of ubiquitous computing. This trend is a catalyst for learning to happen everywhere and at any time, across many different platforms and learning systems, situated and shaped by the tasks, the content resources, and the dynamics of distributed learning environments [1]. Although learning happens anytime and across many diverse learning settings, we still lack insights how to effectively optimize the learning context and the learner experience in these settings [2]. In addition, as learners are rapidly embracing the use of novel data-intensive learning technologies, they are becoming more demanding and critical, creating a challenge how to engage and support them when learning takes place in distributed settings [3].

One promising approach lies in a wider application of learning-related data collected from various e-learning systems, that once merged, can support a learning ecosystem of “dynamic, interconnected, and ever-evolving community of learners, instructors, tools, and content” [4]. The idea draws on the work presented in [5], who advocates that understanding learning and knowledge creation in dis-

tributed settings, requires multi-level analyses on learners’ traces fragmented across time, numerous e-learning systems, and media (i.e., digital substrates where communication modes are encoded). However, mainstream methods and tools often rely on *metrics derived from single and many times limited data sources* such as grades, submission of assignments, self-reported data, or test performances [6]. On the one hand, findings based on metrics extracted from limited data sources, represent only a small proportion of the learning process and the activities students engage with. This, in turn, only partially help educators to understand *when and how students learn*, and *how effectively they use the opportunities for learning as given in the learning design*. Thus, current approaches often display the ongoing limitations in the learning analytics field, in which many researchers and educators miss the opportunity to make effective and meaningful refinements in the learning designs that can encourage, enable, and advance learning.

On the other hand, learners often make decisions (e.g., whether and what technologies to use) based on the perception of what might maximize their chances to succeed [7]; hence, their focus is often on assessment [8], [9]. However, changes in the instructional methods (i.e., adding personalized feedback) can change learners’ single focus on assessment [10] and usage of technologies for reasons other than solely succeeding in the course assessments [6]. Past research has shown that learning design and the instructional conditions strongly affect what technologies and tools students use [6], [11], as well as their level of engagement and performance [12]. Yet, we do not really know *how to create and measure the effectiveness of learning designs that can maximize learning opportunities in distributed learning settings*. In that respect, learning

Manuscript received May 27, 2020; revised March 9, 2021; accepted ???, 2021. (Corresponding author: Boban Vesin)

K. Mangaroska and M. Giannakos are with with Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway (e-mail: mangaroska@ntnu.no; michailg@ntnu.no).

B. Vesin is with the School of Business, University of South-Eastern Norway, Vestfold, Norway (e-mail: boban.vesin@usn.no).

V. Kostakos is with School of Computing and Information Systems, University of Melbourne, Australia (e-mail: vassilis.kostakos@unimelb.edu.au).

P. Brusilovsky is with School of Information Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA (e-mail: peterb@pitt.edu).

Digital Object Identifier ???/TLT.???

57 analytics has the potential to provide insights into what is
 58 happening in each and across the different learning systems,
 59 and thus, examine the effectiveness of the learning design.
 60 For example, if educators have learning-related data from
 61 other systems learners use to master skills (e.g., GitHub for
 62 learning programming), rather than solely from the assigned
 63 tasks and the learning management system (LMS) in use,
 64 educators can have improved overview of learners' progress
 65 and potential misconceptions, and make pertinent decisions
 66 to (re)design the learning context when learning behavior
 67 deviates from the pedagogical intention.

68 Consequently, we designed and implemented a study to
 69 explore if *architecting analytics across multiple e-learning*
 70 *systems can enhance the analytics capacities of the individual*
 71 *systems*, and discussed how the findings can support
 72 and enhance learning design practices in distributed settings
 73 [6], [13], [14]. However, developing cross-platform systems
 74 is a complex and data intensive process [15]. On the one
 75 hand, the procedure of standards development is inherently
 76 challenging [16] and there is a lack of data interoperability
 77 standards for handling and processing data generated from
 78 different systems [17]. On the other hand, cross-platform
 79 systems additionally increase the complexity of orchestrating
 80 learning activities in distributed settings, as educators
 81 need to deal with the requirements that stem from different
 82 learning designs [18], [19]. Therefore, it was also necessary
 83 to *explore and define the minimum technical architecture*
 84 *requirements* essential for setting the foundations to develop
 85 cross-platform systems.

86 To demonstrate proof of concept, we implemented
 87 a cross-platform architecture that integrates three inde-
 88 pendent personalized e-learning systems (i.e., ProTuS,
 89 MasteryGrids, and Visual Learning Analytics System for
 90 Programming–VLASP) into one learning ecosystem for data
 91 collection, integration, and harmonization. Since these sys-
 92 tems automatically capture all user interactions, learning
 93 analytics was utilized to shed light and give rise to a larger
 94 phenomenon in digital learning and predictive modeling—
 95 *how to develop predictive models that not only predict per-*
 96 *formance and success, but also reveal significant elements*
 97 *for teaching practice* (e.g., generic and specific), that can
 98 be applied to improve the quality of learning designs and
 99 instructional methods [20]. As a result, we present the po-
 100 tential of cross-platform learning analytics generated from
 101 behavioral log data, and utilized to show how predictive
 102 models can be constituted to inform teaching practices as
 103 a “diagnostic” tool that can support data-driven changes
 104 in the learning design, pertinent to the optimization of the
 105 various technologies used during the course. In that regard,
 106 we addressed the following research questions:

- 107 • **RQ1:** What are the benefits of implementing cross-
 108 platform architecture and harnessing cross-platform
 109 learning analytics for digital education?
- 110 • **RQ2:** What implications cross-platform learning an-
 111 alytics can offer to learning design?

112 In sum, the contribution of this paper is threefold: 1)
 113 *Conceptual*—to present an ideational model of a digital
 114 learning ecosystem which supports and harnesses cross-
 115 platform analytics, 2) *Operational*—to display the implemen-
 116 tation of a cross-platform architecture, and 3) *Empirical*—

117 to validate the value of cross-platform data integration for
 118 building predictive models that carry the opportunity to
 119 reveal significant elements for teaching practice, rather than
 120 the long-standing focus on identifying learners at risk of
 121 failing a course or solely for predicting learner performance,
 122 as it is commonly done in the learning analytics and edu-
 123 cational data mining communities.

II BACKGROUND

124 Optimizing the learning context and making valid and
 125 informed changes in the learning design utilizing learning-
 126 related data, was probably one of the first motivations
 127 for the emergence of learning analytics [21]. Nowadays,
 128 the wide proliferation of distributed learning environments
 129 gives rise to opportunities in learning analytics and pre-
 130 dictive modeling, to explore how analytics from various
 131 learning systems (i.e., cross-platform learning analytics) can
 132 be harnessed to enhance the quality of learning designs and
 133 instructional methods.

II.1 Cross-Platform Learning Analytics

135 Current research often relies on metrics derived from data
 136 sources such as grades, submission of assignments, the
 137 time learners spent in e-learning, self-reported data, or test
 138 performances [6]. However, it often falls behind to consider
 139 data from more than one learning system, particularly when
 140 learning happens in distributed settings [22]. Nonetheless,
 141 the more complex data researchers capture across settings
 142 (e.g., interactions with learning materials via LMSs, learn-
 143 ing trajectories via problem-based learning), the harder it
 144 becomes to synchronize and analyze that data [23], [24].
 145 Although frameworks that describe how to capture and
 146 classify data from different sources exist [25]–[27], there is a
 147 lack of available tools that could assist researchers to easily
 148 establish cross-platform and sometimes multimodal systems
 149 [28]–[30].

150 Learning is distributed across multiple media, locations,
 151 and online environments; yet, researchers' scope is often
 152 limited to a single virtual learning environment (VLE) or
 153 LMS. This is a common drawback in the field of learning an-
 154 alytics that depicts the present-day reality where researchers
 155 depend on one-sided learning analytics measures due to
 156 the difficulties of extracting, harmonizing, and sensemaking
 157 of data from various sources [2]. In a previous work, a
 158 conceptual model named Group Learning Unified Environ-
 159 ment with Pedagogical Scripting, Monitoring, Analysis, and
 160 Across-Spaces Support (GLUEPS-MAASS) was presented,
 161 describing how data from multiple sources should be col-
 162 lected and integrated, encompassing learning activities in
 163 the web, the physical, and the 3D virtual space [31]. How-
 164 ever, to the best of our knowledge, this is still a conceptual
 165 model, that has not been placed into practice yet. Moreover,
 166 there are a few cross-platform patent models [32]–[34] that
 167 currently have a pending status.

168 Consequently, we try to overcome some of the on-
 169 going issues (e.g., one-sided learning analytics measures,
 170 data integration, and interoperability) by *proposing a cross-*
 171 *platform architecture that automatically collects, integrates,*
 172 *and harmonizes data from several e-learning systems* (i.e., Pro-
 173 TuS, MasteryGrids, and VLASP). These data is then used

175 to explore if *combining metrics extracted from multi-system log*
 176 *data can increase the predictive power* of the individual systems
 177 with respect to estimating student performance at the end
 178 of the course, as well as reveal significant metrics that can
 179 further *refine the personalization and the design of learning*
 180 *activities and instructional methods*.

181 **II.2 Predictive Modeling in Learning Analytics**

182 Data-driven approaches to further our understanding of
 183 learning are particularly relevant for e-learning and learning
 184 analytics research [35], with predictive modeling being an
 185 important topic [36]. Many researchers have already utilized
 186 predictive modeling techniques to identify students
 187 at risk and increase their retention [37], [38], to provide
 188 early insights about students' performance and to generate
 189 interpretable performance models [39]–[41], to improve the
 190 quality and to scale up feedback [42], and to create intervention
 191 methods that can improve students' mental health and
 192 their university experience [43].

193 Predictive modeling involves statistical models or data
 194 mining algorithms to find patterns in the data, and predict
 195 new or future events [44]. Most of the research in predictive
 196 modeling forecasts what may happen, and as such has
 197 shown opportunities for advancing the field of learning
 198 analytics. However, it has yet to mature to offer a wide-scale
 199 impact [45]. In other words, predictive models intent to offer
 200 actionable insights for learners and instructors, so that these
 201 groups of users can take further actions, rather than increase
 202 the frequency of feedback (i.e., informing students how
 203 they stand with respect to meeting the course list criteria)
 204 [46]. Hints (e.g., the traffic light metaphor in [37]) whether
 205 learners are at risk of not meeting certain course criteria,
 206 can help learners to be aware of their current progress, they
 207 do not offer much beyond that [45]. Therefore, learners and
 208 instructors do not always find much value and use of such
 209 predictive models, as these models are limited in provoking
 210 reflection and action [46], [47]. In the same vein, predictive
 211 models do not always generate actionable insights,
 212 resulting in limited information for instructors to improve
 213 their practices and the overall learning design [45], [46]. A
 214 step toward a more insightful and actionable information
 215 can be generated by combining predictive with explanatory
 216 modeling [44], to develop interpretable models with under-
 217 lying variables that are relevant for instructors and learners
 218 in understanding learning behavior and making sense of
 219 instructional methods on learning performance [20].

220 To move beyond predictive analytics [20], [47]–[49] and
 221 to investigate and apply sophisticated and innovative ap-
 222 proaches, we focused on *harnessing cross-platform learning*
223 analytics in predictive modeling. This way we aimed to explore
 224 if combining analytics across various systems can increase
 225 the predictive power of individual learning systems with
 226 respect to estimating student performance (i.e., grades), as
 227 well as develop models that reveal significant elements
 228 for teaching practice, that in future, can *help learners, to*
229 understand the value of different learning resources apart from
 230 solely maximizing their chances to succeed by getting good
 231 grades.

232 **II.3 Standards, Integration, and Interoperability of** **233 Learning Systems**

234 Systems operate by "understanding" the data structures
 235 they share [50]. Therefore, to perform meaningful analysis
 236 and produce applicable outcomes, interoperability of
 237 data format is paramount. The interoperability challenge
 238 is present in the learning analytics community, creating
 239 obstacles in implementing a standardized specification at
 240 scale that each "data supplier" or "tools developer" has
 241 to conform to [16]. In fact, "interoperability and scalability
 242 are evolution features embodied in the architecture of the
 243 software system" [16, p.32]. Considering this issue, much
 244 research in technology-enhanced learning has been focused
 245 on enhancing interoperability [51]. Thus, several conceptual
 246 frameworks [52] and software architectures [16], [53], [54]
 247 have been proposed to effectively store and retrieve large
 248 amounts of data generated in e-learning settings.

249 The interoperability issue is not a new one. Since 2001,
 250 several learning resource specifications have been developed,
 251 including ADL (Advanced Distributed Learning),
 252 SCORM (Shareable Content Object Reference Model) [55],
 253 IMS Learning Resource Metadata Specification [56], and
 254 IEEE LOM (Learning Object Metadata) [57]. These examples
 255 have been considered as drivers toward re-usability and
 256 interoperability of learning resources [58]. Furthermore, sev-
 257 eral industrial solutions, such as the Learning Tools Inter-
 258 operability [59] and the Experience API (xAPI) [60], [61] are
 259 widely applied, to enhance the interoperability of e-learning
 260 systems and tools [16]. xAPI is a standardized approach that
 261 clarifies how the collection, storage, analysis, and exploita-
 262 tion of data are taking place. The prominence of xAPI con-
 263 sists of system independence, easy implementation, and the
 264 focus on learner activities [62]. Slowly, but effectively, xAPI
 265 specification [61] emerged as a standard vocabulary for
 266 communication with distributed data in learning systems,
 267 due to its inherent extensibility to accommodate unforeseen
 268 data collection needs.

269 Findings from past research present an architecture that
 270 tackles the challenge of collecting and managing data from a
 271 variety of services and feeds, and with a focus on simplicity
 272 and flexibility [30]. The work published in [30] emphasized
 273 the implementation and the importance of trackers as main
 274 connectors between the activity provider, the LMS, and the
 275 data storage component. To that end, our work aims to *set*
276 up a learning ecosystem consisting of several integrated e-learning
277 systems that rely on distributed and diverse data, which will
278 satisfy the requirements for data format interoperability
279 and harness the potential of combining cross-platform learning
280 analytics. Moreover, with the *proposed cross-platform archi-
 281 tecture*, we aim to present a *proof-of-concept emphasizing the*
282 importance of holistic understanding of learners' behavior and
*283 progress, relevant for supporting data-driven changes in the learn-
 284 ing design, and toward improving and sustaining student*
285 engagement utilizing personalized feedback methods [10].

286 **III ARCHITECTURE OF THE PROPOSED LEARNING** **287 ECOSYSTEM**

288 Our motivation for designing and developing a cross-
 289 platform architecture lies in:

- 290 1) Offering a modular system that can be easily modified by adding new data sources;
- 291 2) Exploring the trade-off between interoperability, 348
- 292 flexibility, and scalability of the system; 349
- 293 3) Initiating communication among various stakeholders 350 (designers, educators, students) to investigate 351 how learning analytics might contribute to personalization 352 and flexibility vs. scalability and standardization 353 of learning; 354
- 294 4) Demonstrating proof-of-concept for the feasibility 355 and the potential of combining analytics across various e-learning systems.

302 The proposed architecture is developed addressing five 303 core functionalities (see Table 1) that *the next generation of 304 learning ecosystems* should have [4]. In addition, considering 305 the nature of the learning setting, the following are the 306 requirements that have been taken into account during the 307 design of the architecture, as suggested by [63]:

- 308 • **Data accessibility.** Accessibility and data latency 309 are two crucial factors that affect data usage for 310 instructional improvement [64]. Therefore, the 311 architecture model integrates heterogeneous data using 312 APIs for mining and retrieving common data formats 313 such as JavaScript Object Notation (JSON), comma- 314 separated values (CSV), or database storage. This 315 way, the infrastructure can support and promote 316 standardization, while facilitating data integration 317 and harmonization [65], [66].
- 318 • **Extensibility.** The design needs to follow modular 319 architecture with clearly defined and separated 320 components. This approach increases the extensibility of 321 the system and decreases the level of effort required 322 to implement future functionalities [67].
- 323 • **Scalability.** Although scalability is a growing concern 324 for e-learning systems [68], majority of these 325 systems are implemented to support their current 326 users, with less consideration for future user-base 327 growth. The model of our proposed architecture aims 328 to provide a better code structure, ability to run as 329 a distributed application with faster resource usage, 330 and thus, support future scaling of the user base.

331 To reach the goals of the proposed architecture, the 332 design and development stages followed approaches defined 333 in system development research [69], best practices in 334 software design [66], and principles of software engineering 335 for learning systems [70]. Thus, the architectural design 336 decisions have been emphasized through two views [71]:

- 337 • **The conceptual view** shows the composition of the 338 concepts necessary for system execution. This view 339 represents the conceptual model of the system and 340 explains the communication and data aggregation 341 processes between the different components.
- 342 • **The implementation view** shows the topology of the 343 implemented solution, the architectural layers, and 344 the physical connection between the three e-learning 345 systems.

346 The conceptual view represents the generic overview of 347 the system and contains the elements required for collecting

348 cross-platform data and analytics, while the implementation 349 view presents the actual execution of the proposed 350 architecture with the use of several existing systems as data 351 providers. Since the purpose of the study is to demonstrate 352 proof-of-concept of the feasibility and applicability of 353 analytics across learning systems, this paper presents only the 354 overall idea that lies behind the proposed cross-platform 355 architecture.

III.1 Conceptual Model of Cross-Platform Architecture

356 To minimize challenges (e.g., data formats, undocumented 357 data, or noise in the data) when working with multiple data 358 streams, we propose a conceptual model that promotes and 359 supports integration and interoperability among various 360 data sources. The aim is to develop an integrated ecosystem, 361 that would eliminate the need to manually log in, gather, 362 and synchronize data from different systems. The proposed 363 integration encompasses several functional layers as shown 364 in Fig. 1:

- 366 • **The data processing layer** imports, aggregates, 367 transforms, normalizes, and processes data. This 368 layer is responsible for collecting and preparing data 369 for further use and analysis.
- 370 • **The data analysis layer** interacts with the stored data 371 to extract business intelligence.
- 372 • **The report generator** visualizes data and generates 373 reports based on educators and designers' preferences.
- 374 • **The data source layer (i.e., learning record store)** 375 stores data in standardized and consistent format.
- 376 • **The application front end (i.e., learning analytics 377 dashboard)** accommodates different reports, visualizations, 378 and solutions, for report customization and 379 personalized feedback.

III.2 The Implemented Architecture of the Integrated System

381 This section presents the implemented learning ecosystem 382 that encompasses three e-learning systems, i.e., ProTuS, 383 MasteryGrids, and VLASP. The proposed architecture of 384 the learning ecosystem aggregates data from four different 385 data providers, and thereby, supports cross-platform learning 386 analytics. The following are the e-learning systems we 387 integrated:

- 388 • **ProTuS** is an intelligent e-learning system for learning 389 programming basics. ProTuS allows educators to 390 design and implement their own learning content, 391 in addition to the option for easy integration of 392 learning content from third-party providers, such 393 as wiki pages or YouTube videos. For this study, 394 lectures from Confluence wiki pages were used to 395 cover the basic Java concepts. ProTuS also provides 396 personalization techniques and several methods for 397 recommending learning content [72].
- 398 • **MasteryGrids** is an open social learner modeling 399 interface, written in JavaScript [73]. The interface 400 shows learners' progress in different topics 401 compared to other learners or the class. It also provides 402

TABLE 1
The Core Functionalities of a Learning Ecosystem

Goals	Core functionalities
Identify learners' characteristics, goals, skills, strategies, and needs.	Personalization
Monitor, assess, and predict students' behavior, progress, and performance.	Analytics and learning assessment
Process, interpret, and utilize data across learning systems.	Interoperability and integration
Provide real-time actionable feedback.	Advising and support
Visualize metrics based on cross-platform analytics and educational theories.	Explanation and interpretation

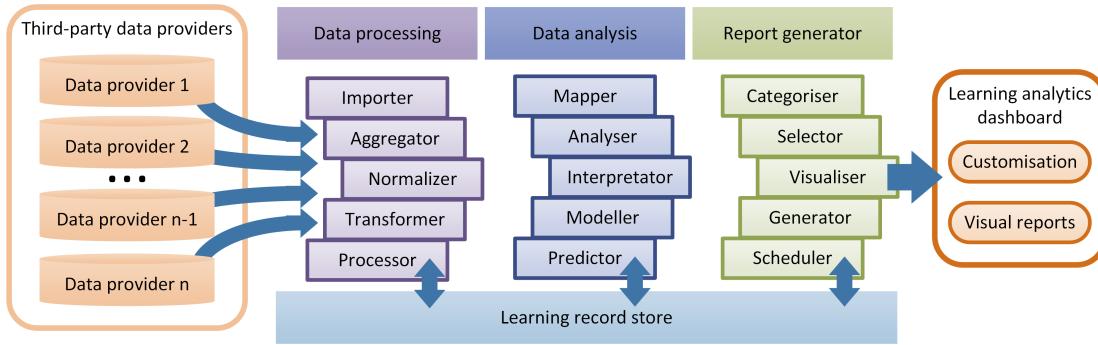


Fig. 1. The general architecture.

adaptive navigation support for learning content with stars indicating recommendations. The system tracks learners' activities and updates learner knowledge levels in a centralized user modeling server. This allows MasteryGrids to report the progress level (i.e., based on activities) and the knowledge level (i.e., based on estimated learner knowledge). MasteryGrids collects activity data from two data providers:

- 404 – **PCLab** includes interactive examples and challenges developed at University of Pittsburgh 405 [74]. The system tracks learner activity, including 406 students' trial and error approaches.
- 407 – **Programming Course Resource System** 408 (**PCRS**) includes coding exercises developed 409 at University of Toronto [75]. This system tests 410 learners' solutions against a set of unit tests 411 for a particular problem, while the results are 412 stored in the data source layer.
- 433 • **Visual learning analytics system for programming** 434 (**VLASP**) is an Eclipse plug-in that monitors learners' 435 progress in programming, tracks learner behavior 436 while learners develop/debug code in Java, and 437 reflects progress to learners as a mirroring tool [76]. 438 The environment monitors progress and visualizes 439 metrics (e.g., how many times a student has run 440 an individual test, how many times the code has 441 been compiled) associated with learner behavior and 442 performance during programming/debugging activities. 443 The main goal of the system is twofold: 1) to 444 collect data about learner activities, so that educators 445 can better understand how learners program/debug; 446 and 2) to mirror learners' own actions back to them, 447 as a way to increase awareness and motivation, foster 448

449 self-reflection, and facilitate improvements in their 450 programming habits [77].

451 ProTuS, MasteryGrids, and VLASP are separately 452 designed and implemented systems; thus, their data 453 models are different. The integrated learning 454 environment has to provide access to different 455 data structures, combine those 456 data structures, and harmonize the data 457 formats. Therefore, Visualized Education 458 NTNUI (VENT) [78] has been created 459 and presented as a layer on top of the modules of each 460 data source, consisting of a VENT system object 461 notation (VSON) 462 model and a VENT controller. This 463 layer contains the data 464 source controllers that act as conversion 465 layers from the 466 source model (e.g., JSON format) to VSON 467 format which is 468 then exposed by the VENT controller. Finally, because 469 three 470 e-learning 471 systems were utilized in this 472 study, we selected 473 ProTuS to be a portal for seamless 474 integration of different 475 content 476 providers. The overview of the data 477 sources and 478 integrated 479 learning 480 environments employed in the 481 study is 482 shown in Fig. 2.

IV METHODOLOGY

IV.1 Research Approach

459 The approach adopted in this study is based on 460 design-based research (DBR) [79]. DBR utilizes an 461 iterative process of design, implementation, 462 analysis, and revision of models, 463 with two primary goals: to construct 464 knowledge and to 465 develop solutions [80]. Hence, a series of DBR 466 cycles were 467 performed to develop the learning 468 analytics component (i.e., 469 first DBR cycle) [72], the 470 adaptability 471 feature, i.e., 472 adaptive 473 assessment (i.e., 474 the second DBR cycle) [81], and the 475 cross- 476 platform 477 architecture (i.e., 478 the third DBR cycle) [82].

479 In the first DBR cycle, a focus group was organized with 480 12 teaching 481 assistants (TAs), to understand and generate 482

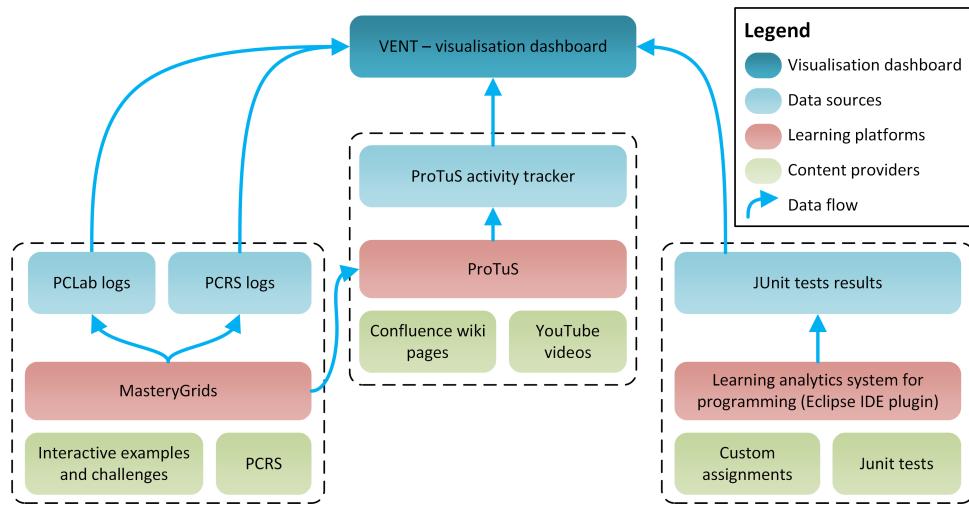


Fig. 2. Aggregated data sources.

470 the best practices they had accumulated over the last few
 471 years, by closely working with students from introductory
 472 programming courses. The TAs were computer science (CS)
 473 majors, that were in their third or fourth semester of bachelor
 474 CS studies at the Norwegian University of Science and
 475 Technology (NTNU). The focus in the first DBR cycle
 476 was on participatory [83] and human-centered [84] design
 477 approaches in the development of the learning analytics
 478 component. These approaches were employed to support
 479 the design of seamless user experience in personalized e-
 480 learning systems [3]. Applying affinity diagram technique
 481 and usability survey, we transformed the generated best
 482 practices into design guidelines and applied them in the
 483 second DBR cycle.

484 In the second DBR cycle we focused more on learners'
 485 behavior and requirements, because personalized e-learning
 486 systems need to acknowledge and model users' natural
 487 behavior, so that the interaction is intuitive and minimizes
 488 users' cognitive workload. Therefore, we designed an ex-
 489 periment to explored how students interact with the new
 490 learning analytics module in ProTuS. The purpose of the
 491 second DBR cycle was to explore learners' trajectories dur-
 492 ing five quiz activities. A total of 66 students participated
 493 in the study and each student was asked to fill out one
 494 quiz at a time. After every quiz, the students were asked
 495 to reflect and monitor its own progress with the help of
 496 the generated reports utilizing learning analytics, and then
 497 continue to the next quiz assignment. All 66 students were
 498 CS majors in their second semester of bachelor studies. The
 499 insights generated from this study were used to develop the
 500 adaptive assessment feature in ProTuS.

501 The last DBR cycle is the focus of this study, which is the
 502 development, the implementation, and the evaluation of the
 503 proposed cross-platform architecture. All three DBR cycles
 504 have used the framework for modeling personalization di-
 505 mensions proposed by [85]. This framework was selected
 506 to develop personalization features in ProTuS following six
 507 personalization dimensions in intelligent tutoring systems
 508 (ITSs) and adaptive educational hypermedia [85].

IV.2 Implementation

IV.2.1 Context and Participants

509 The research context for this study was an introductory
 510 object-oriented programming (OOP) course offered to un-
 511 dergraduate students at NTNU. The course content was
 512 delivered online (e.g., reading materials, assignments, ex-
 513 amples) and once a week in a classroom setting (e.g.,
 514 lectures and labs). During the course (which lasted for 3
 515 months) the students were required to submit ten individual
 516 assignments and undertake a final mandatory exam. The
 517 grade students get at the end of the course is based only
 518 on the final exam. The instructor used the university LMS
 519 to distribute the relevant course materials and Eclipse in-
 520 tegrated development environment (IDE) for the submission
 521 of the individual assignments. In addition, the instructor
 522 introduced ProTuS and MasteryGrids, as non-mandatory
 523 learning systems, that students could use to practice and
 524 learn Java.

525 The sample was comprised of 153 participants, freshman
 526 CS majors, who were in their second semester. All par-
 527 ticipants had already taken an introductory programming
 528 course in Python in their first semester; thus, it was assumed
 529 that they have already mastered a basic knowledge in pro-
 530 cedural programming. The study focused on a set of online
 531 activities and participants' interaction with the educational
 532 content. ProTuS has been used as a portal for seamless in-
 533 tegration of content from different content providers, while
 534 both ProTuS and VENT have been used to access, record,
 535 and collect activity data. The data were collected over the
 536 academic year 2018-2019 from logs of the three e-learning
 537 systems: ProTuS, MasteryGrids (PCLab, PCRS), and VLASP
 538 (see Table 2).

IV.2.2 Study design and data collection.

539 Before the start of the study, the participants were intro-
 540 duced to the NTNU policy for ethical and data privacy
 541 issues, as well as with the purpose of the study and the e-
 542 learning systems that they could interact with. The learning
 543 content encompassed four types of activities that support
 544 individual work aligned with self-regulated learning prac-
 545 tices [86]. Participants that used the system signed up with
 546

TABLE 2
Overall Data Collected

Academic year 2018-2019	Value
Overall number of users	389
Number of active users	153
Number of user sessions	2.727
Number of student activities (content visits, submissions, etc)	906
Data sources	ProTuS, PCLab, PCRS and VLASP

549 their university email address; however, in the system they
 550 got an ID number (e.g., StudentID001) that has been linked
 551 across the three systems. The three systems provided five
 552 types of learning content, which are briefly described in the
 553 following:

- 554 1) **Explanations (ProTuS).** ProTuS contains reading
 555 content (i.e., tutorials) on 15 topics that are aligned
 556 with the curriculum presented in the course. These
 557 learning materials help students to master concepts
 558 in OOP (Java language) based on their existing
 559 knowledge in procedural programming (Python).
- 560 2) **Examples (MasteryGrids-PCLab).** For each topic
 561 learners can start with a worked-out example from
 562 Program Construction EXamples (PCEX) set [87],
 563 which explains why certain programming con-
 564 structs are used in the code. Explanations are avail-
 565 able for almost all lines of code in the example,
 566 and are hidden until a learner clicks on the lines
 567 of interest.
- 568 3) **Challenges (MasteryGrids-PCLab).** Following the
 569 pedagogical reasoning that examples are more effec-
 570 tive when a learner solves a problem immediately
 571 after the example [88], we presented a challenge
 572 after each example. Each challenge shows a problem
 573 similar to the one presented in the example, and
 574 blank lines that need to be filled in by dragging and
 575 dropping the pieces of code to the blank fields [89].
- 576 4) **Coding exercises (MasteryGrids-PCRS).** The Pro-
 577 gramming Course Resource System [75], whose con-
 578 tent server resides at the University of Toronto,
 579 provides coding exercise with a problem description
 580 and a baseline code. When learners submit their
 581 code, the code is tested against a set of unit tests de-
 582 veloped for that particular problem, and the learner
 583 receives an immediate feedback on whether the tests
 584 were passed or not.
- 585 5) **Course assignments (VLASP).** The ten individual
 586 assignments learners solve in Eclipse IDE, as they
 587 are able to test the code against a set of unit tests
 588 developed by the instructor. Learners' Eclipse instal-
 589 lation has been extended with a plug-in that collects
 590 data from the learners' solutions.

591 All three systems keep a track of every click and store
 592 data as logs with time stamps in the learning record store.
 593 ProTuS collects data about *learners' actions* in the system.
 594 The collected data for our study included the number of
 595 actions in the system, the time spend in each session, what
 596 topic a learner selected, and the level of difficulty of the
 597 coding exercise. According to the level of difficulty, the cod-
 598 ing exercises (PCRS) have been grouped in ProTuS in five

599 categories (e.g., novice, skillful, confident, proficient, and
 600 expert). MasteryGrids collects *progress data* from learners' 601 interactions with the learning content. The generated data
 602 included clicks on lines of explanations in the examples,
 603 attempts to solve a challenge, coding exercises solved in the
 604 first, second, or third attempt, distinct challenges seen, etc.
 605 The challenges and the coding exercises could be attempted
 606 multiple times, or until the learner is satisfied with his
 607 or her performance. Finally, VLASP collects *activity data*
 608 related to a programming assignment. In our study we
 609 collected the number of submitted assignments, the number
 610 of incorrect and incomplete submissions, and the number of
 611 assignments not submitted at all. A full list of the generated
 612 variables is presented in the Appendix A.

IV.2.3 Data processing

613 The data were extracted from the learning record store and
 614 as .cvs file placed in R Studio, to extract features from
 615 all three systems (ProTuS, MasteryGrids, and VLASP). In
 616 total, 142 features were extracted from the three e-learning
 617 systems, of which after removing the columns that had
 618 SD = 0, the final data set included 55 features. Appendix
 619 A includes a table with all 55 features plus explanation
 620 for each. The data collection and the respective e-learning
 621 systems abide by the European data privacy regulations that
 622 allow data to be collected and anonymized before use.

IV.2.4 Variables

624 To answer the research questions, we selected learners' 625 performance to be our dependent variable. Learner perfor-
 626 mance was computed from the score participants achieved
 627 on the individual assignments they submitted, transformed
 628 into a grade. The performance from the individual
 629 assignments summarizes participants' development over the
 630 course, considering the applied learning design, and there-
 631 fore, it is timely, available during the course run-time, and
 632 more granular and representative. The learner performance
 633 includes values between 0 and 1000, which was discretized
 634 into six levels (i.e., A to F) with the help of the instructor,
 635 to resemble a grade that a learner would receive if the
 636 instructor assigned grades based on the assignments (i.e.,
 637 formative assessment perspective) rather than based on the
 638 final exam (i.e., summative assessment). The rest of the
 639 54 features that were all extracted using the R language,
 640 were considered to be the experimental/predictor variables.
 641 Appendix A provides a summary of all features.

IV.2.5 Data analysis

642 To demonstrate proof-of-concept for the feasibility of the
 643 implemented cross-platform architecture, we applied both,
 644

646 inference and prediction. A statistical model will help us
 647 infer the relationship between the data variables to a degree
 648 of statistical significance, and use prediction to identify the
 649 best course of action. Our aim was to explore how can
 650 we incorporate hybrid approaches that combine statistical
 651 methods with machine learning techniques in education,
 652 particularly when combining analytics across systems and
 653 data sources.

654 First, to get an initial understanding of the measures, a
 655 descriptive statistic was calculated and the Shapiro-Wilk test
 656 was used to check for data normality. The Shapiro-Wilk test
 657 showed that the data did not have a normal distribution (p
 658 values were significant) but a highly skewed nature. How-
 659 ever, because linear regression does not assume normality
 660 for either the predictor or the outcome variable, the lack of
 661 normal distribution of the collected data was not an obstacle
 662 to perform a linear regression (for more information please
 663 look at the GaussMarkov theorem) [90]. We also checked for
 664 other assumptions important for linear regression to ensure
 665 that the inferences are appropriate: 1) *multicollinearity*—there
 666 was no perfect linear regression between two or more pre-
 667 dictor variables. We calculated the variance inflation factor
 668 (VIF) and following the rule of thumb, in order to consider
 669 problems with collinearity the VIF value should exceed 10,
 670 which was not the case in our data [91]; 2) *homoscedasticity*
 671 or homogeneity of variance, refers to the constant variance
 672 of the residuals [92]. We checked for homoscedasticity by
 673 plotting the data and exploring the residuals vs fitted and
 674 scale-location (or Spread-Location) diagnostic plots, as well
 675 as running the Levene's test (p values were not significant)
 676 [93]; 3) *normally distributed errors*—we checked if the residuals
 677 in the model are normally distributed by generating the
 678 quantile-quantile (Q-Q) plot. The Q-Q plot from our data
 679 shows that each observation roughly falls on the straight
 680 line, indicating that the residuals are roughly normally
 681 distributed.

682 Second, we looked into several ways how variables can
 683 be entered into a model, but because we were conducting
 684 an exploratory study on all generated variables that does
 685 not have $SD=0$, we decided to go with the stepwise method
 686 (backward direction), which has a lower risk of making Type
 687 II error (i.e., missing a predictor that does in fact predict
 688 the outcome) due to suppressor effects [91]. The backward
 689 method starts by placing all predictors in a model and based
 690 on Akaike Information Criterion (AIC) the model removes
 691 predictors that cause AIC value to increase. The stepwise
 692 methods is usually used for exploratory model building
 693 and when researchers do not know which predictors can
 694 create the best model [94]. Thus, because there was no
 695 previous research that we could consider and built upon
 696 with respect to reported significant variables, we decided to
 697 build the models on a purely mathematical criterion. Due
 698 to the selection of the stepwise method, we performed a
 699 10-fold cross validation.

700 Third, we evaluated the performance of each of the se-
 701 lected features that are shown in Appendix A in predicting
 702 learner performance (i.e., student grades), using Random
 703 Forest [95]. Random Forest (RF) as a decision tree-based
 704 algorithm, is suitable for large numbers of features that are
 705 strongly correlated [96]. Moreover, RF offers easy extraction
 706 of feature importance, and has been found to be a top

707 performing algorithm in a large comparative study [97]. To
 708 build a predictive model (not a representative) when dealing
 709 with an imbalance dataset (which is a common problem in
 710 the education field) in a multiclass classification problem,
 711 we first performed a stratified sampling with respect to the
 712 majority class, i.e. grade B, used to control the sampling
 713 process. This step was necessary to avoid creating a train
 714 and test set with totally different data distributions. Then,
 715 we divided the dataset into training (70% of the students)
 716 and testing (30% of the students) sets, and applied a hybrid
 717 re-sampling technique (i.e. SMOTE) to the training set [98].
 718 Using SMOTE we down-sampled the majority classes and
 719 synthesize new data points in the minority classes, using k-
 720 nearest neighbours for the new data [98]. This was an impor-
 721 tant step in the analysis, because RF algorithm is sensitive to
 722 the proportions of the classes, tending to favor the majority
 723 class. Finally, to remove the selection bias in the training set,
 724 we used 70% of the data to train the model using a 10-fold
 725 cross-validation. This reduces the variability and presents
 726 more accurate estimates of learners' performance.

727 At the end, we used RF to measure the importance of
 728 the individual features for learner performance (i.e., student
 729 grades). While importance of individual classification
 730 features might be calculated in many different ways [99], we
 731 used Mean Decrease Gini (MDG) which is based on the
 732 reduction in Gini impurity measure. Gini impurity measures
 733 how often a randomly chosen data point from the data set
 734 will be incorrectly labeled, which is essential for correctly
 735 classifying new data points. Classification accuracy (ACC),
 736 which is the ratio of the total number of correct predictions
 737 and the total number of predictions, is a reliable measure but
 738 it is not sufficient to evaluate machine learning classification
 739 algorithms [100]. Hence, we employed precision, recall,
 740 f-measure, and Cohen's kappa, as additional measures to
 741 evaluate the robustness of the classifier. Precision is the
 742 ratio between the true positives and all the positives (true
 743 positives + false positives), and gives us the measure of
 744 relevant data points; while recall shows the classifier's poten-
 745 tial to find all the positive outcomes. Thus, we calculate
 746 the average precision and recall, weighted by the number
 747 of true instances for each label, to account for the label
 748 imbalance. F-score aggregates precision and recall under
 749 the concept of harmonic mean that summarizes the model
 750 performance. Finally, Cohen's k shows how the classifier is
 751 performing over the performance of a classifier that guesses
 752 at random with respect to the frequency of each class.

V RESULTS

753 Table 3 shows the results from the stepwise multiple regres-
 754 sion (backward direction) in building the exploratory model
 755 based on a purely mathematical criterion. In fact, we were
 756 interested in identifying variables that have a scientifically
 757 meaningful and statistically significant relationship with the
 758 learner performance (i.e., the number of points 0-1000). This
 759 step was required to explore if architecting analytics across
 760 multiple systems can improve the explanation power over
 761 the individual systems, and because there is no theoretical
 762 grounding that can be used as a starting point for specific
 763 predictors (i.e., features/variables) to create the best model.

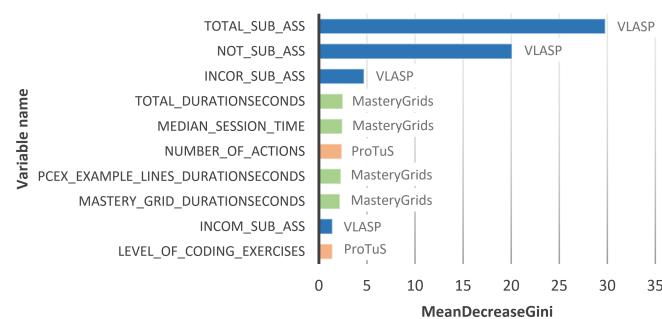


Fig. 3. Top ten feature importance - Random forest.

765 The model combination selected with $AIC = 1088$ is significant $(F(8,168) = 4600, p < 0.001)$ and explains 87% of the
 766 variance in learners' performance.
 767

768 The ProTuS model is not significant $(F(3,173) = 0.688,$
 769 $p = 0.561)$ and on its own explains only 12% of the variance,
 770 while MasteryGrids model although not significant
 771 $(F(46,130) = 1.22, p = 0.193)$, accounts for 30%. The VLASP
 772 model $(F(3,173) = 1200, p < 0.001)$ is significant and with
 773 total, incomplete, and incorrect submissions as predictors,
 774 accounts for 80% of the variance in learners' performance.

775 Table 4 presents an overview of the main results, listing
 776 the classifier's accuracy, Cohen's k , the average precision, re-
 777 call, and the f-measure for RF. The features coming from the
 778 separate systems (e.g., ProTuS, MasteryGrids, and VLASP)
 779 have lower accuracy (and Cohen's k) than the combined
 780 features from the integrated system. The best classification
 781 accuracy of 0.81 (95% CI[0.67, 0.91]) and Cohen's k 0.79
 782 comes from the classifier which considers the top 10 features
 783 (i.e., RandomForest Top 10 features), and was obtained with
 784 mtry value of 6. Mtry is a parameter of RF which shows
 785 the number of variables randomly sampled as candidates at
 786 each split. In our case, the mtry value of 6 means that each
 787 decision tree took into account only 6 features out of the 54
 788 features.

789 At the end, we performed a feature importance analysis
 790 and we present the top ten most significant variables shown
 791 in Fig. 3. We also present the top ten variables across the six
 792 classes (i.e., grades A to F) as shown in Table 5.

793 VI DISCUSSION

794 VI.1 Interpretation of the Results with Respect to the 795 Research Questions

796 Since the nature of this study was exploratory, in which we
 797 used both inference and prediction, we provide insights into
 798 association relationships and not causality [100]. Considering
 799 the results, we outline the positive findings from the
 800 analyses, as a reinforcement toward the positive findings
 801 reported by [82].

802 VI.1.1 Insights derived from cross-platform learning analyt- 803 ics

804 With respect to the first research question, the regression
 805 results presented in Table 3 show that learning analytics de-
 806 rived from the separate systems, ProTuS and MasteryGrids,
 807 are not significant and they explain less than 30% of the

808 variance, while learning analytics generated from VLASP
 809 explain 80%. The analytics from VLASP are directly related
 810 to student assessment outcomes, and as such, support the
 811 previous research findings [7]–[9], which reported that stu-
 812 dents often focus on assessment and technologies that can
 813 maximize their chance to succeed (e.g., get a high grade
 814 at the end of a course). Moreover, assessment was a major
 815 focus of the learning design in the OOP course in which
 816 our study was implemented. From past research [11], we
 817 know that learning design and the instructional conditions
 818 strongly affect what technologies and tools students use.
 819 Thus, students' decision to focus on VLASP more than on
 820 ProTuS or MasteryGrids, was based on their perception that
 821 can help them to maximize their chances to succeed. In fact,
 822 students were required to achieve more than 750 points on
 823 the individual assignments to qualify for the final exam,
 824 although this score from the individual assignments was
 825 not counted in the final grade.

826 Nonetheless, we observed that combining data collected
 827 across several distributed learning systems accounted for
 828 an additional increase (i.e., 7%) in the explanation of the
 829 variance of learner performance. The 7% increase is coming
 830 from the following analytics: *the level of complexity of a chosen
 831 coding exercise, the time students spend navigating in mastery
 832 grids to monitor and reflect on their progress, the successful
 833 attempts on challenges, and the distinct challenges successfully
 834 solved*. Although the additional increase in the explanation
 835 of the variance is not very large and is with an overall effect
 836 of 9%, it is still a significant step (e.g., demonstrating proof
 837 of concept) toward building learner models that can explain
 838 higher portions of variation in the outcome (e.g. student's
 839 grade performance) by combining analytics across different
 840 platforms. Some of these analytics (i.e., *correct attempts to
 841 problems, distinct problems attempted correctly, and time in
 842 mastery grids navigation*) have also been found significant for
 843 student engagement, usage, and attitude in the open social
 844 student modeling (OSSM) compared to the open student
 845 modeling (OSM) interface in technology-based learning [89].
 846 The authors [89, p.459] have reported these three analyt-
 847 ics/features and additional eleven, as "very attractive for
 848 contexts where motivation and retention are critical, such as
 849 modern MOOCs."

850 After describing the data using a statistical framework,
 851 and characterizing the relationship between the variables
 852 and the learner performance to a degree of statistical sig-
 853 nificance, we utilized machine learning to build different
 854 models with various features to predict a label, i.e., i.e.
 855 student grade. RF used the associations between the pre-
 856 dictors and the learner performance to validate the benefits
 857 of cross-platform learning analytics in generating accurate
 858 predictions for future outcomes. In addition, we also in-
 859 vestigated if cross-platform learning analytics can build pre-
 860 dictive models that carry an opportunity to reveal significant
 861 elements for teaching practice.

862 The results reported in Table 4 are aligned with the
 863 findings from the regression analysis, i.e., harnessing cross-
 864 platform learning analytics can improve the classification
 865 accuracy in predicting learner performance (i.e., student
 866 grade). The baseline performance for the proposed learning
 867 ecosystem that differentiates between 6 different classes (i.e.,
 868 students' grades) is 1/6 or 16.7%. We argue that when

TABLE 3
Stepwise Multiple Linear Regression Combining Features from all 3 Learning Systems

Model	adj. R^2	B	SE B	β	p
Model Zero					
(Intercept)		648	23		0.000
Model Combination	0.871				
(Intercept)		-4.10	5.31		0.446
level_of_coding_exercises		0.02	0.01	0.65	0.025
mastery_grids_durationseconds		1.21	0.71	0.42	0.033
pcex_ch_attempts_success		-9.66	6.34	-0.16	0.095
pcex_ch_success		9.95	6.56	0.16	0.090
total_sub_ass		99.95	0.56	0.99	0.000
incom_sub_ass		-33.44	2.50	-0.17	0.000
incor_sub_ass		-90.07	4.0	-0.32	0.000
not_sub_ass		1.19	0.85	0.41	0.095
Model ProTuS	0.117				
Model MasteryGrids	0.301				
Model VLASP	0.801				

TABLE 4
Random Forest Classifier. Combo:Combining Features From all Three Learning Systems. Top10: Using Only the Ten Best Features. ProTuS, MasteryGrids, VLASP: Using Features Solely from one System

Classifier	ACC	Kappa	Precision	Recall	F-measure
RandomForest combo	0.79	0.69	0.90	0.77	0.87
RandomForest Top10	0.81	0.79	0.92	0.81	0.89
RandomForest ProTuS	0.23	0.01	0.14	0.23	0.37
RandomForest MasteryGrids	0.42	0.05	0.79	0.42	0.59
RandomForest VLASP	0.70	0.65	0.88	0.77	0.78

TABLE 5
Feature Importance Across Classes

Variable	A	B	C	D	E	F
total_sub_ass	53.88	100	43.97	51	33	87.47
not_sub_ass	47.56	78.22	44.62	41.55	34.11	56.26
incor_sub_ass	19.58	60.73	32.38	36	5.21	25.51
total_durationseconds	7.15	20	10	8.50	12.30	15.25
median_session_time	9.51	23.10	14	20	4.31	10.12
number_of_actions	4.48	9	15	10	8.76	3.51
pcex_example_lines_durationsec.	8	30	11.43	15.67	4.22	5.72
mastery_grid_durationsec.	6.12	9	24.62	3.18	12.55	10
level_of_coding_exercises	6.10	2.10	2.50	3.46	7.20	20
incom_sub_ass	7.14	9.75	5	17.30	6.31	34

reporting machine learning results, a baseline performance should also be reported, due to the importance of discussing performance in relation to the complexity of the machine learning task [100]. Thus, the results from the analysis show that our learning ecosystem achieved accuracy of 79% (RandomForest combo) and 81% (RandomForest top 10), exhibiting an improvement in the baseline by a factor of 3.73 and 3.85 respectively. In other words, the RandomForest Top10 performance exhibits a 5-fold increase over the baseline. Also, looking at the f-measure for RandomForest combo and RandomForest Top10 classifiers, one can notice that these classifiers have demonstrated better robustness (do not miss a significant number of instances) and precision (how many instances it classifies correctly) measures than the rest of the classifiers.

In a study presented by [101], prediction models have shown that combination of mastery data (i.e., mastery score) and use intensity data (i.e., number of attempts, time on

task) from e-tutorial systems that students used to practice homework exercises, constitute a good second best information source (after assessment data) for predicting performance. Their findings [101] strongly support the integrative approach to learning analytics as advocated by [102]. Moreover, our findings also align with these previous findings, that combining analytics across systems in distributed learning environments can provide insights into what is happening in each and across the different systems, and thus, be used to predict performance more accurately.

By harnessing cross-platform learning analytics, our predictive models also disclosed the potential for building future models that can reveal significant elements for teaching practice, which can be utilized to further refine the design of learning activities and instructional methods. In fact, the advantages from analytics generated across various e-learning systems lie in the support that educators will have, to shape teaching and learning with data that is timely and available

905 during the learning process. We posit that in future, such
 906 insights can assist educators to examine the effectiveness of
 907 their learning designs and assessment practices in relation to
 908 serving the intended educational objectives and pedagogical
 909 intent, and maximize the learning opportunities in digital
 910 education.

911 *VI.1.2 Cross-platform learning analytics to support learning
 912 design*

913 Compared to previous studies on predictive modeling that
 914 have investigated academic success [20], [39], [103], our
 915 intention was not to build a high performing prediction
 916 models that outperform other machine learning models,
 917 but to explore how predictive models can be constituted
 918 with practical value for educators, to inform teaching and
 919 learning practices as a “diagnostic” tool, pertinent to the
 920 optimization of various technologies.

921 Based on the positive findings reported in Table 3 and
 922 in particular Table 4, we posit that although the best pre-
 923 dictor for performance is performance itself, there are other
 924 features also relevant for learner performance (but not all of
 925 the features) that can be extracted from behavior log data.
 926 Our findings are supported from previous research [104]–
 927 [108], which demonstrated that not all analytics that can be
 928 collected in a learning environment are equally relevant for
 929 learning, nor the same learning analytics are relevant for
 930 every student. If we look at Fig. 3, which displays the top
 931 ten features by importance (generated with RandomForest
 932 Top10 features classifier), we can observe that in addition to
 933 the activity data generated from the VLASP system (directly
 934 related to the assessment outcomes), other analytics at dif-
 935 ferent granular levels are also significant for learner per-
 936 formance. Therefore, in this paper we present the value of more
 937 granular data to monitor and assess learner progress, which
 938 can be utilized to develop interpretable predictive models
 939 based on cross-platform learning analytics. Such models
 940 can reveal significant elements from the learning designs
 941 for understanding behavior and progress in distributed
 942 settings, in addition to data generated from summative
 943 assessment or LMS, and instructor’s tacit knowledge, that
 944 can be harnessed to identify best course of action in making
 945 reliable and informed decisions.

946 Table 5 shows the top ten features across the six classes
 947 (i.e., students’ grades). For example, if we look at grade
 948 B, we can notice that although the assignment submissions
 949 are very important (we explained the role of VLASP in the
 950 learning design), the time spend on practicing learning tasks
 951 and the time spend on reading examples before practicing
 952 exercises, can also be important indicators for a learner per-
 953 formance. Examples with explanations for the code are com-
 954 monly used learning resources in learning programming
 955 that help students grasp various programming structures
 956 and concepts [109]. To optimize the support for learning
 957 from examples, instructors can benefit from insights derived
 958 from interpretable models as presented in this study, to
 959 guide students to access the right example at the right time
 960 [87], [110]. This is an important decision that instructors
 961 can make, because past studies demonstrated that the effect
 962 from worked examples is stronger in the early stages of
 963 learning, and declines gradually as students’ knowledge
 964 grows [111].

965 For grade C, another important indicator can be the time
 966 a learner spend navigating in mastery grids to monitor
 967 and reflect on their progress. In other words, if learners
 968 spend time monitoring and reflecting on their progress, such
 969 information can assist the instructor to help those students
 970 improve their self-regulation skills and the decisions they
 971 make. From a self-regulated learning perspective, learners
 972 are considered to be active participants in the learning pro-
 973 cess, who construct their own meanings and goals, and can
 974 potentially monitor and regulate certain aspects of their own
 975 metacognition, motivation, and behavior, from the informa-
 976 tion available to them [112]. Thus, more granular data from
 977 interpretable models can assist instructors to work toward
 978 development of personalized feedback to support students’
 979 self-regulated learning skills, thereby helping their students
 980 to become independent professionals, who can shape their
 981 own learning. In addition, sharing learning analytics from
 982 such interpretable models with students, can enable them
 983 to understand the state of their knowledge and use this
 984 knowledge to plan their learning [113].

985 Finally, the last example for grade F, shows that other
 986 important features for learner performance can be the level
 987 of complexity students choose in the coding exercises and
 988 the submission of incomplete assignments. One explanation
 989 can be the potential association between these two, sug-
 990 gesting that learners who get grade F, might have trouble
 991 selecting assignments that match their current knowledge,
 992 so they failed to learn meaningfully. Students’ lack of knowl-
 993 edge (and potential development of misconceptions) is later
 994 demonstrated in the submission of incomplete assignments.
 995 In fact, these learners need an intervention through proper
 996 scaffolding, to guide them gradually to master skills and
 997 learn concepts, by aligning the complexity of the assign-
 998 ments with their current knowledge proficiency. This is an
 999 action, much in line with the existing research in adaptive
 1000 learning and intelligent tutoring systems [114].

1001 In this study, the insights generated from cross-platform
 1002 analytics through feature importance, depict a different
 1003 approach where more granular data can offer additional
 1004 information (not easily observable in digital settings) on
 1005 top of the information educators have from the LMS in
 1006 use, their tacit knowledge, or the summative and formative
 1007 assessment data. Such additional information still does not
 1008 reveal the whole picture how students learn, but discloses
 1009 significant elements for teaching and learning practice about
 1010 how students use the opportunities as given in the learning
 1011 design, which can assist educators to further refine the
 1012 design of learning activities and instructional methods in
 1013 digital education.

1014 In sum, we argue that our approach can overcome some
 1015 of the ongoing issues (e.g., one-sided learning analytics mea-
 1016 sures, strong focus on summative assessment) in learning
 1017 analytics by collecting, integrating, and harmonizing data
 1018 from several learning systems and at different granular
 1019 levels. This approach can generate data that represent a
 1020 larger proportion of the learning process and the activities
 1021 students engage with. Thus, educators can make effective
 1022 and meaningful refinements in the learning designs that
 1023 can encourage, enable, and advance learning. At last, al-
 1024 though the technological advancements increased the inter-
 1025 est for performance-based, formative assessment [115] and

1026 e-learning systems that can effectively support that [116],
 1027 the biggest challenge is that there are many aspects (e.g.,
 1028 reliability, validity) of assessment in online settings that are
 1029 yet to be comprehend in relation to serving the intended
 1030 learning purposes [117].

1031 VI.2 Theoretical and Practical Implications

1032 The presented study provides useful insights for learning
 1033 technology researchers, designers, and developers, by intro-
 1034 ducing the concept of cross-platform analytics architecture
 1035 that could measure the effectiveness and fine-tune learning
 1036 designs, to maximize learning opportunities in distributed
 1037 settings. The findings support the importance of harnessing
 1038 data across various learning systems by emphasizing the
 1039 potential of leaving the exclusive focus on single source
 1040 data. By quantifying the usefulness of cross-platform learn-
 1041 ing analytics, we would like to invite learning technology
 1042 designers to focus on the development of valuable intercon-
 1043 nected functionalities, affordances, and resources.

1044 One of the most important implications of this paper
 1045 is related to how learning technology and user experience
 1046 researchers and practitioners can employ analytics across
 1047 platforms and build cross-platform methodologies to make
 1048 sense of the requirements that stem from different learning
 1049 designs, as well as take design decisions for various learner
 1050 groups. The 21st-century learning systems are expected to
 1051 become more interconnected and personalized (e.g., Khan
 1052 Academy, Udacity), and incorporate smart and adaptive
 1053 behavior (e.g., Adaptemy, Dreambox, SmartSparrow). How-
 1054 ever, there is a lack of the state-of-the-art empirical ap-
 1055 proaches that can combine and identify what analytics can
 1056 measure the effectiveness of learning designs, and how vari-
 1057 ous stakeholders can benefit from those combinations. Tak-
 1058 ing a cross-platform analytics approach provides a unique
 1059 opportunity to enrich the contemporary capacities of the
 1060 current learning systems, by using statistical and machine
 1061 learning techniques as a “diagnostic” practice that educators
 1062 can utilize it, to improve the quality of the instructional
 1063 conditions. This will allow contemporary learning ecosys-
 1064 tems to leverage the capacities of their learning analytics
 1065 and maximize their innovation potential.

1066 On the practical side, we managed to propose and im-
 1067 plement in practice a cross-platform architecture that inte-
 1068 grates and interconnects analytics capabilities, and enhances
 1069 the present analytics capacities of ProTuS. As elaborated
 1070 in the related work, currently there are many conceptual
 1071 frameworks and software architectures that emphasize the
 1072 need for a cross-platform methodologies; however, none at
 1073 present completely solves the problem of collecting, inte-
 1074 grating, and harmonizing learning-related behavioral log
 1075 data from several distributed environments. The proposed
 1076 architecture presents the minimum technical architecture
 1077 requirements and provides solution for data format inter-
 1078 operability and integration issues.

1079 Despite the limitations of this study, we obtained pos-
 1080 itive and encouraging results, that developing cross-platform
 1081 architecture and combining data across several learning
 1082 systems can advance the state-of-the-art in developing an
 1083 ecosystems of “dynamic, interconnected, and ever-evolving
 1084 community of learners, instructors, tools, and content” [4],

1085 as well as toward predictive models that can provoke reflec-
 1086 tion and action among learners and instructors. The humble
 1087 analysis approach braces the proof-of-concept in furthering
 1088 the understanding of how cross-platform analytics can add
 1089 value to enrich the contemporary learner models and lever-
 1090 age the capacities of their analytics. Finally, one of the most
 1091 significant contributions of this study is the demonstrated
 1092 feasibility of the defined concept, where the learner model
 1093 is gradually built based on integration of data from three
 1094 e-learning systems.

1095 VI.3 Limitations and Future Work

1096 One of the limitations in our analysis is related to the size
 1097 of the data set. Although we have 153 students using the
 1098 integrated system, not all of them are using the system
 1099 frequently. Another limitation is the lack of comprehensive
 1100 set of feature extraction, especially the features that can
 1101 be extracted from the main tasks or activities related to a
 1102 programming exercises. For example, how many times a
 1103 student has run an individual test, how many times the
 1104 code has been compiled, the number of errors and warnings
 1105 resulting from the compiler’s analysis of the code, etc. These
 1106 features can lead to improvements in designing program-
 1107 ming instructions, assignments, and scaffolds, and reveal
 1108 directions for future research on curriculum design and
 1109 analytics in computing education. Third, the interpretation
 1110 of the importance and significance of the results for learning
 1111 design for researchers and practitioners (e.g., instructors) is
 1112 limited and difficult to estimate, because it is mainly based
 1113 on our understanding and knowledge in learning design
 1114 and learning analytics. Therefore, in the future these find-
 1115 ings need to be investigated with instructors who would uti-
 1116 lize the learning ecosystem in their course. Finally, because
 1117 all of our participants are coming from a single university
 1118 with a particular pedagogical and instructional approach,
 1119 the results from the classification algorithms might have
 1120 effect on the generalizability of our findings. Thus, in our
 1121 future work, we are planning to extend the content by
 1122 developing a programming course for Python. We also plan
 1123 to implement the integrated ecosystem in collaboration with
 1124 a other universities that offer introduction courses in Java
 1125 and Python, to increase the generalization power of our
 1126 analyses, to further validate our findings, and to account for
 1127 other important features that might have been overlooked
 1128 in this analysis.

1129 VII CONCLUSION

1130 To demonstrate and validate real-life examples of how and
 1131 when learning is taking place, educators and researchers
 1132 need to embrace the complexity of the learning process and
 1133 its distributed nature across various learning settings and
 1134 contexts. In that regard, we tried to capture and explore
 1135 authentic learner-generated behavior log data coming from
 1136 three different e-learning systems (each system resides on
 1137 different server at different university). Our objective was
 1138 to integrate analytics across e-learning systems with the aim
 1139 to explore and understand how to create and measure the
 1140 effectiveness of learning designs that can maximize learning
 1141 opportunities in distributed learning environments. Conse-
 1142 quently, we proposed and implemented a cross-platform

1143 architecture for interactive courses and analytics support.
 1144 While most of the previous work handles data from one
 1145 source, this study aims to present a cross-platform archi-
 1146 tecture for simple automatic integration and ease of data
 1147 collection from four different data sources. To that end,
 1148 this study takes a humble approach to analysis, comparing
 1149 learning analytics metrics across three e-learning systems,
 1150 using both inference and prediction. The proof-of-concept is
 1151 envisioned to be the first step toward utilizing the potential
 1152 of cross-platform learning analytics as an added value in
 1153 (re)designing and evaluating learning and teaching activi-
 1154 ties in distributed learning environments. This approach
 1155 should aid users (e.g., educators, learners, instruction de-
 1156 signers, and researchers) to engage in informed decision-
 1157 making, considering relevant metrics that align with their
 1158 goals and needs, and toward personalized and scaled feed-
 1159 back practices in digital education.

1160 APPENDIX 1161 EXPLANATION OF ALL OF THE 55 FEATURES

1162 The Appendix A contains a full list of the generated vari-
 1163 ables. It includes a table with all 55 features and an expla-
 1164 nation for each.

1165 ACKNOWLEDGMENT

1166 This work was supported by the Research Council of Nor-
 1167 way under the project FUTURE LEARNING (255129/H20).
 1168 In addition, the authors are extremely grateful to the asso-
 1169 ciate editor and the reviewers for their constructive com-
 1170 ments and useful insights, which significantly improved the
 1171 paper.

1172 REFERENCES

- 1173 [1] R. C. Clark and R. E. Mayer, *E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning*. John Wiley & Sons, 2016. doi: [:10.1002/9781119239086](https://doi.org/10.1002/9781119239086)
- 1174 [2] K. Mangaroska and M. N. Giannakos, "Learning analytics for
 1175 learning design: A systematic literature review of analytics-
 1176 driven design to enhance learning," *IEEE Trans. on Learn. Techn.*,
 1177 2018.
- 1178 [3] C. Stephanidis, G. Salvendy, M. Antona, J. Y. Chen, J. Dong, V. G.
 1179 Duffy, X. Fang, C. Fidopiastis, G. Fragomeni, L. P. Fu *et al.*, "Seven
 1180 hci grand challenges," *Int. Journal of Human-Computer Interaction*,
 1181 vol. 35, no. 14, pp. 1229–1269, 2019.
- 1182 [4] M. Brown, J. Dehoney, and N. Millichap, "The next generation
 1183 digital learning environment," *A Report on Research. ELI Paper*,
 1184 *Louisville, CO: Educause April*,
- 1185 [5] D. Suthers and D. Rosen, "A unified framework for multi-
 1186 level analysis of distributed learning," in *Proc. 1st Int. Conf.*
 1187 *on Learn. Analytics & Knowledge*. ACM, 2011, pp. 64–74. doi:
 1188 [10.1145/2090116.2090124](https://doi.org/10.1145/2090116.2090124)
- 1189 [6] D. Gašević, N. Mirriahi, S. Dawson, and S. Joksimović, "Effects
 1190 of instructional conditions and experience on the adoption of a
 1191 learning tool," *Comp. in Human Behavior*, vol. 67, pp. 207–220,
 1192 2017.
- 1193 [7] P. H. Winne, "A cognitive and metacognitive analysis of self-
 1194 regulated learning: Faculty of education, simon fraser university,
 1195 burnaby, canada," in *Handbook of self-regulation of Learn. and*
 1196 *performance*. Routledge, 2011, pp. 29–46.
- 1197 [8] D. Boud, "Assessment and learning: contradictory or comple-
 1198 mentary," *Assessment for Learn. in Higher Educ.*, pp. 35–48,
- 1199 [9] B. W. Wormald, S. Schoeman, A. Somasunderam, and M. Penn,
 1200 "Assessment drives learning: an unavoidable truth?" *Anatomical*
 1201 *Sciences Educ.*, vol. 2, no. 5, pp. 199–204, 2009.
- 1202 [10] W. Matcha, D. Gašević, N. A. Uzir, J. Jovanović, and A. Pardo,
 1203 "Analytics of learning strategies: associations with academic per-
 1204 formance and feedback," in *Proc. 9th Int. Conf. on Learn. Analytics*
 1205 & *Knowledge*, 2019, pp. 461–470. doi: [10.1145/3303772.3303787](https://doi.org/10.1145/3303772.3303787)
- 1206 [11] B. Rienties and L. Toetenel, "The impact of learning design
 1207 on student behaviour, satisfaction and performance: A cross-
 1208 institutional comparison across 151 modules," *Comp. in Human*
 1209 *Behavior*, vol. 60, pp. 333–341,
- 1210 [12] B. Rienties, L. Toetenel, and A. Bryan, "Scaling up learning
 1211 design: impact of learning design activities on lms behavior and
 1212 performance," in *Proc. Fifth Int. Conf. on Learn. Analytics & Knowl-*
 1213 *edge*. ACM, 2015, pp. 315–319. doi: [10.1145/2723576.2723600](https://doi.org/10.1145/2723576.2723600)
- 1214 [13] G. Lust, J. Elen, and G. Clarebout, "Regulation of tool-use within
 1215 a blended course: Student differences and performance effects,"
 1216 *Comp. & Educ.*, vol. 60, no. 1, pp. 385–395, 2013.
- 1217 [14] K. Mangaroska, R. Martinez-Maldonado, B. Vesin, and D. Gašević,
 1218 "Challenges and opportunities of multimodal data in human
 1219 learning: The computer science students' perspective," *Journal of*
 1220 *Comp. Assisted Learn.*, 2021.
- 1221 [15] K. Vassallo, L. Garg, V. Prakash, and K. Ramesh, "Contemporary
 1222 technologies and methods for cross-platform application de-
 1223 velopment," *Journal of Computational and Theoretical Nanoscience*,
 1224 vol. 16, no. 9, pp. 3854–3859, 2019.
- 1225 [16] J. M. Dodero, E. J. González-Conejero, G. Gutiérrez-Herrera,
 1226 S. Peinado, J. T. Tocino, and I. Ruiz-Rube, "Trade-off between
 1227 interoperability and data collection performance when designing
 1228 an architecture for learning analytics," *Future Generation Comp.*
 1229 *Systems*, vol. 68, pp. 31–37, 2017.
- 1230 [17] S. K. Shankar, L. P. Prieto, M. J. Rodríguez-Triana, and A. Ruiz-
 1231 Calleja, "A review of multimodal learning analytics architec-
 1232 tures," in *2018 IEEE 18th Int. Conf. on Advanced Learn. Techn.*
 1233 (*ICALT*). IEEE, 2018, pp. 212–214. doi: [10.1109/ICALT.2018.000057](https://doi.org/10.1109/ICALT.2018.000057)
- 1234 [18] L. P. Prieto, Y. Dimitriadis, C.-K. Looi *et al.*, "Orchestration in
 1235 learning technology research: evaluation of a conceptual frame-
 1236 work," *Research in Learning Technology*, 2015.
- 1237 [19] J. Roschelle, Y. Dimitriadis, and U. Hoppe, "Classroom orchestra-
 1238 tion: synthesis," *Comp. & Educ.*, vol. 69, pp. 523–526, 2013.
- 1239 [20] D. Gašević, S. Dawson, T. Rogers, and D. Gašević, "Learning
 1240 analytics should not promote one size fits all: The effects of
 1241 instructional conditions in predicting academic success," *The*
 1242 *Internet and Higher Educ.*, vol. 28, pp. 68–84, 2016.
- 1243 [21] R. Mazza and V. Dimitrova, "Coursevis: A graphical student
 1244 monitoring tool for supporting instructors in web-based distance
 1245 courses," *Int. Journal of Human-Computer Studies*, vol. 65, no. 2,
 1246 pp. 125–139, 2007.
- 1247 [22] G. Siemens and P. Long, "Penetrating the fog: Analytics in
 1248 learning and education," *EDUCAUSE review*, vol. 46, no. 5, p. 30,
- 1249 [23] P. Blikstein and M. Worsley, "Multimodal learning analytics
 1250 and education data mining: using computational technologies
 1251 to measure complex learning tasks," *Journal of Learn. Analytics*,
 1252 vol. 3, no. 2, pp. 220–238, 2016.
- 1253 [24] X. Ochoa, C. Lang, and G. Siemens, "Multimodal learning ana-
 1254 lytics," *The Handbook of Learn. Analytics*, vol. 1, pp. 129–141, 2017.
- 1255 [25] F. Domínguez and K. Chiluiza, "Towards a distributed frame-
 1256 work to analyze multimodal data," in *Proc. Workshop Cross-LAK-*
 1257 *held at LAK '16*, 2016, pp. 52–57.
- 1258 [26] R. Martinez-Maldonado, Y. Dimitriadis, A. Clayphan, J. A.
 1259 Muñoz-Cristóbal, L. P. Prieto, M. J. Rodríguez-Triana, and J. Kay,
 1260 "Integrating orchestration of ubiquitous and pervasive learning
 1261 environments," in *Proc. 25th Australian Computer-Human Inter-
 1262 action Conf.: Augmentation, Application, Innovation, Collaboration*.
 1263 ACM, 2013, pp. 189–192. doi: [10.1145/2541016.2541076](https://doi.org/10.1145/2541016.2541076)
- 1264 [27] Z. Jeremić, J. Jovanović, and D. Gašević, "Personal learning
 1265 environments on the social semantic web," *Semantic Web*, vol. 4,
 1266 no. 1, pp. 23–51, 2013.
- 1267 [28] M. Worsley and R. Martinez-Maldonado, "Multimodal learning
 1268 analytics past, present, and, potential futures," in *Proc. CEUR*
 1269 *Workshop*, vol. 2163, 2018.
- 1270 [29] D. Di Mitri, J. Schneider, R. Klemke, M. Specht, and H. Drachsler,
 1271 "Read between the lines: An annotation tool for multimodal data
 1272 for learning," in *Proc. 9th Int. Conf. on Learn. Analytics & Knowledge*
 1273 (*LAK'19*). ACM, 2019. doi: [10.1145/3303772.3303776](https://doi.org/10.1145/3303772.3303776)
- 1274 [30] J. L. Santos, K. Verbert, J. Klerkx, E. Duval, S. Charleer, and
 1275 S. Ternier, "Tracking data in open learning environments," *Journal*
 1276 *of Universal Comp. Science*, 2015.
- 1277 [31] J. A. Muñoz-Cristóbal, M. J. Rodríguez-Triana, V. Gallego-Lema,
 1278 H. F. Arribas-Cubero, J. I. Asensio-Pérez, and A. Martinez-Monés,
 1279 2020.

1281 "Toward the integration of monitoring in the orchestration of
1282 across-spaces learning situations," in *CrossLAK*, 2016, pp. 15–21.

1283 [32] C. E. Kassko and R. Sarig, "System and method for performing
1284 cross-platform big data analytics," U.S. Patent 10515386B2, Feb.
1285 2020.

1286 [33] J. A. Quiane Ruiz, S. Kruse, Z. Kaoudi, and S. Chawla, "Apparatus,
1287 system, and method for cross-platform data processing," U.S. Patent
1288 20190347261A1.

1289 [34] E. C. Kassko and R. Raz, "System and method for providing
1290 big data analytics on dynamically-changing data models," U.S.
1291 Patent 20150213109A1.

1292 [35] G. Siemens and R. Baker, "Learning analytics and educational
1293 data mining: towards communication and collaboration," in *Proc.
1294 2nd Int. Conf. on Learn. Analytics & Knowledge*. ACM, 2012, pp.
1295 252–254.

1296 [36] C. Brooks and C. Thompson, "Predictive modelling in teaching
1297 and learning," *Handbook of Learn. analytics*, pp. 61–68, 2017.

1298 [37] K. E. Arnold and M. D. Pistilli, "Course signals at purdue: Using
1299 learning analytics to increase student success," in *Proc. 2nd Int.
1300 Conf. on Learn. Analytics & Knowledge*. ACM, 2012, pp. 267–270.
1301 doi: [10.1145/2330601.2330666](https://doi.org/10.1145/2330601.2330666)

1302 [38] R. Barber and M. Sharkey, "Course correction: Using
1303 analytics to predict course success," in *Proc. 2nd Int. Conf. on
1304 Learn. Analytics & Knowledge*. ACM, 2012, pp. 259–262. doi:
1305 [10.1145/2330601.2330664](https://doi.org/10.1145/2330601.2330664)

1306 [39] C. Romero, M.-I. López, J.-M. Luna, and S. Ventura, "Predicting
1307 students' final performance from participation in on-line discus-
1308 sion forums," *Comp. & Educ.*, vol. 68, pp. 458–472, 2013.

1309 [40] Á. F. Agudo-Peregrina, S. Iglesias-Pradas, M. Á. Conde-
1310 González, and Á. Hernández-García, "Can we predict success
1311 from log data in vles? classification of interactions for learning
1312 analytics and their relation with performance in vle-supported
1313 f2f and online learning," *Comp. in human behavior*, vol. 31, pp.
1314 542–550, 2014.

1315 [41] N. Tomasevic, N. Gvozdenovic, and S. Vranes, "An overview and
1316 comparison of supervised data mining techniques for student
1317 exam performance prediction," *Comp. & Educ.*, vol. 143, p. 103676,
1318 2020.

1319 [42] A. P. Cavalcanti, A. Diego, R. F. Mello, K. Mangaroska, A. Nasci-
1320 mento, F. Freitas, and D. Gašević, "How good is my feed-
1321 back? a content analysis of written feedback," in *Proc. Tenth Int.
1322 Conf. on Learn. Analytics & Knowledge*, 2020, pp. 428–437. doi:
1323 [10.1145/3375462.3375477](https://doi.org/10.1145/3375462.3375477)

1324 [43] J. Heo, H. Lim, S. B. Yun, S. Ju, S. Park, and R. Lee, "Descriptive
1325 and predictive modeling of student achievement, satisfaction,
1326 and mental health for data-driven smart connected campus life
1327 service," in *Proc. 9th Int. Conf. on Learn. Analytics & Knowledge*,
1328 2019, pp. 531–538. doi: [10.1145/3303772.3303792](https://doi.org/10.1145/3303772.3303792)

1329 [44] G. Shmueli *et al.*, "To explain or to predict?" *Statistical science*,
1330 vol. 25, no. 3, pp. 289–310, 2010.

1331 [45] E. Archer and P. Prinsloo, "Speaking the unspoken in learning
1332 analytics: troubling the defaults," *Assessment & Evaluation in
1333 Higher Educ.*, pp. 1–13, 2019.

1334 [46] Z. Tanes, K. E. Arnold, A. S. King, and M. A. Remnet, "Using
1335 signals for appropriate feedback: Perceptions and practices,"
1336 *Comp. & Educ.*, vol. 57, no. 4, pp. 2414–2422, 2011.

1337 [47] A. Essa and H. Ayad, "Student success system: risk analytics and
1338 data visualization using ensembles of predictive models," in *Proc.
1339 2nd Int. Conf. on Learn. Analytics & Knowledge*, 2012, pp. 158–161.
1340 doi: [10.1145/2330601.2330641](https://doi.org/10.1145/2330601.2330641)

1341 [48] A. Pardo, N. Mirriahi, R. Martínez-Maldonado, J. Jovanovic,
1342 S. Dawson, and D. Gašević, "Generating actionable predic-
1343 tive models of academic performance," in *Proc. sixth Int.
1344 Conf. on Learn. Analytics & Knowledge*, 2016, pp. 474–478. doi:
1345 [10.1145/2883851.2883870](https://doi.org/10.1145/2883851.2883870)

1346 [49] A. F. Wise, "Designing pedagogical interventions to sup-
1347 port student use of learning analytics," in *Proc. fourth Int.
1348 Conf. on Learn. Analytics & Knowledge*, 2014, pp. 203–211. doi:
1349 [10.1145/2567574.2567588](https://doi.org/10.1145/2567574.2567588)

1350 [50] A. Bianco, M. De Marsico, and M. Temperini, "Standards for e-
1351 learning," *The TISIP Foundation*, Trondheim, Norway,

1352 [51] L. De-La-Fuente-Valentín, M. Pérez-Sanagustín, D. Hernández-
1353 Leo, A. Pardo, J. Blat, and C. D. Kloos, "Technological support
1354 for the enactment of collaborative scripted learning activities
1355 across multiple spatial locations," *Future Generation Comp. Sys-*
1356 tems

1357 [52] G. Siemens, D. Gasevic, C. Haythornthwaite, S. P. Dawson,
1358 S. Shum, R. Ferguson, E. Duval, K. Verbert, R. Baker *et al.*, "Open
1359 learning analytics: an integrated & modularized platform," *Canan-
1360 dian Initiative for Distance Education Research*,

1361 [53] T. Rabelo, M. Lama, R. R. Amorim, and J. C. Vidal, "Smartlak: A
1362 big data architecture for supporting learning analytics services,"
1363 in *Frontiers in Educ. Conf. (FIE)*, 2015 IEEE. IEEE, 2015, pp. 1–5.
1364 doi: [10.1109/FIE.2015.7344147](https://doi.org/10.1109/FIE.2015.7344147)

1365 [54] N. Sclater, A. Berg, and M. Webb, "Developing an open architec-
1366 ture for learning analytics," *EUNIS Journal of Higher Educ.*,

1367 [55] A. T. Team, "Advanced distributed learning shareable content
1368 object reference model." <http://www.adlnet.org/Scorm/scorm.cfm>

1369 [56] I. IMS Global Learning Consortium, "Ims learning
1370 resource meta-data specification." <http://www.imsproject.org/metadata/index.html>

1371 [57] I. L. T. S. Committee, "Learning object meta-data." <http://ltsc.ieee.org/wg12/index.html>

1372 [58] C. Qu and W. Nejdl, "Towards interoperability and reusability
1373 of learning resources: A scorm-conformant courseware for com-
1374 puter science education," in *Proc. 2nd IEEE Int. Conf. on Advanced
1375 Learn. Techn. (IEEE ICALT 2002)*, Kazan, Tatarstan, Russia, 2002.

1376 [59] C. Severance, T. Hanss, and J. Hardin, "Ims learning tools in-
1377 teroperability: Enabling a mash-up approach to teaching and
1378 learning tools," *Technology, Instruction, Cognition and Learn.*, vol. 7,
1379 no. 3-4, pp. 245–262,

1380 [60] J. M. Kevan and P. R. Ryan, "Experience api: Flexible, decentral-
1381 ized and activity-centric data collection," *Technology, knowledge
1382 and Learn.*, vol. 21, no. 1, pp. 143–149, 2016.

1383 [61] A. Bakharia, K. Kitto, A. Pardo, D. Gašević, and S. Dawson,
1384 "Recipe for success: lessons learnt from using xapi within the
1385 connected learning analytics toolkit," in *Proc. sixth Int. Conf. on
1386 Learn. Analytics & Knowledge*. ACM, 2016, pp. 378–382. doi:
1387 [10.1145/2883851.2883882](https://doi.org/10.1145/2883851.2883882)

1388 [62] A. Berg, M. Scheffel, H. Drachsler, S. Ternier, and M. Specht,
1389 "The dutch xapi experience," in *Proc. Sixth Int. Conf. on
1390 Learn. Analytics & Knowledge*. ACM, 2016, pp. 544–545. doi:
1391 [10.1145/2883851.2883968](https://doi.org/10.1145/2883851.2883968)

1392 [63] T. Murray, "An overview of intelligent tutoring system authoring
1393 tools: Updated analysis of the state of the art," in *Authoring tools
1394 for advanced techn. Learn. environments*. Springer, 2003, pp. 491–
1395 544. doi: [10.1007/978-94-017-0819-7_17](https://doi.org/10.1007/978-94-017-0819-7_17)

1396 [64] K. A. Kerr, J. A. Marsh, G. S. Ikemoto, H. Darilek, and H. Barney,
1397 "Strategies to promote data use for instructional improvement:
1398 Actions, outcomes, and lessons from three urban districts," *Ameri-
1399 canian Journal of Educ.*, vol. 112, no. 4, pp. 496–520, 2006.

1400 [65] M. Rey-López, P. Brusilovsky, M. Meccawy, R. Díaz-Redondo,
1401 A. Fernández-Vilas, and H. Ashman, "Resolving the problem of
1402 intelligent learning content in learning management systems,"
1403 *Int. Journal on E-Learning*, vol. 7, no. 3, pp. 363–381,

1404 [66] L. Bass, P. Clements, and R. Kazman, *Software architecture in
1405 practice*. Addison-Wesley Professional, 2003.

1406 [67] M. Derntl, "The person-centered e-learning pattern repository:
1407 Design for reuse and extensibility," in *EdMedia: World Conf. on
1408 Educ. Media and Technology*. Association for the Advancement of
1409 Computing in Educ. (AACE), 2004, pp. 3856–3861.

1410 [68] S. Gilmore and M. Tribastone, "Evaluating the scalability of a web
1411 service-based distributed e-learning and course management
1412 system," in *Int. Workshop on Web Services and Formal Methods*.
1413 Springer, 2006, pp. 214–226. doi: [10.1007/11841197_14](https://doi.org/10.1007/11841197_14)

1414 [69] J. F. Nunamaker Jr, M. Chen, and T. D. Purdin, "Systems devel-
1415 opment in information systems research," *Journal of management
1416 information systems*, vol. 7, no. 3, pp. 89–106, 1990.

1417 [70] L. Gilbert and V. Gale, *Principles of e-learning systems engineering*.
1418 Elsevier, 2007.

1419 [71] P. B. Kruchten, "The 4+1 view model of architecture," *IEEE
1420 software*, vol. 12, no. 6, pp. 42–50, 1995.

1421 [72] B. Vesin, K. Mangaroska, and M. Giannakos, "Learning in smart
1422 environments: user-centered design and analytics of an adaptive
1423 learning system," *Smart Learning Environments*, vol. 5, no. 1, p. 24,
1424 2018.

1425 [73] J. Guerra, R. Hosseini, S. Somyurek, and P. Brusilovsky, "An intel-
1426 ligent interface for learning content: Combining an open learner
1427 model and social comparison to support self-regulated learning
1428 and engagement," in *Proc. 21st Int. Conf. on Intelligent User Inter-
1429 faces*. ACM, 2016, pp. 152–163. doi: [10.1145/2856767.2856784](https://doi.org/10.1145/2856767.2856784)

[74] J. Barria-Pineda and P. Brusilovsky, "Explaining educational recommendations through a concept-level knowledge visualization," in *Proc. 24th Int. Conf. on Intelligent User Interfaces: Companion*. ACM, 2019, pp. 103–104. doi: [10.1145/3308557.3308690](https://doi.org/10.1145/3308557.3308690)

[75] A. Petersen, "Programming course resource system (pcrs)," 2018. <https://mcs.utm.utoronto.ca/~pcrs/pcrs/>

[76] H. Trætteberg, A. Mavroudi, M. Giannakos, and J. Krogstie, "Adaptable learning and learning analytics: A case study in a programming course," in *European Conf. on Technology Enhanced Learning*. Springer, 2016, pp. 665–668. doi: [10.1007/978-3-319-45153-4_87](https://doi.org/10.1007/978-3-319-45153-4_87)

[77] K. Mangaroska, K. Sharma, M. Giannakos, H. Trætteberg, and P. Dillenbourg, "Gaze insights into debugging behavior using learner-centred analysis," in *Proc. 8th Int. Conf. on Learn. Analytics & Knowledge*. ACM, 2018, pp. 350–359.

[78] N. Herde, "The vent learning analytics dashboard-and vson container format for visualization data," Master's thesis, NTNU, 2018.

[79] F. Wang and M. J. Hannafin, "Design-based research and technology-enhanced learning environments," *Educ. technology research and development*, vol. 53, no. 4, pp. 5–23, 2005.

[80] S. McKenney and T. C. Reeves, "Systematic review of design-based research progress: Is a little knowledge a dangerous thing?" *Educ. Researcher*, vol. 42, no. 2, pp. 97–100, 2013.

[81] K. Mangaroska, B. Vesin, and M. Giannakos, "Elo-rating method: Towards adaptive assessment in e-learning," in *2019 IEEE 19th Int. Conf. on Advanced Learning Techn. (ICALT)*, vol. 2161. IEEE, 2019, pp. 380–382. doi: [10.1109/ICALT2019.00116](https://doi.org/10.1109/ICALT2019.00116)

[82] K. Mangaroska, B. Vesin, and M. Giannakos, "Cross-platform analytics: A step towards personalization and adaptation in education," in *Proc. 9th Int. Conf. on Learn. Analytics & Knowledge (LAK'19)*. ACM, 2019. doi: [10.1145/3303772.3303825](https://doi.org/10.1145/3303772.3303825)

[83] M. Cocea and G. D. Magoulas, "Participatory learner modelling design: A methodology for iterative learner models development," *Information Sciences*, vol. 321, pp. 48–70, 2015.

[84] S. Buckingham Shum, R. Ferguson, and R. Martinez-Maldonado, "Human-centred learning analytics," *Journal of Learn. Analytics*, vol. 6, no. 2, pp. 1–9, 2019.

[85] E. FitzGerald, N. Kucirkova, A. Jones, S. Cross, R. Ferguson, C. Herodotou, G. Hillaire, and E. Scanlon, "Dimensions of personalisation in technology-enhanced learning: A framework and implications for design," *British Journal of Educ. Technology*, vol. 49, no. 1, pp. 165–181, 2018.

[86] B. J. Zimmerman, "Becoming a self-regulated learner: An overview," *Theory into practice*, vol. 41, no. 2, pp. 64–70, 2002.

[87] R. Hosseini, K. Akhuseyinoglu, A. Petersen, C. D. Schunn, and P. Brusilovsky, "Pcex: Interactive program construction examples for learning programming," in *Proc. 18th Koli Calling Int. Conf. on Computing Educ. Research*. ACM, 2018, p. 5. doi: [10.1145/3279720.3279726](https://doi.org/10.1145/3279720.3279726)

[88] K. J. Crippen and B. L. Earl, "The impact of web-based worked examples and self-explanation on performance, problem solving, and self-efficacy," *Comp. & Educ.*, vol. 49, no. 3, pp. 809–821, 2007.

[89] P. Brusilovsky, S. Somyurek, J. Guerra, R. Hosseini, V. Zadorozhny, and P. J. Durlach, "Open social student modeling for personalized learning," *IEEE Trans. on Emerging Topics in Computing*, vol. 4, no. 3, pp. 450–461, 2016.

[90] A. Gelman and J. Hill, *Data Analysis Using Regression and Multi-level Hierarchical Models*. Cambridge university press, 2006. doi: [10.2307/20461880](https://doi.org/10.2307/20461880)

[91] G. James, D. Witten, T. Hastie, and R. Tibshirani, *An introduction to statistical learning*. Springer, 2013, vol. 112.

[92] O. L. O. Astivia and B. D. Zumbo, "Heteroskedasticity in multiple regression analysis: What it is, how to detect it and how to solve it with applications in r and spss," *Practical Assessment, Research, and Evaluation*, vol. 24, no. 1, p. 1.

[93] H. Levene, "Robust tests for equality of variances," *Contributions to probability and statistics. Essays in honor of Harold Hotelling*, pp. 279–292,

[94] S. Lallé, C. Conati, and G. Carenini, "Prediction of individual learning curves across information visualizations," *User Modeling and User-Adapted Interaction*, vol. 26, no. 4, pp. 307–345, 2016.

[95] A. Liaw, M. Wiener *et al.*, "Classification and regression by randomforest," *R news*, vol. 2, no. 3, pp. 18–22,

[96] K. Matsuki, V. Kuperman, and J. A. Van Dyke, "The random forests statistical technique: An examination of its value for the study of reading," *Scientific Studies of Reading*, vol. 20, no. 1, pp. 20–33, 2016.

[97] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?" *The Journal of Machine Learn. Research*, vol. 15, no. 1, pp. 3133–3181,

[98] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "Smote: synthetic minority over-sampling technique," *Journal of artificial intelligence research*, vol. 16, pp. 321–357, 2002.

[99] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, "Understanding variable importances in forests of randomized trees," in *Advances in neural information processing systems*, 2013, pp. 431–439.

[100] V. Kostakos and M. Musolesi, "Avoiding pitfalls when using machine learning in hci studies," *Interactions*, vol. 24, no. 4, pp. 34–37, 2017.

[101] D. T. Tempelaar, B. Rienties, and B. Giesbers, "In search for the most informative data for feedback generation: Learning analytics in a data-rich context," *Comp. in Human Behavior*, vol. 47, pp. 157–167, 2015.

[102] S. B. Shum and R. D. Crick, "Learning dispositions and transferable competencies: pedagogy, modelling and learning analytics," in *Proceedings of the 2nd Int. Conf. on Learn. Analytics & Knowledge*. ACM, 2012, pp. 92–101. doi: [10.1145/2330601.2330629](https://doi.org/10.1145/2330601.2330629)

[103] L. P. Macfadyen and S. Dawson, "Numbers are not enough. why e-learning analytics failed to inform an institutional strategic plan," *Journal of Educ. Technology & Society*, vol. 15, no. 3, pp. 149–163,

[104] L. Macfadyen and S. Dawson, "Mining lms data to develop an "early warning system" for educators: A proof of concept," *Comp. & Educ.*, vol. 54, no. 2, pp. 588–599, 2010.

[105] S. Lonn, S. J. Aguilar, and S. D. Teasley, "Investigating student motivation in the context of a learning analytics intervention during a summer bridge program," *Comp. in Human Behavior*, vol. 47, pp. 90–97, 2015.

[106] A. F. Wise, J. M. Vytasek, S. Hausknecht, and Y. Zhao, "Developing learning analytics design knowledge in the" middle space": The student tuning model and align design framework for learning analytics use," *Online Learning*, vol. 20, no. 2, pp. 155–182, 2016.

[107] D. Gašević, S. Dawson, and G. Siemens, "Let's not forget: Learning analytics are about learning," *TechTrends*, vol. 59, no. 1, pp. 64–71, 2015.

[108] K. Mangaroska, K. Sharma, D. Gasevic, and M. Giannakos, "Multimodal learning analytics to inform learning design: Lessons learned from computing education," *Journal of Learning Analytics*, vol. 7, no. 3, pp. 79–97, 2020.

[109] R. Hosseini, T. Sirkiä, J. Guerra, P. Brusilovsky, and L. Malmi, "Animated examples as practice content in a java programming course," in *Proceedings of the 47th ACM technical symposium on computing science Educ.*, 2016, pp. 540–545. doi: [10.1145/2839509.2844639](https://doi.org/10.1145/2839509.2844639)

[110] A. Davidovic, J. Warren, and E. Trichina, "Learning benefits of structural example-based adaptive tutoring systems," *IEEE Trans. on Educ.*, vol. 46, no. 2, pp. 241–251, 2003.

[111] J. Sweller, P. L. Ayres, S. Kalyuga, and P. Chandler, "The expertise reversal effect," *Educational Psychologist*, vol. 38, no. 1, pp. 23–31, 2003.

[112] P. R. Pintrich, "A conceptual framework for assessing motivation and self-regulated learning in college students," *Educ. psychology review*, vol. 16, no. 4, pp. 385–407, 2004.

[113] S. Bull and J. Kay, "Open learner models," in *Advances in intelligent tutoring systems*. Springer, 2010, pp. 301–322. doi: [10.1007/978-3-642-14363-2_15](https://doi.org/10.1007/978-3-642-14363-2_15)

[114] K. VanLehn, "The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems," *Educ. Psychologist*, vol. 46, no. 4, pp. 197–221, 2011.

[115] K. Mangaroska, R. Tahir, M. Lorås, and A. Mavroudi, "What do we know about learner assessment in technology-rich environments? a systematic review of systematic reviews," in *2018 IEEE 18th Int. Conf. on Advanced Learn. Techn. (ICALT)*. IEEE, 2018, pp. 16–20. doi: [10.1109/ICALT2018.00010](https://doi.org/10.1109/ICALT2018.00010)

[116] N. Rushby and D. Surry, *The Wiley Handbook of Learning Technology*. John Wiley & Sons, 2016. doi: [10.1002/9781119173243](https://doi.org/10.1002/9781119173243)

[117] J. W. Gikandi, D. Morrow, and N. E. Davis, "Online formative assessment in higher education: A review of the literature," *Comp. & Educ.*, vol. 57, no. 4, pp. 2333–2351, 2011.

1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600

Katerina Mangaroska has recently received her Ph.D. from the Department of Computer Science at the Norwegian University of Science and Technology. Her primary research area is learning analytics and computing education research. She was part of the "Future Learning: Orchestrating 21st Century Learning Ecosystem using Analytics" project, that aims to develop new knowledge based on how analytics allow us to better orchestrate learning tools and practices, and design optimal technology-rich distributed learning environments. Her other research interests center around learning design, multimodal learning analytics, adaptive learning, eye-tracking, intelligent tutoring systems, and human-computer interaction. Mangaroska is a Fulbright scholar.

1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
16521601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613

Michail Giannakos is a professor of interaction design and learning technology at the Department of Computer Science, Norwegian University of Science and Technology and research director of the Centre for Excellent IT Education. His research interests center on making sense of user experiences and practices in order to redesign and optimize the education settings and systems. He has worked at several research projects funded by diverse sources like EC, Microsoft Research, Norwegian Research Council (NRC), NSF, DAAD and Cheng Endowment; Giannakos is a recipient of a Marie Curie fellowship, the Norwegian CAREER award and he is one of the twenty outstanding academic fellows of NTNU.

1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
16521614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

Boban Vesin is an associate professor at the University of South-Eastern Norway, Vestfold, Norway. He received an MSc (in Computer science) from the University of Novi Sad in 2007, and PhD (Computer science) from the same University in 2014. His research is currently focused on the engineering of e-learning systems and learning analytics to assist teachers in understanding and improving teaching processes. Boban Vesin has published over 40 scientific papers in proceedings of journals and international conferences in personalized learning, software engineering, and recommender systems.

Vassilis Kostakos is a professor in Human-Computer Interaction at the University of Melbourne School of Computing and Information Systems. He is a Marie Curie Fellow, a Fellow in the Academy of Finland Distinguished Professor Program, and a Founding Editor of the PACM IMWUT journal. He holds a PhD in Computer Science from the University of Bath. His research interests include ubiquitous computing (Ubicomp), human-computer interaction (HCI), social computing, and Internet of Things.

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638

Peter Brusilovsky received the B.S. and Ph.D. degrees from Moscow Lomonosov State University in 1983 and 1987, respectively. He received postdoctoral training at the University of Sussex, the University of Trier, and Carnegie Mellon University. He is currently a professor of information science and intelligent systems with the University of Pittsburgh, where he directs the Personalized Adaptive Web Systems lab. He has been involved in the field of adaptive educational systems, user modeling, and intelligent user interfaces for over 20 years. He published numerous papers and edited several books on adaptive hypermedia, adaptive educational systems, user modeling, and the adaptive Web.

APPENDIX: EXPLANATION OF ALL OF THE 55 FEATURES

Features	Explanation	Learning system
number_of_actions	# actions in a session	ProTuS
number_of_visited_content	# visited content in a session	ProTuS
level_of_coding_exercises	difficulty level of the coding exercise	ProTuS
sessions_dist	# sessions with the system	MasteryGrids
median_sessions_time	median of time spent in a session (seconds)	MasteryGrids
median_sessions_act	median of number of activities in session	MasteryGrids
median_sessions_self_assesment	median of assessment activities done in a session	MasteryGrids
median_sessions_example_lines	median of example lines clicked in a session	MasteryGrids
topics_covered	# topics covered (i.e., at least one coding exercise was solved in that topic)	MasteryGrids
pcex_topics_covered	# topics covered for pcex (i.e., at least one challenge was solved in that topic)	MasteryGrids
question_attempts	total attempts on questions	MasteryGrids
question_attempts_success	successful attempts on questions	MasteryGrids
questions_dist	distinct number of questions attempted	MasteryGrids
questions_dist_success	distinct number of successfully attempted questions	MasteryGrids
questions_sucess_first_attempt	questions solved in the 1st attempt	MasteryGrids
example_lines_actions	total number of actions in examples	MasteryGrids
pcrs_attempts	total attempts on coding exercises	MasteryGrids
pcrs_attempts_success	total attempts on coding exercises where all tests were passed	MasteryGrids
pcrs_dist	distinct number of coding exercises attempted	MasteryGrids
pcrs_dist_success	distinct number of coding exercises attempted where all tests were passed	MasteryGrids
pcrs_success_first_attempt	# coding exercises solved in the 1st attempt	MasteryGrids
pcrs_success_second_attempt	# coding exercises solved in the 2nd attempt	MasteryGrids
pcrs_success_third_attempt	# coding exercises solved in the 3rd attempt	MasteryGrids
pcex_completed_set	# set completed (a set includes an example and all of its related challenges)	MasteryGrids
pcex_ex_dist_seen	# distinct examples seen	MasteryGrids
pcex_ch_attempts	# attempts on challenges	MasteryGrids
pcex_ch_attempts_success	# successful attempts on challenges	MasteryGrids
pcex_ch_dist	# distinct challenges seen	MasteryGrids
pcex_ch_success	# distinct challenges solved	MasteryGrids
pcex_success_first_attempt	# challenges solved in the 1st attempt	MasteryGrids
pcex_success_second_attempt	# challenges solved in the 2nd attempt	MasteryGrids
pcex_success_third_attempt	# challenges solved in the 3rd attempt	MasteryGrids
mg_total_loads	MasteryGrids loads	MasteryGrids
mg_topic_cell_clicks	MasteryGrids clicks on topic	MasteryGrids
mg_activity_cell_clicks	MasteryGrids click on content	MasteryGrids
total_durationseconds	total time spend in the system in one session	MasteryGrids
quizjet_durationseconds	total time spend on quiz	MasteryGrids
pcrs_durationseconds	total time spent on coding exercises (seconds)	MasteryGrids
pcrs_durationseconds_first_attempt	time spent on coding exercises during the 1st attempt (seconds)	MasteryGrids
pcrs_durationseconds_second_attempt	time spent on coding exercises during the 2nd attempt (seconds)	MasteryGrids
pcrs_durationseconds_third_attempt	time spent on coding exercises during the 3rd attempt (seconds)	MasteryGrids
pcex_example_durationseconds	total time spent on examples before clicking any line (seconds)	MasteryGrids
pcex_example_durationseconds_median	median of time spent on examples before clicking any line (seconds)	MasteryGrids
pcex_example_lines_durationseconds	total time spent on reading example lines (seconds)	MasteryGrids
pcex_challenge_durationseconds	total time spent on challenges (seconds)	MasteryGrids
pcex_challenge_durationseconds_median	median of time spent on challenges (seconds)	MasteryGrids
pcex_challenge_durationseconds_first_attempt	time spent on challenges during the 1st attempt (seconds)	MasteryGrids
pcex_challenge_durationseconds_second_attempt	time spent on challenges during the 2nd attempt (seconds)	MasteryGrids
pcex_challenge_durationseconds_third_attempt	time spent on challenges during the 3rd attempt (seconds)	MasteryGrids
mastery_grid_durationseconds	total time spend in mastery grids statistics	MasteryGrids
total_sub_ass	total number of submitted assignments	VLASP
incom_sub_ass	number of incomplete assignments submitted	VLASP
incor_sub_ass	number of incorrectly submitted assignments	VLASP
not_sub_ass	number of not submitted assignments	VLASP
Eclipse_score	total score from all submitted assignments	VLASP