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Architecting Analytics Across Multiple E-learning
Systems to Enhance Learning Design
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Abstract—With the wide expansion of distributed learning environments the way we learn became more diverse than ever. This poses
an opportunity to incorporate different data sources of learning traces that can offer broader insights into learner behavior and the
intricacies of the learning process. We argue that combining analytics across different e-learning systems can potentially measure the
effectiveness of learning designs and maximize learning opportunities in distributed settings. As a step toward this goal, in this study,
we considered how to broaden the context of a single learning environment into a learning ecosystem that integrates three separate
e-learning systems. We present a cross-platform architecture that captures, integrates, and stores learning-related data from the
learning ecosystem. To demonstrate the feasibility and the benefits of cross-platform architecture, we used regression and
classification techniques to generate interpretable models with analytics that can be relevant for instructors in understanding learning
behavior and sensemaking of the instructional method on learner performance. The results show that combining data across three
e-learning systems improve the classification accuracy compared to data from a single learning system by a factor of 5. Our work
highlights the value of cross-platform learning analytics and presents a springboard for the creation of new cross-system data-driven

research practices.

Index Terms—Cross-platform analytics, architecture for educational systems, distributed learning settings, distance education.

I INTRODUCTION

IGITAL learning has grown significantly with the rapid
Dexpansion of Information and Communication Tech-
nology (ICT) and the concept of ubiquitous computing. This
trend is a catalyst for learning to happen everywhere and
at any time, across many different platforms and learning
systems, situated and shaped by the tasks, the content
resources, and the dynamics of distributed learning environ-
ments [1]. Although learning happens anytime and across
many diverse learning settings, we still lack insights how
to effectively optimize the learning context and the learner
experience in these settings [2]. In addition, as learners are
rapidly embracing the use of novel data-intensive learning
technologies, they are becoming more demanding and crit-
ical, creating a challenge how to engage and support them
when learning takes place in distributed settings [3].

One promising approach lies in a wider application of
learning-related data collected from various e-learning sys-
tems, that once merged, can support a learning ecosystem
of “dynamic, interconnected, and ever-evolving community
of learners, instructors, tools, and content” [4]. The idea
draws on the work presented in [5], who advocates that
understanding learning and knowledge creation in dis-
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tributed settings, requires multi-level analyses on learners’
traces fragmented across time, numerous e-learning sys-
tems, and media (i.e., digital substrates where communi-
cation modes are encoded). However, mainstream methods
and tools often rely on metrics derived from single and many
times limited data sources such as grades, submission of
assignments, self-reported data, or test performances [6].
On the one had, findings based on metrics extracted from
limited data sources, represent only a small proportion of
the learning process and the activities students engage with.
This, in turn, only partially help educators to understand
when and how students learn, and how effectively they
use the opportunities for learning as given in the learning
design. Thus, current approaches often display the ongoing
limitations in the learning analytics field, in which many
researchers and educators miss the opportunity to make
effective and meaningful refinements in the learning designs
that can encourage, enable, and advance learning.

On the other hand, learners often make decisions (e.g.,
whether and what technologies to use) based on the per-
ception of what might maximize their chances to succeed
[7]; hence, their focus is often on assessment [8], [9]. How-
ever, changes in the instructional methods (ie., adding
personalized feedback) can change learners’ single focus
on assessment [10] and usage of technologies for reasons
other than solely succeeding in the course assessments
[6]. Past research has shown that learning design and the
instructional conditions strongly affect what technologies
and tools students use [6], [11], as well as their level of
engagement and performance [12]. Yet, we do not really
know how to create and measure the effectiveness of
learning designs that can maximize learning opportunities
in distributed learning settings. In that respect, learning
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analytics has the potential to provide insights into what is
happening in each and across the different learning systems,
and thus, examine the effectiveness of the learning design.
For example, if educators have learning-related data from
other systems learners use to master skills (e.g., GitHub for
learning programming), rather then solely from the assigned
tasks and the learning management system (LMS) in use,
educators can have improved overview of learners’ progress
and potential misconceptions, and make pertinent decisions
to (re)design the learning context when learning behavior
deviates from the pedagogical intention.

Consequently, we designed and implemented a study to
explore if architecting analytics across multiple e-learning
systems can enhance the analytics capacities of the indi-
vidual systems, and discussed how the findings can support
and enhance learning design practices in distributed settings
[6], [13], [14]. However, developing cross-platform systems
is a complex and data intensive process [15]. On the one
hand, the procedure of standards development is inherently
challenging [16] and there is a lack of data interoperability
standards for handling and processing data generated from
different systems [17]. On the other hand, cross-platform
systems additionally increase the complexity of orchestrat-
ing learning activities in distributed settings, as educators
need to deal with the requirements that steam from different
learning designs [18], [19]. Therefore, it was also necessary
to explore and define the minimum technical architecture
requirements essential for setting the foundations to develop
cross-platform systems.

To demonstrate proof of concept, we implemented
a cross-platform architecture that integrates three inde-
pendent personalized e-learning systems (i.e.,, ProTuS,
MasteryGrids, and Visual Learning Analytics System for
Programming—VLASP) into one learning ecosystem for data
collection, integration, and harmonization. Since these sys-
tems automatically capture all user interactions, learning
analytics was utilized to shed light and give rise to a larger
phenomenon in digital learning and predictive modeling-
how to develop predictive models that not only predict per-
formance and success, but also reveal significant elements
for teaching practice (e.g., generic and specific), that can
be applied to improve the quality of learning designs and
instructional methods [20]. As a result, we present the po-
tential of cross-platform learning analytics generated from
behavioral log data, and utilized to show how predictive
models can be constituted to inform teaching practices as
a “diagnostic” tool that can support data-driven changes
in the learning design, pertinent to the optimization of the
various technologies used during the course. In that regard,
we addressed the following research questions:

e RQ1: What are the benefits of implementing cross-
platform architecture and harnessing cross-platform
learning analytics for digital education?

o RQ2: What implications cross-platform learning an-
alytics can offer to learning design?

In sum, the contribution of this paper is threefold: 1)
Conceptual-to present an ideational model of a digital
learning ecosystem which supports and harnesses cross-
platform analytics, 2) Operational-to display the implemen-
tation of a cross-platform architecture, and 3) Empirical-

to validate the value of cross-platform data integration for
building predictive models that carry the opportunity to
reveal significant elements for teaching practice, rather than
the long-standing focus on identifying learners at risk of
failing a course or solely for predicting learner performance,
as it is commonly done in the learning analytics and educa-
tional data mining communities.

I BACKGROUND

Optimizing the learning context and making valid and
informed changes in the learning design utilizing learning-
related data, was probably one of the first motivations
for the emergence of learning analytics [21]. Nowadays,
the wide proliferation of distributed learning environments
gives rise to opportunities in learning analytics and pre-
dictive modeling, to explore how analytics from various
learning systems (i.e., cross-platform learning analytics) can
be harnessed to enhance the quality of learning designs and
instructional methods.

1.1

Current research often relies on metrics derived from data
sources such as grades, submission of assignments, the
time learners spent in e-learning, self-reported data, or test
performances [6]. However, it often falls behind to consider
data from more than one learning system, particularly when
learning happens in distributed settings [22]. Nonetheless,
the more complex data researchers capture across settings
(e.g., interactions with learning materials via LMSs, learn-
ing trajectories via problem-based learning), the harder it
becomes to synchronize and analyze that data [23], [24].
Although frameworks that describe how to capture and
classify data from different sources exist [25]-[27], there is a
lack of available tools that could assist researchers to easily
establish cross-platform and sometimes multimodal systems
[28]-[30].

Learning is distributed across multiple media, locations,
and online environments; yet, researchers’ scope is often
limited to a single virtual learning environment (VLE) or
LMS. This is a common drawback in the field of learning an-
alytics that depicts the present-day reality where researchers
depend on one-sided learning analytics measures due to
the difficulties of extracting, harmonizing, and sensemaking
of data from various sources [2]. In a previous work, a
conceptual model named Group Learning Unified Environ-
ment with Pedagogical Scripting, Monitoring, Analysis, and
Across-Spaces Support (GLUEPS-MAASS) was presented,
describing how data from multiple sources should be col-
lected and integrated, encompassing learning activities in
the web, the physical, and the 3D virtual space [31]. How-
ever, to the best of our knowledge, this is still a conceptual
model, that has not been placed into practice yet. Moreover,
there are a few cross-platform patent models [32]-[34] that
currently have a pending status.

Consequently, we try to overcome some of the on-
going issues (e.g., one-sided learning analytics measures,
data integration, and interoperability) by proposing a cross-
platform architecture that automatically collects, integrates,
and harmonizes data from several e-learning systems (i.e., Pro-
TuS, MasteryGrids, and VLASP). These data is then used

Cross-Platform Learning Analytics
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to explore if combining metrics extracted from multi-system log
data can increase the predictive power of the individual systems
with respect to estimating student performance at the end
of the course, as well as reveal significant metrics that can
further refine the personalization and the design of learning
activities and instructional methods.

1.2 Predictive Modeling in Learning Analytics

Data-driven approaches to further our understanding of
learning are particularly relevant for e-learning and learning
analytics research [35], with predictive modeling being an
important topic [36]. Many researchers have already uti-
lized predictive modeling techniques to identify students
at risk and increase their retention [37], [38], to provide
early insights about students” performance and to generate
interpretable performance models [39]-[41], to improve the
quality and to scale up feedback [42], and to create interven-
tion methods that can improve students” mental health and
their university experience [43].

Predictive modeling involves statistical models or data
mining algorithms to find patterns in the data, and predict
new or future events [44]. Most of the research in predictive
modeling forecasts what may happen, and as such has
shown opportunities for advancing the field of learning
analytics. However, it has yet to mature to offer a wide-scale
impact [45]. In other words, predictive models intent to offer
actionable insights for learners and instructors, so that these
groups of users can take further actions, rather than increase
the frequency of feedback (i.e., informing students how
they stand with respect to meeting the course list criteria)
[46]. Hints (e.g., the traffic light metaphor in [37]) whether
learners are at risk of not meeting certain course criteria,
can help learners to be aware of their current progress, they
do not offer much beyond that [45]. Therefore, learners and
instructors do not always find much value and use of such
predictive models, as these models are limited in provoking
reflection and action [46], [47]. In the same vein, predic-
tive models do not always generate actionable insights,
resulting in limited information for instructors to improve
their practices and the overall learning design [45], [46]. A
step toward a more insightful and actionable information
can be generated by combining predictive with explanatory
modeling [44], to develop interpretable models with under-
lying variables that are relevant for instructors and learners
in understanding learning behavior and making sense of
instructional methods on learning performance [20].

To move beyond predictive analytics [20], [47]-[49] and
to investigate and apply sophisticated and innovative ap-
proaches, we focused on harnessing cross-platform learning
analytics in predictive modeling. This way we aimed to explore
if combining analytics across various systems can increase
the predictive power of individual learning systems with
respect to estimating student performance (i.e., grades), as
well as develop models that reveal significant elements
for teaching practice, that in future, can help learners, to
understand the value of different learning resources apart from
solely maximizing their chances to succeed by getting good
grades.

1.3 Standards, Integration, and
Learning Systems

Interoperability of

Systems operate by “understanding” the data structures
they share [50]. Therefore, to perform meaningful analy-
sis and produce applicable outcomes, interoperability of
data format is paramount. The interoperability challenge
is present in the learning analytics community, creating
obstacles in implementing a standardized specification at
scale that each “data supplier” or “tools developer” has
to conform to [16]. In fact, “interoperability and scalability
are evolution features embodied in the architecture of the
software system” [16, p.32]. Considering this issue, much
research in technology-enhanced learning has been focused
on enhancing interoperability [51]. Thus, several conceptual
frameworks [52] and software architectures [16], [53], [54]
have been proposed to effectively store and retrieve large
amounts of data generated in e-learning settings.

The interoperability issue is not a new one. Since 2001,
several learning resource specifications have been devel-
oped, including ADL (Advanced Distributed Learning),
SCORM (Shareable Content Object Reference Model) [55],
IMS Learning Resource Metadata Specification [56], and
IEEE LOM (Learning Object Metadata) [57]. These examples
have been considered as drivers toward re-usability and
interoperability of learning resources [58]. Furthermore, sev-
eral industrial solutions, such as the Learning Tools Inter-
operability [59] and the Experience API (xAPI) [60], [61] are
widely applied, to enhance the interoperability of e-learning
systems and tools [16]. xAPI is a standardized approach that
clarifies how the collection, storage, analysis, and exploita-
tion of data are taking place. The prominence of xAPI con-
sists of system independence, easy implementation, and the
focus on learner activities [62]. Slowly, but effectively, xAPI
specification [61] emerged as a standard vocabulary for
communication with distributed data in learning systems,
due to its inherent extensibility to accommodate unforeseen
data collection needs.

Findings from past research present an architecture that
tackles the challenge of collecting and managing data from a
variety of services and feeds, and with a focus on simplicity
and flexibility [30]. The work published in [30] emphasized
the implementation and the importance of trackers as main
connectors between the activity provider, the LMS, and the
data storage component. To that end, our work aims to set
up a learning ecosystem consisting of several integrated e-learning
systems that rely on distributed and diverse data, which will
satisfy the requirements for data format interoperability
and harness the potential of combining cross-platform learning
analytics. Moreover, with the proposed cross-platform archi-
tecture, we aim to present a proof-of-concept emphasizing the
importance of holistic understanding of learners’ behavior and
progress, relevant for supporting data-driven changes in the learn-
ing design, and toward improving and sustaining student
engagement utilizing personalized feedback methods [10].

Il ARCHITECTURE OF THE PROPOSED LEARNING
ECOSYSTEM

Our motivation for designing and developing a cross-
platform architecture lies in:
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1) Offering a modular system that can be easily modi-
fied by adding new data sources;

2) Exploring the trade-off between interoperability,
flexibility, and scalability of the system;

3) Initiating communication among various stakehold-
ers (designers, educators, students) to investigate
how learning analytics might contribute to person-
alization and flexibility vs. scalability and standard-
ization of learning;

4) Demonstrating proof-of-concept for the feasibility
and the potential of combining analytics across var-
ious e-learning systems.

The proposed architecture is developed addressing five
core functionalities (see Table 1) that the next generation of
learning ecosystems should have [4]. In addition, considering
the nature of the learning setting, the following are the
requirements that have been taken into account during the
design of the architecture, as suggested by [63]:

o Data accessibility. Accessibility and data latency
are two crucial factors that affect data usage for
instructional improvement [64]. Therefore, the archi-
tecture model integrates heterogeneous data using
APIs for mining and retrieving common data formats
such as JavaScript Object Notation (JSON), comma-
separated values (CSV), or database storage. This
way, the infrastructure can support and promote
standardization, while facilitating data integration
and harmonization [65], [66].

o Extensibility. The design needs to follow modular
architecture with clearly defined and separated com-
ponents. This approach increases the extensibility of
the system and decreases the level of effort required
to implement future functionalities [67].

e Scalability. Although scalability is a growing con-
cern for e-learning systems [68], majority of these
systems are implemented to support their current
users, with less consideration for future user-base
growth. The model of our proposed architecture aims
to provide a better code structure, ability to run as
a distributed application with faster resource usage,
and thus, support future scaling of the user base.

To reach the goals of the proposed architecture, the
design and development stages followed approaches de-
fined in system development research [69], best practices in
software design [66], and principles of software engineering
for learning systems [70]. Thus, the architectural design
decisions have been emphasized through two views [71]:

o The conceptual view shows the composition of the
concepts necessary for system execution. This view
represents the conceptual model of the system and
explains the communication and data aggregation
processes between the different components.

e The implementation view shows the topology of the
implemented solution, the architectural layers, and
the physical connection between the three e-learning
systems.

The conceptual view represents the generic overview of
the system and contains the elements required for collecting

cross-platform data and analytics, while the implementa-
tion view presents the actual execution of the proposed
architecture with the use of several existing systems as data
providers. Since the purpose of the study is to demonstrate
proof-of-concept of the feasibility and applicability of ana-
lytics across learning systems, this paper presents only the
overall idea that lies behind the proposed cross-platform
architecture.

1.1

To minimize challenges (e.g., data formats, undocumented
data, or noise in the data) when working with multiple data
streams, we propose a conceptual model that promotes and
supports integration and interoperability among various
data sources. The aim is to develop an integrated ecosystem,
that would eliminate the need to manually log in, gather,
and synchronize data from different systems. The proposed
integration encompasses several functional layers as shown
in Fig. 1:

Conceptual Model of Cross-Platform Architecture

o The data processing layer imports, aggregates,
transforms, normalizes, and processes data. This
layer is responsible for collecting and preparing data
for further use and analysis.

o The data analysis layer interacts with the stored data
to extract business intelligence.

o The report generator visualizes data and generates
reports based on educators and designers’ prefer-
ences.

e The data source layer (i.e., learning record store)
stores data in standardized and consistent format.

e The application front end (i.e., learning analytics
dashboard) accommodates different reports, visual-
izations, and solutions, for report customization and
personalized feedback.

.2 The Implemented Architecture of the Integrated
System

This section presents the implemented learning ecosystem
that encompasses three e-learning systems, i.e., ProTuS,
MasteryGrids, and VLASP. The proposed architecture of
the learning ecosystem aggregates data from four different
data providers, and thereby, supports cross-platform learn-
ing analytics. The following are the e-learning systems we
integrated:

e ProTuS is an intelligent e-learning system for learn-
ing programming basics. ProTuS allows educators to
design and implement their own learning content,
in addition to the option for easy integration of
learning content from third-party providers, such
as wiki pages or YouTube videos. For this study,
lectures from Confluence wiki pages were used to
cover the basic Java concepts. ProTuS also provides
personalization techniques and several methods for
recommending learning content [72].

e MasteryGrids is an open social learner modeling
interface, written in JavaScript [73]. The interface
shows learners’ progress in different topics com-
pared to other learners or the class. It also provides
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TABLE 1
The Core Functionalities of a Learning Ecosystem

Goals

Core functionalities

Identify learners’ characteristics, goals, skills, strategies, and needs.

Monitor, assess, and predict students” behavior, progress, and performance.

Process, interpret, and utilize data across learning systems.

Provide real-time actionable feedback.

Visualize metrics based on cross-platform analytics and educational theories.

Personalization

Analytics and learning assessment
Interoperability and integration
Advising and support

Explanation and interpretation

Third-party data providers Data processing

Data analysis

Report generator

Data provider 1

| Importer | | Mapper | Categoriser ‘ Learning analytics
- dashboard
Data provider 2 I Aggregator I | Analyser I Selector ‘ —
- Nz
LI | Normalizer I I Interpretator I Visualiser
Data provider n—1/| Transformer I | Modeller I Generator Visual reports
Predictor

Data provider n

| Processor' I

Scheduler ' ‘

Learning record store

Fig. 1. The general architecture.

adaptive navigation support for learning content
with stars indicating recommendations. The system
tracks learners’ activities and updates learner knowl-
edge levels in a centralized user modeling server.
This allows MasteryGrids to report the progress
level (i.e., based on activities) and the knowledge
level (i.e., based on estimated learner knowledge).
MasteryGrids collects activity data from two data
providers:

— PCLab includes interactive examples and chal-
lenges developed at University of Pittsburgh
[74]. The system tracks learner activity, includ-
ing students’ trial and error approaches.

— Programming Course Resource System
(PCRS) includes coding exercises developed
at University of Toronto [75]. This system tests
learners’ solutions against a set of unit tests
for a particular problem, while the results are
stored in the data source layer.

e Visual learning analytics system for programming
(VLASP) is an Eclipse plug-in that monitors learners’
progress in programming, tracks learner behavior
while learners develop/debug code in Java, and
reflects progress to learners as a mirroring tool [76].
The environment monitors progress and visualizes
metrics (e.g.,, how many times a student has run
an individual test, how many times the code has
been compiled) associated with learner behavior and
performance during programming/debugging activ-
ities. The main goal of the system is twofold: 1) to
collect data about learner activities, so that educators
can better understand how learners program/debug;
and 2) to mirror learners’ own actions back to them,
as a way to increase awareness and motivation, foster

self-reflection, and facilitate improvements in their
programming habits [77].

ProTuS, MasteryGrids, and VLASP are separately de-
signed and implemented systems; thus, their data models
are different. The integrated learning environment has to
provide access to different data structures, combine those
data structures, and harmonize the data formats. Therefore,
Visualized Education NTNU (VENT) [78] has been created
and presented as a layer on top of the modules of each data
source, consisting of a VENT system object notation (VSON)
model and a VENT controller. This layer contains the data
source controllers that act as conversion layers from the
source model (e.g., JSON format) to VSON format which is
then exposed by the VENT controller. Finally, because three
e-learning systems were utilized in this study, we selected
ProTuS to be a portal for seamless integration of different
content providers. The overview of the data sources and
integrated learning environments employed in the study is
shown in Fig. 2.

IV METHODOLOGY

IV.1 Research Approach

The approach adopted in this study is based on design-
based research (DBR) [79]. DBR utilizes an iterative process
of design, implementation, analysis, and revision of models,
with two primary goals: to construct knowledge and to
develop solutions [80]. Hence, a series of DBR cycles were
performed to develop the learning analytics component (i.e.,
first DBR cycle) [72], the adaptability feature, i.e., adaptive
assessment (i.e., the second DBR cycle) [81], and the cross-
platform architecture (i.e., the third DBR cycle) [82].

In the first DBR cycle, a focus group was organized with
12 teaching assistants (TAs), to understand and generate
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PCLab logs PCRS logs

Confluence wiki
pages

MasteryGrids

Interactive examples
and challenges

Fig. 2. Aggregated data sources.

the best practices they had accumulated over the last few
years, by closely working with students from introductory
programming courses. The TAs were computer science (CS)
majors, that were in their third or fourth semester of bach-
elor CS studies at the Norwegian University of Science
and Technology (NTNU). The focus in the first DBR cycle
was on participatory [83] and human-centered [84] design
approaches in the development of the learning analytics
component. These approaches were employed to support
the design of seamless user experience in personalized e-
learning systems [3]. Applying affinity diagram technique
and usability survey, we transformed the generated best
practices into design guidelines and applied them in the
second DBR cycle.

In the second DBR cycle we focused more on learners’
behavior and requirements, because personalized e-learning
systems need to acknowledge and model users’ natural
behavior, so that the interaction is intuitive and minimizes
users’ cognitive workload. Therefore, we designed an ex-
periment to explored how students interact with the new
learning analytics module in ProTuS. The purpose of the
second DBR cycle was to explore learners’ trajectories dur-
ing five quiz activities. A total of 66 students participated
in the study and each student was asked to fill out one
quiz at a time. After every quiz, the students were asked
to reflect and monitor its own progress with the help of
the generated reports utilizing learning analytics, and then
continue to the next quiz assignment. All 66 students were
CS majors in their second semester of bachelor studies. The
insights generated from this study were used to develop the
adaptive assessment feature in ProTuS.

The last DBR cycle is the focus of this study, which is the
development, the implementation, and the evaluation of the
proposed cross-platform architecture. All three DBR cycles
have used the framework for modeling personalization di-
mensions proposed by [85]. This framework was selected
to develop personalization features in ProTuS following six
personalization dimensions in intelligent tutoring systems
(ITSs) and adaptive educational hypermedia [85].

ProTusS activity tracker
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IV.2 Implementation

IV.2.1 Context and Participants

The research context for this study was an introductory
object-oriented programming (OOP) course offered to un-
dergraduate students at NTNU. The course content was
delivered online (e.g., reading materials, assignments, ex-
amples) and once a week in a classroom setting (e.g.,
lectures and labs). During the course (which lasted for 3
months) the students were required to submit ten individual
assignments and undertake a final mandatory exam. The
grade students get at the end of the course is based only
on the final exam. The instructor used the university LMS
to distribute the relevant course materials and Eclipse inte-
grated development environment (IDE) for the submission
of the individual assignments. In addition, the instructor
introduced ProTuS and MasteryGrids, as non-mandatory
learning systems, that students could use to practice and
learn Java.

The sample was comprised of 153 participants, freshman
CS majors, who were in their second semester. All par-
ticipants had already taken an introductory programming
course in Python in their first semester; thus, it was assumed
that they have already mastered a basic knowledge in pro-
cedural programming. The study focused on a set of online
activities and participants” interaction with the educational
content. ProTuS has been used as a portal for seamless in-
tegration of content from different content providers, while
both ProTuS and VENT have been used to access, record,
and collect activity data. The data were collected over the
academic year 2018-2019 from logs of the three e-learning
systems: ProTuS, MasteryGrids (PCLab, PCRS), and VLASP
(see Table 2).

IV.2.2 Study design and data collection.

Before the start of the study, the participants were intro-
duced to the NTNU policy for ethical and data privacy
issues, as well as with the purpose of the study and the e-
learning systems that they could interact with. The learning
content encompassed four types of activities that support
individual work aligned with self-regulated learning prac-
tices [86]. Participants that used the system signed up with
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TABLE 2
Overall Data Collected

Academic year 2018-2019 Value
Opverall number of users 389
Number of active users 153
Number of user sessions 2.727
Number of student activities (content visits, submissions, etc) 906

Data sources

ProTuS, PCLab, PCRS and VLASP

their university email address; however, in the system they
got an ID number (e.g., StudentID001) that has been linked
across the three systems. The three systems provided five
types of learning content, which are briefly described in the
following;:

1) Explanations (ProTuS). ProTuS contains reading
content (i.e., tutorials) on 15 topics that are aligned
with the curriculum presented in the course. These
learning materials help students to master concepts
in OOP (Java language) based on their existing
knowledge in procedural programming (Python).

2) Examples (MasteryGrids-PCLab). For each topic
learners can start with a worked-out example from
Program Construction EXamples (PCEX) set [87],
which explains why certain programming con-
structs are used in the code. Explanations are avail-
able for almost all lines of code in the example,
and are hidden until a learner clicks on the lines
of interest.

3) Challenges (MasteryGrids-PCLab). Following the
pedagogical reasoning that examples are more effec-
tive when a learner solves a problem immediately
after the example [88], we presented a challenge
after each example. Each challenge shows a problem
similar to the one presented in the example, and
blank lines that need to be filled in by dragging and
dropping the pieces of code to the blank fields [89].

4) Coding exercises (MasteryGrids-PCRS). The Pro-
gramming Course Resource System [75], whose con-
tent server resides at the University of Toronto,
provides coding exercise with a problem description
and a baseline code. When learners submit their
code, the code is tested against a set of unit tests de-
veloped for that particular problem, and the learner
receives an immediate feedback on whether the tests
were passed or not.

5) Course assignments (VLASP). The ten individual
assignments learners solve in Eclipse IDE, as they
are able to test the code against a set of unit tests
developed by the instructor. Learners’ Eclipse instal-
lation has been extended with a plug-in that collects
data from the learners’ solutions.

All three systems keep a track of every click and store
data as logs with time stamps in the learning record store.
ProTuS collects data about learners” actions in the system.
The collected data for our study included the number of
actions in the system, the time spend in each session, what
topic a learner selected, and the level of difficulty of the
coding exercise. According to the level of difficulty, the cod-
ing exercises (PCRS) have been grouped in ProTuS in five

categories (e.g., novice, skillful, confident, proficient, and
expert). MasteryGrids collects progress data from learners’
interactions with the learning content. The generated data
included clicks on lines of explanations in the examples,
attempts to solve a challenge, coding exercises solved in the
first, second, or third attempt, distinct challenges seen, etc.
The challenges and the coding exercises could be attempted
multiple times, or until the learner is satisfied with his
or her performance. Finally, VLASP collects activity data
related to a programming assignment. In our study we
collected the number of submitted assignments, the number
of incorrect and incomplete submissions, and the number of
assignments not submitted at all. A full list of the generated
variables is presented in the Appendix A.

IV.2.3 Data processing

The data were extracted from the learning record store and
as .cvs file placed in R Studio, to extract features from
all three systems (ProTuS, MasteryGrids, and VLASP). In
total, 142 features were extracted from the three e-learning
systems, of which after removing the columns that had
SD = 0, the final data set included 55 features. Appendix
A includes a table with all 55 features plus explanation
for each. The data collection and the respective e-learning
systems abide by the European data privacy regulations that
allow data to be collected and anonymized before use.

IV.2.4 Variables

To answer the research questions, we selected learners’
performance to be our dependent variable. Learner perfor-
mance was computed from the score participants achieved
on the individual assignments they submitted, transformed
into a grade. The performance from the individual as-
signments summarizes participants’” development over the
course, considering the applied learning design, and there-
fore, it is timely, available during the course run-time, and
more granular and representative. The learner performance
includes values between 0 and 1000, which was discretized
into six levels (i.e., A to F) with the help of the instructor,
to resemble a grade that a learner would receive if the
instructor assigned grades based on the assignments (i.e.,
formative assessment perspective) rather than based on the
final exam (i.e., summative assessment). The rest of the
54 features that were all extracted using the R language,
were considered to be the experimental /predictor variables.
Appendix A provides a summary of all features.

IV.2.5 Data analysis

To demonstrate proof-of-concept for the feasibility of the
implemented cross-platform architecture, we applied both,
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inference and prediction. A statistical model will help us
infer the relationship between the data variables to a degree
of statistical significance, and use prediction to identify the
best course of action. Our aim was to explore how can
we incorporate hybrid approaches that combine statistical
methods with machine learning techniques in education,
particularly when combining analytics across systems and
data sources.

First, to get an initial understanding of the measures, a
descriptive statistic was calculated and the Shapiro-Wilk test
was used to check for data normality. The Shapiro-Wilk test
showed that the data did not have a normal distribution (p
values were significant) but a highly skewed nature. How-
ever, because linear regression does not assume normality
for either the predictor or the outcome variable, the lack of
normal distribution of the collected data was not an obstacle
to perform a linear regression (for more information please
look at the GaussMarkov theorem) [90]. We also checked for
other assumptions important for linear regression to ensure
that the inferences are appropriate: 1) multicollinearity-there
was no perfect linear regression between two or more pre-
dictor variables. We calculated the variance inflation factor
(VIF) and following the rule of thumb, in order to consider
problems with collinearity the VIF value should exceed 10,
which was not the case in our data [91]; 2) homoscedasticity
or homogeneity of variance, refers to the constant variance
of the residuals [92]. We checked for homoscedasticity by
plotting the data and exploring the residuals vs fitted and
scale-location (or Spread-Location) diagnostic plots, as well
as running the Levene’s test (p values were not significant)
[93]; 3) normally distributed errors—we checked if the residuals
in the model are normally distributed by generating the
quantile-quantile (Q-Q) plot. The Q-Q plot from our data
shows that each observation roughly falls on the straight
line, indicating that the residuals are roughly normally
distributed.

Second, we looked into several ways how variables can
be entered into a model, but because we were conducting
an exploratory study on all generated variables that does
not have SD=0, we decided to go with the stepwise method
(backward direction), which has a lower risk of making Type
IT error (i.e., missing a predictor that does in fact predict
the outcome) due to supressor effects [91]. The backward
method starts by placing all predictors in a model and based
on Akaike Information Criterion (AIC) the model removes
predictors that cause AIC value to increase. The stepwise
methods is usually used for exploratory model building
and when researchers do not know which predictors can
create the best model [94]. Thus, because there was no
previous research that we could consider and built upon
with respect to reported significant variables, we decided to
build the models on a purely mathematical criterion. Due
to the selection of the stepwise method, we performed a
10-fold cross validation.

Third, we evaluated the performance of each of the se-
lected features that are shown in Appendix A in predicting
learner performance (i.e., student grades), using Random
Forest [95]. Random Forest (RF) as a decision tree-based
algorithm, is suitable for large numbers of features that are
strongly correlated [96]. Moreover, RF offers easy extraction
of feature importance, and has been found to be a top

performing algorithm in a large comparative study [97]. To
build a predictive model (not a representative) when dealing
with an imbalance dataset (which is a common problem in
the education field) in a multiclass classification problem,
we first performed a stratified sampling with respect to the
majority class, i.e. grade B, used to control the sampling
process. This step was necessary to avoid creating a train
and test set with totally different data distributions. Then,
we divided the dataset into training (70% of the students)
and testing (30% of the students) sets, and applied a hybrid
re-sampling technique (i.e, SMOTE) to the training set [98].
Using SMOTE we down-sampled the majority classes and
synthesize new data points in the minority classes, using k-
nearest neighbours for the new data [98]. This was an impor-
tant step in the analysis, because RF algorithm is sensitive to
the proportions of the classes, tending to favor the majority
class. Finally, to remove the selection bias in the training set,
we used 70% of the data to train the model using a 10-fold
cross-validation. This reduces the variability and presents
more accurate estimates of learners’ performance.

At the end, we used RF to measure the importance of
the individual features for learner performance (i.e., student
grades). While importance of individual classification fea-
tures might be calculated in many different ways [99], we
used Mean Decrease Gini (MDG) which is based on the
reduction in Gini impurity measure. Gini impurity measures
how often a randomly chosen data point from the data set
will be incorrectly labeled, which is essential for correctly
classifying new data points. Classification accuracy (ACC),
which is the ratio of the total number of correct predictions
and the total number of predictions, is a reliable measure but
it is not sufficient to evaluate machine learning classification
algorithms [100]. Hence, we employed precision, recall, f-
measure, and Cohen’s kappa, as additional measures to
evaluate the robustness of the classifier. Precision is the
ratio between the true positives and all the positives (true
positives + false positives), and gives us the measure of
relevant data points; while recall shows the classifier’s po-
tential to find all the positive outcomes. Thus, we calculate
the average precision and recall, weighted by the number
of true instances for each label, to account for the label
imbalance. F-score aggregates precision and recall under
the concept of harmonic mean that summarizes the model
performance. Finally, Cohen’s k shows how the classifier is
performing over the performance of a classifier that guesses
at random with respect to the frequency of each class.

V RESULTS

Table 3 shows the results from the stepwise multiple regres-
sion (backward direction) in building the exploratory model
based on a purely mathematical criterion. In fact, we were
interested in identifying variables that have a scientifically
meaningful and statistically significant relationship with the
learner performance (i.e., the number of points 0-1000). This
step was required to explore if architecting analytics across
multiple systems can improve the explanation power over
the individual systems, and because there is no theoretical
grounding that can be used as a starting point for specific
predictors (i.e., features/variables) to create the best model.
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g. 3. Top ten feature importance - Random forest.

The model combination selected with AIC = 1088 is signif-
icant (F(8,168) = 4600, p < 0.001) and explains 87% of the
variance in learners’ performance.

The ProTuS model is not significant (F(3,173) = 0.688,
p = 0.561) and on its own explains only 12% of the vari-
ance, while MasteryGrids model although not significant
(F(46,130) = 1.22, p = 0.193), accounts for 30%. The VLASP
model (F(3,173) = 1200, p < 0.001) is significant and with
total, incomplete, and incorrect submissions as predictors,
accounts for 80% of the variance in learners’ performance.

Table 4 presents an overview of the main results, listing
the classifier’s accuracy, Cohen’s k, the average precision, re-
call, and the f-measure for RF. The features coming from the
separate systems (e.g., ProTus, MasteryGrids, and VLASP)
have lower accuracy (and Cohen’s k) than the combined
features from the integrated system. The best classification
accuracy of 0.81 (95% CI[0.67, 0.91]) and Cohen’s k 0.79
comes from the classifier which considers the top 10 features
(i.e., RandomForest Top 10 features), and was obtained with
mtry value of 6. Mtry is a parameter of RF which shows
the number of variables randomly sampled as candidates at
each split. In our case, the mtry value of 6 means that each
decision tree took into account only 6 features out of the 54
features.

At the end, we performed a feature importance analysis
and we present the top ten most significant variables shown
in Fig. 3. We also present the top ten variables across the six
classes (i.e., grades A to F) as shown in Table 5.

VI DISCUSSION

V1.1 Interpretation of the Results with Respect to the
Research Questions

Since the nature of this study was exploratory, in which we
used both inference and prediction, we provide insights into
association relationships and not causality [100]. Consider-
ing the results, we outline the positive findings from the
analyses, as a reinforcement toward the positive findings
reported by [82].

VI.1.1 Insights derived from cross-platform learning analyt-
ics

With respect to the first research question, the regression
results presented in Table 3 show that learning analytics de-
rived from the separate systems, ProTuS and MasteryGrids,
are not significant and they explain less than 30% of the

variance, while learning analytics generated from VLASP
explain 80%. The analytics from VLASP are directly related
to student assessment outcomes, and as such, support the
previous research findings [7]-[9], which reported that stu-
dents often focus on assessment and technologies that can
maximize their chance to succeed (e.g., get a high grade
at the end of a course). Moreover, assessment was a major
focus of the learning design in the OOP course in which
our study was implemented. From past research [11], we
know that learning design and the instructional conditions
strongly affect what technologies and tools students use.
Thus, students” decision to focus on VLASP more than on
ProTuS or MasteryGrids, was based on their perception that
can help them to maximize their chances to succeed. In fact,
students were required to achieve more than 750 points on
the individual assignments to qualify for the final exam,
although this score from the individual assignments was
not counted in the final grade.

Nonetheless, we observed that combining data collected
across several distributed learning systems accounted for
an additional increase (i.e., 7%) in the explanation of the
variance of learner performance. The 7% increase is coming
from the following analytics: the level of complexity of a chosen
coding exercise, the time students spend navigating in mastery
grids to monitor and reflect on their progress, the successful
attempts on challenges, and the distinct challenges successfully
solved. Although the additional increase in the explanation
of the variance is not very large and is with an overall effect
of 9%, it is still a significant step (e.g., demonstrating proof
of concept) toward building learner models that can explain
higher portions of variation in the outcome (e.g. student’s
grade performance) by combining analytics across different
platforms. Some of these analytics (i.e., correct attempts to
problems, distinct problems attempted correctly, and time in
mastery grids navigation) have also been found significant for
student engagement, usage, and attitude in the open social
student modeling (OSSM) compared to the open student
modeling (OSM) interface in technology-based learning [89].
The authors [89, p.459] have reported these three analyt-
ics/features and additional eleven, as “very attractive for
contexts where motivation and retention are critical, such as
modern MOOCs.”

After describing the data using a statistical framework,
and characterizing the relationship between the variables
and the learner performance to a degree of statistical sig-
nificance, we utilized machine learning to build different
models with various features to predict a label, ie., i.e.
student grade. RF used the associations between the pre-
dictors and the learner performance to validate the benefits
of cross-platform learning analytics in generating accurate
predictions for future outcomes. In addition, we also inves-
tigated if cross-platform learning analytics can build predic-
tive models that carry an opportunity to reveal significant
elements for teaching practice.

The results reported in Table 4 are aligned with the
findings from the regression analysis, i.e., harnessing cross-
platform learning analytics can improve the classification
accuracy in predicting learner performance (i.e., student
grade). The baseline performance for the proposed learning
ecosystem that differentiates between 6 different classes (i.e.,
students” grades) is 1/6 or 16.7%. We argue that when
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TABLE 3
Stepwise Multiple Linear Regression Combining Features from all 3 Learning Systems

Model adj.R? B SE B B p
Model Zero

(Intercept) 648 23 0.000
Model Combination 0.871

(Intercept) -4.10 5.31 0.446
level_of_coding_exercises 0.02 0.01 0.65 0.025
mastery_grids_durationseconds 1.21 0.71 0.42 0.033
pecex_ch_attempts_success -9.66 6.34 -0.16 0.095
pecex_ch_success 9.95 6.56 0.16 0.090
total_sub_ass 99.95 0.56 0.99 0.000
incom_sub_ass -33.44 2.50 -0.17 0.000
incor_sub_ass -90.07 4.0 -0.32 0.000
not_sub_ass 1.19 0.85 0.41 0.095
Model ProTuS 0.117

Model MasteryGrids 0.301

Model VLASP 0.801

TABLE 4
Random Forest Classifier. Combo:Combining Features From all Three Learning Systems. Top10: Using Only the Ten Best Features. ProTuS,
MasteryGrids, VLASP: Using Features Solely from one System

Classifier ACC Kappa Precision Recall F-measure
RandomForest combo 0.79 0.69 0.90 0.77 0.87
RandomForest Top10 0.81 0.79 0.92 0.81 0.89
RandomForest ProTuS 0.23 0.01 0.14 0.23 0.37
RandomForest MasteryGrids 0.42 0.05 0.79 0.42 0.59
RandomForest VLASP 0.70 0.65 0.88 0.77 0.78
TABLE 5

Feature Importance Across Classes
Variable A B C D E F
total_sub_ass 53.88 100 43.97 51 33 87.47
not_sub_ass 47.56 78.22 44.62 41.55 34.11 56.26
incor_sub_ass 19.58 60.73 32.38 36 5.21 25.51
total_durationseconds 7.15 20 10 8.50 12.30 15.25
median_session_time 9.51 23.10 14 20 4.31 10.12
number_of_actions 448 9 15 10 8.76 3.51
pcex_example_lines_durationsec. 8 30 11.43 15.67 4.22 5.72
mastery_grid_durationsec. 6.12 9 24.62 3.18 12.55 10
level_of_coding_exercises 6.10 2.10 2.50 3.46 7.20 20
incom_sub_ass 7.14 9.75 5 17.30 6.31 34

reporting machine learning results, a baseline performance
should also be reported, due to the importance of discussing
performance in relation to the complexity of the machine
learning task [100]. Thus, the results from the analysis
show that our learning ecosystem achieved accuracy of 79%
(RandomForest combo) and 81% (RandomForest top 10),
exhibiting an improvement in the baseline by a factor of
3.73 and 3.85 respectively. In other words, the RandomFor-
est Topl0 performance exhibits a 5-fold increase over the
baseline. Also, looking at the f-measure for RandomForest
combo and RandomForest Top10 classifiers, one can notice
that these classifies have demonstrated better robustness (do
not miss a significant number of instances) and precision
(how many instances it classifies correctly) measures than
the rest of the classifiers.

In a study presented by [101], prediction models have
shown that combination of mastery data (i.e., mastery score)
and use intensity data (i.e., number of attempts, time on

task) from e-tutorial systems that students used to prac-
tice homework exercises, constitute a good second best
information source (after assessment data) for predicting
performance. Their findings [101] strongly support the in-
tegrative approach to learning analytics as advocated by
[102]. Moreover, our findings also align with these previ-
ous findings, that combining analytics across systems in
distributed learning environments can provide insights into
what is happening in each and across the different systems,
and thus, be used to predict performance more accurately.

By harnessing cross-platform learning analytics, our pre-
dictive models also disclosed the potential for building fu-
ture models that can reveal significant elements for teaching
practice, which can be utilized to further refine the design of
learning activities and instructional methods. In fact, the ad-
vantages from analytics generated across various e-learning
systems lie in the support that educators will have, to shape
teaching and learning with data that is timely and available
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during the learning process. We posit that in future, such
insights can assist educators to examine the effectiveness of
their learning designs and assessment practices in relation to
serving the intended educational objectives and pedagogical
intent, and maximize the learning opportunities in digital
education.

VI.1.2  Cross-platform learning analytics to support learning
design

Compared to previous studies on predictive modeling that
have investigated academic success [20], [39], [103], our
intention was not to build a high performing prediction
models that outperform other machine learning models,
but to explore how predictive models can be constituted
with practical value for educators, to inform teaching and
learning practices as a “diagnostic” tool, pertinent to the
optimization of various technologies.

Based on the positive findings reported in Table 3 and
in particular Table 4, we posit that although the best pre-
dictor for performance is performance itself, there are other
features also relevant for learner performance (but not all of
the features) that can be extracted from behavior log data.
Our findings are supported from previous research [104]-
[108], which demonstrated that not all analytics that can be
collected in a learning environment are equally relevant for
learning, nor the same learning analytics are relevant for
every student. If we look at Fig. 3, which displays the top
ten features by importance (generated with RandomForest
Top10 features classifier), we can observe that in addition to
the activity data generated from the VLASP system (directly
related to the assessment outcomes), other analytics at dif-
ferent granular levels are also significant for learner perfor-
mance. Therefore, in this paper we present the value of more
granular data to monitor and assess learner progress, which
can be utilized to develop interpretable predictive models
based on cross-platform learning analytics. Such models
can reveal significant elements from the learning designs
for understanding behavior and progress in distributed
settings, in addition to data generated from summative
assessment or LMS, and instructor’s tacit knowledge, that
can be harnessed to identify best course of action in making
reliable and informed decisions.

Table 5 shows the top ten features across the six classes
(i.e., students’ grades). For example, if we look at grade
B, we can notice that although the assignment submissions
are very important (we explained the role of VLASP in the
learning design), the time spend on practicing learning tasks
and the time spend on reading examples before practicing
exercises, can also be important indicators for a learner per-
formance. Examples with explanations for the code are com-
monly used learning resources in learning programming
that help students grasp various programming structures
and concepts [109]. To optimize the support for learning
from examples, instructors can benefit from insights derived
from interpreatable models as presented in this study, to
guide students to access the right example at the right time
[87], [110]. This is an important decision that instructors
can make, because past studies demonstrated that the effect
from worked examples is stronger in the early stages of
learning, and declines gradually as students’ knowledge
grows [111].

For grade C, another important indicator can be the time
a learner spend navigating in mastery grids to monitor
and reflect on their progress. In other words, if learners
spend time monitoring and reflecting on their progress, such
information can assist the instructor to help those students
improve their self-regulation skills and the decisions they
make. From a self-regulated learning perspective, learners
are considered to be active participants in the learning pro-
cess, who construct their own meanings and goals, and can
potentially monitor and regulate certain aspects of their own
metacognition, motivation, and behavior, from the informa-
tion available to them [112]. Thus, more granular data from
interpretable models can assist instructors to work toward
development of personalized feedback to support students’
self-regulated learning skills, thereby helping their students
to become independent professionals, who can shape their
own learning. In addition, sharing learning analytics from
such interpretable models with students, can enable them
to understand the state of their knowledge and use this
knowledge to plan their learning [113].

Finally, the last example for grade F, shows that other
important features for learner performance can be the level
of complexity students choose in the coding exercises and
the submission of incomplete assignments. One explanation
can be the potential association between these two, sug-
gesting that learners who get grade F, might have trouble
selecting assignments that match their current knowledge,
so they failed to learn meaningfully. Students’ lack of knowl-
edge (and potential development of misconceptions) is later
demonstrated in the submission of incomplete assignments.
In fact, these learners need an intervention through proper
scaffolding, to guide them gradually to master skills and
learn concepts, by aligning the complexity of the assign-
ments with their current knowledge proficiency. This is an
action, much in line with the existing research in adaptive
learning and intelligent tutoring systems [114].

In this study, the insights generated from cross-platform
analytics through feature importance, depict a different
approach where more granular data can offer additional
information (not easily observable in digital settings) on
top of the information educators have from the LMS in
use, their tacit knowledge, or the summative and formative
assessment data. Such additional information still does not
reveal the whole picture how students learn, but discloses
significant elements for teaching and learning practice about
how students use the opportunities as given in the learning
design, which can assist educators to further refine the
design of learning activities and instructional methods in
digital education.

In sum, we argue that our approach can overcome some
of the ongoing issues (e.g., one-sided learning analytics mea-
sures, strong focus on summative assessment) in learning
analytics by collecting, integrating, and harmonizing data
from several learning systems and at different granular
levels. This approach can generate data that represent a
larger proportion of the learning process and the activities
students engage with. Thus, educators can make effective
and meaningful refinements in the learning designs that
can encourage, enable, and advance learning. At last, al-
though the technological advancements increased the inter-
est for performance-based, formative assessment [115] and
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e-learning systems that can effectively support that [116],
the biggest challenge is that there are many aspects (e.g.,
reliability, validity) of assessment in online settings that are
yet to be comprehend in relation to serving the intended
learning purposes [117].

VI.2 Theoretical and Practical Implications

The presented study provides useful insights for learning
technology researchers, designers, and developers, by intro-
ducing the concept of cross-platform analytics architecture
that could measure the effectiveness and fine-tune learning
designs, to maximize learning opportunities in distributed
settings. The findings support the importance of harnessing
data across various learning systems by emphasizing the
potential of leaving the exclusive focus on single source
data. By quantifying the usefulness of cross-platform learn-
ing analytics, we would like to invite learning technology
designers to focus on the development of valuable intercon-
nected functionalities, affordances, and resources.

One of the most important implications of this paper
is related to how learning technology and user experience
researchers and practitioners can employ analytics across
platforms and build cross-platform methodologies to make
sense of the requirements that steam from different learning
designs, as well as take design decisions for various learner
groups. The 21st-century learning systems are expected to
become more interconnected and personalized (e.g., Khan
Academy, Udacity), and incorporate smart and adaptive
behavior (e.g., Adaptemy, Dreambox, SmartSparrow). How-
ever, there is a lack of the state-of-the-art empirical ap-
proaches that can combine and identify what analytics can
measure the effectiveness of learning designs, and how var-
ious stakeholders can benefit from those combinations. Tak-
ing a cross-platform analytics approach provides a unique
opportunity to enrich the contemporary capacities of the
current learning systems, by using statistical and machine
learning techniques as a “diagnostic” practice that educators
can utilize it, to improve the quality of the instructional
conditions. This will allow contemporary learning ecosys-
tems to leverage the capacities of their learning analytics
and maximize their innovation potential.

On the practical side, we managed to propose and im-
plement in practice a cross-platform architecture that inte-
grates and interconnects analytics capabilities, and enhances
the present analytics capacities of ProTuS. As elaborated
in the related work, currently there are many conceptual
frameworks and software architectures that emphasize the
need for a cross-platform methodologies; however, none at
present completely solves the problem of collecting, inte-
grating, and harmonizing learning-related behavioral log
data from several distributed environments. The proposed
architecture presents the minimum technical architecture
requirements and provides solution for data format inter-
operability and integration issues.

Despite the limitations of this study, we obtained posi-
tive and encouraging results, that developing cross-platform
architecture and combining data across several learning
systems can advance the state-of-the-art in developing an
ecosystems of “dynamic, interconnected, and ever-evolving
community of learners, instructors, tools, and content” [4],

as well as toward predictive models that can provoke reflec-
tion and action among learners and instructors. The humble
analysis approach braces the proof-of-concept in furthering
the understanding of how cross-platform analytics can add
value to enrich the contemporary learner models and lever-
age the capacities of their analytics. Finally, one of the most
significant contributions of this study is the demonstrated
feasibility of the defined concept, where the learner model
is gradually built based on integration of data from three
e-learning systems.

VI.3 Limitations and Future Work

One of the limitations in our analysis is related to the size
of the data set. Although we have 153 students using the
integrated system, not all of them are using the system
frequently. Another limitation is the lack of comprehensive
set of feature extraction, especially the features that can
be extracted from the main tasks or activities related to a
programming exercises. For example, how many times a
student has run an individual test, how many times the
code has been compiled, the number of errors and warnings
resulting from the compiler’s analysis of the code, etc. These
features can lead to improvements in designing program-
ming instructions, assignments, and scaffolds, and reveal
directions for future research on curriculum design and
analytics in computing education. Third, the interpretation
of the importance and significance of the results for learning
design for researchers and practitioners (e.g., instructors) is
limited and difficult to estimate, because it is mainly based
on our understanding and knowledge in learning design
and learning analytics. Therefore, in the future these find-
ings need to be investigated with instructors who would uti-
lize the learning ecosystem in their course. Finally, because
all of our participants are coming from a single university
with a particular pedagogical and instructional approach,
the results from the classification algorithms might have
effect on the generalizability of our findings. Thus, in our
future work, we are planning to extend the content by
developing a programming course for Python. We also plan
to implement the integrated ecosystem in collaboration with
a other universities that offer introduction courses in Java
and Python, to increase the generalization power of our
analyses, to further validate our findings, and to account for
other important features that might have been overlooked
in this analysis.

VIl CONCLUSION

To demonstrate and validate real-life examples of how and
when learning is taking place, educators and researchers
need to embrace the complexity of the learning process and
its distributed nature across various learning settings and
contexts. In that regard, we tried to capture and explore
authentic learner-generated behavior log data coming from
three different e-learning systems (each system resides on
different server at different university). Our objective was
to integrate analytics across e-learning systems with the aim
to explore and understand how to create and measure the
effectiveness of learning designs that can maximize learning
opportunities in distributed learning environments. Conse-
quently, we proposed and implemented a cross-platform

1085
1086
1087
1088
1089
1090
1091
1092
1093

1094

1095

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
111
1112
1113
1114
1115
1116
117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

1128

1129

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

1142



1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159

1160

1161

1162
1163

1164

1165

1166
1167
1168
1169
1170

"7

172

1173
1174
1175
1176
177
1178
179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, MONTH YEAR

architecture for interactive courses and analytics support.
While most of the previous work handles data from one
source, this study aims to present a cross-platform archi-
tecture for simple automatic integration and ease of data
collection from four different data sources. To that end,
this study takes a humble approach to analysis, comparing
learning analytics metrics across three e-learning systems,
using both inference and prediction. The proof-of-concept is
envisioned to be the first step toward utilizing the potential
of cross-platform learning analytics as an added value in
(re)designing and evaluating learning and teaching activ-
ities in distributed learning environments. This approach
should aid users (e.g., educators, learners, instruction de-
signers, and researchers) to engage in informed decision-
making, considering relevant metrics that align with their
goals and needs, and toward personalized and scaled feed-
back practices in digital education.

APPENDIX
EXPLANATION OF ALL OF THE 55 FEATURES

The Appendix A contains a full list of the generated vari-
ables. It includes a table with all 55 features and an expla-
nation for each.
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Features

Explanation

Learning system

number_of_actions
number_of_visited_content
level_of_coding_exercises
sessions_dist
median_sessions_time
median_sessions_act
median_sessions_self_assesment
median_sessions_example_lines

topics_covered

pcex_topics_covered

question_attempts
question_attempts_success
questions_dist
questions_dist_success
questions_sucess_first_attempt
example_lines_actions
pcrs_attempts
pcrs_attempts_success
pers_dist

pers_dist_success

pers_success_first_attempt
pCrs_success_second_attempt
pers_success_third_attempt

pecex_completed_set

pcex_ex_dist_seen
pecex_ch_attempts
pcex_ch_attempts_success
pcex_ch_dist
pcex_ch_success
pcex_success_ﬁrst_attempt
pCex_success_second_attempt
pcex_success_third_attempt
mg_total_loads
mg_topic_cell_clicks
mg_activity_cell_clicks
total_durationseconds
quizjet_durationseconds
pers_durationseconds

pers_durationseconds_first_attempt
pers_durationseconds_second_attempt
pers_durationseconds_third_attempt

pcex_example_durationseconds

pcex_example_durationseconds_median
pcex_example_lines_durationseconds

pcex_challenge_durationseconds

pecex_challenge_durationseconds_median
pcex_challenge_durationseconds_first_attempt

pcex_challenge_durationseconds_second_attempt
pcex_challenge_durationseconds_third_attempt

mastery_grid_durationseconds
total_sub_ass

incom_sub_ass

incor_sub_ass

not_sub_ass

Eclipse_score

# actions in a session

# visited content in a session

difficulty level of the coding exercise

# sessions with the system

median of time spent in a session (seconds)

median of number of activities in session

median of assessment activities done in a session

median of example lines clicked in a session

# topics covered (i.e., at least one coding exercise was solved in that
topic)

# topics covered for pcex (i.e., at least one challenge was solved in that

topic)

total attempts on questions

successful attempts on questions

distinct number of questions attempted

distinct number of successfully attempted questions

questions solved in the 1st attempt

total number of actions in examples

total attempts on coding exercises

total attempts on coding exercises where all tests were passed
distinct number of coding exercises attempted

distinct number of coding exercises attempted where all tests were
passed

# coding exercises solved in the 1st attempt

# coding exercises solved in the 2nd attempt

# coding exercises solved in the 3rd attempt

# set completed (a set includes an example and all of its related
challenges)

# distinct examples seen

# attempts on challenges

# successful attempts on challenges

# distinct challenges seen

# distinct challenges solved

# challenges solved in the 1st attempt

# challenges solved in the 2nd attempt

# challenges solved in the 3rd attempt

MasteryGrids loads

MasteryGrids clicks on topic

MasteryGrids click on content

total time spend in the system in one session

total time spend on quiz

total time spent on coding exercises (seconds)

time spent on coding exercises during the 1st attempt (seconds)
time spent on coding exercises during the 2nd attempt (seconds)
time spent on coding exercises during the 3rd attempt (seconds)
total time spent on examples before clicking any line (seconds)
median of time spent on examples before clicking any line (seconds)
total time spent on reading example lines (seconds)

total time spent on challenges (seconds)

median of time spent on challenges (seconds)

time spent on challenges during the 1st attempt (seconds)

time spent on challenges during the 2nd attempt (seconds)

time spent on challenges during the 3rd attempt (seconds)
total time spend in mastery grids statistics

total number of submitted assignments

number of incomplete assignments submitted

number of incorrectly submitted assignments

number of not submitted assignments

total score from all submitted assignments

ProTuS
ProTuS
ProTuS
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids

MasteryGrids

MasteryGrids

MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids

MasteryGrids

MasteryGrids
MasteryGrids
MasteryGrids

MasteryGrids

MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids
MasteryGrids

MasteryGrids

MasteryGrids
MasteryGrids
VLASP
VLASP
VLASP
VLASP
VLASP
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