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Abstract—With the wide expansion of distributed learning environments the way we learn became more diverse than ever. This poses
an opportunity to incorporate different data sources of learning traces that can offer broader insights into learner behavior and the
intricacies of the learning process. We argue that combining analytics across different e-learning systems can potentially measure the
effectiveness of learning designs and maximize learning opportunities in distributed settings. As a step toward this goal, in this study,
we considered how to broaden the context of a single learning environment into a learning ecosystem that integrates three separate
e-learning systems. We present a cross-platform architecture that captures, integrates, and stores learning-related data from the
learning ecosystem. To demonstrate the feasibility and the benefits of cross-platform architecture, we used regression and
classification techniques to generate interpretable models with analytics that can be relevant for instructors in understanding learning
behavior and sensemaking of the instructional method on learner performance. The results show that combining data across three
e-learning systems improve the classification accuracy compared to data from a single learning system by a factor of 5. Our work
highlights the value of cross-platform learning analytics and presents a springboard for the creation of new cross-system data-driven
research practices.

Index Terms—Cross-platform analytics, architecture for educational systems, distributed learning settings, distance education.

F

I INTRODUCTION

1 D IGITAL learning has grown significantly with the rapid2

expansion of Information and Communication Tech-3

nology (ICT) and the concept of ubiquitous computing. This4

trend is a catalyst for learning to happen everywhere and5

at any time, across many different platforms and learning6

systems, situated and shaped by the tasks, the content7

resources, and the dynamics of distributed learning environ-8

ments [1]. Although learning happens anytime and across9

many diverse learning settings, we still lack insights how10

to effectively optimize the learning context and the learner11

experience in these settings [2]. In addition, as learners are12

rapidly embracing the use of novel data-intensive learning13

technologies, they are becoming more demanding and crit-14

ical, creating a challenge how to engage and support them15

when learning takes place in distributed settings [3].16

One promising approach lies in a wider application of17

learning-related data collected from various e-learning sys-18

tems, that once merged, can support a learning ecosystem19

of “dynamic, interconnected, and ever-evolving community20

of learners, instructors, tools, and content“ [4]. The idea21

draws on the work presented in [5], who advocates that22

understanding learning and knowledge creation in dis-23
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tributed settings, requires multi-level analyses on learners’ 24

traces fragmented across time, numerous e-learning sys- 25

tems, and media (i.e., digital substrates where communi- 26

cation modes are encoded). However, mainstream methods 27

and tools often rely on metrics derived from single and many 28

times limited data sources such as grades, submission of 29

assignments, self-reported data, or test performances [6]. 30

On the one had, findings based on metrics extracted from 31

limited data sources, represent only a small proportion of 32

the learning process and the activities students engage with. 33

This, in turn, only partially help educators to understand 34

when and how students learn, and how effectively they 35

use the opportunities for learning as given in the learning 36

design. Thus, current approaches often display the ongoing 37

limitations in the learning analytics field, in which many 38

researchers and educators miss the opportunity to make 39

effective and meaningful refinements in the learning designs 40

that can encourage, enable, and advance learning. 41

On the other hand, learners often make decisions (e.g., 42

whether and what technologies to use) based on the per- 43

ception of what might maximize their chances to succeed 44

[7]; hence, their focus is often on assessment [8], [9]. How- 45

ever, changes in the instructional methods (i.e., adding 46

personalized feedback) can change learners’ single focus 47

on assessment [10] and usage of technologies for reasons 48

other than solely succeeding in the course assessments 49

[6]. Past research has shown that learning design and the 50

instructional conditions strongly affect what technologies 51

and tools students use [6], [11], as well as their level of 52

engagement and performance [12]. Yet, we do not really 53

know how to create and measure the effectiveness of 54

learning designs that can maximize learning opportunities 55

in distributed learning settings. In that respect, learning 56
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analytics has the potential to provide insights into what is57

happening in each and across the different learning systems,58

and thus, examine the effectiveness of the learning design.59

For example, if educators have learning-related data from60

other systems learners use to master skills (e.g., GitHub for61

learning programming), rather then solely from the assigned62

tasks and the learning management system (LMS) in use,63

educators can have improved overview of learners’ progress64

and potential misconceptions, and make pertinent decisions65

to (re)design the learning context when learning behavior66

deviates from the pedagogical intention.67

Consequently, we designed and implemented a study to68

explore if architecting analytics across multiple e-learning69

systems can enhance the analytics capacities of the indi-70

vidual systems, and discussed how the findings can support71

and enhance learning design practices in distributed settings72

[6], [13], [14]. However, developing cross-platform systems73

is a complex and data intensive process [15]. On the one74

hand, the procedure of standards development is inherently75

challenging [16] and there is a lack of data interoperability76

standards for handling and processing data generated from77

different systems [17]. On the other hand, cross-platform78

systems additionally increase the complexity of orchestrat-79

ing learning activities in distributed settings, as educators80

need to deal with the requirements that steam from different81

learning designs [18], [19]. Therefore, it was also necessary82

to explore and define the minimum technical architecture83

requirements essential for setting the foundations to develop84

cross-platform systems.85

To demonstrate proof of concept, we implemented86

a cross-platform architecture that integrates three inde-87

pendent personalized e-learning systems (i.e., ProTuS,88

MasteryGrids, and Visual Learning Analytics System for89

Programming–VLASP) into one learning ecosystem for data90

collection, integration, and harmonization. Since these sys-91

tems automatically capture all user interactions, learning92

analytics was utilized to shed light and give rise to a larger93

phenomenon in digital learning and predictive modeling–94

how to develop predictive models that not only predict per-95

formance and success, but also reveal significant elements96

for teaching practice (e.g., generic and specific), that can97

be applied to improve the quality of learning designs and98

instructional methods [20]. As a result, we present the po-99

tential of cross-platform learning analytics generated from100

behavioral log data, and utilized to show how predictive101

models can be constituted to inform teaching practices as102

a “diagnostic“ tool that can support data-driven changes103

in the learning design, pertinent to the optimization of the104

various technologies used during the course. In that regard,105

we addressed the following research questions:106

• RQ1: What are the benefits of implementing cross-107

platform architecture and harnessing cross-platform108

learning analytics for digital education?109

• RQ2: What implications cross-platform learning an-110

alytics can offer to learning design?111

In sum, the contribution of this paper is threefold: 1)112

Conceptual–to present an ideational model of a digital113

learning ecosystem which supports and harnesses cross-114

platform analytics, 2) Operational–to display the implemen-115

tation of a cross-platform architecture, and 3) Empirical–116

to validate the value of cross-platform data integration for 117

building predictive models that carry the opportunity to 118

reveal significant elements for teaching practice, rather than 119

the long-standing focus on identifying learners at risk of 120

failing a course or solely for predicting learner performance, 121

as it is commonly done in the learning analytics and educa- 122

tional data mining communities. 123

II BACKGROUND 124

Optimizing the learning context and making valid and 125

informed changes in the learning design utilizing learning- 126

related data, was probably one of the first motivations 127

for the emergence of learning analytics [21]. Nowadays, 128

the wide proliferation of distributed learning environments 129

gives rise to opportunities in learning analytics and pre- 130

dictive modeling, to explore how analytics from various 131

learning systems (i.e., cross-platform learning analytics) can 132

be harnessed to enhance the quality of learning designs and 133

instructional methods. 134

II.1 Cross-Platform Learning Analytics 135

Current research often relies on metrics derived from data 136

sources such as grades, submission of assignments, the 137

time learners spent in e-learning, self-reported data, or test 138

performances [6]. However, it often falls behind to consider 139

data from more than one learning system, particularly when 140

learning happens in distributed settings [22]. Nonetheless, 141

the more complex data researchers capture across settings 142

(e.g., interactions with learning materials via LMSs, learn- 143

ing trajectories via problem-based learning), the harder it 144

becomes to synchronize and analyze that data [23], [24]. 145

Although frameworks that describe how to capture and 146

classify data from different sources exist [25]–[27], there is a 147

lack of available tools that could assist researchers to easily 148

establish cross-platform and sometimes multimodal systems 149

[28]–[30]. 150

Learning is distributed across multiple media, locations, 151

and online environments; yet, researchers’ scope is often 152

limited to a single virtual learning environment (VLE) or 153

LMS. This is a common drawback in the field of learning an- 154

alytics that depicts the present-day reality where researchers 155

depend on one-sided learning analytics measures due to 156

the difficulties of extracting, harmonizing, and sensemaking 157

of data from various sources [2]. In a previous work, a 158

conceptual model named Group Learning Unified Environ- 159

ment with Pedagogical Scripting, Monitoring, Analysis, and 160

Across-Spaces Support (GLUEPS-MAASS) was presented, 161

describing how data from multiple sources should be col- 162

lected and integrated, encompassing learning activities in 163

the web, the physical, and the 3D virtual space [31]. How- 164

ever, to the best of our knowledge, this is still a conceptual 165

model, that has not been placed into practice yet. Moreover, 166

there are a few cross-platform patent models [32]–[34] that 167

currently have a pending status. 168

Consequently, we try to overcome some of the on- 169

going issues (e.g., one-sided learning analytics measures, 170

data integration, and interoperability) by proposing a cross- 171

platform architecture that automatically collects, integrates, 172

and harmonizes data from several e-learning systems (i.e., Pro- 173

TuS, MasteryGrids, and VLASP). These data is then used 174
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to explore if combining metrics extracted from multi-system log175

data can increase the predictive power of the individual systems176

with respect to estimating student performance at the end177

of the course, as well as reveal significant metrics that can178

further refine the personalization and the design of learning179

activities and instructional methods.180

II.2 Predictive Modeling in Learning Analytics181

Data-driven approaches to further our understanding of182

learning are particularly relevant for e-learning and learning183

analytics research [35], with predictive modeling being an184

important topic [36]. Many researchers have already uti-185

lized predictive modeling techniques to identify students186

at risk and increase their retention [37], [38], to provide187

early insights about students’ performance and to generate188

interpretable performance models [39]–[41], to improve the189

quality and to scale up feedback [42], and to create interven-190

tion methods that can improve students’ mental health and191

their university experience [43].192

Predictive modeling involves statistical models or data193

mining algorithms to find patterns in the data, and predict194

new or future events [44]. Most of the research in predictive195

modeling forecasts what may happen, and as such has196

shown opportunities for advancing the field of learning197

analytics. However, it has yet to mature to offer a wide-scale198

impact [45]. In other words, predictive models intent to offer199

actionable insights for learners and instructors, so that these200

groups of users can take further actions, rather than increase201

the frequency of feedback (i.e., informing students how202

they stand with respect to meeting the course list criteria)203

[46]. Hints (e.g., the traffic light metaphor in [37]) whether204

learners are at risk of not meeting certain course criteria,205

can help learners to be aware of their current progress, they206

do not offer much beyond that [45]. Therefore, learners and207

instructors do not always find much value and use of such208

predictive models, as these models are limited in provoking209

reflection and action [46], [47]. In the same vein, predic-210

tive models do not always generate actionable insights,211

resulting in limited information for instructors to improve212

their practices and the overall learning design [45], [46]. A213

step toward a more insightful and actionable information214

can be generated by combining predictive with explanatory215

modeling [44], to develop interpretable models with under-216

lying variables that are relevant for instructors and learners217

in understanding learning behavior and making sense of218

instructional methods on learning performance [20].219

To move beyond predictive analytics [20], [47]–[49] and220

to investigate and apply sophisticated and innovative ap-221

proaches, we focused on harnessing cross-platform learning222

analytics in predictive modeling. This way we aimed to explore223

if combining analytics across various systems can increase224

the predictive power of individual learning systems with225

respect to estimating student performance (i.e., grades), as226

well as develop models that reveal significant elements227

for teaching practice, that in future, can help learners, to228

understand the value of different learning resources apart from229

solely maximizing their chances to succeed by getting good230

grades.231

II.3 Standards, Integration, and Interoperability of 232

Learning Systems 233

Systems operate by “understanding“ the data structures 234

they share [50]. Therefore, to perform meaningful analy- 235

sis and produce applicable outcomes, interoperability of 236

data format is paramount. The interoperability challenge 237

is present in the learning analytics community, creating 238

obstacles in implementing a standardized specification at 239

scale that each “data supplier“ or “tools developer“ has 240

to conform to [16]. In fact, “interoperability and scalability 241

are evolution features embodied in the architecture of the 242

software system“ [16, p.32]. Considering this issue, much 243

research in technology-enhanced learning has been focused 244

on enhancing interoperability [51]. Thus, several conceptual 245

frameworks [52] and software architectures [16], [53], [54] 246

have been proposed to effectively store and retrieve large 247

amounts of data generated in e-learning settings. 248

The interoperability issue is not a new one. Since 2001, 249

several learning resource specifications have been devel- 250

oped, including ADL (Advanced Distributed Learning), 251

SCORM (Shareable Content Object Reference Model) [55], 252

IMS Learning Resource Metadata Specification [56], and 253

IEEE LOM (Learning Object Metadata) [57]. These examples 254

have been considered as drivers toward re-usability and 255

interoperability of learning resources [58]. Furthermore, sev- 256

eral industrial solutions, such as the Learning Tools Inter- 257

operability [59] and the Experience API (xAPI) [60], [61] are 258

widely applied, to enhance the interoperability of e-learning 259

systems and tools [16]. xAPI is a standardized approach that 260

clarifies how the collection, storage, analysis, and exploita- 261

tion of data are taking place. The prominence of xAPI con- 262

sists of system independence, easy implementation, and the 263

focus on learner activities [62]. Slowly, but effectively, xAPI 264

specification [61] emerged as a standard vocabulary for 265

communication with distributed data in learning systems, 266

due to its inherent extensibility to accommodate unforeseen 267

data collection needs. 268

Findings from past research present an architecture that 269

tackles the challenge of collecting and managing data from a 270

variety of services and feeds, and with a focus on simplicity 271

and flexibility [30]. The work published in [30] emphasized 272

the implementation and the importance of trackers as main 273

connectors between the activity provider, the LMS, and the 274

data storage component. To that end, our work aims to set 275

up a learning ecosystem consisting of several integrated e-learning 276

systems that rely on distributed and diverse data, which will 277

satisfy the requirements for data format interoperability 278

and harness the potential of combining cross-platform learning 279

analytics. Moreover, with the proposed cross-platform archi- 280

tecture, we aim to present a proof-of-concept emphasizing the 281

importance of holistic understanding of learners’ behavior and 282

progress, relevant for supporting data-driven changes in the learn- 283

ing design, and toward improving and sustaining student 284

engagement utilizing personalized feedback methods [10]. 285

III ARCHITECTURE OF THE PROPOSED LEARNING 286

ECOSYSTEM 287

Our motivation for designing and developing a cross- 288

platform architecture lies in: 289
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1) Offering a modular system that can be easily modi-290

fied by adding new data sources;291

2) Exploring the trade-off between interoperability,292

flexibility, and scalability of the system;293

3) Initiating communication among various stakehold-294

ers (designers, educators, students) to investigate295

how learning analytics might contribute to person-296

alization and flexibility vs. scalability and standard-297

ization of learning;298

4) Demonstrating proof-of-concept for the feasibility299

and the potential of combining analytics across var-300

ious e-learning systems.301

The proposed architecture is developed addressing five302

core functionalities (see Table 1) that the next generation of303

learning ecosystems should have [4]. In addition, considering304

the nature of the learning setting, the following are the305

requirements that have been taken into account during the306

design of the architecture, as suggested by [63]:307

• Data accessibility. Accessibility and data latency308

are two crucial factors that affect data usage for309

instructional improvement [64]. Therefore, the archi-310

tecture model integrates heterogeneous data using311

APIs for mining and retrieving common data formats312

such as JavaScript Object Notation (JSON), comma-313

separated values (CSV), or database storage. This314

way, the infrastructure can support and promote315

standardization, while facilitating data integration316

and harmonization [65], [66].317

• Extensibility. The design needs to follow modular318

architecture with clearly defined and separated com-319

ponents. This approach increases the extensibility of320

the system and decreases the level of effort required321

to implement future functionalities [67].322

• Scalability. Although scalability is a growing con-323

cern for e-learning systems [68], majority of these324

systems are implemented to support their current325

users, with less consideration for future user-base326

growth. The model of our proposed architecture aims327

to provide a better code structure, ability to run as328

a distributed application with faster resource usage,329

and thus, support future scaling of the user base.330

To reach the goals of the proposed architecture, the331

design and development stages followed approaches de-332

fined in system development research [69], best practices in333

software design [66], and principles of software engineering334

for learning systems [70]. Thus, the architectural design335

decisions have been emphasized through two views [71]:336

• The conceptual view shows the composition of the337

concepts necessary for system execution. This view338

represents the conceptual model of the system and339

explains the communication and data aggregation340

processes between the different components.341

• The implementation view shows the topology of the342

implemented solution, the architectural layers, and343

the physical connection between the three e-learning344

systems.345

The conceptual view represents the generic overview of346

the system and contains the elements required for collecting347

cross-platform data and analytics, while the implementa- 348

tion view presents the actual execution of the proposed 349

architecture with the use of several existing systems as data 350

providers. Since the purpose of the study is to demonstrate 351

proof-of-concept of the feasibility and applicability of ana- 352

lytics across learning systems, this paper presents only the 353

overall idea that lies behind the proposed cross-platform 354

architecture. 355

III.1 Conceptual Model of Cross-Platform Architecture 356

To minimize challenges (e.g., data formats, undocumented 357

data, or noise in the data) when working with multiple data 358

streams, we propose a conceptual model that promotes and 359

supports integration and interoperability among various 360

data sources. The aim is to develop an integrated ecosystem, 361

that would eliminate the need to manually log in, gather, 362

and synchronize data from different systems. The proposed 363

integration encompasses several functional layers as shown 364

in Fig. 1: 365

• The data processing layer imports, aggregates, 366

transforms, normalizes, and processes data. This 367

layer is responsible for collecting and preparing data 368

for further use and analysis. 369

• The data analysis layer interacts with the stored data 370

to extract business intelligence. 371

• The report generator visualizes data and generates 372

reports based on educators and designers’ prefer- 373

ences. 374

• The data source layer (i.e., learning record store) 375

stores data in standardized and consistent format. 376

• The application front end (i.e., learning analytics 377

dashboard) accommodates different reports, visual- 378

izations, and solutions, for report customization and 379

personalized feedback. 380

III.2 The Implemented Architecture of the Integrated 381

System 382

This section presents the implemented learning ecosystem 383

that encompasses three e-learning systems, i.e., ProTuS, 384

MasteryGrids, and VLASP. The proposed architecture of 385

the learning ecosystem aggregates data from four different 386

data providers, and thereby, supports cross-platform learn- 387

ing analytics. The following are the e-learning systems we 388

integrated: 389

• ProTuS is an intelligent e-learning system for learn- 390

ing programming basics. ProTuS allows educators to 391

design and implement their own learning content, 392

in addition to the option for easy integration of 393

learning content from third-party providers, such 394

as wiki pages or YouTube videos. For this study, 395

lectures from Confluence wiki pages were used to 396

cover the basic Java concepts. ProTuS also provides 397

personalization techniques and several methods for 398

recommending learning content [72]. 399

• MasteryGrids is an open social learner modeling 400

interface, written in JavaScript [73]. The interface 401

shows learners’ progress in different topics com- 402

pared to other learners or the class. It also provides 403
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TABLE 1
The Core Functionalities of a Learning Ecosystem

Goals Core functionalities

Identify learners’ characteristics, goals, skills, strategies, and needs. Personalization

Monitor, assess, and predict students’ behavior, progress, and performance. Analytics and learning assessment

Process, interpret, and utilize data across learning systems. Interoperability and integration

Provide real-time actionable feedback. Advising and support

Visualize metrics based on cross-platform analytics and educational theories. Explanation and interpretation

Fig. 1. The general architecture.

adaptive navigation support for learning content404

with stars indicating recommendations. The system405

tracks learners’ activities and updates learner knowl-406

edge levels in a centralized user modeling server.407

This allows MasteryGrids to report the progress408

level (i.e., based on activities) and the knowledge409

level (i.e., based on estimated learner knowledge).410

MasteryGrids collects activity data from two data411

providers:412

– PCLab includes interactive examples and chal-413

lenges developed at University of Pittsburgh414

[74]. The system tracks learner activity, includ-415

ing students’ trial and error approaches.416

– Programming Course Resource System417

(PCRS) includes coding exercises developed418

at University of Toronto [75]. This system tests419

learners’ solutions against a set of unit tests420

for a particular problem, while the results are421

stored in the data source layer.422

• Visual learning analytics system for programming423

(VLASP) is an Eclipse plug-in that monitors learners’424

progress in programming, tracks learner behavior425

while learners develop/debug code in Java, and426

reflects progress to learners as a mirroring tool [76].427

The environment monitors progress and visualizes428

metrics (e.g., how many times a student has run429

an individual test, how many times the code has430

been compiled) associated with learner behavior and431

performance during programming/debugging activ-432

ities. The main goal of the system is twofold: 1) to433

collect data about learner activities, so that educators434

can better understand how learners program/debug;435

and 2) to mirror learners’ own actions back to them,436

as a way to increase awareness and motivation, foster437

self-reflection, and facilitate improvements in their 438

programming habits [77]. 439

ProTuS, MasteryGrids, and VLASP are separately de- 440

signed and implemented systems; thus, their data models 441

are different. The integrated learning environment has to 442

provide access to different data structures, combine those 443

data structures, and harmonize the data formats. Therefore, 444

Visualized Education NTNU (VENT) [78] has been created 445

and presented as a layer on top of the modules of each data 446

source, consisting of a VENT system object notation (VSON) 447

model and a VENT controller. This layer contains the data 448

source controllers that act as conversion layers from the 449

source model (e.g., JSON format) to VSON format which is 450

then exposed by the VENT controller. Finally, because three 451

e-learning systems were utilized in this study, we selected 452

ProTuS to be a portal for seamless integration of different 453

content providers. The overview of the data sources and 454

integrated learning environments employed in the study is 455

shown in Fig. 2. 456

IV METHODOLOGY 457

IV.1 Research Approach 458

The approach adopted in this study is based on design- 459

based research (DBR) [79]. DBR utilizes an iterative process 460

of design, implementation, analysis, and revision of models, 461

with two primary goals: to construct knowledge and to 462

develop solutions [80]. Hence, a series of DBR cycles were 463

performed to develop the learning analytics component (i.e., 464

first DBR cycle) [72], the adaptability feature, i.e., adaptive 465

assessment (i.e., the second DBR cycle) [81], and the cross- 466

platform architecture (i.e., the third DBR cycle) [82]. 467

In the first DBR cycle, a focus group was organized with 468

12 teaching assistants (TAs), to understand and generate 469
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Fig. 2. Aggregated data sources.

the best practices they had accumulated over the last few470

years, by closely working with students from introductory471

programming courses. The TAs were computer science (CS)472

majors, that were in their third or fourth semester of bach-473

elor CS studies at the Norwegian University of Science474

and Technology (NTNU). The focus in the first DBR cycle475

was on participatory [83] and human-centered [84] design476

approaches in the development of the learning analytics477

component. These approaches were employed to support478

the design of seamless user experience in personalized e-479

learning systems [3]. Applying affinity diagram technique480

and usability survey, we transformed the generated best481

practices into design guidelines and applied them in the482

second DBR cycle.483

In the second DBR cycle we focused more on learners’484

behavior and requirements, because personalized e-learning485

systems need to acknowledge and model users’ natural486

behavior, so that the interaction is intuitive and minimizes487

users’ cognitive workload. Therefore, we designed an ex-488

periment to explored how students interact with the new489

learning analytics module in ProTuS. The purpose of the490

second DBR cycle was to explore learners’ trajectories dur-491

ing five quiz activities. A total of 66 students participated492

in the study and each student was asked to fill out one493

quiz at a time. After every quiz, the students were asked494

to reflect and monitor its own progress with the help of495

the generated reports utilizing learning analytics, and then496

continue to the next quiz assignment. All 66 students were497

CS majors in their second semester of bachelor studies. The498

insights generated from this study were used to develop the499

adaptive assessment feature in ProTuS.500

The last DBR cycle is the focus of this study, which is the501

development, the implementation, and the evaluation of the502

proposed cross-platform architecture. All three DBR cycles503

have used the framework for modeling personalization di-504

mensions proposed by [85]. This framework was selected505

to develop personalization features in ProTuS following six506

personalization dimensions in intelligent tutoring systems507

(ITSs) and adaptive educational hypermedia [85].508

IV.2 Implementation 509

IV.2.1 Context and Participants 510

The research context for this study was an introductory 511

object-oriented programming (OOP) course offered to un- 512

dergraduate students at NTNU. The course content was 513

delivered online (e.g., reading materials, assignments, ex- 514

amples) and once a week in a classroom setting (e.g., 515

lectures and labs). During the course (which lasted for 3 516

months) the students were required to submit ten individual 517

assignments and undertake a final mandatory exam. The 518

grade students get at the end of the course is based only 519

on the final exam. The instructor used the university LMS 520

to distribute the relevant course materials and Eclipse inte- 521

grated development environment (IDE) for the submission 522

of the individual assignments. In addition, the instructor 523

introduced ProTuS and MasteryGrids, as non-mandatory 524

learning systems, that students could use to practice and 525

learn Java. 526

The sample was comprised of 153 participants, freshman 527

CS majors, who were in their second semester. All par- 528

ticipants had already taken an introductory programming 529

course in Python in their first semester; thus, it was assumed 530

that they have already mastered a basic knowledge in pro- 531

cedural programming. The study focused on a set of online 532

activities and participants’ interaction with the educational 533

content. ProTuS has been used as a portal for seamless in- 534

tegration of content from different content providers, while 535

both ProTuS and VENT have been used to access, record, 536

and collect activity data. The data were collected over the 537

academic year 2018-2019 from logs of the three e-learning 538

systems: ProTuS, MasteryGrids (PCLab, PCRS), and VLASP 539

(see Table 2). 540

IV.2.2 Study design and data collection. 541

Before the start of the study, the participants were intro- 542

duced to the NTNU policy for ethical and data privacy 543

issues, as well as with the purpose of the study and the e- 544

learning systems that they could interact with. The learning 545

content encompassed four types of activities that support 546

individual work aligned with self-regulated learning prac- 547

tices [86]. Participants that used the system signed up with 548
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TABLE 2
Overall Data Collected

Academic year 2018-2019 Value
Overall number of users 389
Number of active users 153
Number of user sessions 2.727
Number of student activities (content visits, submissions, etc) 906
Data sources ProTuS, PCLab, PCRS and VLASP

their university email address; however, in the system they549

got an ID number (e.g., StudentID001) that has been linked550

across the three systems. The three systems provided five551

types of learning content, which are briefly described in the552

following:553

1) Explanations (ProTuS). ProTuS contains reading554

content (i.e., tutorials) on 15 topics that are aligned555

with the curriculum presented in the course. These556

learning materials help students to master concepts557

in OOP (Java language) based on their existing558

knowledge in procedural programming (Python).559

2) Examples (MasteryGrids-PCLab). For each topic560

learners can start with a worked-out example from561

Program Construction EXamples (PCEX) set [87],562

which explains why certain programming con-563

structs are used in the code. Explanations are avail-564

able for almost all lines of code in the example,565

and are hidden until a learner clicks on the lines566

of interest.567

3) Challenges (MasteryGrids-PCLab). Following the568

pedagogical reasoning that examples are more effec-569

tive when a learner solves a problem immediately570

after the example [88], we presented a challenge571

after each example. Each challenge shows a problem572

similar to the one presented in the example, and573

blank lines that need to be filled in by dragging and574

dropping the pieces of code to the blank fields [89].575

4) Coding exercises (MasteryGrids-PCRS). The Pro-576

gramming Course Resource System [75], whose con-577

tent server resides at the University of Toronto,578

provides coding exercise with a problem description579

and a baseline code. When learners submit their580

code, the code is tested against a set of unit tests de-581

veloped for that particular problem, and the learner582

receives an immediate feedback on whether the tests583

were passed or not.584

5) Course assignments (VLASP). The ten individual585

assignments learners solve in Eclipse IDE, as they586

are able to test the code against a set of unit tests587

developed by the instructor. Learners’ Eclipse instal-588

lation has been extended with a plug-in that collects589

data from the learners’ solutions.590

All three systems keep a track of every click and store591

data as logs with time stamps in the learning record store.592

ProTuS collects data about learners’ actions in the system.593

The collected data for our study included the number of594

actions in the system, the time spend in each session, what595

topic a learner selected, and the level of difficulty of the596

coding exercise. According to the level of difficulty, the cod-597

ing exercises (PCRS) have been grouped in ProTuS in five598

categories (e.g., novice, skillful, confident, proficient, and 599

expert). MasteryGrids collects progress data from learners’ 600

interactions with the learning content. The generated data 601

included clicks on lines of explanations in the examples, 602

attempts to solve a challenge, coding exercises solved in the 603

first, second, or third attempt, distinct challenges seen, etc. 604

The challenges and the coding exercises could be attempted 605

multiple times, or until the learner is satisfied with his 606

or her performance. Finally, VLASP collects activity data 607

related to a programming assignment. In our study we 608

collected the number of submitted assignments, the number 609

of incorrect and incomplete submissions, and the number of 610

assignments not submitted at all. A full list of the generated 611

variables is presented in the Appendix A. 612

IV.2.3 Data processing 613

The data were extracted from the learning record store and 614

as .cvs file placed in R Studio, to extract features from 615

all three systems (ProTuS, MasteryGrids, and VLASP). In 616

total, 142 features were extracted from the three e-learning 617

systems, of which after removing the columns that had 618

SD = 0, the final data set included 55 features. Appendix 619

A includes a table with all 55 features plus explanation 620

for each. The data collection and the respective e-learning 621

systems abide by the European data privacy regulations that 622

allow data to be collected and anonymized before use. 623

IV.2.4 Variables 624

To answer the research questions, we selected learners’ 625

performance to be our dependent variable. Learner perfor- 626

mance was computed from the score participants achieved 627

on the individual assignments they submitted, transformed 628

into a grade. The performance from the individual as- 629

signments summarizes participants’ development over the 630

course, considering the applied learning design, and there- 631

fore, it is timely, available during the course run-time, and 632

more granular and representative. The learner performance 633

includes values between 0 and 1000, which was discretized 634

into six levels (i.e., A to F) with the help of the instructor, 635

to resemble a grade that a learner would receive if the 636

instructor assigned grades based on the assignments (i.e., 637

formative assessment perspective) rather than based on the 638

final exam (i.e., summative assessment). The rest of the 639

54 features that were all extracted using the R language, 640

were considered to be the experimental/predictor variables. 641

Appendix A provides a summary of all features. 642

IV.2.5 Data analysis 643

To demonstrate proof-of-concept for the feasibility of the 644

implemented cross-platform architecture, we applied both, 645
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inference and prediction. A statistical model will help us646

infer the relationship between the data variables to a degree647

of statistical significance, and use prediction to identify the648

best course of action. Our aim was to explore how can649

we incorporate hybrid approaches that combine statistical650

methods with machine learning techniques in education,651

particularly when combining analytics across systems and652

data sources.653

First, to get an initial understanding of the measures, a654

descriptive statistic was calculated and the Shapiro-Wilk test655

was used to check for data normality. The Shapiro-Wilk test656

showed that the data did not have a normal distribution (p657

values were significant) but a highly skewed nature. How-658

ever, because linear regression does not assume normality659

for either the predictor or the outcome variable, the lack of660

normal distribution of the collected data was not an obstacle661

to perform a linear regression (for more information please662

look at the GaussMarkov theorem) [90]. We also checked for663

other assumptions important for linear regression to ensure664

that the inferences are appropriate: 1) multicollinearity–there665

was no perfect linear regression between two or more pre-666

dictor variables. We calculated the variance inflation factor667

(VIF) and following the rule of thumb, in order to consider668

problems with collinearity the VIF value should exceed 10,669

which was not the case in our data [91]; 2) homoscedasticity670

or homogeneity of variance, refers to the constant variance671

of the residuals [92]. We checked for homoscedasticity by672

plotting the data and exploring the residuals vs fitted and673

scale-location (or Spread-Location) diagnostic plots, as well674

as running the Levene’s test (p values were not significant)675

[93]; 3) normally distributed errors–we checked if the residuals676

in the model are normally distributed by generating the677

quantile-quantile (Q-Q) plot. The Q-Q plot from our data678

shows that each observation roughly falls on the straight679

line, indicating that the residuals are roughly normally680

distributed.681

Second, we looked into several ways how variables can682

be entered into a model, but because we were conducting683

an exploratory study on all generated variables that does684

not have SD=0, we decided to go with the stepwise method685

(backward direction), which has a lower risk of making Type686

II error (i.e., missing a predictor that does in fact predict687

the outcome) due to supressor effects [91]. The backward688

method starts by placing all predictors in a model and based689

on Akaike Information Criterion (AIC) the model removes690

predictors that cause AIC value to increase. The stepwise691

methods is usually used for exploratory model building692

and when researchers do not know which predictors can693

create the best model [94]. Thus, because there was no694

previous research that we could consider and built upon695

with respect to reported significant variables, we decided to696

build the models on a purely mathematical criterion. Due697

to the selection of the stepwise method, we performed a698

10-fold cross validation.699

Third, we evaluated the performance of each of the se-700

lected features that are shown in Appendix A in predicting701

learner performance (i.e., student grades), using Random702

Forest [95]. Random Forest (RF) as a decision tree-based703

algorithm, is suitable for large numbers of features that are704

strongly correlated [96]. Moreover, RF offers easy extraction705

of feature importance, and has been found to be a top706

performing algorithm in a large comparative study [97]. To 707

build a predictive model (not a representative) when dealing 708

with an imbalance dataset (which is a common problem in 709

the education field) in a multiclass classification problem, 710

we first performed a stratified sampling with respect to the 711

majority class, i.e. grade B, used to control the sampling 712

process. This step was necessary to avoid creating a train 713

and test set with totally different data distributions. Then, 714

we divided the dataset into training (70% of the students) 715

and testing (30% of the students) sets, and applied a hybrid 716

re-sampling technique (i.e, SMOTE) to the training set [98]. 717

Using SMOTE we down-sampled the majority classes and 718

synthesize new data points in the minority classes, using k- 719

nearest neighbours for the new data [98]. This was an impor- 720

tant step in the analysis, because RF algorithm is sensitive to 721

the proportions of the classes, tending to favor the majority 722

class. Finally, to remove the selection bias in the training set, 723

we used 70% of the data to train the model using a 10-fold 724

cross-validation. This reduces the variability and presents 725

more accurate estimates of learners’ performance. 726

At the end, we used RF to measure the importance of 727

the individual features for learner performance (i.e., student 728

grades). While importance of individual classification fea- 729

tures might be calculated in many different ways [99], we 730

used Mean Decrease Gini (MDG) which is based on the 731

reduction in Gini impurity measure. Gini impurity measures 732

how often a randomly chosen data point from the data set 733

will be incorrectly labeled, which is essential for correctly 734

classifying new data points. Classification accuracy (ACC), 735

which is the ratio of the total number of correct predictions 736

and the total number of predictions, is a reliable measure but 737

it is not sufficient to evaluate machine learning classification 738

algorithms [100]. Hence, we employed precision, recall, f- 739

measure, and Cohen’s kappa, as additional measures to 740

evaluate the robustness of the classifier. Precision is the 741

ratio between the true positives and all the positives (true 742

positives + false positives), and gives us the measure of 743

relevant data points; while recall shows the classifier’s po- 744

tential to find all the positive outcomes. Thus, we calculate 745

the average precision and recall, weighted by the number 746

of true instances for each label, to account for the label 747

imbalance. F-score aggregates precision and recall under 748

the concept of harmonic mean that summarizes the model 749

performance. Finally, Cohen’s k shows how the classifier is 750

performing over the performance of a classifier that guesses 751

at random with respect to the frequency of each class. 752

V RESULTS 753

Table 3 shows the results from the stepwise multiple regres- 754

sion (backward direction) in building the exploratory model 755

based on a purely mathematical criterion. In fact, we were 756

interested in identifying variables that have a scientifically 757

meaningful and statistically significant relationship with the 758

learner performance (i.e., the number of points 0-1000). This 759

step was required to explore if architecting analytics across 760

multiple systems can improve the explanation power over 761

the individual systems, and because there is no theoretical 762

grounding that can be used as a starting point for specific 763

predictors (i.e., features/variables) to create the best model. 764
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Fig. 3. Top ten feature importance - Random forest.

The model combination selected with AIC = 1088 is signif-765

icant (F(8,168) = 4600, p < 0.001) and explains 87% of the766

variance in learners’ performance.767

The ProTuS model is not significant (F(3,173) = 0.688,768

p = 0.561) and on its own explains only 12% of the vari-769

ance, while MasteryGrids model although not significant770

(F(46,130) = 1.22, p = 0.193), accounts for 30%. The VLASP771

model (F(3,173) = 1200, p < 0.001) is significant and with772

total, incomplete, and incorrect submissions as predictors,773

accounts for 80% of the variance in learners’ performance.774

Table 4 presents an overview of the main results, listing775

the classifier’s accuracy, Cohen’s k, the average precision, re-776

call, and the f-measure for RF. The features coming from the777

separate systems (e.g., ProTus, MasteryGrids, and VLASP)778

have lower accuracy (and Cohen’s k) than the combined779

features from the integrated system. The best classification780

accuracy of 0.81 (95% CI[0.67, 0.91]) and Cohen’s k 0.79781

comes from the classifier which considers the top 10 features782

(i.e., RandomForest Top 10 features), and was obtained with783

mtry value of 6. Mtry is a parameter of RF which shows784

the number of variables randomly sampled as candidates at785

each split. In our case, the mtry value of 6 means that each786

decision tree took into account only 6 features out of the 54787

features.788

At the end, we performed a feature importance analysis789

and we present the top ten most significant variables shown790

in Fig. 3. We also present the top ten variables across the six791

classes (i.e., grades A to F) as shown in Table 5.792

VI DISCUSSION793

VI.1 Interpretation of the Results with Respect to the794

Research Questions795

Since the nature of this study was exploratory, in which we796

used both inference and prediction, we provide insights into797

association relationships and not causality [100]. Consider-798

ing the results, we outline the positive findings from the799

analyses, as a reinforcement toward the positive findings800

reported by [82].801

VI.1.1 Insights derived from cross-platform learning analyt-802

ics803

With respect to the first research question, the regression804

results presented in Table 3 show that learning analytics de-805

rived from the separate systems, ProTuS and MasteryGrids,806

are not significant and they explain less than 30% of the807

variance, while learning analytics generated from VLASP 808

explain 80%. The analytics from VLASP are directly related 809

to student assessment outcomes, and as such, support the 810

previous research findings [7]–[9], which reported that stu- 811

dents often focus on assessment and technologies that can 812

maximize their chance to succeed (e.g., get a high grade 813

at the end of a course). Moreover, assessment was a major 814

focus of the learning design in the OOP course in which 815

our study was implemented. From past research [11], we 816

know that learning design and the instructional conditions 817

strongly affect what technologies and tools students use. 818

Thus, students’ decision to focus on VLASP more than on 819

ProTuS or MasteryGrids, was based on their perception that 820

can help them to maximize their chances to succeed. In fact, 821

students were required to achieve more than 750 points on 822

the individual assignments to qualify for the final exam, 823

although this score from the individual assignments was 824

not counted in the final grade. 825

Nonetheless, we observed that combining data collected 826

across several distributed learning systems accounted for 827

an additional increase (i.e., 7%) in the explanation of the 828

variance of learner performance. The 7% increase is coming 829

from the following analytics: the level of complexity of a chosen 830

coding exercise, the time students spend navigating in mastery 831

grids to monitor and reflect on their progress, the successful 832

attempts on challenges, and the distinct challenges successfully 833

solved. Although the additional increase in the explanation 834

of the variance is not very large and is with an overall effect 835

of 9%, it is still a significant step (e.g., demonstrating proof 836

of concept) toward building learner models that can explain 837

higher portions of variation in the outcome (e.g. student’s 838

grade performance) by combining analytics across different 839

platforms. Some of these analytics (i.e., correct attempts to 840

problems, distinct problems attempted correctly, and time in 841

mastery grids navigation) have also been found significant for 842

student engagement, usage, and attitude in the open social 843

student modeling (OSSM) compared to the open student 844

modeling (OSM) interface in technology-based learning [89]. 845

The authors [89, p.459] have reported these three analyt- 846

ics/features and additional eleven, as “very attractive for 847

contexts where motivation and retention are critical, such as 848

modern MOOCs.“ 849

After describing the data using a statistical framework, 850

and characterizing the relationship between the variables 851

and the learner performance to a degree of statistical sig- 852

nificance, we utilized machine learning to build different 853

models with various features to predict a label, i.e., i.e. 854

student grade. RF used the associations between the pre- 855

dictors and the learner performance to validate the benefits 856

of cross-platform learning analytics in generating accurate 857

predictions for future outcomes. In addition, we also inves- 858

tigated if cross-platform learning analytics can build predic- 859

tive models that carry an opportunity to reveal significant 860

elements for teaching practice. 861

The results reported in Table 4 are aligned with the 862

findings from the regression analysis, i.e., harnessing cross- 863

platform learning analytics can improve the classification 864

accuracy in predicting learner performance (i.e., student 865

grade). The baseline performance for the proposed learning 866

ecosystem that differentiates between 6 different classes (i.e., 867

students’ grades) is 1/6 or 16.7%. We argue that when 868
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TABLE 3
Stepwise Multiple Linear Regression Combining Features from all 3 Learning Systems

Model adj.R2 B SE B β p
Model Zero
(Intercept) 648 23 0.000
Model Combination 0.871
(Intercept) -4.10 5.31 0.446
level_of_coding_exercises 0.02 0.01 0.65 0.025
mastery_grids_durationseconds 1.21 0.71 0.42 0.033
pcex_ch_attempts_success -9.66 6.34 -0.16 0.095
pcex_ch_success 9.95 6.56 0.16 0.090
total_sub_ass 99.95 0.56 0.99 0.000
incom_sub_ass -33.44 2.50 -0.17 0.000
incor_sub_ass -90.07 4.0 -0.32 0.000
not_sub_ass 1.19 0.85 0.41 0.095
Model ProTuS 0.117
Model MasteryGrids 0.301
Model VLASP 0.801

TABLE 4
Random Forest Classifier. Combo:Combining Features From all Three Learning Systems. Top10: Using Only the Ten Best Features. ProTuS,

MasteryGrids, VLASP: Using Features Solely from one System

Classifier ACC Kappa Precision Recall F-measure
RandomForest combo 0.79 0.69 0.90 0.77 0.87
RandomForest Top10 0.81 0.79 0.92 0.81 0.89
RandomForest ProTuS 0.23 0.01 0.14 0.23 0.37
RandomForest MasteryGrids 0.42 0.05 0.79 0.42 0.59
RandomForest VLASP 0.70 0.65 0.88 0.77 0.78

TABLE 5
Feature Importance Across Classes

Variable A B C D E F
total_sub_ass 53.88 100 43.97 51 33 87.47
not_sub_ass 47.56 78.22 44.62 41.55 34.11 56.26
incor_sub_ass 19.58 60.73 32.38 36 5.21 25.51
total_durationseconds 7.15 20 10 8.50 12.30 15.25
median_session_time 9.51 23.10 14 20 4.31 10.12
number_of_actions 4.48 9 15 10 8.76 3.51
pcex_example_lines_durationsec. 8 30 11.43 15.67 4.22 5.72
mastery_grid_durationsec. 6.12 9 24.62 3.18 12.55 10
level_of_coding_exercises 6.10 2.10 2.50 3.46 7.20 20
incom_sub_ass 7.14 9.75 5 17.30 6.31 34

reporting machine learning results, a baseline performance869

should also be reported, due to the importance of discussing870

performance in relation to the complexity of the machine871

learning task [100]. Thus, the results from the analysis872

show that our learning ecosystem achieved accuracy of 79%873

(RandomForest combo) and 81% (RandomForest top 10),874

exhibiting an improvement in the baseline by a factor of875

3.73 and 3.85 respectively. In other words, the RandomFor-876

est Top10 performance exhibits a 5-fold increase over the877

baseline. Also, looking at the f-measure for RandomForest878

combo and RandomForest Top10 classifiers, one can notice879

that these classifies have demonstrated better robustness (do880

not miss a significant number of instances) and precision881

(how many instances it classifies correctly) measures than882

the rest of the classifiers.883

In a study presented by [101], prediction models have884

shown that combination of mastery data (i.e., mastery score)885

and use intensity data (i.e., number of attempts, time on886

task) from e-tutorial systems that students used to prac- 887

tice homework exercises, constitute a good second best 888

information source (after assessment data) for predicting 889

performance. Their findings [101] strongly support the in- 890

tegrative approach to learning analytics as advocated by 891

[102]. Moreover, our findings also align with these previ- 892

ous findings, that combining analytics across systems in 893

distributed learning environments can provide insights into 894

what is happening in each and across the different systems, 895

and thus, be used to predict performance more accurately. 896

By harnessing cross-platform learning analytics, our pre- 897

dictive models also disclosed the potential for building fu- 898

ture models that can reveal significant elements for teaching 899

practice, which can be utilized to further refine the design of 900

learning activities and instructional methods. In fact, the ad- 901

vantages from analytics generated across various e-learning 902

systems lie in the support that educators will have, to shape 903

teaching and learning with data that is timely and available 904
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during the learning process. We posit that in future, such905

insights can assist educators to examine the effectiveness of906

their learning designs and assessment practices in relation to907

serving the intended educational objectives and pedagogical908

intent, and maximize the learning opportunities in digital909

education.910

VI.1.2 Cross-platform learning analytics to support learning911

design912

Compared to previous studies on predictive modeling that913

have investigated academic success [20], [39], [103], our914

intention was not to build a high performing prediction915

models that outperform other machine learning models,916

but to explore how predictive models can be constituted917

with practical value for educators, to inform teaching and918

learning practices as a “diagnostic“ tool, pertinent to the919

optimization of various technologies.920

Based on the positive findings reported in Table 3 and921

in particular Table 4, we posit that although the best pre-922

dictor for performance is performance itself, there are other923

features also relevant for learner performance (but not all of924

the features) that can be extracted from behavior log data.925

Our findings are supported from previous research [104]–926

[108], which demonstrated that not all analytics that can be927

collected in a learning environment are equally relevant for928

learning, nor the same learning analytics are relevant for929

every student. If we look at Fig. 3, which displays the top930

ten features by importance (generated with RandomForest931

Top10 features classifier), we can observe that in addition to932

the activity data generated from the VLASP system (directly933

related to the assessment outcomes), other analytics at dif-934

ferent granular levels are also significant for learner perfor-935

mance. Therefore, in this paper we present the value of more936

granular data to monitor and assess learner progress, which937

can be utilized to develop interpretable predictive models938

based on cross-platform learning analytics. Such models939

can reveal significant elements from the learning designs940

for understanding behavior and progress in distributed941

settings, in addition to data generated from summative942

assessment or LMS, and instructor’s tacit knowledge, that943

can be harnessed to identify best course of action in making944

reliable and informed decisions.945

Table 5 shows the top ten features across the six classes946

(i.e., students’ grades). For example, if we look at grade947

B, we can notice that although the assignment submissions948

are very important (we explained the role of VLASP in the949

learning design), the time spend on practicing learning tasks950

and the time spend on reading examples before practicing951

exercises, can also be important indicators for a learner per-952

formance. Examples with explanations for the code are com-953

monly used learning resources in learning programming954

that help students grasp various programming structures955

and concepts [109]. To optimize the support for learning956

from examples, instructors can benefit from insights derived957

from interpreatable models as presented in this study, to958

guide students to access the right example at the right time959

[87], [110]. This is an important decision that instructors960

can make, because past studies demonstrated that the effect961

from worked examples is stronger in the early stages of962

learning, and declines gradually as students’ knowledge963

grows [111].964

For grade C, another important indicator can be the time 965

a learner spend navigating in mastery grids to monitor 966

and reflect on their progress. In other words, if learners 967

spend time monitoring and reflecting on their progress, such 968

information can assist the instructor to help those students 969

improve their self-regulation skills and the decisions they 970

make. From a self-regulated learning perspective, learners 971

are considered to be active participants in the learning pro- 972

cess, who construct their own meanings and goals, and can 973

potentially monitor and regulate certain aspects of their own 974

metacognition, motivation, and behavior, from the informa- 975

tion available to them [112]. Thus, more granular data from 976

interpretable models can assist instructors to work toward 977

development of personalized feedback to support students’ 978

self-regulated learning skills, thereby helping their students 979

to become independent professionals, who can shape their 980

own learning. In addition, sharing learning analytics from 981

such interpretable models with students, can enable them 982

to understand the state of their knowledge and use this 983

knowledge to plan their learning [113]. 984

Finally, the last example for grade F, shows that other 985

important features for learner performance can be the level 986

of complexity students choose in the coding exercises and 987

the submission of incomplete assignments. One explanation 988

can be the potential association between these two, sug- 989

gesting that learners who get grade F, might have trouble 990

selecting assignments that match their current knowledge, 991

so they failed to learn meaningfully. Students’ lack of knowl- 992

edge (and potential development of misconceptions) is later 993

demonstrated in the submission of incomplete assignments. 994

In fact, these learners need an intervention through proper 995

scaffolding, to guide them gradually to master skills and 996

learn concepts, by aligning the complexity of the assign- 997

ments with their current knowledge proficiency. This is an 998

action, much in line with the existing research in adaptive 999

learning and intelligent tutoring systems [114]. 1000

In this study, the insights generated from cross-platform 1001

analytics through feature importance, depict a different 1002

approach where more granular data can offer additional 1003

information (not easily observable in digital settings) on 1004

top of the information educators have from the LMS in 1005

use, their tacit knowledge, or the summative and formative 1006

assessment data. Such additional information still does not 1007

reveal the whole picture how students learn, but discloses 1008

significant elements for teaching and learning practice about 1009

how students use the opportunities as given in the learning 1010

design, which can assist educators to further refine the 1011

design of learning activities and instructional methods in 1012

digital education. 1013

In sum, we argue that our approach can overcome some 1014

of the ongoing issues (e.g., one-sided learning analytics mea- 1015

sures, strong focus on summative assessment) in learning 1016

analytics by collecting, integrating, and harmonizing data 1017

from several learning systems and at different granular 1018

levels. This approach can generate data that represent a 1019

larger proportion of the learning process and the activities 1020

students engage with. Thus, educators can make effective 1021

and meaningful refinements in the learning designs that 1022

can encourage, enable, and advance learning. At last, al- 1023

though the technological advancements increased the inter- 1024

est for performance-based, formative assessment [115] and 1025
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e-learning systems that can effectively support that [116],1026

the biggest challenge is that there are many aspects (e.g.,1027

reliability, validity) of assessment in online settings that are1028

yet to be comprehend in relation to serving the intended1029

learning purposes [117].1030

VI.2 Theoretical and Practical Implications1031

The presented study provides useful insights for learning1032

technology researchers, designers, and developers, by intro-1033

ducing the concept of cross-platform analytics architecture1034

that could measure the effectiveness and fine-tune learning1035

designs, to maximize learning opportunities in distributed1036

settings. The findings support the importance of harnessing1037

data across various learning systems by emphasizing the1038

potential of leaving the exclusive focus on single source1039

data. By quantifying the usefulness of cross-platform learn-1040

ing analytics, we would like to invite learning technology1041

designers to focus on the development of valuable intercon-1042

nected functionalities, affordances, and resources.1043

One of the most important implications of this paper1044

is related to how learning technology and user experience1045

researchers and practitioners can employ analytics across1046

platforms and build cross-platform methodologies to make1047

sense of the requirements that steam from different learning1048

designs, as well as take design decisions for various learner1049

groups. The 21st-century learning systems are expected to1050

become more interconnected and personalized (e.g., Khan1051

Academy, Udacity), and incorporate smart and adaptive1052

behavior (e.g., Adaptemy, Dreambox, SmartSparrow). How-1053

ever, there is a lack of the state-of-the-art empirical ap-1054

proaches that can combine and identify what analytics can1055

measure the effectiveness of learning designs, and how var-1056

ious stakeholders can benefit from those combinations. Tak-1057

ing a cross-platform analytics approach provides a unique1058

opportunity to enrich the contemporary capacities of the1059

current learning systems, by using statistical and machine1060

learning techniques as a “diagnostic“ practice that educators1061

can utilize it, to improve the quality of the instructional1062

conditions. This will allow contemporary learning ecosys-1063

tems to leverage the capacities of their learning analytics1064

and maximize their innovation potential.1065

On the practical side, we managed to propose and im-1066

plement in practice a cross-platform architecture that inte-1067

grates and interconnects analytics capabilities, and enhances1068

the present analytics capacities of ProTuS. As elaborated1069

in the related work, currently there are many conceptual1070

frameworks and software architectures that emphasize the1071

need for a cross-platform methodologies; however, none at1072

present completely solves the problem of collecting, inte-1073

grating, and harmonizing learning-related behavioral log1074

data from several distributed environments. The proposed1075

architecture presents the minimum technical architecture1076

requirements and provides solution for data format inter-1077

operability and integration issues.1078

Despite the limitations of this study, we obtained posi-1079

tive and encouraging results, that developing cross-platform1080

architecture and combining data across several learning1081

systems can advance the state-of-the-art in developing an1082

ecosystems of “dynamic, interconnected, and ever-evolving1083

community of learners, instructors, tools, and content" [4],1084

as well as toward predictive models that can provoke reflec- 1085

tion and action among learners and instructors. The humble 1086

analysis approach braces the proof-of-concept in furthering 1087

the understanding of how cross-platform analytics can add 1088

value to enrich the contemporary learner models and lever- 1089

age the capacities of their analytics. Finally, one of the most 1090

significant contributions of this study is the demonstrated 1091

feasibility of the defined concept, where the learner model 1092

is gradually built based on integration of data from three 1093

e-learning systems. 1094

VI.3 Limitations and Future Work 1095

One of the limitations in our analysis is related to the size 1096

of the data set. Although we have 153 students using the 1097

integrated system, not all of them are using the system 1098

frequently. Another limitation is the lack of comprehensive 1099

set of feature extraction, especially the features that can 1100

be extracted from the main tasks or activities related to a 1101

programming exercises. For example, how many times a 1102

student has run an individual test, how many times the 1103

code has been compiled, the number of errors and warnings 1104

resulting from the compiler’s analysis of the code, etc. These 1105

features can lead to improvements in designing program- 1106

ming instructions, assignments, and scaffolds, and reveal 1107

directions for future research on curriculum design and 1108

analytics in computing education. Third, the interpretation 1109

of the importance and significance of the results for learning 1110

design for researchers and practitioners (e.g., instructors) is 1111

limited and difficult to estimate, because it is mainly based 1112

on our understanding and knowledge in learning design 1113

and learning analytics. Therefore, in the future these find- 1114

ings need to be investigated with instructors who would uti- 1115

lize the learning ecosystem in their course. Finally, because 1116

all of our participants are coming from a single university 1117

with a particular pedagogical and instructional approach, 1118

the results from the classification algorithms might have 1119

effect on the generalizability of our findings. Thus, in our 1120

future work, we are planning to extend the content by 1121

developing a programming course for Python. We also plan 1122

to implement the integrated ecosystem in collaboration with 1123

a other universities that offer introduction courses in Java 1124

and Python, to increase the generalization power of our 1125

analyses, to further validate our findings, and to account for 1126

other important features that might have been overlooked 1127

in this analysis. 1128

VII CONCLUSION 1129

To demonstrate and validate real-life examples of how and 1130

when learning is taking place, educators and researchers 1131

need to embrace the complexity of the learning process and 1132

its distributed nature across various learning settings and 1133

contexts. In that regard, we tried to capture and explore 1134

authentic learner-generated behavior log data coming from 1135

three different e-learning systems (each system resides on 1136

different server at different university). Our objective was 1137

to integrate analytics across e-learning systems with the aim 1138

to explore and understand how to create and measure the 1139

effectiveness of learning designs that can maximize learning 1140

opportunities in distributed learning environments. Conse- 1141

quently, we proposed and implemented a cross-platform 1142
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architecture for interactive courses and analytics support.1143

While most of the previous work handles data from one1144

source, this study aims to present a cross-platform archi-1145

tecture for simple automatic integration and ease of data1146

collection from four different data sources. To that end,1147

this study takes a humble approach to analysis, comparing1148

learning analytics metrics across three e-learning systems,1149

using both inference and prediction. The proof-of-concept is1150

envisioned to be the first step toward utilizing the potential1151

of cross-platform learning analytics as an added value in1152

(re)designing and evaluating learning and teaching activ-1153

ities in distributed learning environments. This approach1154

should aid users (e.g., educators, learners, instruction de-1155

signers, and researchers) to engage in informed decision-1156

making, considering relevant metrics that align with their1157

goals and needs, and toward personalized and scaled feed-1158

back practices in digital education.1159

APPENDIX1160

EXPLANATION OF ALL OF THE 55 FEATURES1161

The Appendix A contains a full list of the generated vari-1162

ables. It includes a table with all 55 features and an expla-1163

nation for each.1164
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“Analytics of learning strategies: associations with academic per- 1205

formance and feedback,” in Proc. 9th Int. Conf. on Learn. Analytics 1206

& Knowledge, 2019, pp. 461–470. doi: 10.1145/3303772.3303787 1207

[11] B. Rienties and L. Toetenel, “The impact of learning design 1208

on student behaviour, satisfaction and performance: A cross- 1209

institutional comparison across 151 modules,” Comp. in Human 1210

Behavior, vol. 60, pp. 333–341, 1211

[12] B. Rienties, L. Toetenel, and A. Bryan, “Scaling up learning 1212

design: impact of learning design activities on lms behavior and 1213

performance,” in Proc. Fifth Int. Conf. on Learn. Analytics & Knowl- 1214

edge. ACM, 2015, pp. 315–319. doi: 10.1145/2723576.2723600 1215

[13] G. Lust, J. Elen, and G. Clarebout, “Regulation of tool-use within 1216

a blended course: Student differences and performance effects,” 1217

Comp. & Educ., vol. 60, no. 1, pp. 385–395, 2013. 1218

[14] K. Mangaroska, R. Martinez-Maldonado, B. Vesin, and D. Gaše- 1219
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APPENDIX: EXPLANATION OF ALL OF THE 55 FEATURES 1653

Features Explanation Learning system
number_of_actions # actions in a session ProTuS
number_of_visited_content # visited content in a session ProTuS
level_of_coding_exercises difficulty level of the coding exercise ProTuS
sessions_dist # sessions with the system MasteryGrids
median_sessions_time median of time spent in a session (seconds) MasteryGrids
median_sessions_act median of number of activities in session MasteryGrids
median_sessions_self_assesment median of assessment activities done in a session MasteryGrids
median_sessions_example_lines median of example lines clicked in a session MasteryGrids

topics_covered # topics covered (i.e., at least one coding exercise was solved in that
topic) MasteryGrids

pcex_topics_covered # topics covered for pcex (i.e., at least one challenge was solved in that
topic) MasteryGrids

question_attempts total attempts on questions MasteryGrids
question_attempts_success successful attempts on questions MasteryGrids
questions_dist distinct number of questions attempted MasteryGrids
questions_dist_success distinct number of successfully attempted questions MasteryGrids
questions_sucess_first_attempt questions solved in the 1st attempt MasteryGrids
example_lines_actions total number of actions in examples MasteryGrids
pcrs_attempts total attempts on coding exercises MasteryGrids
pcrs_attempts_success total attempts on coding exercises where all tests were passed MasteryGrids
pcrs_dist distinct number of coding exercises attempted MasteryGrids

pcrs_dist_success distinct number of coding exercises attempted where all tests were
passed MasteryGrids

pcrs_success_first_attempt # coding exercises solved in the 1st attempt MasteryGrids
pcrs_success_second_attempt # coding exercises solved in the 2nd attempt MasteryGrids
pcrs_success_third_attempt # coding exercises solved in the 3rd attempt MasteryGrids

pcex_completed_set # set completed (a set includes an example and all of its related
challenges) MasteryGrids

pcex_ex_dist_seen # distinct examples seen MasteryGrids
pcex_ch_attempts # attempts on challenges MasteryGrids
pcex_ch_attempts_success # successful attempts on challenges MasteryGrids
pcex_ch_dist # distinct challenges seen MasteryGrids
pcex_ch_success # distinct challenges solved MasteryGrids
pcex_success_first_attempt # challenges solved in the 1st attempt MasteryGrids
pcex_success_second_attempt # challenges solved in the 2nd attempt MasteryGrids
pcex_success_third_attempt # challenges solved in the 3rd attempt MasteryGrids
mg_total_loads MasteryGrids loads MasteryGrids
mg_topic_cell_clicks MasteryGrids clicks on topic MasteryGrids
mg_activity_cell_clicks MasteryGrids click on content MasteryGrids
total_durationseconds total time spend in the system in one session MasteryGrids
quizjet_durationseconds total time spend on quiz MasteryGrids
pcrs_durationseconds total time spent on coding exercises (seconds) MasteryGrids
pcrs_durationseconds_first_attempt time spent on coding exercises during the 1st attempt (seconds) MasteryGrids
pcrs_durationseconds_second_attempt time spent on coding exercises during the 2nd attempt (seconds) MasteryGrids
pcrs_durationseconds_third_attempt time spent on coding exercises during the 3rd attempt (seconds) MasteryGrids
pcex_example_durationseconds total time spent on examples before clicking any line (seconds) MasteryGrids
pcex_example_durationseconds_median median of time spent on examples before clicking any line (seconds) MasteryGrids
pcex_example_lines_durationseconds total time spent on reading example lines (seconds) MasteryGrids
pcex_challenge_durationseconds total time spent on challenges (seconds) MasteryGrids
pcex_challenge_durationseconds_median median of time spent on challenges (seconds) MasteryGrids
pcex_challenge_durationseconds_first_attempt time spent on challenges during the 1st attempt (seconds) MasteryGrids

pcex_challenge_durationseconds_second_attempt time spent on challenges during the 2nd attempt (seconds) MasteryGrids

pcex_challenge_durationseconds_third_attempt time spent on challenges during the 3rd attempt (seconds) MasteryGrids
mastery_grid_durationseconds total time spend in mastery grids statistics MasteryGrids
total_sub_ass total number of submitted assignments VLASP
incom_sub_ass number of incomplete assignments submitted VLASP
incor_sub_ass number of incorrectly submitted assignments VLASP
not_sub_ass number of not submitted assignments VLASP
Eclipse_score total score from all submitted assignments VLASP
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