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SKkill Preferences: Learning to Extract and Execute
Robotic Skills from Human Feedback
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Abstract: A promising approach to solving challenging long-horizon tasks has
been to extract behavior priors (skills) by fitting generative models to large offline
datasets of demonstrations. However, such generative models inherit the biases
of the underlying data and result in poor and unusable skills when trained on im-
perfect demonstration data. To better align skill extraction with human intent we
present Skill Preferences (SkiP), an algorithm that learns a model over human
preferences and uses it to extract human-aligned skills from offline data. After ex-
tracting human-preferred skills, SkiP also utilizes human feedback to solve down-
stream tasks with RL. We show that SkiP enables a simulated kitchen robot to
solve complex multi-step manipulation tasks and substantially outperforms prior
leading RL algorithms with human preferences as well as leading skill extraction
algorithms without human preferences.
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1 Introduction

Deep reinforcement learning (RL) is a framework for solving temporally extended tasks that has
resulted in a number of breakthroughs in autonomous control including mastery of the game of
Go [1, 2], learning to play video games [3, 4, 5], and learning basic robotic control [6, 7]. However,
today’s RL systems require substantial manual human effort to engineer rewards for each task which
comes with two fundamental drawbacks. The human effort required to design rewards is imprac-
tical to scale across numerous and diverse task categories and the engineered rewards can often be
exploited by the RL agent to produce unintended and potentially unsafe control policies [8, 9, 10].
Moreover, it becomes increasingly difficult to design reward functions for the kinds of complex tasks
with compositional structure often encountered real-world settings. In this work, we are interested
in the following research question - how can we learn robotic control policies that are aligned with
human intent and capable of solving complex real-world tasks?

Human-in-the-loop RL [11, 12, 13] has emerged as a promising approach to better align RL with
human intent that proposes an alternate approach to traditional RL algorithm design. Rather than
manually engineering a reward function and then training the RL agent, human-in-the-loop RL
proposes for humans to provide feedback interactively to the agent as it is training. This paradigm
shift sidesteps reward exploitation by providing the RL algorithm immediate feedback to align it
best with human intent and, if efficient in terms of human labels required, has the potential to scale
RL training across a diverse variety of tasks more reliably than reward engineering.

So far human-in-the-loop RL systems have been used to play Atari games [12], solve simulated
locomotion and manipulation tasks [11, 13], and better align the output of language models [14].
While these initial results have been promising, human-in-the-loop methods are still out of reach for
the kinds of long-horizon compositional tasks that are desired for real-world robotics. The primary
reason is that current methods do not scale efficiently with respect to human labels for more chal-
lenging tasks. As task complexity increases, the number of human feedback interactions required to
attain a suitable policy becomes impractical.

To address the ability of RL algorithms to scale to more complex long-horizon tasks, a number of
recent works [15, 16, 17] have proposed data-driven extraction of behavioral priors, which we refer
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Figure 1: Our method - Skill Preferences (SkiP) - consists of two phases. During the skill extractions
phase, human feedback is used to learn skills. During the skill execution phase, human feedback is
used to finetune the skills to solve various downstream tasks. First, skills are extracted from a noisy
offline dataset with human feedback to denoise behavioral prior. Second, skills are executed with
RL in the environment with task-specific human feedback.

to as skills. In these methods, a behavioral prior is fit to an offline dataset of demonstrations and
is then used to guide the RL policy to solve downstream tasks by regularizing it to stay near the
behavioral distribution. Such methods have been shown to successfully solve tasks such as diverse
object manipulation [16] and operating a kitchen with a robotic arm [15]. However, they still require
engineered rewards for the downstream tasks and, more importantly, assume access to a clean offline
dataset of expert demonstrations that are specifically relevant to the downstream tasks. In real-world
scenarios, such clean datasets are highly unlikely to exist. We desire skill extraction methods that
are robust to noisy datasets, collected by a range of policies, with highly multi-modal structure.

In this work, we introduce Skill Preferences (SkiP), an algorithm that integrates human-in-the-loop
RL with data-driven skill extraction. Our main insight is that human feedback can be incorporated
not only for downstream RL, as is done in prior work, but also for extracting human-aligned skills.
SkiP learns a human preference function and uses it to weigh the likelihood of trajectories in the
offline dataset based on their degree of alignment with human intent. By incorporating human feed-
back during skill extraction, SkiP is able to extract structured human-preferred skills from noisy
offline data and addresses the core limitation of prior skill extraction approaches - the dependence
on curated expert datasets. SkiP is both capable of efficiently extracting skills and solving different
downstream tasks with respect to human labels. Similar to how prior work in human-in-the-loop
RL suggested replacing manually engineered reward functions with human feedback, our work sug-
gests to replace the manual effort needed to curate clean offline datasets with human feedback. We
summarize our main contributions below:

1. We introduce Skill Preferences (SkiP), an algorithm that incorporates human feedback to
extract skills from offline data and utilize those skills to solve downstream tasks.

2. We show that, unlike prior leading methods for data-driven skill extraction, SkiP is able to
extract structured skills from noisy offline datasets.

3. We show that SkiP is able to solve complex multi-step manipulation tasks in robotic kitchen
environment substantially more efficiently than prior leading human-in-the-loop and skill
extraction baselines.

2 Background

Reinforcement Learning: As is common with RL methods, we assume that the control process is
a Markov Decision Process (MDP) with discounted returns. Such MDPs are defined by the tuple
M = (S, A, R, po,y) consisting of states s € S, actions a € A, rewards R = R(s, a), an initial
state distribution sg ~ po(-), and a discount factor v € [0,1). A control policy maps states to
actions within the MDP and usually takes the form of a probability distribution — a ~ 7(+|s). The
value function V™ (s) and action-value function Q™ (s, a) describe the value with respect to future



expected returns with respect to an initial state or state-action pair.

V™(s) :=Emx Z'th(st,at) | so=s|, Q"(s,a):= R(s,a) + VEsr(|s,a) V()]
t=0
where the first expectation E 4 » denotes actions are sampled according to 7 and future states are
sampled according to the MDP dynamics. The goal in RL is the learn the optimal policy:

€ argmax J(m, M) :=Esp, [V™(5)].

In addition to the standard MDP setting, our method will also learn skills z € Z which consist
of an encoder that maps state-action sequences to a skill ¢'°)(z|s;, ay, ..., Si4m—1,a4+—1) and a
decoder that maps state-skill pairs to atomic actions g (a1, a9, ...,am|s, 2).

3 Method

The two primary contributions of SkiP are (i) introducing human feedback during the skill extraction
process to learn structured skills from noisy data and (ii) utilizing human preferences over skills
for downstream RL training. Our approach shown schematically in Fig. 1 and detailed in full in
Algo. 1. Due to utilizing human feedback to learn the behavioral prior, unlike prior approaches of
skill extraction from offline data [17, 16, 15], our method is robust to suboptimal or noisy data.

The SkiP Algorithm: We first summarize the algorithm and then proceed with its derivation. Shown
in Algo. 1, SkiP consists of two phases - (i) skill extraction and (ii) skill execution. A human teacher
provides feedback during both phases. During skill extraction, a human teacher labels whether a
trajectory is preferred or not (for details see Sec. 4) to train a preference classifier. A behavioral prior
is then fit to the offline data with a weighted human preference function. During skill execution, the
learned skills are rolled out by an RL agent - a Soft Actor-Critic (SAC) [18] - that is trained with task-
specific human preferences. As such, human feedback is used during both phases of the algorithm.
We proceed to define notation and provide a derivation.

Preliminaries and Notation: Our method is composed of two phases - (i) the skill extraction
phase and (ii) the skill execution phase. During the skill extraction phase, we are given an of-
fline dataset D which consists of task-agnostic, multi-modal, and potentially noisy demonstra-
tions. We denote trajectory sequences as 7y = (st, Qty o ooy St H—1, aH_H_l), action sequences
as a; = (ag,...,a:+m—1), and skills which decode into action sequences as z € Z.

Learning Behavioral Priors with Human Feedback (Skill Extraction): Our main insight is to use
human preferences in order to fit a weighted behavioral prior over an offline dataset of (potentially
noisy) demonstrations. Our method builds on prior work for behavioral extraction from offline data
via expected maximum likelihood latent variable models [17, 16, 15].

Specifically, prior work [17, 16, 15] considers a parameterized generative model p,,(at|s:) over

action sequences where a; = (ay, ..., a4+ g—1) that represents a behavioral prior and is trained to
replicate the transition statistics in the offline dataset:
Pa € argmax E..p lz log (pa(atst))] : (1)
¢ t=0

In our approach, we consider an adaptive behavioral prior that is biased towards trajectories that
achieve higher rewards according to the human preference function. This can be particularly useful
in diverse datasets collected with suboptimal or noisy policies or multiple policies of varying exper-
tise. For example, one could imagine multiple humans collecting demonstrations or multiple robots
exploring their environment. Similar to Siegel et al. [19], we seek a behavioral prior that is biased
towards the high reward trajectories in the dataset while also staying close to the average statistics
in the dataset. However, unlike prior work on weighted behavioral priors [19, 20, 21] the weight is
determined through the human preference function and we aim to maximize action-sequence likeli-
hood as opposed to single-timestep actions.

‘We formulate this as:
7|

Pa € argmax E,wp Zw(rt) -palaglsy) | suchthat E.op [Dir (palp)] <6,  (2)
t=0



Algorithm 1 SkiP: Skill Preferences
==== Skill Extraction Phase ====
INPUT: offline dataset B
Initialize prior p, skill encoder g, and skill decoder py, . Initialize learned preference classifier Py,
A human provides labels (y1,y2, ...) for 10% of the trajectories in BB and stores them in a new buffer D
for each iteration do
Update ¢ by maximizing E, ) 5[y - logPy(7) + (1 —y) - log(1 — Py(7))]
for each iteration do ‘
Update p, ¢4,, P, by optimizing £P"*°" (3) {Update preference weighted behavioral prior}
==== SKill Execution Phase ==== R
Initialize parameters of actor 71, critics Qg2 and Qg and reward model R,
Initialize a dataset of preference D <— () and a dataset of transitions 3 < ()
for Each iteration do
for Each environment step do

Zt ~ 7T(Zt|5t), St+H "~ p(St+H|St, Zt), B < B U (St, Zt, Rn(st, Zt)7 5t+H)
if iteration % K == 0 then
for stept=1..M do
(7, 78)) ~ B, query human for label y, D + D U (73, 7%
for each gradient step of En do
Sample (737, 7{*), y) ~ D, update R, with min £¢**"? (7) {Update preferences}
Relabel entire replay buffer 3 with ﬁn
for each gradient step of agent do
Sample (s, a,s’, R) ~ B, update mp; by optimizing £54S. (Appendix A) {Update agent}
Update Qg2 and Qg5 by optimizing £545, (Appendix A)

,Y) {Get preference labels}

where p denotes the empirical behavioral policy and w(s;, a;) is the weighting function. The non-
parametric solution to the above optimization is given by:

Pa(@r]st) o< plag|se) - exp (w(7)/T) ,

where we have used o< to avoid specification of the normalization factor, and 7' represents a tem-
perature parameter that is related to the constraint level 4. The above non-parametric policy can be
projected into the space of parametric neural network policies as [20, 19]:

I7]

Pa € argmax E,p | Y exp (w(ri)/T) - 1og (paladls:) ) | - 3)
t=0

For the choice of the weighting function, we use the learned preference classifier Py (y|7) which
inputs a trajectory and outputs the likelihood of this trajectory being human-preferred with y € [0, 1].
Py (y|7) is learned by sampling a small subset of the offline dataset and soliciting human feedback
to label preferred versus not preferred trajectory: w(7;) := log Py (7).

In this process, we treat the temperature 7" as the hyper-parameter choice. This implicitly defines the
constraint threshold J, and makes the problem specification and optimization more straightforward.
For our practical implementation, we fit a variational autoencoder similar to [17, 15] but softly
weighted to maximize the likelihood of human-preferred transitions. We introduce a latent variable
z with a Guassian prior such that the ELBO loss is given by:

logp(ar|st) > Erup znqy, (z|m) 108 Pg, (atst, 2) +8 (log p(z) — log g, (2]7)]. “4)
Lrec ‘C’mg

This is the standard 3-VAE loss applied to action sequence modeling where [ is a scalar controlling
the regularization strength and ¢4, ¢ are neural network parameters that are optimized during train-
ing. Note that g4, encodes trajectories into a latent vecotr and py, decodes latent vectors and the
starting state back into action sequences. Our training objective weighs this loss with the preference
function. Thus, our overall skill extraction objective is to maximize:

L = arg max ET~D,Z~q¢(Z|T) [Pl[) (7) (Erec + Ereg)] . 5

1,92



Reward learning and human preferences over skills (Skill Execution): Unlike traditional RL
where the hand-engineered rewards are available, we consider the preference-based RL frame-
work [11, 12, 13, 22]: a (human) teacher provides preferences between the agent’s behaviors and the
agent uses this feedback to perform the task. In order to incorporate human preferences into deep
RL, Christiano et al. [11] proposed a framework that learns a reward function }A%n from preferences.
In this work, we modify the preference framework to operate not over atomic state-action transitions
but rather state-skill transitions that have substantially longer time spans.

Formally, we assume access to an offline dataset (the agent’s replay buffer) B of state-action tran-
sitions and sample state-skill sequence pairs Tl(z), 7'2(2) for which a human provides a binary label
y € {0,1}, where 703) = (s4, 2, St 1, 264 1y - - - » S(t+M)H > Z(t+m)H) Where H is the length of
actions the skill decodes to and M is the total number of state-skill transitions. Note how such
trajectories are H times longer than if we were to sample state-action trajectories of length M.

The reward function ﬁ therefore fits a Bernoulli distribution across sequences. In this work, we

learn a parameterized reward function IQ,, as in [13] utilizing a Bradley-Terry model [23] in the
following manner:

ET 1,1
Pn[ﬁ(Z) - T(gz)] = P2 I(St,\ % )i o
Zie{o,l} exp >, Iy (s, 2¢)
Here, the operator A > B means that A is preferred to B. ﬁn can therefore be interpreted as a

binary preference classifier where labels are provided through human feedback. The parameters n
of the neural network are updated by optimizing a binary cross-entropy loss:

(6)

[Reward _ —E(TO,Tl,y)ND [y(O) log .P77 [TO(Z) - Tl(z)} + y(l) lOg Pn [Tl(z) - Téz)ﬂ . )

4 Experimental Setup

Environments: For our experiments, we use the robot kitchen environment and offline dataset from
the D4RL suite [24]. This environment requires a 7-DOF (6-DOF arm and 1-DOF gripper) robotic
arm to solve complex multi-step tasks in a kitchen. Due to the 7-DOF control and compositional
long-horizon nature of the tasks, this environment cannot be solved by standard methods such as
SAC or behavior cloning [15].

Offline dataset: We desire our method to work on suboptimal offline data and, unlike prior skill
extraction approaches [15, 16, 17] do not assume that the offline dataset consists solely of expert
demonstrations. We simulate a noisy offline dataset by combining 601 expert trajectories and 601
noisy trajectories generated by random policy. The expert trajectories involve various structured
kitchen interactions such as opening the microwave and operating the stove. We solicit human
feedback on 10% of the total trajectories or equivalently 120 human labels .

Downstream tasks: We use 6 different downstream tasks shown in Fig. 2 that vary in difficulty to
evaluate our approach. The task suite consists of tasks that require one, two, or three subtasks to
be completed in a row in order to achieve the overall goal. We note that even the tasks with one
subtask is challenging for RL methods that operate over atomic actions and do not leverage skills,
as is shown in the experimental results.

Simulated human: Similar to prior work [11, 13], we obtain feedback from simulated human
teachers instead of real humans. During skill extraction, human provides labels whether a trajec-
tory is noisy or structured.! During skill execution, the simulated human assigns positive labels to
trajectory segments that have made more progress toward completing the desired task. Progress is
calculated by computing ||sas.z — 5||2 — ||s1 — §||2, where § is the state when the target task is
completed.

Baselines: In addition to our method, we compare to Atomic Preferences which we based on PEB-
BLE [13]: a state-of-the-art human preference RL method. it pretrains the SAC agent with behavior
cloning over the optimal offline dataset and trains the online SAC agent with human preferences over

"Here, we remark that limited number of human labels (10% of the total trajectories) is utilized in our
experiments for skill extraction.
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Figure 2: We evaluate in the robot kitchen environment from D4RL [24], which requires a 7-DOF
robotic arm to operate a kitchen. Within this environment, we consider a variety of manipulation
tasks of varying difficulty. The simplest tasks involve one subtask - opening a microwave or moving
the kettle - while more challenging tasks require the agent to compose multiple subtasks. Overall,
we consider 6 evaluation tasks that require chaining one, two, or three subtasks.

kitchen robot

offline noisy dataset

random

expert . -
Human diverse skills

Feedback

Figure 3: An illustration of the skill extraction procedure within the robot kitchen environment.
Starting with a noisy offline dataset, which consists of both expert and random actions, our method
fits a behavioral prior to the offline data using human feedback to identify human-preferred motions
which results in a set of diverse skills that can then be finetuned to downstream tasks.

atomic transitions instead of high-level skill transitions. We also compare to Flat Prior which learns
a single-step action prior on the atomic action space over the optimal dataset and trains an online
SAC agent regularized with the action prior over ground-truth reward. The Oracle we compare to is
SPiRL, a leading skill extraction with access to the ground truth (expert demonstrations and ground
truth reward) in Fig. 4.

5 Experimental Results

For the experimental evaluation of our approach, we investigate the following questions: (a) Can
SkiP solve challenging long-horizon tasks and how does our method compare to prior leading ap-
proaches? (b) How do SkiP compare to an oracle baseline that extracts skills from perfect expert
demonstrations and has access to the ground truth reward? (c) Is it necessary to provide human feed-
back during skill extraction or is it sufficient to fit an unweighted behavioral prior over the offline
data? (d) How should we incorporate human feedback during the skill execution phase?

Main Results: We evaluate SkiP and related baselines on the 6 tasks shown in Fig. 2 and display
the learning curves in Fig. 4. We observe that SkiP is the only method (except for the Oracle) that is
capable of solving the majority of tasks in the robot kitchen task suite and outperforms the baselines
on all environments. On 5 out of 6 tasks, SkiP is able to match the oracle baseline asymptotically
which means that it arrives at the optimal solution.

SkiP is also human-label efficient. During skill extraction, only 120 labels are required to train
the preference classifier. During skill execution, 300-1K labels are required to solve most tasks
depending on the task’s complexity. We hypothesize that human label efficiency is better during the
skill extraction phase because classifying structured and noisy skills from a static offline dataset is
easier than classifying task-specific preferences from an evolving replay buffer. Further human label
efficiency improvements pose interesting research directions for future work.
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Figure 4: SkiP and baselines (Sec. 4) evaluated over six tasks in the robot kitchen environment
shown in Fig. 2. SkiP outperforms both baselines across the majority of the tasks and is the only
method that is capable of matching the Oracle on most tasks. We also compare SkiP to SkiP with 3x
more human labels and find comparable performance between the two versions. SkiP solves most
tasks given 300-1000 human labels depending on the complexity of the task.
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Figure 5: SkiP with human feedback vs SkiP without human feedback during skill extraction. learn-
ing curve with shaded region representing standard error across three seeds. Both algorithms learns
prior from the suboptimal dataset and were evaluated with online RL. SkiP with human feedback
outperforms SkiP without human feedback on all 6 environments

Ablation Studies: To further understand the properties of the SkiP algorithm, we investigate
whether human feedback is necessary during skill extraction as well as how the human preference
reward function compares to alternate approaches to human feedback during skill execution.

Is it necessary to provide human feedback during skill extraction or is it sufficient to fit an un-
weighted behavioral prior over the offline data? The offline dataset used throughout this paper
consists of suboptimal data that is a mixture of expert and random actions. We compare fitting a
human-feedback weighted behavioral prior as opposed to an unweighted behavioral prior that max-
imizes the likelihood of all action sequences equally. For the skill execution phase, both methods
have access to the same human preference reward function. The results shown in Fig. 5 indicate
that the method, which extracts skills without human feedback, is unable to solve any of the tasks
suggesting that human feedback is essential for skill extraction from suboptimal offline data.

How should we incorporate human feedback during the skill execution phase? Instead of prefer-
ences, a simpler approach to learning from human feedback is to provide binary feedback if a task
(or subtask) has been solved and learning a reward classifier to guide the RL agent. We implement
this by providing a positive reward of 1 for a high-level transition (s, z, s¢1 ) when a subtask has
been completed and O otherwise. Using the same number of human queries for both approaches, we
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Figure 6: SkiP with preferences vs SkiP with learned sparse reward. Learning curve with shaded
region representing standard error across three seeds. both algorithms use the same prior. SkiP with
preferences outperforms SkiP with learned sparse reward on 5 out of 6 environments.

compare learning with preferences as opposed to learning from sparse rewards. For both approaches,
we use human feedback for skill extraction. As shown in Fig. 6, RL with a reward classifier for sub-
task completion is able to solve some tasks but generally performs much worse than RL with human
preferences.

6 Related Work

Human-in-the-loop Reinforcement Learning: Several works have successfully utilized feedback
from real humans to train RL agents [25, 11, 12, 26, 13, 27, 28]. One of major directions is directly
utilizing the human feedback as a learning signal [29, 27, 25] but assumed unlimited access to
human labels which limited their practicality for more challenging tasks. To address this limitation,
a number of works proposed learning reward model from human feedback [26, 28, 30, 31, 32, 33].
Recently, several works have successfully combined human preferences with deep RL algorithms
to learn basic locomotion skills as well as playing video games from pixels using human [11, 12,
34, 13]. However, these methods are limited to short-horizon or cyclic tasks and do not scale to
more challenging compositional multi-step tasks. In this work, we investigate how to scale human
preferences to such challenging tasks by specifying preferences over skills.

Data-driven Extraction of Behavioral Priors: Behavioral prior or skill extraction refers to fitting
a distribution over an offline dataset of demonstrations and biasing the agent’s policy towards the
most likely actions from that distribution. Commonly used for offline RL [21, 19, 20], behavioral
priors learned through maximum likelihood latent variable models can also been used as skills for
structured exploration in RL [16], to solve complex long-horizon tasks from sparse rewards [15, 17],
and regularize offline RL policies [21, 20, 35]. A limitation of these skill extraction methods is that
the quality of the behavioral prior is highly dependent on the demonstrations in the offline dataset.
Since a behavioral prior models maximum likelihood transitions in the offline dataset, suboptimal,
noisy, or irrelevant transitions can degrade downstream policy learning. In this work, we introduce
human feedback into the skill extractions phase to learn a human preferred behavioral prior which
enables skill extraction methods to be robust to suboptimal offline data.

7 Conclusion

We presented Skill Preferences (SkiP) an algorithm that uses human feedback for both skill extrac-
tion as well as execution, and showed that SkiP enables robotic agents to solve long-horizon com-
positional manipulation tasks. We hope that this work excites other researchers about the potential
of learning with skills and human feedback.
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A Background

Off-policy RL with Soft Actor-Critic. The Soft Actor-Critic (SAC) [18] is a leading off-policy
RL algorithm. Like other off-policy RL methods, such as DQN [3] or DDPG [36], SAC optimizes
a Q function but does so based on the maximum entropy framework for RL [37]. In addition to
maximizing the reward function, SAC also maximizes the policy entropy which leads to improved
exploration and helps prevent overfitting. As an actor-critic method, SAC optimizes both the actor’s
policy by maximizing a value function as well as a critic with a Bellman loss. The actor’s parameters
are updated to maximize the Q function and policy entropy which is encapsulated by the following
equation:

£iggor = EStNB,atNTFGI |:a log urh (at|5t) - Q92 (Sta at) . (8)

Here, (s¢, a;) are state-action pairs, B is areplay buffer, 6; is the actor’s parameters, 65 are the critic’s
parameters, and « is a scalar value that control the entropy strength. The policy 7y, is parametrized
by a multi-variate Gaussian with a diagonal covariance matrix and outputs the means and standard
deviations that are then used to sample actions from the Gaussian distribution. To update the critic’s
parameters, SAC optimizes a soft Q function by minimizing the soft Bellman loss:

L5 = Er, [ (Qo,(st,at) — Ry —v[Qg, (51, a1) — alog 7, (at|5t)])2 } ) )

where 7; = (s, a¢,5¢11, R¢) is a single timestep transition,  denotes the Polyak averaging of the
critic’s parameters, and « is a temperature parameter.

B Implementation Details

B.1 Hyperparamters

Because we built off of SPIRL [15], we used the same set of hyperparamters for skill extraction and
online RL training. The reward model learning from human preference has the same hyperparamters
as in PEBBLE. [13].

Hyperparameters for Skill Extraction Value

Skill Horizon 10
Ensemble Size 3
Hidden Units 200
Non-linearity ReLU
Optimizer Adam
Learning Rate 0.001
Weight Decay 0.0001
(81, B2) (:9,.999)

Hyperparameters for Skill Execution Value

Query Batch Size 128

Query Frequency 100, 000

Segment Size 5

Sampling Scheme Entropy Exploit
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C Effect of segment size
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Figure 7: The plot compares SkiP with different segment size over the Kettle-Burner-Cab environ-
ment. Lines and shaded area represent mean and standard error over three seeds, respectively.

As shown in Fig 7, unlike PEBBLE [13], we did not find segment size to affect our method’s
performance.
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