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Abstract

This paper is a continuation of the authors earlier work on stability of
Current Density Impedance Imaging (CDII) [R. Lopez, A. Moradifam, Sta-
bility of Current Density Impedance Imaging, STAM J. Math. Anal.; to
appear (2020).] We show that CDII is stable with respect to errors in both
measurement of the magnitude of the current density vector field in the in-
terior and the measurement of the voltage potential on the boundary. This
completes the authors study of the stability of Current Density Indepen-
dence Imaging which was previously shown only by numerical simulations.

1 Introduction

Let o be the isotropic conductivity of an object 2 C R"™, n > 2, where 2 is
a bounded open region in with connected boundary. Suppose J is the current
density vector field generated by imposing a given boundary voltage f on 0f).
Then the corresponding voltage potential u satisfies the elliptic equation

V- (oVu) =0, ulsq = f. (1)

By Ohm’s law J = —oVu, and u is the unique minimizer of the weighted least
gradient problem

I(w) = i Vw|dez, 2

) = min | alVuids )
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where a = |J|, and BV;(Q) = {w € BV (Q),w|sq = f}, see [21, 23, 25, 26, 27].

Note that the weighted least gradient problem (2) is not strictly convex, and
hence in general it may not have a unique minimizer. See [12] where the second
author and his collaborators showed that for a € C1*(Q), 0 < a < 1, the least
gradient problem (2) could have infinitely many minimizers. On the other hand,
since any stability result trivially implies uniqueness, it is clear that one needs
additional assumptions to prove any stability result. Indeed stability analysis of
CDII is a challenging problem. In [17] and [18] the authors proved interesting
local stability results for CDII. Recently in [15] we proved the first global stability
results on CDII. Indeed we proved the following theorems.

Theorem 1.1 ([15]). Let n = 3, and suppose u and @ are admissible with u|sq =
Uloo = f and corresponding current density vector fields J and J, respectively.

Suppose the level sets of u can be foliated to one-dimensional curves in the sense
of Definition 3.4 in [15]. Then

[ = al| o) < CNII = [T 0 (3)
where C' is independent of 4 and &.

Theorem 1.2 ([15]). Let n = 3, and suppose u and @ are admissible with u|gn =
tlaaq = f, corresponding conductivities 0,6 € C*(2), and current density vector
fields J and J, respectively. Suppose 0,6 € C*(Q) and satisfy (25). In addition
suppose u satisfies (17), the level sets of u can be foliated to one-dimensional curves
in the sense of Definition 3.4 in [15], and the level sets of u are well-structured in

the sense of Definition 4.2 in [15]. Then

1
Vi = Vullpio) < Clla = | o g, (4)

for some constant C' is independent of u and &.

Theorem 1.3 ([15]). Let n =3, and suppose u and @ are admissible with u|pn =
Ulog = f, corresponding conductivities 0,6 € C*(Y), and current density vector
fields J and J, respectively. Suppose 0,6 € C?(Q) and satisfy (25). If u satisfies
(17), the level sets of u can be foliated to one-dimensional curves in the sense of
Definition 3.4 in [15], and the level sets of u are well-structured in the sense of
Definition in [15], then

~ 1
lo = &l < ClIIL = 11wy, (5)

for some constant C independent of .



Similar results were also proved in dimension n = 2. A natural question which
remains open is how the presence of errors in measurements of the boundary
voltage f together with errors in measurments of |.J| affect reconstruction of the
conductivity o in the interior? In this paper, we generalize our approach in [15]
to prove that in dimensions n = 2, 3 the following stability result holds

lo = 6llza@) < CulllT] = 1711wy + Collf = Fllireqey: (6)

for some constants C7,Cy independent of 6 (see Theorems 4.5 and 4.6 for pre-
cise statements of the results). The proofs are generalizations of the arguments
developed in [15].

The paper is organized as follows. In Section 2, under very weak assumptions,
we will prove that the structure of level sets of the least gradient problem (2) is
stable. In Section 3, we will provide stability results for minimizers of (2) in L'.
In Section 4, we will prove stability of minimizers of (2) in W and shall use
them to prove Theorems 4.5 and 4.6 which are the main results of this paper.

2 Stability of level sets

In this section, we show that the structure of the level sets of minimizers of the

least gradient problem (2) is stable. Throughout the paper, we will assume that
a,a € C(Q) with

0<m<a(x),a(r) <M Ve and |f(y)|,|f(y)|§M Yy € 0N (7)

for some positive constants m, M. Although in section 2 it is only necessary that
a > 0, we will need a to be bounded away from zero in the above sense in sections
3 and 4.

Remark 2.1. In general the least gradient problem (2) may not have a minimizer
[6, 30]. Throughout the paper we shall assume that (2) has a solution. For sufficient
conditions for the existence of minimizers of weighted least gradient problems we
refer to [9, 12, 20]. Note also that any voltage potential u solving the equation (1)
is also a minimizer of (2).

Theorem 2.2 ([20]). Let 2 C R be a bounded open set with Lipschitz boundary
and assume that a € C(Q) is a non-negative function, and f € L*(09). Then
there exists a divergence free vector field J € (L*>(Q))" with |J| < a a.e. in Q
such that every minimizer w of (2) satisfies

D
-ﬁ —|J=a, |Dw|—ae. in Q (8)
where ‘g—g‘ is the Radon-Nikodym derivative of Dw with respect to |Dw]|.
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Remark 2.3. Throughout the paper we will assume that 0f) is Lipschitz at the
very least.

Lemma 2.4. Let f, f e LY(09). Suppose u solves (1) for ulpq = f, and @ solves
(1) for tlog = f. Then there exists C'(m, M,Q, f) > 0 such that

max{/Q|Dﬂ|,/Q|Du]} <c ()

Proof. Fix w € BV(2) and let @ € BV;(Q2). Then in view of (7) we have

m/|Dﬁ|d9§ < /&|Dﬂ|d$§/&|D1D|d:B§M/|D@D|
0 Q 0 0
< M/|Dw|+M/|D(w—w)|
0 0
< M/|Dw|+MOI||f_f||L1(8Q)
0

< M/\Dw|+M201]Q]:: C(m.M,Q, f),
Q

where we have used Theorem 2.16 in [9] to get the fifth inequality above. Similarly
we can establish an analogous estimate for u and show that [, |Du| < C, where
C' is the constant appearing in the above estimates. Hence

max{/mm,/\puy} <c
Q Q

for some C'(m, M,Q, f) independent of @, u, and f. O

Lemma 2.5. Let f, f € LY(99), and assume u and @ are the corresponding min-
imizers of (2) with the weights a and a, respectively. Then

/a|Du|dx—/EL|DfL]dx
Q Q

for some constants C; = C(m, M, <, f) independent of u, @, and f.

< Cilla = allp=) + Collf = fllrroay,  (10)

Proof. Let w € BV (Q) such that w|sq = f — f. Suppose u, U are the minimizers
of (2) with the weights a and @ and boundary data f and f, respectively. Note:

u—w € BVFQ), i+ w € BVy(Q)



We have

/a|Du|d:13—/d|D€L|dx:/(a—d)(|Du|—|—|Dﬂ|)dm—|—/d|Du|—a|Dﬂ|dx (11)

Q Q Q Q
Hence
/ a|Du|dx — / a|Dildz < (| Dul| i) + | Dl o) la — @l L) + / a|Du| — a|Du|dx

Q Q Q

< 2C|a = al| (o) + / a|Du| — a|Du|dx
Q

Where we have applied Lemma 2.5 to the first term. Focusing on the second term,
we have

/Qd|Du| — a|Dul|dx = /QEL|Du] —a|D(t 4+ w) — Dwl|dz
< /Qau)u\ — a|D(ii + w)| + a| Dw|dz
< /Qd|Du\ — a|Du| 4 a|Dw|dx
< ||DU||L1(Q)||CL—&||L°°(Q)+M/Q|Dw|d95

This comes from the triangle inequality and the fact that « is a minimizer for (2)
on BV;(€2). Now, by invoking the extension Theorem 2.16 in [9] we get:

1Dwl| 1) < C'1f = Fllzro (12)
and subsequently
/Qa\Du]da: - /QdIDfLIdx < 2Cja — al|pee () + MC'|| f — fHLl(aQ) (13)
Similarly, we can prove
| Dilde~ [ alDulds < 2C)a = all ey + MO = Fluson,
and hence (10) follows. O

Let v denote the outer unit normal vector to 0€2. Then for every T € (L>(2))"
with V- T € L™(Q) there exists a unique function [T, v] € L>®(0f2) such that

/ [T, voludH™ ! = / uV - Tdx + / T - Dudx, u€C(Q). (14)
o0 Q

Q
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Moreover, for v € BV (2) and T € (L*(Q2))" with V - T € L"(), the linear
functional u — (7" - Du) gives rise to a Radon measure on €2, and (14) holds for
every u € BV (Q) (see [1, 2] for a proof). We shall need the weak integration by
parts formula (14).

Lemma 2.6. Let f, f € LY(99), and assume u and @ are minimizers of (2) with
the weights a and @, respectively. Let J and J be the divergence free vector fields
guaranteed by Theorem 2.2. Suppose 0 < o(x) < o1 in ) for some constant o1 > 0,
where o is the Radon-Nikodym derivative of |J|dx with respect to |Du| . Then

[ 1=t < Cola=allmioy + Collf = s, (15)
Q
where C; = C(m, M, 01,9, f,u) is a constant independent of a and f.
Proof. We have
/ |J||J| = J - Jda = / o|J||Du| — oJ - Dudx
Q Q

< 01/ |J||Du| — J - Dudzx
Q

0 (/Q|j||Du|dx—/mf[j, mm)

. ( [+ [ (G- nimlas— [ 17 m]da:)
<o ( / Jl\Du| — J - Diadi + |17, v o | f — fum))
<o (

/Q T\ Du| — ||| Ditldz + [1dll syl f — fup(m))

<o ( [ 17D = 11Dz + i - fumm)
(9

where we have used the integration by parts formula (14) to get the second in-
equality above. On the other hand, it follows from Lemma 2.5 that

al/ijDM—WJHDﬂWx=01/WjHDUM—UHDUF%UHDUM—UﬂDﬁww
Q Q

=0 (/ (a — a)|Duldx + / a|Du| — d|D1’l\dx)
0 Q

< 01| Dul| Loy lla — al| Lo (o)

+ 01C||la — C~LHL<><>(Q) +01Col| f — f”Ll(BQ)'



Hence,
/ |JHJ~’ —J- jd.T <o (HDUHLl(Q) + Cl) ||a - EL“LOO(Q)
Q
+ o1 (M +Co) ||f = fllzron),

which yields the desired result. O

Roughly speaking, Lemma 2.6 implies that as a — @ and f — f, Du(r) becomes

. |Dul
parallel to u[;—gl(x) at points where the two gradients do not vanish. We are now

ready to prove the main result of this section.

Theorem 2.7. Let f,f € L'(09), and assume there ezist u and @ which are
minimizers of (2) with the weights a and a and boundary data f and f, respectively.
Let J and J be the divergence free vector fields quaranteed by Theorem 2.2. Suppose
0 < o(z) < o1 in Q for some constant o1 > 0, where o is the Radon-Nikodym
deriwative of |J|dx with respect to |Du| . Then

- 1 L1
1 = Il < Cilla - a”ioo(g) + Gl f - f”zl(agy (16)

where C; = C(m, M, 01,9, f,u) is a constant independent of a and f.

Proof. The second line following from the argument outlined in the beginning of
Theorem 2.5 in [15] we have:

1
~ 12\ 2
\|J—JHL1<Q>:/ (\J—J\) d
Q

g/Q‘m—|J|‘da;+/ﬂ(2(|J||J|—J-j))5dx

:/ya—aydx+/ (2(|JHJ\—J-j))§dx
Q Q
< 9 = alley + 1921 [ 2091171 - 7 Do)

~ 1 ~ 3 1
< [Qlla = all @) + (21920)2 (Cilla = all=@) + Collf = fllz=o0))?
< [Qlla = | L= (o

+ @10} [(Crlla = allz@)? + (Callf = Fllion)? ]
< 10120t + 2C11QN)3 | lla = @l q,

+ [202|Q”§||f - f||,§1(ag),



where we have used the Holder’s inequality and Lemma 2.6. U
Remark 2.8. In view of Theorem 2.2, IZI;_ZI and @—g‘ are parallel to J and J, respec-
tively. So Theorem 2.7 roughly implies that if @ is close to a and f is close to f,
then the structure of level sets of u is close to that of w.

3 L' stability of the minimizers

In this section, we establish stability of minimizers of the least gradient problem
(2) in L'. In general (2) does not even have unique minimizers, so in order to
prove any stability results further assumptions on the weights a,a, and on the
corresponding minimizers are expected.

Definition 3.1. Fiz the positive constants oy, 0, € R. We say that u € C'(Q) is
admissible if it solves the conductivity equation (1) for some o € C(Q2) with

0<oyp<o <o,

and m < |J| = |oVu| < M, where m and M are positive constants as in (7). We
shall denote the corresponding induced current by J = —oVu.

We will first prove our results in dimension n = 2 and then extend them to
dimensions n = 3.

Let u € CY(Q) with |[Vu| > 0 in Q. Then it follows from the regularity result
of De Giorgi (see, e.g, Theorem 4.11 in [9]) that all level sets of u are C' curves.
We will assume that the length of level sets of u in € is uniformly bounded, i.e.

sup/ ldl = Ly < 0. (17)
{u=t}NQ

teR

Theorem 3.2. Let n = 2, and suppose u and u are admissible with ulgn = f,
tlaq = f, and corresponding current density vector fields J and J, respectively. If
u satisfies (17), then
1 L1
Ju =l < Cilla = allfxq) + Collf = fllZ o0y (18)

for some constants C;(m, M, 0q, 01, f,u, Ly) independent of @, &, and f.

Proof. Since u is admissible,

Vu(z)| =



Using the coarea formula we get

T/\u—aydwg/|vuy|u—aydx:// lu— aldSdt.  (19)
01 Ja Q R J{u=t}NQ

Since |Vu| > 01n €2, it follows from the regularity result of De Giorgi (Theorem
4.11 in [9]) that all level sets of u are C* curves. Now let I'; be a connected com-
ponent of {x € Q: u(z) =t} C Q, and v: [0, L] — [; to be a path parametrized
by the arc length with v(0) € 9Q. We will henceforth denote v(0) by z?. Define

Since Vu(y(s)) -7'(s) = 0 on I'y, we have

W(s) = Vu(y(s))-+'(s) = Va(y(s)) -7/ (s)

= (:(7(3))Vu(7(8)) - Vﬂ(V@))) 7' (s).

g

We can rewrite the above equality as

vy J((s) = J(v(s))
D)

-7'(s)-

Note that

and, moreover,
_ [*I0() = T(y(7))
o= [

Now let 7 be a point on I'y where the maximum distance between v and @
along the path v occurs, i.e.

A (r)dr + f(af) = f(x7).

[u(e;) — a(z;)] = maxfu(z) - a(z)].



Then x} = v(sg) for some sy € [0, L], and

uz) — alz;)| = [hso)| =

% 1 5 0y _ (40
A S 700D = T + 17 - Fat)
< 27106 = Fa)ldr + 1562 - Fad).

00 Jo

In particular for every x € I,

u(z) —a(z)] < |u(z;) —alz;)] < Uio/o [J(v(7)) = T(y(r))ldr + [ f(a}) = f(27)],

where L denotes the entire length of I';. Hence

fu(e) — (@)l < Ju(a) — i) | 1d

Ft Ft
< LM|U xy) — u(zy)]
< /rJ ~ TGNl + Ll () — Fa)
= ] = JldL+ Ly | f () = f(aD)],

O'() T;
and therefore
~ Ly 7 0 F0..0
lu —a|dl < — |J — Jldl + Ly | f(xy) — f(z7)]. (20)
{u=t}nN 00 J{u=t}nQ

Since u € C(Q2) solves (1), by maximum and minimum principles for solutions to
elliptic equations,
maxu = max [ := Cf
Q o0

minuy =min f := ¢
Q o0 f !

and hence ¢y < u < Cf, with =M < ¢f, Cy < M. Thus we have
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Cy
/ / |u — a|dldt = / / |u — a|dldt
R J{u=t}nQ cy t}NQ

{u=
Cy 1 - -
<L —|J = J|dl + Ly f(2)) — f g)dt
v | (/{ 1 Jldi + Lyl f(a?) — Fa)

f u=t}NQ 00

Ly [€7 - N Cy
< [ e+ Ll = Pl [t
00 Je; {u=t}NQ cf
I . _
=22 [ 1Vully = Jlde + Lar(Cs = ep)If = Flli=om
I . ~
< 2l [ 1 = Tlde + Lar(Cy = ) = Fllimion

Ly 3 s
< J_OHVU”LW(Q) [ClHa - aHLOO(Q) + ol f - fHLl(aQ)]

+ La(Cp = ep)| f = Fll=con)

LMMcl "
< O—gHa - a”ioo(g)
LMMC 1 1 ~ L
+ [ 00 + L0y — e @) 1F = oy
0

where we have used (20) and Theorem 2.7. Hence (18) follows. Note that

Ciy(m, M, 0q,01, f,u, Ly) are independent of @, &, and f. O

Next we generalize Theorem 3.2 to dimension n = 3. In order to do this, we
need the following additional assumption on level sets of u.

Definition 3.3. Let u € C1(Q) be admissible. We say that level sets of u can be
foliated to one-dimensional curves if for almost every t € range(u), every conected
component Ty of {u = t} (equipped with the metric induced from the Euclidean
metric in R3) there exists a function g,(x) € CH(Ty) such that 0 < ¢, < [V, |g:] <
Cy, for some constants ¢, and C, independent of t (where Vg, is being taken on
the tangent space of I'y). Moreover, every connected component of {u =t} N{g =
r} N Q is a C curve reaching the boundary 0Q for almost every t € range(u)
and all r € R. Similar to the case n = 2, we assume that the length of connected

components of {u =t} N {g = r} NQ are uniformly bounded by some constant
Lyy.

See Remark 3.5 in [15] for a discussion about sufficient conditions that guar-
antee the assumptions in Definition 3.3 to hold.
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Definition 3.4. Let t € range(u) and suppose T't, i € I, are C' connected com-
ponents of {u = t}, where I is countable. Then there exists functions gi : T — R
whose level sets foliate T into one dimensional curves in the sense of Definition
3.3. We define g, : {u =t} — R be the function with

Gilri =g, i€l (21)

We shall use this notation throughout the paper.

Theorem 3.5. Let n = 3, and suppose u and @ are admissible with ulsq = f,
Ulon = f and corresponding current density vector fields J and J respectively.
Suppose the level sets of u can be foliated to one-dimensional curves in the sense
of Definition 3.3. Then

1 Z1
= llox@y < Calla = @ll ey + Collf = Fliecony: (22)
where C(m, M, 00,01, f,u, Ly, cg, Cy, g) is independent of @, &, and f.

Proof. The proof is similar to the proof of Theorem 3.2, and we provide the
details for the sake of the reader. Since u is admissible,

T/\u—aydwg/|vuuu—aydx:// lu—aldSdt.  (23)
01 Ja Q R J{u=t}nQ

The level sets of u can be foliated into one-dimensional curves by level sets of
some function ¢ in the sense of Definition 3.3. Thus

// u — @|dSdt = // V91, _ alasar
{u=t}nQ (u=tyne | V9l
1
:/// |u — a|didrdt
R JR Ju=tynig=rine |Vl
1
§—/// |u — a|dldrdt.
Cg JR JR J{u=t}n{g=r}nQ

Similar to the two dimensional case, we parameterize every connected component
[ of {u=t}N{g=r}NQ by arc length, ~v: [0, L] — T, with v(0) = 2 € 99,
and let h(s) = u(v(s)) — a(v(s)). Let ; be the point that maximizes |u — @| on
I'; and suppose y(sg) = z; for some sg € (0, L), where L is the length of I';. Then
by an argument similar to the one in the proof of Theorem 3.2 we get

Ju(a) — alz;)| < i/0 [J(v(7)) = T (3(7))ldr + | f(af) — flaD)],

g0
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and consequently

() —a@)dl < 20 [ 17— T+ Ll f@) - F@?).

Iy 0o Jry

Hence
~ Ly 7 0 .0
u—aldl < — |J = Jldl+ Ly | f(a7) — fla)]- (24)
{u=t}n{g=r}nQ 00 J{u=tIn{g=r}nQ

Using this estimate and the coarea formula we have

@/|u—a|dx§// lu — @|dSdt
01 Ja R J{u=t}nQ
1
S—/// |u — a|dldrdt
{u=t}n{g=r}nQ
/ [(5 ] = Jldl+ Lul(af) = ) ) drat
{u=t}n{g=r}nQ

= /// J — J|didrdt

CgUo {u=t}n{g=r}nQ

max f maxg 5
3” / — f(a?)|drdt

mln f mm g

I/\

L -
Mog// V|| — J|dSdt
€900 JR J{u=t}n0

IM Ly _
2llgllze@)Ilf = fllz=o0)
g

e WMLl
25 [Vl = Jlde + ST

g
LMC ! -
< 2|Vl (Cilla — oy + Collf = o)
g

N AM Lz ||| =)

IN

+

21f = Fllzom)

g

Ly CyMChy
< T e
LMO 02 4MLM||g||Loo Q 1 ~ %
— LMD | If = Fliw o0
400 Cq
where we have applied Theorem 1.3. Il
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4 Wl stability of the minimizers

In this section, we prove stability of minimizers of (2) in W', As mentioned
in Section 3, in general (2) does not even have unique minimizers, so in order to
prove stability results in W11, it is natural to expect stronger assumptions on the
minimizers.

Lemma 4.1. Let n = 2,3, and suppose u and U are admissible with ulgg =
fitloa = f the respective traces of functions f,f € H3(Q) and corresponding
conductivities o and &, and current density vector fields J and J, respectively.
Suppose 0,5 € C*(Q) with

| o le2@) |l 7 lle2@) < o9 (25)
for some o9 € R. Let

with G = (G1,G2) forn =2 and G = (G1, G, G3) forn=3. Then
IVGillo < Cilld = TN ) (27)

for some constant Cy which depends only on €2, 0o, 02 and || f ||z (q)-

Proof. The proof is similar to that of Lemma 4.1 in [15] and we omit it. U

Next we prove that v and @ are close in W1(Q2). In order to do so, we need
additional assumptions on the structure of level sets of u.

Definition 4.2. Suppose u is admissible, n = 2, and x € Q. Pick h € R? with
|h| =1, and t € R small enough such that x +th € Q. Let I" and I'; be the level
sets of u passing through x and x + th, respectively. Parametrize I' and I'y by the
arc length such that v(0),7:(0) € 02, and denote these parametrizations by vy and
v, respectively.

Similarly in dimension n = 3, let u be admissible and suppose level sets of
u can be foliated to one-dimensional curves in the sense of Definition 5.5. Pick
r € Q and h € R with |h| = 1, and choose t small enough such that x + th € €.
Let I' and T'y be the unique curves in

Hu=71}n{g, =r} 7,r eR}

which pass through x and x+th, respectively, and let vy and ~y; be the parametrization
of these curves with respect to arc length with v(0),~:(0) € 0Q.

We say that level sets of u are well structured if the following conditions are
satisfied
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(a) There exists K > 0 such that

Ye(s) =7 (s)

; <K (28)

for every s € [0,L], t € R, x € Q and h € S""'. In particular,

7, (s) =~ (s) as t—0, (29)
where v'(s) = dzi—(:’) and ~;(s) = dﬁgis).

(b) There exists a bounded function Fy;(s) = F(x,h;s) € L®(QxS"1x[0, Ly])
such that

lim 208 =7(9) _ Fyn(s) (30)

t—0 t
for every s € [0, L], x € Q and h € S"!.

See Remark 4.3 in [15] for a discussion on sufficient conditions which guarantee
the assumptions of Definition 4.2 to hold.

Theorem 4.3. Let n = 2, and suppose u and u are admissible with uloq = f,
tlgo = f, corresponding conductivities 0,6 € C?*(Q), and current density vector

fields J and J, respectively. Suppose 0,6 € C*(Q2) and satisfy (25). If u satisfies
(17), and the level sets of u are well-structured in the sense of Definition 4.2, then

1 "

IV - Vully < Cilla — @l + Collf = fl oy (31)
for some constant C(m, M, og, 01, 09,u, f, L) independent of 4 and &.
Proof. Fix x € Q and h € R? with || = 1. Then

e, h) = (Va(e) — Va(e)) - h = lim L&) Zule )] ~ [a@) — u(@)]

t—0 t

First we estimate the above limit. Since all level sets of u reach the boundary 052,
there exist z, z; € 0S2 such that

Thus

[a(z +th) —u(x +th)] — |

I~41
=
|
I
—
=
Il
=
&
+
~
=
|
=
K
|
=

(2) — u(z)]



= [a(z +th) — u(zy)] — [u(z) — a(2)] + [@(z) — u(z)] — [a(z) — u(2)]
Let v and ~; be the curves passing through x and z+th, described in Definition
4.2 with 4(0) = z and +(0) = 2;. Suppose v(so) = = and reparamterize ; so that
Y¢(S0) = x + th. Then we have

[a(z + th) —u(z)] — [a(x) — @(z)] = [@(y(s0)) — w(7(0))] — [a(v(s0)) — ©(7(0))]

/Vu% A ds—/ Va(y

Now, we can focus on the second term here by noticing

[(z2) = u(z)] = [a(z) —u(2)] = [[(z) = f(z)] = [f(2) = f(2)].

Also, we denote the tangential direction along 9€) at z by 6, and we get,

[f (=) = f(z)] = [F(2) = f(2)]

H ;
o <[f<zt> — S = [f(2) = f(Z)]> Lo Jze =2l
t—0 |2¢ — 2| t—0 t
< |F 1 (0)]lim ([ﬂzt) — Sz - () - f(2)1>
t—0 |Zt — Z|
< | Fllzo@xsn-1x0,La) I V(f - Pl oo
S N Fllpee@xsn-rxpo,ap 1f = fllwreon)- (34)

We can now shift our focus onto the first term (32). Substituting Va by g and
using the fact that J is perpendicular to 7" and v, we get

. ( / TOuls) = JOu3) g / T(1(s)) = T (1(5)) WM) |

=0t 7 (7e(s))

Now define



Hence we get

t—0 t

i ([ Gt ity [T 69) - (s)as).

This term can bounded in the same way as in the proof of Theorem 4.4 in [15], so
we omit the calculation as it is identical. Hence we have

Vi(z) - Vu(@)] < sup  L(z,h)
RER™,|h|=1

—/ T((s)) = J(v(s))ldl

P o / VG (4(5)] + [V Galy(s)) dl

1 F Nz [1f = fllwroe(on)-

IN

Thus,

KL
/|Vu ()]l M/|J 2)|dl

L | F [l /|VG1(:L')] VG (a)|dl
T

+Lar || F |z [|f = fllwr(an,

IN

and consequently

KL ~
/ Vi(z) - Vu(a)|d < 2k / () — J(a)|dl (35)
{u=7}NQ 0o {u=7}NQ
L HFHLOO/ VG ()] + [V Ga(a)|dl
{u=7}NQ

Ly || F il |1f = fllwreoon).

17



Using (35) and the coarea formula we have

"™\ - Vallp < /|Vu||Vﬂ—Vu|dx
01 Q

— // Vi — Vuldidr
R J {u=7}NQ

KL -
< —M / / ] — J|dldr
0o R J{u=7}NQ

b Ly ||F||Lw// VG| + [V Galdldr
{u=7}N0
+ Ly | F e 2M)||f — Fllwreea0)

< KLMM// |7 - I
{u=7}n0 |VU|

00 {u=7}NQ |VU|

+ 2M Ly || F ||z |f = fllwroeqon
KL M
5 /|J J|da

L Fllpee M
L Lu || e /|VG1\+|VG2|dx
o) Q
+ 2MLy || F | If = fllwreon)
KLyM
< 1T =Tl
(Uo>
2Ly Cy || F |z M 7z
+ 1] =T [1q

00
+ 2MLy || F || [|f = fllwrec(any

where we have used Lemma 4.1 to obtain the last inequality. Applying Theorem
2.7, and noting that

~ 1 1
1= J 2o < @MIQD)3,
where M is defined in (7), we arrive at (31). O

Now we prove three dimensional version of this theorem.

Theorem 4.4. Let n = 3, and suppose u and @ are admissible with ulsq = f,
Ulon = f corresponding conductivities 0,6 € C?(2), and current density vector
fields J and J, respectively. Suppose 0,6 € C*(Q) and satisfy (25). In addition
suppose u satisfies (17), the level sets of u can be foliated to one-dimensional

18



curves in the sense of Definition 3.3, and the level sets of u are well-structured in
the sense of Definition 4.2. Then

1 "
Vi = Vullie) < Cilla = al| jo ) + Collf = Flliirseon): (36)

for some constant C;(m, M, 0y, 01,09, u, f, La, cg, Cy) is independent of i and &.

Proof. With an argument similar to the one used in the proof of Theorem 4.3 we
get
KL ~
/ Vi) - Vu(n)ldl < / J(x) — J(x)|dl (37)
T,T 0 T,T

+Ly || F IILoo/ VG ()] + [VGi(2)] + [VGs(x)|dl

T, T

+Lar || F llze [1f = Fllwr=on)

where U, :={u=7}N{g, =r} NQ and G = (Gy, G2, G3) is defined in (26).

It follows follows from (37) and the coarea formula that

EHVQ—Vqu(Q) < /]VuHV&—Vu]dx
o1 Q

= // Vi — VuldSdr
{u=7}NQ2
V| .
- // | g||V — VuldSdr
{u=7}n02 |Vg7'
= ——|Vu — Vuldldrdr
AL/wwm’ |
KL ~
M / // |.J — J|dldrdt
00C JrJR JU; .

L F || g
N J&%Jﬁi///iﬁmﬂ+W@ﬂ+W%MWW
R JR r

+ 2llgllzoe@) Lar | F ||z M) = fllwio o)
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IN

KLMMC ///
————dldrdt
w|vu||v97'

.\ LMM HFHLOO g/// VG| + VG| + VG|
T0cq - Vul[ Vgl

+ AM|\ gl L || F llpe |If = fllwrocon)

_ KLMMC // |J J|det
{u=7}NQ |Vul

LMM H F || o g// VG| + |VGa| + |VG3|
{u=7}N0 ’vu|

+ AM\gllee@ Dot || F e [|f = fllwroegon)
KL MC
M /|J J|da

dsdt

00Cy

L M F o
+ M H HL g / |VG1| + |VG2| + |VG3|CZ$
(Tng Q
+ AM||gllro@ L || F e [[f = fliwrecon)
KLyMC
< =T = Tl
(00)?
QLMClM H F ||LooQ C ~ 1
+ DT =T |2

0o
+ 4M||9||L°°(Q)LM || F HL°° ||f_fHW1’°°(BQ)7

where we have used (4.1) to obtain the last inequality. Applying Theorem 2.7, and
noting that

- 1 1
1 = J 7@ < (2M|Q))2,
we obtain the inequality (31). O

Now, we are ready to prove our main stability results.

Theorem 4.5. Let n = 2, and suppose u and @ are admissible with ulgq = f,
Ulon = f corresponding conductivities 0,0 € C%*(Q), and current density vector
fields J and J, respectively. Suppose 0,6 € C2(Q) and satisfy (25). If u satisfies
(17) and level sets of u are well-structured in the sense of Definition 4.2, then

1 L1
lo=ollpve) Cilla—alfwg +C [ f = f e on)

or some constants C;(m, M, 0, 01,09,0, f, Ly) independent of 7.
tants C, M L nd dent of ¢
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Proof. Using Theorem 4.3 we have

[lo—otar = [ [MUTEI70D 1717
Q Q

d
V||Vl val |

/] i / 1 i
V| - |Valldr + [ —— ‘J— J‘das
Q\Vunvm” | — [Vl Vil [ J] = 1J]
< ¢\Vu—vmda:+/i‘|ﬂ—|j\‘dx
Mo? ! L1
< 22 (G 0=l +Co I £ = F lisocion))
01|92 ~
TP
Mo2Cy  o|Q|(2M)7 .
= m12 + m H a—a ||LOO(Q)
MO-%CQ ~ %
+ m2 H f_f ||Wl,oo(8Q)

O

Theorem 4.6. Let n = 3, and suppose uw and @ are admissible with ulsq = f,
ilog = f corresponding conductivities 0,6 € C*(Y), and current density vector
fields J and J, respectively. Suppose 0,6 € C?(Q) and satisfy (25). If u satisfies
(17), the level sets of u can be foliated to one-dimensional curves in the sense of
Definition 3.3, and the level sets of u are well-structured in the sense of Definition

4.2, then

1 -1
lo =6l <Cilla=allfeq TC2 I f = f lieon:

for some constants C;(m, M, 0q,01,02,0, f, Ly, g) independent of &.

Proof. The proof follows from Theorem 4.4 and a calculation similar to that of
the proof of Theorem 4.5. [
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