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Abstract

This paper is a continuation of the authors earlier work on stability of
Current Density Impedance Imaging (CDII) [R. Lopez, A. Moradifam, Sta-
bility of Current Density Impedance Imaging, SIAM J. Math. Anal., to
appear (2020).] We show that CDII is stable with respect to errors in both
measurement of the magnitude of the current density vector field in the in-
terior and the measurement of the voltage potential on the boundary. This
completes the authors study of the stability of Current Density Indepen-
dence Imaging which was previously shown only by numerical simulations.

1 Introduction

Let σ be the isotropic conductivity of an object Ω ⊂ Rn, n ≥ 2, where Ω is
a bounded open region in with connected boundary. Suppose J is the current
density vector field generated by imposing a given boundary voltage f on ∂Ω.
Then the corresponding voltage potential u satisfies the elliptic equation

∇ · (σ∇u) = 0, u|∂Ω = f. (1)

By Ohm’s law J = −σ∇u, and u is the unique minimizer of the weighted least
gradient problem

I(w) = min
w∈BVf (Ω)

∫
Ω

a|∇w|dx, (2)
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where a = |J |, and BVf (Ω) = {w ∈ BV (Ω), w|∂Ω = f}, see [21, 23, 25, 26, 27].

Note that the weighted least gradient problem (2) is not strictly convex, and
hence in general it may not have a unique minimizer. See [12] where the second
author and his collaborators showed that for a ∈ C1,α(Ω), 0 < α < 1, the least
gradient problem (2) could have infinitely many minimizers. On the other hand,
since any stability result trivially implies uniqueness, it is clear that one needs
additional assumptions to prove any stability result. Indeed stability analysis of
CDII is a challenging problem. In [17] and [18] the authors proved interesting
local stability results for CDII. Recently in [15] we proved the first global stability
results on CDII. Indeed we proved the following theorems.

Theorem 1.1 ([15]). Let n = 3, and suppose u and ũ are admissible with u|∂Ω =
ũ|∂Ω = f and corresponding current density vector fields J and J̃ , respectively.
Suppose the level sets of u can be foliated to one-dimensional curves in the sense
of Definition 3.4 in [15]. Then

‖u− ũ‖L1(Ω) ≤ C‖|J | − |J̃ |‖
1
2

L∞(Ω), (3)

where C is independent of ũ and σ̃.

Theorem 1.2 ([15]). Let n = 3, and suppose u and ũ are admissible with u|∂Ω =
ũ|∂Ω = f, corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector
fields J and J̃ , respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (25). In addition
suppose u satisfies (17), the level sets of u can be foliated to one-dimensional curves
in the sense of Definition 3.4 in [15], and the level sets of u are well-structured in
the sense of Definition 4.2 in [15]. Then

‖∇ũ−∇u‖L1(Ω) ≤ C‖a− ã‖
1
4

L∞(Ω), (4)

for some constant C is independent of ũ and σ̃.

Theorem 1.3 ([15]). Let n = 3, and suppose u and ũ are admissible with u|∂Ω =
ũ|∂Ω = f, corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector
fields J and J̃ , respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (25). If u satisfies
(17), the level sets of u can be foliated to one-dimensional curves in the sense of
Definition 3.4 in [15], and the level sets of u are well-structured in the sense of
Definition in [15], then

‖σ − σ̃‖L1(Ω) ≤ C‖|J | − |J̃ |‖
1
4

L∞(Ω), (5)

for some constant C independent of σ̃.
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Similar results were also proved in dimension n = 2. A natural question which
remains open is how the presence of errors in measurements of the boundary
voltage f together with errors in measurments of |J | affect reconstruction of the
conductivity σ in the interior? In this paper, we generalize our approach in [15]
to prove that in dimensions n = 2, 3 the following stability result holds

‖σ − σ̃‖L1(Ω) ≤ C1‖|J | − |J̃ |‖
1
4

L∞(Ω) + C2‖f − f̃‖
1
4

W 1,∞(Ω), (6)

for some constants C1, C2 independent of σ̃ (see Theorems 4.5 and 4.6 for pre-
cise statements of the results). The proofs are generalizations of the arguments
developed in [15].

The paper is organized as follows. In Section 2, under very weak assumptions,
we will prove that the structure of level sets of the least gradient problem (2) is
stable. In Section 3, we will provide stability results for minimizers of (2) in L1.
In Section 4, we will prove stability of minimizers of (2) in W 1,1, and shall use
them to prove Theorems 4.5 and 4.6 which are the main results of this paper.

2 Stability of level sets

In this section, we show that the structure of the level sets of minimizers of the
least gradient problem (2) is stable. Throughout the paper, we will assume that
a, ã ∈ C(Ω) with

0 < m ≤ a(x), ã(x) ≤M ∀x ∈ Ω and |f(y)|, |f̃(y)| ≤M ∀y ∈ ∂Ω (7)

for some positive constants m,M . Although in section 2 it is only necessary that
a ≥ 0, we will need a to be bounded away from zero in the above sense in sections
3 and 4.

Remark 2.1. In general the least gradient problem (2) may not have a minimizer
[6, 30]. Throughout the paper we shall assume that (2) has a solution. For sufficient
conditions for the existence of minimizers of weighted least gradient problems we
refer to [9, 12, 20]. Note also that any voltage potential u solving the equation (1)
is also a minimizer of (2).

Theorem 2.2 ([20]). Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary
and assume that a ∈ C(Ω) is a non-negative function, and f ∈ L1(∂Ω). Then
there exists a divergence free vector field J ∈ (L∞(Ω))n with |J | ≤ a a.e. in Ω
such that every minimizer w of (2) satisfies

J · Dw
|Dw|

= |J | = a, |Dw| − a.e. in Ω, (8)

where Dw
|Dw| is the Radon-Nikodym derivative of Dw with respect to |Dw|.
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Remark 2.3. Throughout the paper we will assume that ∂Ω is Lipschitz at the
very least.

Lemma 2.4. Let f , f̃ ∈ L1(∂Ω). Suppose u solves (1) for u|∂Ω = f , and ũ solves
(1) for ũ|∂Ω = f̃ . Then there exists C(m,M,Ω, f) > 0 such that

max

{∫
Ω

|Dũ|,
∫

Ω

|Du|
}
≤ C. (9)

Proof. Fix w ∈ BVf (Ω) and let w̃ ∈ BVf̃ (Ω). Then in view of (7) we have

m

∫
Ω

|Dũ|dx ≤
∫

Ω

ã|Dũ|dx ≤
∫

Ω

ã|Dw̃|dx ≤M

∫
Ω

|Dw̃|

≤ M

∫
Ω

|Dw|+M

∫
Ω

|D(w − w̃)|

≤ M

∫
Ω

|Dw|+MC1||f − f̃ ||L1(∂Ω)

≤ M

∫
Ω

|Dw|+M2C1|Ω| =: C(m.M,Ω, f),

where we have used Theorem 2.16 in [9] to get the fifth inequality above. Similarly
we can establish an analogous estimate for u and show that

∫
Ω
|Du| ≤ C, where

C is the constant appearing in the above estimates. Hence

max

{∫
Ω

|Dũ|,
∫

Ω

|Du|
}
≤ C,

for some C(m,M,Ω, f) independent of ũ, u, and f̃ . �

Lemma 2.5. Let f, f̃ ∈ L1(∂Ω), and assume u and ũ are the corresponding min-
imizers of (2) with the weights a and ã, respectively. Then∣∣∣∣∫

Ω

a|Du|dx−
∫

Ω

ã|Dũ|dx
∣∣∣∣ ≤ C1‖a− ã‖L∞(Ω) + C2‖f − f̃‖L1(∂Ω), (10)

for some constants Ci = C(m,M,Ω, f) independent of u, ũ, and f̃ .

Proof. Let w ∈ BV (Ω) such that w|∂Ω = f− f̃ . Suppose u, ũ are the minimizers
of (2) with the weights a and ã and boundary data f and f̃ , respectively. Note:

u− w ∈ BVf̃ (Ω), ũ+ w ∈ BVf (Ω)
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We have∫
Ω

a|Du|dx−
∫

Ω

ã|Dũ|dx =

∫
Ω

(a− ã)(|Du|+ |Dũ|)dx+

∫
Ω

ã|Du|−a|Dũ|dx (11)

Hence∫
Ω

a|Du|dx−
∫

Ω

ã|Dũ|dx ≤
(
‖Du‖L1(Ω) + ‖Dũ‖L1(Ω)

)
‖a− ã‖L∞(Ω) +

∫
Ω

ã|Du| − a|Dũ|dx

≤ 2C‖a− ã‖L∞(Ω) +

∫
Ω

ã|Du| − a|Dũ|dx

Where we have applied Lemma 2.5 to the first term. Focusing on the second term,
we have ∫

Ω

ã|Du| − a|Dũ|dx =

∫
Ω

ã|Du| − a|D(ũ+ w)−Dw|dx

≤
∫

Ω

ã|Du| − a|D(ũ+ w)|+ a|Dw|dx

≤
∫

Ω

ã|Du| − a|Du|+ a|Dw|dx

≤ ‖Du‖L1(Ω)‖a− ã‖L∞(Ω) +M

∫
Ω

|Dw|dx

This comes from the triangle inequality and the fact that u is a minimizer for (2)
on BVf (Ω). Now, by invoking the extension Theorem 2.16 in [9] we get:

‖Dw‖L1(Ω) ≤ C ′‖f − f̃‖L1(∂Ω) (12)

and subsequently∫
Ω

a|Du|dx−
∫

Ω

ã|Dũ|dx ≤ 2C‖a− ã‖L∞(Ω) +MC ′‖f − f̃‖L1(∂Ω) (13)

Similarly, we can prove∫
Ω

ã|Dũ|dx−
∫

Ω

a|Du|dx ≤ 2C‖a− ã‖L∞(Ω) +MC ′‖f − f̃‖L1(∂Ω),

and hence (10) follows. �

Let νΩ denote the outer unit normal vector to ∂Ω. Then for every T ∈ (L∞(Ω))n

with ∇ · T ∈ Ln(Ω) there exists a unique function [T, νΩ] ∈ L∞(∂Ω) such that∫
∂Ω

[T, νΩ]u dHn−1 =

∫
Ω

u∇ · Tdx+

∫
Ω

T ·Dudx, u ∈ C1(Ω̄). (14)

5



Moreover, for u ∈ BV (Ω) and T ∈ (L∞(Ω))n with ∇ · T ∈ Ln(Ω), the linear
functional u 7→ (T · Du) gives rise to a Radon measure on Ω, and (14) holds for
every u ∈ BV (Ω) (see [1, 2] for a proof). We shall need the weak integration by
parts formula (14).

Lemma 2.6. Let f, f̃ ∈ L1(∂Ω), and assume u and ũ are minimizers of (2) with
the weights a and ã, respectively. Let J and J̃ be the divergence free vector fields
guaranteed by Theorem 2.2. Suppose 0 ≤ σ(x) ≤ σ1 in Ω for some constant σ1 > 0,
where σ is the Radon-Nikodym derivative of |J |dx with respect to |Du| . Then∫

Ω

|J ||J̃ | − J · J̃dx ≤ C1‖a− ã‖L∞(Ω) + C2‖f − f̃‖L1(∂Ω), (15)

where Ci = C(m,M, σ1,Ω, f, u) is a constant independent of ã and f̃ .

Proof. We have∫
Ω

|J ||J̃ | − J · J̃dx =

∫
Ω

σ|J̃ ||Du| − σJ̃ ·Dudx

≤ σ1

∫
Ω

|J̃ ||Du| − J̃ ·Dudx

= σ1

(∫
Ω

|J̃ ||Du|dx−
∫
∂Ω

f [J̃ , νΩ]dx

)
= σ1

(∫
Ω

|J̃ ||Du|dx+

∫
∂Ω

(f̃ − f)[J̃ , νΩ]dx−
∫
∂Ω

f̃ [J̃ , νΩ]dx

)
≤ σ1

(∫
Ω

|J̃ ||Du| − J̃ ·Dũdx+ ‖[J̃ , νΩ]‖L∞(∂Ω)‖f − f̃‖L1(∂Ω)

)
≤ σ1

(∫
Ω

|J̃ ||Du| − |J̃ ||Dũ|dx+ ‖ã‖L∞(Ω)‖f − f̃‖L1(∂Ω)

)
≤ σ1

(∫
Ω

|J̃ ||Du| − |J̃ ||Dũ|dx+M‖f − f̃‖L1(∂Ω)

)
where we have used the integration by parts formula (14) to get the second in-
equality above. On the other hand, it follows from Lemma 2.5 that

σ1

∫
Ω

|J̃ ||Du| − |J̃ ||Dũ|dx = σ1

∫
Ω

|J̃ ||Du| − |J ||Du|+ |J ||Du| − |J̃ ||Dũ|dx

= σ1

(∫
Ω

(a− ã)|Du|dx+

∫
Ω

a|Du| − ã|Dũ|dx
)

≤ σ1‖Du‖L1(Ω)‖a− ã‖L∞(Ω)

+ σ1C1‖a− ã‖L∞(Ω) + σ1C2‖f − f̃‖L1(∂Ω).
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Hence, ∫
Ω

|J ||J̃ | − J · J̃dx ≤ σ1

(
‖Du‖L1(Ω) + C1

)
‖a− ã‖L∞(Ω)

+ σ1 (M + C2) ‖f − f̃‖L1(∂Ω),

which yields the desired result. �

Roughly speaking, Lemma 2.6 implies that as a→ ã and f → f̃ , Du
|Du|(x) becomes

parallel to Dũ
|Dũ|(x) at points where the two gradients do not vanish. We are now

ready to prove the main result of this section.

Theorem 2.7. Let f, f̃ ∈ L1(∂Ω), and assume there exist u and ũ which are
minimizers of (2) with the weights a and ã and boundary data f and f̃ , respectively.
Let J and J̃ be the divergence free vector fields guaranteed by Theorem 2.2. Suppose
0 ≤ σ(x) ≤ σ1 in Ω for some constant σ1 > 0, where σ is the Radon-Nikodym
derivative of |J |dx with respect to |Du| . Then

‖J − J̃‖L1(Ω) ≤ C1‖a− ã‖
1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L1(∂Ω), (16)

where Ci = C(m,M, σ1,Ω, f, u) is a constant independent of ã and f̃ .

Proof. The second line following from the argument outlined in the beginning of
Theorem 2.5 in [15] we have:

‖J − J̃‖L1(Ω) =

∫
Ω

(∣∣∣J − J̃∣∣∣2) 1
2

dx

≤
∫

Ω

∣∣∣|J | − |J̃ |∣∣∣ dx+

∫
Ω

(
2(|J ||J̃ | − J · J̃)

) 1
2
dx

=

∫
Ω

|a− ã|dx+

∫
Ω

(
2(|J ||J̃ | − J · J̃)

) 1
2
dx

≤ |Ω|‖a− ã‖L∞(Ω) + |Ω|
1
2

(∫
Ω

2(|J ||J̃ | − J · J̃)dx

) 1
2

≤ |Ω|‖a− ã‖L∞(Ω) + (2|Ω|)
1
2 (C1‖a− ã‖L∞(Ω) + C2‖f − f̃‖L∞(∂Ω))

1
2

≤ |Ω|‖a− ã‖L∞(Ω)

+ (2|Ω|)
1
2

[
(C1‖a− ã‖L∞(Ω))

1
2 + (C2‖f − f̃‖L1(∂Ω))

1
2

]
≤
[
|Ω|(2M)

1
2 + (2C1|Ω|)

1
2

]
‖a− ã‖

1
2

L∞(Ω)

+ [2C2|Ω|]
1
2‖f − f̃‖

1
2

L1(∂Ω),
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where we have used the Holder’s inequality and Lemma 2.6. �

Remark 2.8. In view of Theorem 2.2, Du
|Du| and Dũ

|Dũ| are parallel to J and J̃ , respec-

tively. So Theorem 2.7 roughly implies that if ã is close to a and f̃ is close to f ,
then the structure of level sets of ũ is close to that of u.

3 L1 stability of the minimizers

In this section, we establish stability of minimizers of the least gradient problem
(2) in L1. In general (2) does not even have unique minimizers, so in order to
prove any stability results further assumptions on the weights a, ã, and on the
corresponding minimizers are expected.

Definition 3.1. Fix the positive constants σ0, σ1 ∈ R. We say that u ∈ C1(Ω̄) is
admissible if it solves the conductivity equation (1) for some σ ∈ C(Ω) with

0 < σ0 ≤ σ ≤ σ1,

and m ≤ |J | = |σ∇u| ≤M , where m and M are positive constants as in (7). We
shall denote the corresponding induced current by J = −σ∇u.

We will first prove our results in dimension n = 2 and then extend them to
dimensions n = 3.

Let u ∈ C1(Ω) with |∇u| > 0 in Ω. Then it follows from the regularity result
of De Giorgi (see, e.g, Theorem 4.11 in [9]) that all level sets of u are C1 curves.
We will assume that the length of level sets of u in Ω is uniformly bounded, i.e.

sup
t∈R

∫
{u=t}∩Ω

1dl = LM <∞. (17)

Theorem 3.2. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = f ,
ũ|∂Ω = f̃ , and corresponding current density vector fields J and J̃ , respectively. If
u satisfies (17), then

‖u− ũ‖L1(Ω) ≤ C1‖a− ã‖
1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L∞(∂Ω), (18)

for some constants Ci(m,M, σ0, σ1, f, u, LM) independent of ũ, σ̃, and f̃ .

Proof. Since u is admissible,

|∇u(x)| = |J(x)|
σ(x)

≥ m

σ1

> 0, ∀x ∈ Ω.
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Using the coarea formula we get

m

σ1

∫
Ω

|u− ũ|dx ≤
∫

Ω

|∇u||u− ũ|dx =

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt. (19)

Since |∇u| > 0 in Ω, it follows from the regularity result of De Giorgi (Theorem
4.11 in [9]) that all level sets of u are C1 curves. Now let Γt be a connected com-
ponent of {x ∈ Ω: u(x) = t} ⊂ Ω, and γ : [0, L] → Γt to be a path parametrized
by the arc length with γ(0) ∈ ∂Ω. We will henceforth denote γ(0) by x0

t . Define

h(s) := u(γ(s))− ũ(γ(s)).

Since ∇u(γ(s)) · γ′(s) = 0 on Γt, we have

h′(s) = ∇u(γ(s)) · γ′(s)−∇ũ(γ(s)) · γ′(s)

=
(σ
σ̃

(γ(s))∇u(γ(s))−∇ũ(γ(s))
)
· γ′(s).

We can rewrite the above equality as

h′(s) =
J(γ(s))− J̃(γ(s))

σ̃(γ(s))
· γ′(s).

Note that
h(0) = u(γ(0))− ũ(γ(0)) = f(x0

t )− f̃(x0
t ).

Consequently, we have that

h(s)− h(0) =

∫ s

0

J(γ(τ))− J̃(γ(τ))

σ̃(γ(τ))
· γ′(τ)dτ

and, moreover,

h(s) =

∫ s

0

J(γ(τ))− J̃(γ(τ))

σ̃(γ(τ))
· γ′(τ)dτ + f(x0

t )− f̃(x0
t ).

Now let x∗t be a point on Γt where the maximum distance between u and ũ
along the path γ occurs, i.e.

|u(x∗t )− ũ(x∗t )| = max
x∈Γt
|u(x)− ũ(x)|.
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Then x∗t = γ(s0) for some s0 ∈ [0, L], and

|u(x∗t )− ũ(x∗t )| = |h(s0)| =

∣∣∣∣∣
∫ s0

0

J(γ(τ))− J̃(γ(τ))

σ̃(γ(τ))
· γ′(τ)dτ + f(x0

t )− f̃(x0
t )

∣∣∣∣∣
≤

∫ s0

0

1

σ̃(γ(τ))
|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0

t )− f̃(x0
t )|

≤ 1

σ0

∫ s0

0

|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0
t )− f̃(x0

t )|.

In particular for every x ∈ Γt

|u(x)− ũ(x)| ≤ |u(x∗t )− ũ(x∗t )| ≤
1

σ0

∫ L

0

|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0
t )− f̃(x0

t )|,

where L denotes the entire length of Γt. Hence∫
Γt

|u(x)− ũ(x)|dl ≤ |u(x∗t )− ũ(x∗t )|
∫

Γt

1dl

≤ LM |u(x∗t )− ũ(x∗t )|

≤ LM
σ0

∫ L

0

|J(γ(τ))− J̃(γ(τ))|dτ + LM |f(x0
t )− f̃(x0

t )|

=
LM
σ0

∫
Γt

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|,

and therefore∫
{u=t}∩Ω

|u− ũ|dl ≤ LM
σ0

∫
{u=t}∩Ω

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|. (20)

Since u ∈ C(Ω) solves (1), by maximum and minimum principles for solutions to
elliptic equations,

max
Ω

u = max
∂Ω

f := Cf

min
Ω
u = min

∂Ω
f := cf

and hence cf ≤ u ≤ Cf , with −M ≤ cf , Cf ≤M . Thus we have
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∫
R

∫
{u=t}∩Ω

|u− ũ|dldt =

∫ Cf

cf

∫
{u=t}∩Ω

|u− ũ|dldt

≤ LM

∫ Cf

cf

(∫
{u=t}∩Ω

1

σ0

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|
)
dt

≤ LM
σ0

∫ Cf

cf

∫
{u=t}∩Ω

|J − J̃ |dldt+ LM‖f − f̃‖L∞(∂Ω)

∫ Cf

cf

dt

=
LM
σ0

∫
Ω

|∇u||J − J̃ |dx+ LM(Cf − cf )‖f − f̃‖L∞(∂Ω)

≤ LM
σ0

‖∇u‖L∞(Ω)

∫
Ω

|J − J̃ |dx+ LM(Cf − cf )‖f − f̃‖L∞(∂Ω)

≤ LM
σ0

‖∇u‖L∞(Ω)

[
C1‖a− ã‖

1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L1(∂Ω)

]
+ LM(Cf − cf )‖f − f̃‖L∞(∂Ω)

≤ LMMC1

σ2
0

‖a− ã‖
1
2

L∞(Ω)

+

[
LMMC2

σ2
0

|∂Ω|
1
2 + LM(Cf − cf )(2M)

1
2

]
‖f − f̃‖

1
2

L∞(∂Ω),

where we have used (20) and Theorem 2.7. Hence (18) follows. Note that
Ci(m,M, σ0, σ1, f, u, LM) are independent of ũ, σ̃, and f̃ . �

Next we generalize Theorem 3.2 to dimension n = 3. In order to do this, we
need the following additional assumption on level sets of u.

Definition 3.3. Let u ∈ C1(Ω̄) be admissible. We say that level sets of u can be
foliated to one-dimensional curves if for almost every t ∈ range(u), every conected
component Γt of {u = t} (equipped with the metric induced from the Euclidean
metric in R3) there exists a function gt(x) ∈ C1(Γt) such that 0 < cg ≤ |∇gt|, |gt| ≤
Cg, for some constants cg and Cg independent of t (where ∇gt is being taken on
the tangent space of Γt). Moreover, every connected component of {u = t}∩ {gt =
r} ∩ Ω is a C1 curve reaching the boundary ∂Ω for almost every t ∈ range(u)
and all r ∈ R. Similar to the case n = 2, we assume that the length of connected
components of {u = t} ∩ {gt = r} ∩ Ω are uniformly bounded by some constant
LM .

See Remark 3.5 in [15] for a discussion about sufficient conditions that guar-
antee the assumptions in Definition 3.3 to hold.
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Definition 3.4. Let t ∈ range(u) and suppose Γit, i ∈ I, are C1 connected com-
ponents of {u = t}, where I is countable. Then there exists functions git : Γit → R
whose level sets foliate Γit into one dimensional curves in the sense of Definition
3.3. We define gt : {u = t} → R be the function with

gt|Γit = git, i ∈ I. (21)

We shall use this notation throughout the paper.

Theorem 3.5. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = f ,
ũ|∂Ω = f̃ and corresponding current density vector fields J and J̃ , respectively.
Suppose the level sets of u can be foliated to one-dimensional curves in the sense
of Definition 3.3. Then

‖u− ũ‖L1(Ω) ≤ C1‖a− ã‖
1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L∞(∂Ω), (22)

where C(m,M, σ0, σ1, f, u, LM , cg, Cg, g) is independent of ũ, σ̃, and f̃ .

Proof. The proof is similar to the proof of Theorem 3.2, and we provide the
details for the sake of the reader. Since u is admissible,

m

σ1

∫
Ω

|u− ũ|dx ≤
∫

Ω

|∇u||u− ũ|dx =

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt. (23)

The level sets of u can be foliated into one-dimensional curves by level sets of
some function g in the sense of Definition 3.3. Thus∫

R

∫
{u=t}∩Ω

|u− ũ|dSdt =

∫
R

∫
{u=t}∩Ω

|∇gt|
|∇gt|

|u− ũ|dSdt

=

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

1

|∇gt|
|u− ũ|dldrdt

≤ 1

cg

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

|u− ũ|dldrdt.

Similar to the two dimensional case, we parameterize every connected component
Γt of {u = t} ∩ {g = r} ∩ Ω by arc length, γ : [0, L] → Γt with γ(0) = x0

t ∈ ∂Ω,
and let h(s) = u(γ(s)) − ũ(γ(s)). Let x∗t be the point that maximizes |u − ũ| on
Γt and suppose γ(s0) = x∗t for some s0 ∈ (0, L), where L is the length of Γt. Then
by an argument similar to the one in the proof of Theorem 3.2 we get

|u(x∗t )− ũ(x∗t )| ≤
1

σ0

∫ L

0

|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0
t )− f̃(x0

t )|,
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and consequently

∫
Γt

|u(x)− ũ(x)|dl ≤ LM
σ0

∫
Γt

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|.

Hence∫
{u=t}∩{g=r}∩Ω

|u− ũ|dl ≤ LM
σ0

∫
{u=t}∩{g=r}∩Ω

|J − J̃ |dl+ LM |f(x0
t )− f̃(x0

t )|. (24)

Using this estimate and the coarea formula we have

m

σ1

∫
Ω

|u− ũ|dx ≤
∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt

≤ 1

cg

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

|u− ũ|dldrdt

≤ 1

cg

∫
R

∫
R

(
LM
σ0

∫
{u=t}∩{g=r}∩Ω

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|
)
drdt

=
LM
cgσ0

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

|J − J̃ |dldrdt

+
LM
cg

∫ max
∂Ω

f

min
∂Ω

f

∫ max
Ω

g

min
Ω

g

|f(x0
t )− f̃(x0

t )|drdt

≤ LMCg
cgσ0

∫
R

∫
{u=t}∩Ω

|∇gt||J − J̃ |dSdt

+
2MLM
cg

(2‖g‖L∞(Ω))‖f − f̃‖L∞(∂Ω)

=
LMCg
cgσ0

∫
Ω

|∇u||J − J̃ |dx+
4MLM‖g‖L∞(Ω)

cg
‖f − f̃‖L∞(∂Ω)

≤ LMCg
cgσ0

‖∇u‖L∞(Ω)

(
C1‖a− ã‖

1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L∞(∂Ω)

)
+

4MLM‖g‖L∞(Ω)

cg
‖f − f̃‖L∞(∂Ω)

≤ LMCgMC1

cgσ2
0

‖a− ã‖
1
2

L∞(Ω)

+

[
LMCgC2

cgσ0

+
4MLM‖g‖L∞(Ω)

cg
(2M |Ω|)

1
2

]
‖f − f̃‖

1
2

L∞(∂Ω),

where we have applied Theorem 1.3. �
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4 W 1,1 stability of the minimizers

In this section, we prove stability of minimizers of (2) in W 1,1. As mentioned
in Section 3, in general (2) does not even have unique minimizers, so in order to
prove stability results in W 1,1, it is natural to expect stronger assumptions on the
minimizers.

Lemma 4.1. Let n = 2, 3, and suppose u and ũ are admissible with u|∂Ω =
f, ũ|∂Ω = f̃ the respective traces of functions f, f̃ ∈ H3(Ω) and corresponding
conductivities σ and σ̃, and current density vector fields J and J̃ , respectively.
Suppose σ, σ̃ ∈ C2(Ω̄) with

‖ σ ‖C2(Ω), ‖ σ̃ ‖C2(Ω)≤ σ2 (25)

for some σ2 ∈ R. Let

G(x) :=
J̃(x)− J(x)

σ̃(x)
, x ∈ Ω, (26)

with G = (G1, G2) for n = 2 and G = (G1, G2, G3) for n = 3. Then

‖∇Gi‖L1(Ω) ≤ C1‖J − J̃‖
1
2

L1(Ω), (27)

for some constant C1 which depends only on Ω, σ0, σ2 and ‖ f ‖L∞(Ω).

Proof. The proof is similar to that of Lemma 4.1 in [15] and we omit it. �

Next we prove that u and ũ are close in W 1,1(Ω). In order to do so, we need
additional assumptions on the structure of level sets of u.

Definition 4.2. Suppose u is admissible, n = 2, and x ∈ Ω. Pick h ∈ R2 with
|h| = 1, and t ∈ R small enough such that x + th ∈ Ω. Let Γ and Γt be the level
sets of u passing through x and x + th, respectively. Parametrize Γ and Γt by the
arc length such that γ(0), γt(0) ∈ ∂Ω, and denote these parametrizations by γ and
γt, respectively.

Similarly in dimension n = 3, let u be admissible and suppose level sets of
u can be foliated to one-dimensional curves in the sense of Definition 3.3. Pick
x ∈ Ω and h ∈ R3 with |h| = 1, and choose t small enough such that x + th ∈ Ω.
Let Γ and Γt be the unique curves in

{{u = τ} ∩ {gτ = r} τ, r ∈ R}

which pass through x and x+th, respectively, and let γ and γt be the parametrization
of these curves with respect to arc length with γ(0), γt(0) ∈ ∂Ω.

We say that level sets of u are well structured if the following conditions are
satisfied

14



(a) There exists K ≥ 0 such that∣∣∣∣γ′t(s)− γ′(s)t

∣∣∣∣ ≤ K (28)

for every s ∈ [0, L], t ∈ R, x ∈ Ω and h ∈ Sn−1. In particular,

γ
′

t(s)→ γ
′
(s) as t→ 0, (29)

where γ′(s) = dγ(s)
ds

and γ′t(s) = dγt(s)
ds

.

(b) There exists a bounded function Fx,h(s) = F (x, h; s) ∈ L∞(Ω×Sn−1×[0, LM ])
such that

lim
t→0

γt(s)− γ(s)

t
= Fx,h(s) (30)

for every s ∈ [0, L], x ∈ Ω and h ∈ Sn−1.

See Remark 4.3 in [15] for a discussion on sufficient conditions which guarantee
the assumptions of Definition 4.2 to hold.

Theorem 4.3. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = f ,
ũ|∂Ω = f̃ , corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector
fields J and J̃ , respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (25). If u satisfies
(17), and the level sets of u are well-structured in the sense of Definition 4.2, then

‖∇ũ−∇u‖L1(Ω) ≤ C1‖a− ã‖
1
4

L∞(Ω) + C2‖f − f̃‖
1
4

W 1,∞(∂Ω), (31)

for some constant C(m,M, σ0, σ1, σ2, u, f, LM) independent of ũ and σ̃.

Proof. Fix x ∈ Ω and h ∈ R2 with |h| = 1. Then

L(x, h) := (∇ũ(x)−∇u(x)) · h = lim
t→0

[ũ(x+ th)− u(x+ th)]− [ũ(x)− u(x)]

t
.

First we estimate the above limit. Since all level sets of u reach the boundary ∂Ω,
there exist z, zt ∈ ∂Ω such that

u(x) = u(z),

u(x+ th) = u(zt).

Thus

[ũ(x+ th)− u(x+ th)]− [ũ(x)− u(x)] = [ũ(x+ th)− u(zt)]− [ũ(x)− u(z)]
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= [ũ(x+ th)− ũ(zt)]− [ũ(x)− ũ(z)] + [ũ(zt)− u(zt)]− [ũ(z)− u(z)]

Let γ and γt be the curves passing through x and x+th, described in Definition
4.2 with γ(0) = z and γt(0) = zt. Suppose γ(s0) = x and reparamterize γt so that
γt(s0) = x+ th. Then we have

[ũ(x+ th)− ũ(z)]− [ũ(x)− ũ(z)] = [ũ(γt(s0))− ũ(γt(0))]− [ũ(γ(s0))− ũ(γ(0))]

=

∫ s0

0

∇ũ(γt(s)) · γ′t(s)ds−
∫ s0

0

∇ũ(γ(s)) · γ′(s)ds.

Hence

L(x, h) = lim
t→0

1

t

(∫ s0

0

∇ũ(γt(s)) · γ′t(s)ds−
∫ s0

0

∇ũ(γ(s)) · γ′(s)ds
)

(32)

+ lim
t→0

1

t
([ũ(zt)− u(zt)]− [ũ(z)− u(z)]) (33)

Now, we can focus on the second term here by noticing

[ũ(zt)− u(zt)]− [ũ(z)− u(z)] = [f̃(zt)− f(zt)]− [f̃(z)− f(z)].

Also, we denote the tangential direction along ∂Ω at z by θz and we get,

lim
t→0

[f̃(zt)− f(zt)]− [f̃(z)− f(z)]

t

= lim
t→0

(
[f̃(zt)− f(zt)]− [f̃(z)− f(z)]

|zt − z|

)
lim
t→0

|zt − z|
t

≤ |Fx,h(0)| lim
t→0

(
[f̃(zt)− f(zt)]− [f̃(z)− f(z)]

|zt − z|

)
= |Fx,h(0)| ∂

∂θz
(f̃ − f)

≤ ‖F‖L∞(Ω×Sn−1×[0,LM ])‖∇(f − f̃)‖L∞(∂Ω)

≤ ‖F‖L∞(Ω×Sn−1×[0,LM ])‖f − f̃‖W 1,∞(∂Ω). (34)

We can now shift our focus onto the first term (32). Substituting ∇ũ by J̃
σ̃

and
using the fact that J is perpendicular to γ′ and γ′t we get

lim
t→0

1

t

(∫ s0

0

J̃(γt(s))− J(γt(s))

σ̃(γt(s))
· γ′t(s)ds−

∫ s0

0

J̃(γ(s))− J(γ(s))

σ̃(γ(s))
· γ′(s)ds

)
.

Now define

G(x) :=
˜J(x)− J(x)

σ̃(x)
, x ∈ Ω.
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Hence we get

lim
t→0

1

t

(∫ s0

0

G(γt(s)) · γ′t(s)ds−
∫ s0

0

G(γ(s)) · γ′(s)ds
)
.

This term can bounded in the same way as in the proof of Theorem 4.4 in [15], so
we omit the calculation as it is identical. Hence we have

|∇ũ(x)−∇u(x)| ≤ sup
h∈Rn,|h|=1

L(x, h)

≤ K

σ0

∫ L

0

|J̃(γ(s))− J(γ(s))|dl

+ ‖ F ‖L∞
∫ L

0

|∇G1(γ(s))|+ |∇G2(γ(s))|dl

+ ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω).

Thus, ∫
Γ

|∇ũ(x)−∇u(x)|dl ≤ KLM
σ0

∫
Γ

|J̃(x)− J(x)|dl

+LM ‖ F ‖L∞
∫

Γ

|∇G1(x)|+ |∇G2(x)|dl

+LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω),

and consequently∫
{u=τ}∩Ω

|∇ũ(x)−∇u(x)|dl ≤ KLM
σ0

∫
{u=τ}∩Ω

|J̃(x)− J(x)|dl (35)

+LM ‖ F ‖L∞
∫
{u=τ}∩Ω

|∇G1(x)|+ |∇G2(x)|dl

+LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω).
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Using (35) and the coarea formula we have

m

σ1

‖∇ũ−∇u‖L1(Ω) ≤
∫

Ω

|∇u||∇ũ−∇u|dx

=

∫
R

∫
{u=τ}∩Ω

|∇ũ−∇u|dldτ

≤ KLM
σ0

∫
R

∫
{u=τ}∩Ω

|J̃ − J |dldτ

+ LM ‖ F ‖L∞
∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|dldτ

+ LM ‖ F ‖L∞ (2M)‖f̃ − f‖W 1,∞(∂Ω)

≤ KLMM

(σ0)2

∫
R

∫
{u=τ}∩Ω

|J̃ − J |
|∇u|

dldτ

+
LM ‖ F ‖L∞ M

σ0

∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|
|∇u|

dldτ

+ 2MLM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

=
KLMM

(σ0)2

∫
Ω

|J̃ − J |dx

+
LM ‖ F ‖L∞ M

σ0

∫
Ω

|∇G1|+ |∇G2|dx

+ 2MLM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

≤ KLMM

(σ0)2
‖ J − J̃ ‖L1(Ω)

+
2LMC1 ‖ F ‖L∞ M

σ0

‖ J − J̃ ‖
1
2

L1(Ω)

+ 2MLM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

where we have used Lemma 4.1 to obtain the last inequality. Applying Theorem
2.7, and noting that

‖ J − J̃ ‖
1
2

L1(Ω)≤ (2M |Ω|)
1
2 ,

where M is defined in (7), we arrive at (31). �

Now we prove three dimensional version of this theorem.

Theorem 4.4. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = f ,
ũ|∂Ω = f̃ corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector
fields J and J̃ , respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (25). In addition
suppose u satisfies (17), the level sets of u can be foliated to one-dimensional
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curves in the sense of Definition 3.3, and the level sets of u are well-structured in
the sense of Definition 4.2. Then

‖∇ũ−∇u‖L1(Ω) ≤ C1‖a− ã‖
1
4

L∞(Ω) + C2‖f − f̃‖
1
4

W 1,∞(∂Ω), (36)

for some constant Ci(m,M, σ0, σ1, σ2, u, f, LM , cg, Cg) is independent of ũ and σ̃.

Proof. With an argument similar to the one used in the proof of Theorem 4.3 we
get∫
Uτ,r

|∇ũ(x)−∇u(x)|dl ≤ KLM
σ0

∫
Uτ,r

|J̃(x)− J(x)|dl (37)

+LM ‖ F ‖L∞
∫
Uτ,r

|∇G1(x)|+ |∇G1(x)|+ |∇G3(x)|dl

+LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

where Uτ,r := {u = τ} ∩ {gτ = r} ∩ Ω and G = (G1, G2, G3) is defined in (26).
It follows follows from (37) and the coarea formula that

m

σ1

‖∇ũ−∇u‖L1(Ω) ≤
∫

Ω

|∇u||∇ũ−∇u|dx

=

∫
R

∫
{u=τ}∩Ω

|∇ũ−∇u|dSdτ

=

∫
R

∫
{u=τ}∩Ω

|∇gτ |
|∇gτ |

|∇ũ−∇u|dSdτ

=

∫
R

∫
R

∫
Uτ,r

1

|∇gτ |
|∇ũ−∇u|dldrdτ

≤ KLM
σ0cg

∫
R

∫
R

∫
Uτ,r

|J̃ − J |dldrdt

+
LM ‖ F ‖L∞

cg

∫
R

∫
R

∫
Uτ,r

|∇G1|+ |∇G2|+ |∇G3|dldrdt

+ 2‖g‖L∞(Ω)LM ‖ F ‖L∞ (2M)‖f̃ − f‖W 1,∞(∂Ω)
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≤ KLMMCg
(σ0)2cg

∫
R

∫
R

∫
Uτ,r

|J̃ − J |
|∇u||∇gτ |

dldrdt

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
R

∫
R

∫
Uτ,r

|∇G1|+ |∇G2|+ |∇G3|
|∇u||∇gt|

dldrdt

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

=
KLMMCg

(σ0)2cg

∫
R

∫
{u=τ}∩Ω

|J̃ − J |
|∇u|

dSdt

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|+ |∇G3|
|∇u|

dSdt

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

=
KLMMCg

(σ0)2cg

∫
Ω

|J̃ − J |dx

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
Ω

|∇G1|+ |∇G2|+ |∇G3|dx

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

≤ KLMMCg
(σ0)2

‖ J − J̃ ‖L1(Ω)

+
2LMC1M ‖ F ‖L∞(Ω) Cg

σ0

‖ J − J̃ ‖
1
2

L1(Ω)

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω),

where we have used (4.1) to obtain the last inequality. Applying Theorem 2.7, and
noting that

‖ J − J̃ ‖
1
2

L1(Ω)≤ (2M |Ω|)
1
2 ,

we obtain the inequality (31). �

Now, we are ready to prove our main stability results.

Theorem 4.5. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = f ,
ũ|∂Ω = f̃ corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector
fields J and J̃ , respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (25). If u satisfies
(17) and level sets of u are well-structured in the sense of Definition 4.2, then

‖σ − σ̃‖L1(Ω) ≤ C1 ‖ a− ã ‖
1
4

L∞(Ω) +C2 ‖ f − f̃ ‖
1
4

W 1,∞(∂Ω),

for some constants Ci(m,M, σ0, σ1, σ2, σ, f, LM) independent of σ̃.
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Proof. Using Theorem 4.3 we have∫
Ω

|σ − σ̃|dx =

∫
Ω

∣∣∣∣∣ |J |(|∇ũ| − |∇u|)|∇u||∇ũ|
+
|J | − |J̃ |
|∇ũ|

∣∣∣∣∣ dx
≤

∫
Ω

|J |
|∇u||∇ũ|

||∇u| − |∇ũ|| dx+

∫
Ω

1

|∇ũ|

∣∣∣|J | − |J̃ |∣∣∣ dx
≤

∫
Ω

|J |
|∇u||∇ũ|

|∇u−∇ũ|dx+

∫
Ω

1

|∇ũ|

∣∣∣|J | − |J̃ |∣∣∣ dx
≤ Mσ2

1

m2

(
C1 ‖ a− ã ‖

1
4

L∞(Ω) +C2 ‖ f − f̃ ‖
1
4

W 1,∞(∂Ω)

)
+

σ1|Ω|
m
‖ a− ã ‖L∞(Ω)

≤

[
Mσ2

1C1

m2
+
σ1|Ω|(2M)

3
4

m

]
‖ a− ã ‖

1
4

L∞(Ω)

+
Mσ2

1C2

m2
‖ f − f̃ ‖

1
4

W 1,∞(∂Ω)

�

Theorem 4.6. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = f ,
ũ|∂Ω = f̃ corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector
fields J and J̃ , respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (25). If u satisfies
(17), the level sets of u can be foliated to one-dimensional curves in the sense of
Definition 3.3, and the level sets of u are well-structured in the sense of Definition
4.2, then

‖σ − σ̃‖L1(Ω) ≤ C1 ‖ a− ã ‖
1
4

L∞(Ω) +C2 ‖ f − f̃ ‖
1
4

W 1,∞(∂Ω),

for some constants Ci(m,M, σ0, σ1, σ2, σ, f, LM , g) independent of σ̃.

Proof. The proof follows from Theorem 4.4 and a calculation similar to that of
the proof of Theorem 4.5. �
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