COMBINATORIAL RECIPROCITY FOR THE CHROMATIC
POLYNOMIAL AND THE CHROMATIC SYMMETRIC FUNCTION

OLIVIER BERNARDI AND PHILIPPE NADEAU

ABSTRACT. Let G be a graph, and let x¢ be its chromatic polynomial. For any non-
negative integers 4,7, we give an interpretation for the evaluation Xg)(— j) in terms
of acyclic orientations. This recovers the classical interpretations due to Stanley and
to Greene and Zaslavsky respectively in the cases i = 0 and j = 0. We also give
symmetric function refinements of our interpretations, and some extensions. The
proofs use heap theory in the spirit of a 1999 paper of Gessel.

1. INTRODUCTION

Let G be a (finite, undirected) graph. A g-coloring of G is an attribution of a color
in {1,2,...,q} to each vertex of G. A g-coloring is called proper if any pair of adjacent
vertices get different colors. The chromatic polynomial of G is the polynomial yg such
that for all positive integers ¢, the evaluation y(q) is the number of proper g-colorings.

In this article we provide a combinatorial interpretation for the evaluations of the
polynomial xg(gq) and of its derivatives X(é) (¢) at negative integers. Let us state this
result. Recall that an orientation of G is called acyclic if it does not have any directed
cycle. A source of an orientation is a vertex without any ingoing edge. For a set U
of vertices of G, we denote G[U] the subgraph of G induced by U, that is, the graph
having vertex set U and edge set made of the edges of G with both endpoints in U.
The following is our main result about ¢, where we use the notation [n| := {1,...,n}
for a positive integer n, and the convention [0] = {).

Theorem 1.1. Let G be a graph with vertez set [n]. For any non-negative integers i, j,

(—1)”*"Xg)(—j) counts the number of tuples (Vi,71),- .., (Vitj, Vi+j)) such that
o Vi,...,Viyj are disjoint subsets of vertices, such that |J, Vi, = [n],
o for all k € [i+ j|, v is an acyclic orientation of G[Vy],
o fork e li], Vi #0 and v has a unique source which is the vertex min(Vy).

We will also prove a generalization of Theorem 1.1 (see Theorem 4.5), and a re-
finement at the level of the chromatic symmetric function (see Theorem 5.6). As we
explain in Section 4, the cases i = 0 and j = 0 of Theorem 1.1 are classical results due
to Stanley [10] and to Greene and Zaslavsky [7] respectively. However these special
cases are usually presented in terms of colorings (instead of partitions of the vertex set)
and global acyclic orientations (instead of suborientations). A version of Theorem 1.1
in this spirit is given in Corollary 4.4.
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FIGURE 1. Left: A graph G on 4 vertices, having chromatic polynomial
xa(q) = ¢* — 4¢® + 6¢® — 3¢. Right: The graph G(320.1),

Let us illustrate Theorem 1.1 for the graph G represented in Figure 1. Fori =j =1,
one needs to counts the pairs ((V1,71), (V2,72)), where Vi W Vo = {1,2,3,4}, 7 is
an acyclic orientations of G[Vi] with unique source min(V;), and ~2 is any acyclic
orientation of G[V3]. The number of valid pairs with V7 of size 1 (resp. 2, 3, 4) is 16
(resp. 8, 4, 3). This gives a total of 31 pairs which, as predicted by Theorem 1.1, is
equal to —x(—1).

In many ways, it feels like Theorem 1.1 should have been discovered earlier. Our
proof is based on the theory of heaps, which takes its root in the work of Cartier and
Foata [1], and has been popularized by Viennot [13]. In fact, our proof is in the same
spirit as the one used by Gessel in [6], and subsequently by Lass in [9] (see also the
recent preprint [3]). It consists in showing that well-known counting lemmas for heaps
imply a relation between proper colorings and acyclic orientations. We recall the basic
theory of heaps and their enumeration in Section 2. Theorem 1.1 is proved in Section 3.
In Section 4, we discuss some reformulations, and extensions of Theorem 1.1 and their
relations to the results in [6, 7, 9, 10]. In Section 5, we lift Theorem 1.1 at the level of
the chromatic symmetric function.

2. HEAPS: DEFINITION AND COUNTING LEMMAS

In this section we recall the basic theory of heaps. We fix a graph G = ([n], E)
throughout.

2.1. Heaps of pieces. We first define G-heaps. Our (slightly unconventional) defini-
tion is in terms of acyclic orientations of a graph related to G. Let N = {0,1,2,...}
be the set of non-negative integers. For a tuple m = (mq,--- ,m,) € N, we define a
graph G™ := (V™, E™) with vertex set

V= {Uzk}le[n] ke[m;]»
and edge set defined as follows:
e for every vertex i € [n] of G there is an edge of G™ between v¥ and vf for all
k.l e [mz],
e for every pair of adjacent vertices i, € [n] of G there is an edge of G™ between
v¥ and vf for all k € [m;] and all £ € [m;].
The notation G™ is illustrated in Figure 1 (right).

Definition 2.1. A G-heap of type m is an acyclic orientation of the graph G™ such
that for all i € [n] and for all 1 < k < ¢ < m; the edge between v¥ and v! is oriented
toward Uf. The vertices Q)Zk of G™ are called pieces of type i of the G-heap.
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Remark 2.2. A more traditional definition of heaps is in terms of partially ordered sets.
Namely, a G-heap of type m is commonly defined as a partial order < on the set V'™
such that

(a) for any vertex i € [n], v} < v? < ... < V",

(b) for any adjacent vertices i,j € [n], the set {Uf}ke[mi} U {vf}ge[mﬂ is totally

ordered by <,

(c) and the order relation is the transitive closure of the relations of type (a) and (b).
It is clear that this traditional definition is equivalent to Definition 2.1: the relation <
between vertices in V™ simply encodes the existence of a directed path between these
vertices. In fact, Definition 2.1 already appears in [13, Definition (c), p.545].

Heaps were originally introduced to represent elements in a partially commutative

monoid [1]. We refer the interested reader to [8, 13] for more information about heaps.

Recall that for an oriented graph, a vertex without ingoing edges is called a source,
and a vertex without outgoing edges is called a sink. A piece of a heap h is called
minimal (resp. mazimal) if it is a source (resp. sink) in the acyclic orientation h of
G™. A heap is called trivial if every piece is both minimal and maximal (which occurs
when G™ consists of isolated vertices). A heap is a pyramid?® if it has a unique minimal
piece.

Next, we define the generating functions of heaps, trivial heaps and pyramids. Let
x = (x1,...,2,) be commutative variables. Let H, T, and P be the set of heaps, trivial
heaps, and pyramids respectively. We define

Xh
(1) H(x)=) x" T(x)=> x", and P(x)=)_ i

heH heT heP

n
where |h| is the number of pieces in the heap h, and x" := ]T[:):Zéﬁ pieces of type din h -y

i=1
other words, these generating functions, which are formal power series in zy,...,zy,,
count heaps according to the number of pieces of each type.

Example 2.3. For the graph G represented in Figure 1, the generating functions T', H,
P have the following expansions:
T(x) = 1+x1+x9+x3+ x4+ 2123 + T274.
H(x) = 14z +z2+a3+24

—i—x% + x% + x% + :UZ + x123 + Toxy + 22120 + 22923 + 203704 + 22471 + - - -
P(x) = x1+xo+ 23+ 24

l 2 2 2 2
+ (551 + x5 + 13 + Ty + 201272 + 22273 + 22374 + 2:64331) 4+

2
2.2. Enumeration of heaps. We now state the classical relation between H (x), T'(x),
and P(x). For a scalar r, we use the notation rx := (rz1,...,72y).

IThis is sometimes called upside-down pyramid.
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Theorem 2.4 ([13]). The generating functions of heaps, trivial heaps and pyramids
are related by

1
2 H =
2) () = 7
and
3) P(x) = = In(T(=x)).
Equations (2-3) are identities for formal power series in x1,...,2,. Observing that

T'(x) has constant term 1 (corresponding to the empty heap), the right-hand side of (2)
should be understood as Y7 (1 — T(—x))" and the right-hand side of (3) should be
understood as Y oo (1 — T(—x))"/n.

Theorem 2.4 will be proved using the following classical result.

Lemma 2.5 ([13]). Let S C [n]. Let Hg be the set of G-heaps such that every minimal
piece has type in S, and let Tg be the set of trivial G-heaps such that every piece has
type in [n] \ S. Then the generating functions

Hg(x) = Z xB and Tg(x) = Z xB,

heHg h€T§

are related by

(4) Hg(x) =

Let us give a sketch of the standard proofs of Lemma 2.5 and Theorem 2.4. Observe
first that the identity (4) is equivalent to

(5) > (et = 3 (kP

(h1,ho)eHgxT heTs

We now explain how to prove (5) using a sign-reversing involution on Hg x T. Given
h; € Hg of type m; and hy € T of type mo, we define h := h; * hy as the heap
of type m = mj + my obtained from h; by adding the pieces of hy as new sinks.
More precisely, h is the orientation of G™ such that the restriction to G™ is hy and
the vertices in V™ \ V™ are sinks. Now, we fix a heap h, and look at the set Sy of
pairs (hi,hy) € Hg x T such that hy x hy = h. If h € T3, one can define a simple
sign reversing involution on Sy in order to prove that the contributions of the pairs
(hi,hy) € S to (5) cancel out. This involution simply transfers a canonically-chosen
piece of h between h; and hy (one can transfer any maximal piece of h which either
has type in S or is not minimal, so a canonical choice is to transfer the piece of minimal
type among those). If h € Tg, then S, = {(¢,h)}, where € is the empty heap, hence
the contribution of Sy to (5) is 1. This proves Lemma 2.5.

To prove Theorem 2.4, observe first that (2) is the special case S = [n] of (4). It
remains to prove (3). Let ¢ be an indeterminate. By differentiating the series P(tx)
(formally) with respect to t we get

tIhl

9 A U oh _ |h| h
beo Ptx) =t mz‘h‘x =y thixh
heP heP
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We now use the partition P = ;o n)(Hxy \ {€}), where € is the empty heap. This,
together with (4) gives
n —tx) —T(—tx)

0 {k} -1 &
-—P(tx Hga(tx) —1 = Ti(—tx),
5t (1%) = k:l( (xy( Z ) T(_tx)k;zl k(—1x)

where

Ti(x) = Z xM

. heT
containing a piece of type k

n
Finally, we observe that ZT k(x) = Z Ih|x®. This gives
k=1 heT

o -1 0
il |h\ e G
gl %) = hzeTM = T ol )

which, upon integrating (formally) with respect to ¢, gives (3).

3. HEAPS, COLORINGS, AND ORIENTATIONS: PROOF OF THEOREM 1.1

This section is dedicated to the proof of Theorem 1.1. We fix a graph G = ([n], E)
throughout.

Notation 3.1. We denote by R[[x]] the ring of power series in z1,...,x, with coeffi-
cients in a ring R. For a tuple m = (my,...,m,) € N”, we denote x™ = z|"* - - ",

For a power series F'(x) € R[[x]], we denote by [x™]F(x) the coefficient of x™ in F'(x).
The first step is to express the chromatic polynomial of GG in terms of trivial heaps.

Lemma 3.2. Let T(x) be the generating function of trivial G-heaps defined in (1), and
let ¢ be an indeterminate. Then,

(6) xa(q) = w1 2] T (x)7.
The right-hand side in (6) has to be understood as the coefficient of z1 - - - x,, in the
> (¢In(T
series exp(qIn(T Z k:' € Qlql[[x]]-
k=0

Proof. Recall that a set of vertices V' C [n] is called independent if the vertices in V
are pairwise non-adjacent. There is an obvious equivalence between independent sets
and trivial heaps, hence T'(x) can be thought as the generating function of independent
sets.

Let g be a positive integer. Observe that for any proper g-coloring, the set of vertices
of color i € [g] is an independent set. In fact, upon denoting V; the set of vertices
of color 4, it is clear that a proper g-coloring can equivalently be seen as a g-tuple
(Vi,...,V,) of independent sets of vertices, which are disjoint and such that Uke[q] Vi =
[n]. This immediately implies that (6) holds for the positive integer g. Since both sides
of (6) are polynomials in ¢, the identity holds for an indeterminate g. O
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Upon differentiating (6) ¢ times one gets

Wy~ O ¢ o' _ iP5\
XE(@) = glor el T0" = o1+l 5 exp (((T()) = fo1--22] (T (00 T(x)".
In the right-hand side of the above equation, we are are extracting a coefficient of
degree n, hence this expression is invariant under changing x into —x and multiplying
by (—1)". Hence (—1)”Xg)(q) = [z1 - 2] In(T(—x%))* T(—x)4, and for a non-negative
integer 7,

(—1)""xG (=) = [wre e w) (— In(T(=%))) (T (—x)) ™
(7) = [z1- 2] P(x)"H(x),
where the last equality follows from Theorem 2.4.

The next step is to relate heaps and pyramids to acyclic orientations. For a set
V C [n], let XV be the monomial ' - - - z0» where §; = 1if i € V and §; = 0 otherwise.

Lemma 3.3. Let V C [n]. The generating function H(x) and P(x) defined in (1)
satisfy

(8) (xV|H(x) = # acyclic orientations of G[V],
(9) (xV]|P(x) = # acyclic orientations of G[V] with unique source min(V'),
where the right-hand side of (9) is interpreted as 0 if V = ).

Proof. Let m = (01,...,0,), where ; = 1 if i € V, and §; = 0 otherwise. Observe
that G[V] is isomorphic to the graph G™. By definition of H, the coefficient [x"]H (x)
counts the G-heaps of type m, or equivalently the acyclic orientations of G[V]. This
proves (8). Let us now assume V # (). By definition of P, one gets [x"]P(x) = %,
where B is the number pyramids of type m, or equivalently the number of acyclic
orientations of G[V] with a single source. For i € V, let B; be the set of acyclic
orientations of G[V] with unique source . It is not hard to see that |B;| = |B;| for all
i,7 € V. Indeed, a bijection between B; and B; can be constructed as follows: given
v € B;, reverse all the edges of v on any directed path from ¢ to j. This proves (9). O

We now complete the proof of Theorem 1.1. For any non-negative integers 4, j, (7)
gives

J
(10> (_1)n—zx(é)(_]) — Z H Vk H H—Z
Viw--wViy j=[n] k=1 =1

where the sum is over the tuples of disjoint sets Vi, ..., Vi;; whose union is [n]. Finally,
by Lemma 3.3, the right-hand side of (10) can be interpreted as in Theorem 1.1.

Remark 3.4. Equation (6) raises the question of interpreting the other coefficients of
T'(x)? combinatorially. So for m € N”, let us introduce the following polynomial

(11) Xa,m(q) == [x"]T(x)7,
so that xg(q) = xg,1n(¢). It is easy to interpret (11) combinatorially: for any positive

integer ¢, X@,m(q) counts the functions f from the vertex set [n] to the power set 2ld]
such that for any vertex i € [n], |f(i)| = m; and for adjacent vertices i,j € [n] of G,
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the sets f(i) and f(j) are disjoint. These are known as proper multicolorings of G of
type m [5, 12].
Now, recalling the definition of the graph G™, it is easy to see that

xa=(q)
Xam(q) = =———,
m!
where m! := mq!---m,!. Indeed, there is a clear m!-to-1 correspondence between the

proper colorings of G™ and the multicolorings of G of type m: to a proper coloring
of G™ one associates the multicoloring f of G, where f(i) is the set of colors used on
the vertices {vF} ke[m;] of G™. On the one hand, this shows that all the coefficients of
T'(x)? are chromatic polynomials, up to a multiplicative constant. On the other hand,
using (11) and Theorem 2.4, we get (—1)™/xg m(—1) = [x™]H(x) which is the number
of heaps of type m. Hence general heaps come up naturally in the context of proper
multicolorings.

Remark 3.5. Various generalizations of the chromatic polynomials have been considered
in the literature, and the above technique can be used to give a reciprocity theorem
for those. In particular, the bivariate chromatic polynomial xc(g,r) is defined in [4]
as the polynomial whose evaluation at (q,7) € N2 counts the (q + r)-colorings of G
such that adjacent vertices cannot receive the same color in [g]. It is easy to express
this polynomial in terms of heaps, and use similar techniques as above to obtain a
combinatorial interpretation for (—1)"xg(—4j, —k). Namely, this counts the number of
tuples (Vi,71),---,(Vj,75), Vj+1, - - -, Vj4x) such that Lﬂg;rf V; = [n] and for all i € [j],
i is an acyclic orientation of G[V;]. One can similarly get an interpretation for the

o Xa(—7, —k) of the derivatives with respect to g.

evaluations 5
q

4. SPECIAL CASES, AND EXTENSIONS

In this section we discuss some reformulations and extensions of Theorem 1.1.

4.1. Specializations of Theorem 1.1, and reformulation. We first establish the
relation between Theorem 1.1 and the results from [7, 10].

Let us recall the seminal result of Stanley [10] about the negative evaluations of the
chromatic polynomial. Let G = (V, E) be a graph, and let v be an orientation of G.
We say that a g-coloring of G (that is, a function f : V — [q]) has no ~y-descent if the
colors (that is, the values of f) never decrease strictly along the arcs of ~.

Proposition 4.1 ([10, Theorem 1.2]). Let G be a graph with n vertices, and let j be
a non-negative integer. Then, (—1)"xq(—7) is the number of pairs (v, f), where ~y is
an acyclic orientation of G, and f is a j-coloring without ~v-descent. In particular,
(=1)"xa(—1) is the number of acyclic orientations of G.

As we now explain, Proposition 4.1 is equivalent to the case i = 0 of Theorem 1.1.
Let C; be the set of pairs (v, f), where v is an acyclic orientation of G, and f is a
j-coloring without y-descent. A j-coloring f can be encoded by the tuple (V1,...,V;),
where V;, = f~1(k) is the set of vertices of color k. Now given f, the orientations ~
such that (v, f) € C; are such that for all £ € [j] the restriction 4 of v to G[V] is
acyclic, and for all £ > k every edge between V}, and V} is oriented toward its endpoint
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in V. These two conditions are easily seen to be sufficient. Hence, pairs (v, f) € C;
are uniquely determined by choosing the ordered partition (V1,...,V;) and the acyclic
orientations 71, ...,7; of G[Vi],...,G[Vj]. This shows the equivalence between Propo-
sition 4.1 and the case ¢ = 0 of Theorem 1.1.

Next we recall the result of Greene and Zaslavsky [7] about the coefficients of the
chromatic polynomial. We need to define the source-components of an acyclic orien-
tation v of G = ([n], E). For i € [n], let R; be the set of vertices reachable from i by
a directed path of v (with ¢ € R;). We now define some subsets of vertices S1,Sa, ...
recursively as follows. For k > 1, if J,_, S; = [n], then we define S; = (. Otherwise,
we define Sy = Ry, \ U;<f Si, where m = min ([n] \ ;4 S;). The non-empty subsets
Sy are called the source-components of v. The source components are represented for
various acyclic orientations in Figure 1. Note that the source-components of an orien-
tation 7 form an ordered partition of [n], and that the restriction of v to each subgraph
G[Sk] is an acyclic orientation with single source min(Sg).

1 2 .2 1 2 . 2 2 1 2 | 2
 / v v L / L/ A ] A A ] A A A A
i3 2°38 ¢T3 ¢T38 T3 ¢Ys5 173
L 2 L2 | 2 b 2 2 | 2 | 2
A A A A A v A ]  / A  / ] v v
D8 4 T @3 % &3 aes

FiGURE 2. The source-components of the 14 acyclic orientations of the
graph of Figure 1.

Proposition 4.2 ([7, Theorem 7.4]). Let G = ([n], E) be a graph, and let i be a non-
negative integer. Then, (—1)""[q¢']xq(q) is the number of acyclic orientations of G
with exactly i source-components. In particular, (—1)"[¢'lxc(q) is the number of
acyclic orientations with single source 1.

Ezample 4.3. The graph G in Figure 1, has 1 (resp. 4, 6, 3) acyclic orientations
with 4 (resp. 3, 2, 1) source-components. This matches the coefficients of xg(q) =
q* — 4¢3 + 642 — 3q.

As we now explain, Proposition 4.2 is equivalent to the case j = 0 of Theorem 1.1.
Let A; be the set of acyclic orientations of G with exactly ¢ source-components. Let
v € A, and let Sy, ..., S; be its source-components. The sets Si,...,S; clearly satisfy

(i) S1,...,S; are disjoint sets and J,_, Sk = [n],
(ii) for all k € [i] the restriction -y, of v to the subgraph G[Si] is an acyclic orien-
tation with single source min(Sy),

(iii) for all ¢ > k, any edge between Sj and Sy is directed toward its endpoint in Sj.

(iv) min(S7) < min(S2) < - -+ < min(S;),
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These conditions are easily seen to be sufficient: an acyclic orientation v has source-
components Si,...,5; if and only if the conditions (i-iv) hold. Moreover, the tuple
((S1,71),---,(Si,7i)) uniquely determines v € A;. Hence, Proposition 4.2 can be in-
terpreted as stating that (—1)""*[¢*]xg(q) is the number of tuples ((S1,71), - -, (Si, %))
satisfying (i-iv). Upon permuting the indices {1,...,i}, we get that i!(—1)""¢[¢’]xc(q)
is the number of tuples ((S1,71),-- ., (Si,7:)) satisfying conditions (i-iii), which is ex-
actly the case j = 0 of Theorem 1.1.

It is not hard to combine the above discussions to show that Theorem 1.1 is equivalent
to the following statement.

Corollary 4.4. Let G be a graph, let q be an indeterminate, and let i, j be non-negative
integers. Then (—1)""[q']xg(q—j) is the number of pairs (7, f), where v is an acyclic
orientation of G, and f is a (j + 1)-coloring of G without y-descent, such that the
restriction v, of v to the subgraph G[f~1(1)] has exactly i source-components (with the
special case i = 0 corresponding to f~1(1) =0).

4.2. Generalization of Theorem 1.1 and relation to results by Gessel and
Lass. In this subsection we establish a generalization of Theorem 1.1, which extends
results from Gessel [6] and Lass [9].

Theorem 4.5. Let G = ([n], E) be a graph. Let d be a non-negative integer such that

the vertices 1,2, ...,d are pairwise adjacent. Let q be an indeterminate, and let
~ xc(9)
(12) Xd(q) = ’
qlq—1)---(g—d+1)

with the special case d = 0 being interpreted as Xo(q) = xa(q). Then Xq4(q) is a polyno-
mial in q such that for all non-negative integers i, j, the evaluation (—1)"~4~ )Z(;)(—j)
is the number of tuples (Vi,71), ..., (Vatitj, Yd+i+j)) such that
o Vi,...,Viriyj are disjoint subsets of vertices, such that \|J, Vi, = [n], and for
all k € [d], k € Vg,
e for all k € [d+ i+ j], v is an acyclic orientation of G[Vy|, and if k < d+1i
then Vi, # () and i has a unique source which is the vertex min(Vy).

Observe that the case d = 0 of Theorem 4.5 is Theorem 1.1. The special case i =0
for d € {1,2} was obtained by Gessel in [6, Thm 3.3 and 3.4].

Ezample 4.6. For the graph G represented in Figure 2, we have Y2(q) = ¢ — 3¢ + 3.
Theorem 4.5 in the case d = 2,7 = 1,57 = 0 (correctly) predicts that there are exactly
—X2(0) = 3 triples ((V1,71), (Va,72), (V3,73)), such that 1 € V1,2 € Vo, Vi W Vo W V3 =
[4], and for all k£ € [3], v is an acyclic orientation of G[V}] with unique source min(V}).

Proof. Since the vertices 1,2,...,d are pairwise adjacent, we know that yg(k) = 0
for all kK € {0,...,d — 1}. Since these integers are roots of x¢(g), this polynomial is
divisible by ¢(¢ — 1)---(¢ — d + 1). Hence X4(q) is a polynomial. We now prove the
interpretation of (—1)"‘d_i)?£;)(—j). Fix an integer ¢ > d. Note that in any proper
g-coloring of G, the vertices 1, ..., d have distinct colors in [g]. So it is easy to see that
Xd(q) can be interpreted as the number of proper g-colorings such that for all & in [d]

the vertex k has color k. In other words, for all k& € [d], the g-colorings counted by
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Xd(q) are such that the set of vertices colored k are independent sets containing the
vertex k. Thus, reasoning as in the proof of (6), we get the following expression of
Xd(q) in terms of trivial heaps:

d
(13) Xa(q) = [z1- - 0] <H ?{3) T(x)?,

k=1

where Ti(x) = > 7 xM and Ty is the set of trivial heaps containing a piece of type k.
Again, this equation holds for an indeterminate ¢, because both sides are polynomials
in ¢. Differentiating (13) with respect to ¢ (i times), and setting ¢ = —j gives

p .
n—d—i () -\ _ (=) ' ! j

k=1

Ti(—x) _ Tig(=®)
T(—x) T(—x)

By Lemma 2.5, — — 1 = Hyy(x) — 1, which together with Theo-

rem 2.4 gives
. d . .
(14) (=1 (—5) = [+ ) (H Hipy (x) — 1) - P(x)"- H(x).
k=1

Observe that for any sets of vertices S,V C [n], the coefficient [x"]Hg(x) is the number
of acyclic orientations of G[V] whose sources are all in S. Hence, for any set V' C [n],

V] (Hg(x) — 1) = # acyclic orientations of G[V] with unique source k, if k € V,

~ | 0 otherwise.

Using this together with Lemma 3.3, we see that (14) gives the claimed interpretation
of (=1)" %y (3. O

Theorem 4.5 could equivalently be stated as giving an interpretation for the coeffi-
cients of the polynomial X4(q — j) for all j,d > 0. We will next give an interpretation
for the coefficients of X4(q + 1) for all d > 0.

Let us first recall a classical result of Crapo [2]. Let u,v be two adjacent vertices of
a graph G. An acyclic orientation of G is called (u,v)-bipolar if it has unique source
u and unique sink v. A classical result of Crapo [2] is that (—1)"[¢}]X1(q + 1) is the
number of (u,v)-bipolar orientations of G (which is independent of u,v). We mention
that, for a connected graph, x1(¢ + 1) is related to the Tutte polynomial T (x,y) by
Xi(g + 1) = (=1)""T5(—q,0), hence (—1)*[¢*]X1(q + 1) = [z'9°]Ta(x,y). Crapo’s
result was recovered using the theory of heaps in [6, Thm 3.1]. In Lass [9, Thm 5.2], an
interpretation was given for every coefficient of the polynomial x1(g+1) for a connected
graph G. Following this lead, we obtain the following result for connected graphs having
a set of d pairwise adjacent vertices.

Theorem 4.7. Let G = ([n], E) be a connected graph. Let d be a positive integer such
that the vertices 1,2,...,d are pairwise adjacent. Let q be an indeterminate, and let
Xd(q) be the polynomial defined by (12). Upon relabeling the vertices of G, one can
assume that for all k > 1 the vertex labeled k is adjacent to a vertex of label less than k.
Then for all i > 0, (—1)" "4 [¢*]xqa(q + 1) is the number of acyclic orientations of G
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having exactly d+ i source-components such that the vertices 1,2,...,d are in different
source-components and 1 is the unique sink.

Note that for the orientations described in Theorem 4.7, the vertex 1 is necessarily
alone in its source-component. In particular, in the special case d = 1, and ¢ = 1 the
orientations described have unique sink 1 and unique source 2, which gives Crapo’s
interpretation of (—1)"[¢']X1(¢ + 1) as counting (2,1)-bipolar orientations. The case
d =1 of Theorem 4.7 is exactly [9, Thm 5.2]. The case d = 2 is equivalent to the case
d =1 (because X1(¢+1) = g X2(q+ 1) and the vertices 1, 2 are necessarily in different
source-components). The cases d > 3 are new.

~ N . ()
Proof. Let Ry(q) = Xa(q+ 1), and let ¢; = [¢*]Xa(q¢ + 1) = [¢"|Ra(q) = Rii!(o). By (13),
d

Ra(a) = [o1 0] T3 (H ?{3) 7"
k=2

for an indeterminate ¢q. After differentiating with respect to ¢ (i times) one gets

d i
()" e = [w1 - @] (~Ti(—x%)) (H _?j((_‘;‘))> (—111(1;!(—X)>) .

k=2
Reasoning as in the proof of Theorem 4.5 this gives:

d %
O = o] (FTh(-x)) (H(H{kux)—ﬂ) e

7!
k=2

— d P(X)l
= Y K (-Ti=x) - 7] (H(H{k}<x> - 1>) N
UC|[n) k=2
where U := [n] \ U.
For V C [n]\ {1}, let Sy = Sy (d, i) be the set of acyclic orientations of G[V] having
d + i — 1 source-components, such that 2,...,d are in different source-components
(with Sy = () whenever V' does not contain {2,...,d}). Reasoning as before, we see

d .

P (2

that |Sy| = [x] (H(H{k}(x) - 1)) ()'() . Hence, using the fact that T3 is the

i!
k=2

generating function of the set I of independent sets of G' containing the vertex 1, we

get

(15) (—1)r i = 3~ s .
vel

We will now simplify this expression by defining a sign-reversing involution ¢ on the
set S:={(U,y) | U €1, v € Sz}. Given (U,v) € S consider the orientation 7 which
is the extension of ~ to the full graph G obtained by orienting every edge incident to
a vertex u € U toward u. It is not hard to see that ¥ has d 4+ ¢ source-components
S1,...,Sq4i, such that S; = {1} and S2 \ U,...,Sq4; \ U are the source-components
of 4. Indeed, it is clear that the first source-component S is {1} because 1 is a sink,
and moreover no vertex u € U \ {1} can be the source of a source-component because
u is adjacent to a vertex with smaller label.
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We now define ¢ on S. Let (U,y) € S, and let Z be the set of sinks of 7. Note
that U C Z and Z € I. If Z = {1}, then define ¢(U,v) = (U,~). Otherwise we set
s =min(Z \ {1}) and consider two cases. If s € U, we define ¢(U,~) = (U \ {s},7),
where +/ is the extension of v to G[U U {s}] obtained by orienting every edge incident
to s toward s. If s ¢ U, we define ¢(U,~) = (U U {s},'), where 7/ is the restriction of
¥ t0 GT\ {s}].

We know from the above discussion that in every case ¢(U,~) € S. Moreover it is
clear that ¢ is an involution (because the orientation 7 is unchanged by ¢), and that if
Z # {1}, the contribution of the pairs (U,~) and ¢(U,~) to the right-hand side of (15)
will cancel out. Hence, the right-hand side of (15) is the cardinality of the set S’ of
pairs (U,v) € S such that Z = U = {1}. This gives the claimed interpretation of
(—1)"~%i¢; (upon identifying each element ({1},7) in &’ with the orientation ¥ of G
which is the extension of v to GG obtained by orienting every edge incident to 1 toward
1). O

5. CHROMATIC SYMMETRIC FUNCTION

In this section we consider the chromatic symmetric function defined by Stanley
in [11], and we obtain a symmetric function refinement of Theorem 1.1, as well as a
“superfication” extension.

Let G = ([n], E) be a graph. We consider colorings of G with colors in the set
P:={1,2,3,...} of positive integers. A function f: V — P is called P-coloring, and as
before f is said to be proper if adjacent vertices get different colors. Let z = (z1, 22, .. .)
be a set of variables indexed by P. The chromatic symmetric function of G is the
generating function of its proper P-colorings counted according to the number of times

each color is used:
Xg(z) = Z H Z(v)-

f proper P-coloring v€(n]

Observe that X;(z) is a homogeneous symmetric function of degree n in z, and that
for every positive integer j,

(16) Xa(1) = xa(j),

where 17 is the evaluation obtained by setting z; = 1 for all i € [j], and z; = 0 for all
1> 7.

Ezample 5.1. For the graph G represented in Figure 1, the chromatic symmetric func-
tion is easily seen to be

Xqg(z) =24 Z 2izjzpe + 4 Z (z?zjzk + zizjzzk + zizjzi) + 2 Z z?zf-
1<i<j<k<l 1<i<j<k 1<i<y

In particular, one gets

Xe(19) = 24<fl> + 12(‘;) + 2@) = j* — 453 + 652 — 37,

which indeed coincides with the expression of x;(j) given in the caption of Figure 1.
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In [11, 12] Stanley establishes many beautiful properties of X¢. Our goal is to recover
and extend some of these results using the machinery of heaps. The starting point is
the symmetric function analogue of Lemma 3.2:

(17) Xe(2) = [o1 o) [[ =),
i=1

where T'(x) is the generating function of trivial G-heaps.

We first discuss the result of applying the duality mapping to Xg. We recall some
basic definitions. For a field K of characteristic 0, we denote by Sympg(z) the alge-
bra of symmetric functions in z, with coefficients in K. Hence, X¢(z) € Symg(z) C
Symy(z). Let ey, hg, pr. be the elementary, complete and power-sum symmetric func-
tions, which are defined by eg = hg = pg = 1, and for k € P,

k
e = Z Ziy %, hie = Z Ziy - %y, and pk:Zzi.

i< <1 EP 11 <--<ip€P i€P

Recall that Symy(z) is generated freely as a commutative K-algebra by each of these
sets of symmetric functions. In other words, if (gi)r>1 stands for any one of these
families, then (gy)\ forms a basis of Symy(z), where A = (A1, ..., A\;) runs through all
integer partitions and gy := gy, - - g»,. Lastly, the duality mapping w = w, is defined
as the algebra homomorphism of Symy(z) such that w(er) = hy. As is well known, w
also satisfies w(hy) = ex and w(py) = (—1)*"Ipg. The following result is [11, Thm 4.2],
and we give an alternative proof.

Proposition 5.2 ([11]). With the above notation,
w(Xa)=z) = > T 21w
(1.f) ve[n]

where the sum is over the set C of pairs (v, f) where v is an acyclic orientation of G
and f is a P-coloring without y-descent.

Proof. We claim that

(18) w (H T(zix)> = [[H (=)
=1 =1

Here and in the following we are actually extending w to the larger space of symmetric
power series in z with coefficients in K (in other words, we allow for symmetric func-
tions of infinite degree), and we can take K to be the field Q(x) of rational functions
in x with rational coefficients. Observe that for any scalar ¢ in the underlying field K,

w (H(l + tzz)> =w (Z ektk> = thtk = H 0 —1tz"
i=1 k=0 k=0 i=1 v

Now let Q(Z) € K[Z] be a polynomial such that Q(0) = 1. Working in the algebraic
closure K of K, one can write Q(Z) = Hizl(l +tpZ) with t1,...,tq € K. Then, still
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working over K, one gets

w (f[l Q(Zi)) H” (Hl + ki ) H H 1- tkzz - ﬁ Q(izz')'

k=1:i=1

Applying this identity to the polynomial Q(Z) := T'(Zx) gives (18). Hence,

w(Xe)(z) = w([xl---xn]ﬂmx)) =[x1---xn]w<HT<zix>>
=1 =1

(19) = [x1-- T H H(zx)

Expanding the right-hand side of Equation (19), we obtain that w(Xqg)(z) is the

sum of the monomials 2‘1V1|z|2v2‘ .-+ over all infinite sequences ((V1,71), (Va,72),--.),

where V' is the disjoint union of the sets V; and ~; is an acyclic orientation on G[V;]
for all ¢ € P. Now Proposition 5.2 follows using the correspondence detailed after
Proposition 4.1. ]

For an acyclic orientation v of G with source-components Si, .. ., Sk, we denote \(7)
the partition of n obtained by ordering the sizes |S;| in a weakly decreasing manner.

Proposition 5.3. With the above notation,
Xa(z) = (—1)" ) (—1) A0py
yEA

where the sum is over the set A of acyclic orientations of G, and £(\(v)) is the number
of source-components of vv. Equivalently,

(20) w(Xa)(2) =Y pagy
veA
Ezxample 5.4. For the graph G in Figure 2, the chromatic symmetric function is given
in Example 5.1, and one can compute
Xa(z) = pr1a1 —4p211 +4p31 + 2p22 — 3pg;
w(Xa)(z) = pria+4p2aa +4p3y + 2p22 + 3ps.

As stated in Theorem 5.3, the coefficients obtained in this expansions correspond to
the fact that the number of acyclic orientations v of G with partition A() equal to
(1,1,1,1) (resp. (2,1,1), (3,1), (2,2), (4)) is 1 (resp. 4, 4, 2, 3). This matches the
direct count one can do by looking at Figure 2.

Proof. It suffices to prove (20), since the other identity follows by applying w. Recall

oo
P k
from Theorem 2.4, that H(x) = exp(P(x)) := Z (I;) , where P is the generating
k=0 '

function of G-pyramids. This gives

ﬁH(sz) = eXP(iP(%x)) = exp(Z Pih| > — exp< Z ’Bm‘p|m| )

heP meNn
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where for m = (my,...,m,) we denote |m| = . m;, and we let By, be the set of
G-pyramids of type m. Hence

(21) f[lH(zix) - 11 exp(,g pm‘ >

meN™
Thus, by (19),

w(Xe)(2) = [oa] ] exp<|B pm'x)

me{0,1}" |m|
Pjm|

= [z1- -] H (1—|—|B ——X )
me{0,1}" ’m|

For V' C [n], let By be the set of acyclic orientations of G[V] with unique source min(V)
(with the convention By = 0)). By Lemma 3.3, |By| = Bml 3¢y £ §, where m € {0,1}"

Im|

is the tuple encoding the set V. Hence

w(Xg)(z) = [z1---x) [[ 1+ Bvlppx") = > I

VCin) {Vim), (Vi) } k=1

where the sum is over the set B of sets of pairs {(V1,71), ..., (Vi,7)} such that V;,...,V;
form a set partition of [n], and for all k € [i] 74 is in By, . Reasoning as in Section 4.1, we
can identify B with the set of acyclic orientations and the sets V; with the corresponding
source-components. This proves (20). O

Remark 5.5. Proposition 5.3 could alternatively be obtained by combining [11, Theorem
2.6] with [7, Theorem 7.3]. Indeed, [11, Theorem 2.6] expresses the coefficient of py in
X¢ in terms of the M&bius function of the bond lattice of G, and [7, Theorem 7.3] shows
that this Mobius function has the combinatorial interpretation given in Proposition 5.3.

As we now explain, Propositions 5.2 and 5.3 are refinements of Propositions 4.1
and 4.2 respectively. Let ¢ be an indeterminate, and let XG(Z)\Vk>0, pp—q denote the
polynomial in ¢ obtained by substituting each of the generators pi,ps,... by q. We
observe that

(22) XG(Z)|W<:>O, PR=q — XG(q)
and for any non-negative integer 7,
(23) w(Xe) (V) = (=1)"xa(—4)-

Indeed the polynomials in (22) coincide on positive integers by (16) (since py(17) = j),
and w(Xq)(17) = (—1)"X¢(2) k>0, pp=—;j (since w(py) = —(—=1)*p;, and X¢ is homo-
geneous of degree n). Thus, specializing Proposition 5.2 at z = 17 gives Proposition 4.1,
and specializing Proposition 5.3 at (p1,p2,...) = (q,q,...) gives Proposition 4.2.

We now give a refinement of Theorem 1.1. Consider a second set of variables y =
(y1,92,...). For a symmetric function f = f(z), we denote f(y + z) the symmetric
function in y and z obtained by substituting the variable z9;_1 by y; and zo; by z; for
all i € P (equivalently, substituting the generator p; = p;(z) by pi(y) + pi(z)).
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Theorem 5.6. Let G be a graph. Let D be the set of pairs (v, f), where 7y is an acyclic
orientation of G and f :V — N is an N-coloring of G without ~y-descent. Then

WXy +2) = Y o [[2

(v.f)eD il
where g is the restriction of vy to G[f~1(0)].

Observe that Corollary 4.4 (which is equivalent to Theorem 1.1) is the specialization
of Theorem 5.6 obtained by substituting px(y) by ¢ and pg(z) by j for all £ € P, and
then taking the coefficient of ¢*. Observe also that setting y = 0 in Theorem 5.6 gives
Proposition 5.2, while setting z = 0 gives Proposition 5.3.

Proof. By (19),

wXeg)ly+z) = [x1- -2y <HH(yZX)> . (HH ZiX )
i=1 i=1

S ([XU]Hme)) - ( )
UwV =[n] i=1 i=1

where the sum is over the pairs (U, V') of disjoint sets whose union is [n]. Applying
(19) to the induced graphs G[U] and G[V] gives

wXe)(y +2z) = Z w(Xau(y) - w(Xap)(2).

UwV=[n]

;:18

Lastly, applying Propositions 5.3 and 5.2 to w(X¢u))(y) and w(Xgv])(z) respectively
gives

w(XG)(y+Z) = Z Z p/\('yo)(y) : Z H Zfr(w) | o

UsV=[n] \yeAU) (Y,fec(v) vev

where A(U) is the set of acyclic orientations of G[U], and C(V) is the set of pairs
(', f') with 4" acyclic orientation of G[V] and f’ a P-coloring of G[V] without +'-
descent. Theorem 5.6 follows by identifying (Jyyy ) A(U) x C(V) with D (identifying
U with the set y~1(0) of vertices colored 0, etc.). O

As the proof of Theorem 5.6 shows, it is easy to combine several results into one,
at the cost of using several sets of variables. This is because our identities hold at the
level of the heap generating function []7°, T'(z;x). For instance, it is straightforward
to recover the superfication result [11, Thm 4.3], as we now explain.

We denote by X (y —2) the function of y and z obtained from X(z) by substituting
pi(z) by pr(y) — (—=1)*pr(z). Equivalently, X¢(y — z) is obtained from Xg(y + z) by
applying duality only on the z variables:

Xe(y —2z) :=w,(Xg(y + 2)).
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Using (17) and (18) gives

Xe(y —2z) = [z1-20] <H T(yz‘X)> ‘ <H H(Zz‘x)) Z Xeum(y) - w(Xap)(2)

UwV=[n]

Koly-= 3 ¥ O
UV=[n] (f-.f+7+)
where the inner sum is over the set of triples (f_, f+,7") such that f_ is a proper
P-coloring of G[U], v+ is an acyclic orientation of G[V], and f; is a P-coloring of G[V]
without v4-descent. Equivalently (upon coloring U with negative colors, and extending
v+ to G), one gets

(24) Z Hy |f 1(1)|

(r.f) i€P

where the sum is over pairs (v, f) where v is an acyclic orientation of G and f : V —
Z\ {0} is a coloring without «y-descent such that for all i < 0 the vertices of color i are
pairwise non-adjacent. This is exactly [11, Thm 4.3].

There is no obstacle to pursuing this idea further. For instance, one can com-
bine (24) and Theorem 5.6 into a single statement. Consider a new set of variables
z' = (21,25 ...), and the function X (y — (z+2')) obtained from X(z) by substituting
pr(2) by pr(y) — (—=1)F(pr(z) + pr(2z')). Let € be the set of pairs (v, f), where 7 is an
acyclic orientation of G and f : V — Z is an Z-coloring of G without -descent, such
that for all ¢ < 0 the vertices of color i are pairwise non-adjacent. Then

(25) Xoly —(z+72) = 3 pry(@) [[o 2O

(v.f)eE icP

Hence,

where g is the restriction of v to G[f~1(0)]. Note that setting y = 0 in (25) gives
Theorem 5.6, while setting z’ = 0 gives (24).

Remark 5.7. Recall the notion of proper multicolorings from Remark 3.4. For m € N,
the symmetric function

(26) Xem(z) = H T(zix

can be interpreted as counting proper multlcolormgs of G of type m according to the
number of times each color in P is used. By the same reasoning as in Remark 3.4, one

gets
Nem(e) = Ke(8)
m!
so that these generalized chromatic symmetric functions are still chromatic symmetric
functions, up to a multiplicative constant. Hence the results in this section apply to
XGm. This was noticed already in [12, Eq. (3)]. In fact [12, Proposition 2.1] follows
from the combinatorial interpretation of (26).

Acknowledgment. We thank the anonymous referees for their numerous careful
comments.
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