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Magnetoelastic Gilbert damping in magnetostrictive Fe0.7Ga0.3 thin films
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We report an enhanced magnetoelastic contribution to the Gilbert damping in highly magnetostrictive
Fe0.7Ga0.3 thin films. This effect is mitigated for perpendicular-to-plane fields, leading to a large anisotropy of
the Gilbert damping in all of the films (up to a factor of 10 at room temperature). These claims are supported by
broadband measurements of the ferromagnetic resonance linewidths over a range of temperatures (5 to 400 K),
which serve to elucidate the effect of both the magnetostriction and phonon relaxation on the magnetoelastic
Gilbert damping.
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Among the primary considerations in the design of
spintronics devices is Gilbert damping. However, a full un-
derstanding of the mechanisms which cause damping of
magnetization dynamics in ferromagnets remains elusive. Re-
ports of anisotropy in the Gilbert damping have proven to be
useful tools in the understanding of the underlying mecha-
nisms involved [1–3], but there is much that is yet unclear.
Studies of the temperature dependence also promise to be a
uniquely powerful tool for a complete physical understanding
[4,5], however, there are few such reports in existence.

Recently, it has been shown that spins can be coherently
coupled over large distances (∼1 mm) using magnon-phonon
coupling [6–8]. It is also well known that magnetization dy-
namics can be excited elastically through this phenomenon
[9], but its effect on Gilbert damping has been largely confined
to theoretical calculations [10–13] and lacks clear experi-
mental validation. Furthermore, most studies have focused on
yttrium iron garnet (YIG), which is weakly magnetostrictive.

In this Letter, we observe a large and anisotropic mag-
netoelastic contribution to the Gilbert damping in highly
magnetostrictive Fe0.7Ga0.3 films through broadband mea-
surements of the ferromagnetic resonance (FMR) linewidths
over a wide range of temperatures. The perpendicular-to-plane
linewidths exhibit a relatively low minimum in the Gilbert
damping of approximately 0.004, similar to that of bcc Fe
[14]. At room temperature, the Gilbert damping is as large
as a factor of 10 greater with field applied in plane relative to
out of plane. In fact, for any given sample and temperature,
the anisotropy is, at minimum, about a factor of 2. We argue
this is due to a mitigation of the magnetoelastic contribution
for perpendicular magnetization, arising from finite-thickness
boundary conditions and weak elastic coupling to the sub-
strate. The nonmonotonic temperature dependence of the
Gilbert damping also shows the competing effects of the
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magnetostriction, which increases at low temperature, and
the phonon viscosity, which generally decreases at low
temperature.

The Fe0.7Ga0.3 films studied in this Letter were deposited
on SiO2/Si wafers at room temperature by dc magnetron
sputtering of an Fe0.7Ga0.3 target. The base pressure of the
deposition chamber was 5 × 10−8 torr, and the working pres-
sure was kept at 5 × 10−3 torr with Ar gas. The composition
of the Fe0.7Ga0.3 films was quantitatively analyzed by energy
dispersive spectroscopy (EDS). Films were grown with thick-
nesses of 21 nm, 33 nm, 57 nm, and 70 nm (the 21 nm,
57 nm, and 70 nm belong to the same growth series). An
additional 33-nm film was grown at 200◦C. The 33-nm room
temperature deposition was etched using an ion mill to obtain
films with thicknesses of 17 nm and 26 nm. The thicknesses
of the films were measured using x-ray reflectometry [15].

The FMR linewidths were measured using a setup in-
volving a coplanar waveguide and modulation of the applied
magnetic field for lock-in detection as described by the au-
thors of Ref. [16]. Measurements were done with the field
applied in the plane (IP) and perpendicular to the plane (PP)
of the film. The sample temperature was varied from 5 K to
400 K for both IP and PP configurations [17] with microwave
excitation frequencies up to 52 GHz. The resonance fields and
linewidths were isotropic in the plane, and the absence of in-
plane magnetic anisotropy—with the exception of the 70-nm
film, where a small uniaxial anisotropy was observed—was
verified with vibrating sample magnetometry [15]. We place
an upper bound of �125 Oe on the anisotropy field of the
70 nm based on the angular dependence of the FMR fields,
which is about a factor of 10 smaller than the linewidths
and has no impact on our main conclusions. The absence of
anisotropy in the other samples is also consistent with the
abundance of grain boundaries observed with atomic force
microscopy (AFM). In analyzing the FMR linewidths, we
consider three contributions: Gilbert damping 4πα f /γ (α is
the Gilbert damping coefficient, f is the microwave frequency,
and γ is the gyromagnetic ratio), inhomogeneous broadening
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FIG. 1. (a) FMR linewidths for IP (black squares) and PP (red
circles) configurations for the 70-nm film. The IP linewidths are
fit to a model of two-magnon scattering and the PP linewidths are
fit using the standard Gilbert damping model. (b) Total linewidth
(solid black), Gilbert linewidth (dotted blue), two-magnon scatter-
ing linewidth (dashed magenta), and inhomogeneous broadening
(dashed/dotted red) for the 70-nm film with IP field.

�H0, and two-magnon scattering �HTMS (for IP fields). Eddy
current damping and radiative damping contributions [18] are
neglected because we expect them to be small (<10−4) for
these films. Linewidths of the 70-nm film at 300 K for both
configurations of the applied field are shown in Fig. 1(a), and
the IP linewidths with individual contributions to the linewidth
plotted separately in Fig. 1(b). We fit the IP linewidths using
a model of two-magnon scattering based on granular defects
[16,19,20]. The fit for the 70-nm film is shown in Fig. 1(b),
along with the two-magnon contribution alone given by the
magenta curve. The fit parameters are the Gilbert damping α

(indicated on the figure) and the RMS inhomogeneity field
H ′. The defect correlation length ξ is fixed to 17 nm based on
the structural coherence length obtained with x-ray diffraction
(XRD), which agrees well with the average grain diameter
observed with AFM [15]. Furthermore, the high-frequency
slope of the linewidths approaches that of the Gilbert damping
since the two-magnon linewidth becomes constant at high
frequencies [see Fig. 1(b)].

We now compare the IP and PP linewidths of the 70-nm
film shown in Fig. 1(a). The two-magnon scattering mecha-
nism is inactive with the magnetization perpendicular to the
plane [21], and so the PP linewidths are fit linearly to extract
the Gilbert damping. We obtain a value of 0.0035 ± 0.0001
for PP fields and 0.039 ± 0.0005 for IP fields, corresponding
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FIG. 2. Gilbert damping α for PP field shown as a function of
temperature for the 17-nm (orange), 21-nm (blue), 26-nm (green),
33-nm room temperature deposition (magenta), 33-nm 200◦C depo-
sition (gold), 57-nm (red), and 70-nm (black) Fe0.7Ga0.3 films.

to an anisotropy larger than a factor of 10. Li et al. [3] re-
cently reported a large anisotropy (∼ factor of 4) in epitaxial
Co50Fe50 thin films.

First we discuss the dependence of the PP Gilbert damping
αPP on temperature for all of the films, shown in Fig. 2.
We observe a significant temperature dependence in all cases
(with the exception of the 33-nm room-temperature deposi-
tion), characterized by a maximum at around 50 K. Then, at
the lowest temperatures (5 to 10 K), αPP approaches the same
value for all of the films (�0.004).

Now we turn to the temperature dependence of the IP
Gilbert damping αIP shown in Fig. 3. The values here were
obtained by fitting the linewidths linearly, but excluding the
low-frequency points (�20 GHz) since the two-magnon scat-
tering becomes constant only at high frequencies [22]. Here
we note, upon comparison with Fig. 2, that a large anisotropy
of the Gilbert damping exists for all of the samples. In the
70-nm film, for instance, αIP is more than a factor of 10 larger
than αPP at 300 K. In the temperature dependence of αIP, we
observe behavior which is similar to that seen in αPP (Fig. 2),
namely, a maximum at around 50 K (with the exception of the
21-nm film). Here, however, αIP does not approach a common
value at the lowest temperatures in all of the samples as it does
in the PP case.

The IP Gilbert damping is larger than the PP Gilbert damp-
ing for all of the samples over the entire range of temperatures
measured. This anisotropy of the Gilbert damping—along
with the nonmonotonic temperature dependence—in all seven
samples implies a contribution to the Gilbert damping in
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FIG. 3. Gilbert damping α for IP field shown as a function of
temperature for the 17-nm (orange), 21-nm (blue), 26-nm (green),
33-nm room temperature deposition (magenta), 33-nm 200◦C depo-
sition (gold), 57-nm (red), and 70-nm (black) Fe0.7Ga0.3 films.

addition to Kamberský damping. We verified that the orien-
tation of FeGa(110) planes is completely random with XRD
for the 33-nm (both depositions) and 70-nm films [15], and it
is therefore not possible that the anisotropy is due to Kam-
berský damping. Interface anisotropy has reportedly led to
anisotropic Kamberský damping in ultrathin (∼1 nm) films
of Fe [2], but this is highly unlikely in our case due to the
relatively large thicknesses of the films. In addition, the fact
that the damping anisotropy shows no clear correlation with
film thickness furthers the case that intrinsic effects, which
tend to show a larger anisotropy in thinner films [2], cannot
be the cause. The longitudinal resistivity ρxx of the 33-nm
(both depositions) and 70-nm films [15] shows very weak
temperature dependence. In the Kamberský model, the tem-
perature dependence of the damping is primarily determined
by the electron momentum relaxation time τ , and we would
therefore not expect the Kamberský damping to show a signif-
icant temperature dependence for samples where the residual
resistivity ratio is approximately unity. It is plausible that the
Kamberský damping would still show a temperature depen-
dence in situations where the spin polarization is a strong
function of temperature due to changes in the amount of
interband spin-flip scattering. This kind of damping, however,
would be expected to decrease at low temperature [23,24].
The temperature dependence we observe for both αPP and
αIP is therefore inconsistent with Kamberský’s model, and
the similarity between the two cases in this regard suggests
that the enhanced Gilbert damping has a common cause that
is mitigated in the PP configuration.
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FIG. 4. (a) Depiction of magnetoelastic damping process for
magnetization in plane and (b) perpendicular to plane, where M(t ) is
the magnetization vector and u(t ) is the lattice displacement. In panel
(b), the magnon-phonon conversion process is suppressed when d <

π/kph, where d is the film thickness and kph is the transverse phonon
wave number at the FMR frequency.

It has been proposed that magnetoelastic coupling can
lead to Gilbertlike magnetization damping through phonon
relaxation processes [10,12,25]. Similar treatments calcu-
late the magnetoelastic energy loss through interaction with
the thermal population of phonons [11,26]. The Kamberský
mechanism is often assumed to be the dominant Gilbert damp-
ing mechanism in metallic samples, so magnetoelastic Gilbert
damping is usually studied in magnetic insulators, particularly
yttrium iron garnet (YIG). There is the possibility, however,
for the magnetoelastic damping to dominate in metallic sam-
ples where the magnetostriction is large, such as in Fe-Ga
alloys. Later we will discuss how magnetoelastic damping
can be mitigated in thin films by orienting the magnetization
perpendicular to the plane, and how the degree to which it is
mitigated depends on the boundary conditions of the film.

Here we outline a theory of magnetoelastic damping,
which relies on the damping of magnetoelastic modes through
phonon relaxation mechanisms. Figure 4 illustrates the flow of
energy through such a process. Analytically, the procedure is
to equate the steady-state heating rate due to Gilbert damping
to the heating rate due to crystal viscosity, and solve for the
Gilbert damping α in terms of the crystal shear viscosity
η and the magnetostrictive coefficients λhkl . Shear strain ui j
resulting from the magnetoelastic interaction can be expressed
as ui j = λ111mimj [27], where mi ≡ Mi/Ms are the reduced
magnetizations. The leading-order shears thus have equations
of motion given by u̇iz = λ111ṁi, where i = x or y, and z is the
direction of the static magnetization so that mz ≈ 1. Longitu-
dinal modes are quadratic in the dynamical component of the
magnetization [25] and so will be neglected in this analysis.

The heating rate due to Gilbert damping can be written as
Q̇α = Ms

γ
α(ṁ2

x + ṁ2
y ), and the heating rate due to the damping

of phonon modes as Q̇η = 4η(u̇2
xz + u̇2

yz ) = 4ηλ2
111(ṁ2

x + ṁ2
y )

[12], with the factor of 4 accounting for the symmetry of the
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strain tensor. Equating the two, and solving for α (hencefor-
ward referred to as αme), we obtain

αme = 4γ

Ms
ηλ2

111. (1)

We will restrict our attention to the case of isotropic magne-
tostriction, and set λ111 = λ.

To use Eq. (1) to estimate αme in our films, we first esti-
mate the shear viscosity, given for transverse phonons with
frequency ω and relaxation time τ as [28]

η = 2ρc2
t

ω2τ
, (2)

where ρ is the mass density and ct is the transverse speed
of sound. Using ω/2π = 10 GHz, τ = 10−11 s, and ct =
2.5 km/s, we obtain η ≈ 2.3 Pa s. (The estimate of the phonon
relaxation time is based on a phonon mean free path of the
order of the grain size: ∼10 nm.) Furthermore, the magne-
tostriction of an equivalent sample has been measured to be
∼100 ppm at room temperature [29]. Then, with γ /2π =
29 GHz/T and Ms = 1123 emu/cc (extracted from FMR data
taken at 300 K), we estimate αme ≈ 0.016. This estimate gives
us immediate cause to suspect that magnetoelastic Gilbert
damping is significant (or even dominant) in these films.

We now discuss why the magnetoelastic damping can be
much weaker for PP magnetization in sufficiently thin films.
We will start by assuming that there is no coupling between
the film and substrate, and later we will relax this assumption.
In this case the only phonons excited by the magnetization, to
leading-order in the magnetizations and strains, are transverse
modes propagating in the direction of the static magneti-
zation [25]. One may assume that the minimum allowable
phonon wave number is given by π/d , where d is the film
thickness since this corresponds to the minimum wave num-
ber for a substrate having much lower acoustic impedance
than the film (requiring the phonons to have antinodes at
the interfaces) [13]. (We also assume an easy-axis magnetic
anisotropy at the interfaces, so that the magnetization is
pinned at the interfaces.) We expect then that the magnetoe-
lastic damping will be suppressed for cases where the phonon
wavelength, at the frequency of the precessing magnetization,
is greater than twice the film thickness [see Fig. 4(b)]. Thus,
in sufficiently thin films (with weakly coupled substrates),
the magnetoelastic damping process can be suppressed
when the magnetization is perpendicular to the plane. How-
ever, the magnetoelastic damping can be active (albeit
mitigated) when there is nonnegligible or “intermediate” cou-
pling to the substrate.

Before moving on, we briefly note the implications of
Eq. (1) for the temperature dependence of the Gilbert damp-
ing. On the basis of the magnetostriction alone, αme would
be expected to increase monotonically as temperature is de-
creased (λ has been shown to increase by nearly a factor
of 2 from room temperature to 4 K in bulk samples with
similar compositions [30]). However, the viscosity η would
be expected to decrease at low temperature, leading to the
possibility of a local maximum in αme. In polycrystalline
samples where the grain size is smaller than the phonon
wavelength, viscous damping of phonons due to thermal con-
duction caused by stress inhomogeneities can be significant

[28,31]. (In our case the phonon wavelengths are ∼100 nm
and the grain sizes are ∼10 nm.) This effect scales with
temperature as η ∼ Tα2

T /Cχ [31], where αT is the thermal ex-
pansion coefficient, C is the specific heat at constant volume,
and χ is the compressibility. At higher temperatures, αT and
C will approach constant values, and χ will always depend
weakly on temperature. We therefore expect that the viscosity
is approximately linear in T . In this case, αme is maximized
where λ2(T ) has an inflection point.

We proceed to explain our data in terms of the mechanism
described above, turning our attention again to the PP Gilbert
damping for all of the films shown in Fig. 2. We previously
argued that the magnetoelastic damping mechanism will be
suppressed for the case where the acoustic impedances of
the film and substrate are mismatched. However, the clear
dependence on temperature, which we already showed is in-
consistent with Kamberský damping, appears to be consistent
with the magnetoelastic damping mechanism. We estimate
that the acoustic impedance of the film (defined as the product
of mass density ρ and transverse speed of sound ct [13]) is
about a factor of 2 larger than the substrate. This suggests
that the elastic coupling between the film and substrate, al-
beit weak, may be nonnegligible. Furthermore, experiments
with YIG/GGG heterostructures (where the acoustic match is
good) demonstrated magnetic excitation of phononic standing
waves that have boundary conditions dictated by the com-
bined thickness of the film and substrate, rather than the film
thickness alone (i.e., the wavelengths are much larger than the
film thickness) [6,32]. In this case, the Gilbert damping may
contain some contribution from the magnetoelastic mecha-
nism. A final point is that αPP approaches �0.004 at 5 to
10 K for all of the films. Both the magnetostriction and the
viscosity are quantities which could have significant variation
between samples, leading to variations in αme. However, the
viscosity becomes small at low temperature, which means that
the Gilbert damping will approach the Kamberský “limit”, a
property that is determined by the electronic structure, im-
plying that the Kamberský damping is �0.004 in these films
and that it is the primary contribution to the Gilbert damping
near T = 0.

Now we revisit the IP Gilbert damping shown in Fig. 3. In
this configuration, there is a strong temperature dependence of
the Gilbert damping similar to that of the PP case, again im-
plying the presence of magnetoelastic damping. However, the
overall magnitude is much higher. That is because in this case
arbitrarily long wavelength phonons can be excited regardless
of the thickness of the film. Although we cannot directly
measure the magnetostriction as a function of temperature, we
estimate the scaling behavior of λ by interpolating the data
in Ref. [30] taken for bulk samples of similar composition.
To demonstrate that αIP scales with temperature as expected
from the model, we show the quantities αme and λ2(T )/λ2(0)
as functions of temperature in Fig. 5—where we define the
quantity αme ≡ αIP − 0.004—for the 21-nm, 57-nm, and 70-
nm films (which are part of the same growth). The correlation
between the two quantities is not completely convincing.
There is, however, an additional temperature dependence in
αme besides λ2(T ), namely, the viscosity η(T ). The inset of
Fig. 5 shows the ratio of αme and λ2(T ), which [from Eq. (1)]
is proportional to η(T ). The linear fits provide strong evidence
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FIG. 5. Magnetoelastic Gilbert damping αme for the 21-nm
(blue), 57-nm (red), and 70-nm (black) films (left ordinate) and
λ2(T )/λ2(0) from Clark et al. [30] (magenta; right ordinate) shown
as a function of temperature. Inset shows the ratio of αme and
λ2(T )/λ2(0), labeled as η(T ), along with linear fits for the 21-nm
(blue), 57-nm (red), and 70-nm (black) films.

that the mechanism behind the viscosity is indeed the thermal
conduction process that we argued is approximately linear in
T . We point out that the 21-nm sample, where αIP exhibits a
temperature dependence that was qualitatively different from
the rest of the samples (see Fig. 3), has a viscosity with similar
temperature dependence to the 50-nm and 70-nm films. This
suggests that the mechanism underlying the magnetoelastic
Gilbert damping is indeed the same. It is noteworthy that
the maximum in αme (∼50 to 75 K for all of the samples)
coincides approximately with the inflection point in λ2(T ).
This was a consequence of our assumption that η(T ) should
be roughly linear. We also obtain a significant value for the
zero-temperature viscosity, which is around 25% of the value
at 300 K. This is likely due to boundary-scattering processes
which will prevent αme from going to zero at low temper-
atures, particularly for in-plane magnetization where αme is
much larger than 0.004 (our estimate for the Kamberský
damping). For the PP case, αme is much smaller due to limita-

tions on the wavelengths of phonons that can be excited, so the
Gilbert damping of all the samples approaches the Kamberský
limit of 0.004 near zero temperature. We also found that η(T )
was linear for the 33-nm (200◦C deposition) film, but had a
more complicated dependence on T for the 17-nm, 26-nm,
and 33-nm (room temperature deposition) films (these three
being notably of the same growth). The viscosity near zero
temperature is within roughly a factor of 2 for all seven of the
samples, however.

Finally, we propose that this mechanism may be respon-
sible for a Gilbert damping anisotropy of similar magnitude
reported in Ref. [3], observed in an epitaxial Co0.5Fe0.5 thin
film. The authors attributed the anisotropy to the Kamberský
mechanism [23,24,33,34], arising from tetragonal distortions
of the lattice. The magnetostriction is known to be highly
anisotropic in bulk Co0.5Fe0.5, viz., λ100 = 150 ppm and
λ111 = 30 ppm [35]. We therefore expect that the Gilbert
damping arising from the mechanism we described may be
much larger for M ‖ (110) than M ‖ (100), which is precisely
what the authors observed.

In summary, we observe large and anisotropic magnetoe-
lastic Gilbert damping in Fe0.7Ga0.3 polycrystalline thin films
(thicknesses ranging from 17 to 70 nm). At 300 K, the damp-
ing coefficient is more than a factor of 10 larger for field in
plane than it is for field perpendicular to the plane in the
70-nm film. The large anisotropy is caused by a mitigation
of the magnetoelastic effect for perpendicular-to-plane fields
due to a dependence on the elastic coupling of the film to the
substrate, which in our case is weak. Finally, there is a non-
monotonic temperature dependence of the Gilbert damping,
which we show is consistent with our model.
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