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ABSTRACT

In this paper, we propose a system for mixing transactions in pay-
ment networks such as credit networks. Credit networks like Rip-
ple and Stellar are increasingly popular, and can facilitate cross-
currency transactions in a fraction of the time it would take for
banks or other financial institutions to process the same transaction,
and at a fraction of the cost. Unlike for cryptocurrencies, there has
been little work in the area of designing secure and private mixers
for credit networks. Mixers for cryptocurrencies such as Bitcoin
cannot be directly applied to the credit network domain because
credit networks have an inherently different structure and purpose
than cryptocurrencies. We design a system that uses cryptographic
constructs such as ring signatures, commitments, and zero knowl-
edge proofs to provide security/integrity of all transactions, ensures
privacy of the users involved in a transaction, as well as privacy of
the amount transacted. We also provide preliminary experimental
results.
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« Security and privacy — Privacy-preserving protocols.
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1 INTRODUCTION

Blockchain technology has enabled cryptocurrencies such as Bit-
coin [22], and platforms providing smart contract functionalities
such as Ethereum [7]. Credit networks such as Ripple [23] and
Stellar [29] have been developed as complementary financial ser-
vice systems to cryptocurrencies. Credit networks are peer-to-peer
systems in which a user extends trust to other users in the net-
work in the form of I Owe You (IOU) credits. The transaction be-
tween the users is enabled by "flowing” the IOU credits along a
trusted path created among them, and writing the transaction in-
formation to a public blockchain. Credit networks enable faster
transactions than banks, have the capacity to perform same and
cross-currency transactions at a significantly lower cost than tradi-
tional banking solutions, and consequently are gaining popularity
among users for cross-currency, global transactions. One of the
major privacy/anonymity issues in this area is that credit networks
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like Ripple post their entire transaction logs to the blockchain for
providing accountability, which make it easy to link/track the users
who are involved in a transaction, and glean other transaction
details.

Mixer networks are a popular solution for providing a degree
of privacy to users in blockchain-enabled cryptocurrencies. Tum-
bleBit [11] enables anonymity in credit networks where payments
are sent off-blockchain, via an entity called as tumbler who can effi-
ciently mix several transactions in the order of seconds. Although,
TumbleBit is efficient and provides unlinkability among the users, it
does not provide for the ability for users to perform micropayments
transactions, since the tumbler allows users to make transactions
worth 1 Bitcoin only. In some applications, being able to transact
only in unit currency might be an inconvenience to users; addition-
ally micropayments transactions allow users to transact in small
denominations (e.g., a $3 coffee costs 0.00073 Bitcoin). Other trusted
third party-based mixing protocols such as Mixcoin [4] were intro-
duced where the mixing servers were susceptible to theft from the
users, and a third party can violate anonymity. Other mixers include
CoinJoin [17], which can be used opportunistically by a set of users,
and can be used to achieve stronger anonymity in smaller groups,
and CoinSwap [18] which can achieve anonymity in larger sets at
the cost of additional transaction fees. All of the above mixers are
proposed for cryptocurrencies, not credit networks.

PathShuffle [20] is a recently presented, path mixing protocol which
is fully compliant with the Ripple credit network. PathShuffle offers
a fully decentralized, yet fast solution for complete anonymity of
Ripple transactions. PathShuffle leverages the Ripple network’s
gateway wallet, which is trusted by other users’ wallets in the net-
work to create and maintain consistent and correct credit links, and
also enables micropayments. In PathShuffle, there need to be several
users available for effectively mixing transactions, and each user
involved in a mixing transaction knows the transaction amounts of
the other users, which could lead of linkability of transactions, and
loss of value (amount) privacy for a single transaction.

Our Contributions. In this paper, we design a system where a set of
users can perform simultaneous transactions in a credit network
while maintaining their anonymity and privacy from all other users
in the network. We have multiple intermediaries in our system that
mix the transactions, and privacy of the users is protected from the
intermediaries too. Additionally the amount transacted by every
user is not known to any other user in the network, nor does a
user need to find several other users in order for the intermedi-
ary to conduct the transaction. Our system is scalable, supports
micropayments and provides fast end-to-end transactions.



2 RELATED WORK

In this section we will review literature in payment networks, cryp-
tocurrency mixers and credit networks, and compare our network
design with existing systems.

2.1 Payment channel networks

Fulgor [16] is the first payment protocol for peer-to-peer payment
channel networks that provides provable privacy guarantees, and
Rayo [16] is the first protocol for peer-to-peer payment channel
networks that enforces non-blocking progress. In Fulgor and Rayo:
1) The users among the path between a sender and receiver would
act as intermediaries and need to establish a payment path, and de-
termine the path capacity prior to starting the transaction. 2) Every
user in the path is assumed to be honest, whereas our design with
multiple intermediaries do not assume every user in the path to be
honest providing security against malicious intermediaries and ma-
licious users. 3) During concurrent payments in Fulgor, deadlocks
are possible. Unlike Fulgor, in our model, there will not be any dead-
locks occurring over the transaction path, and users do not have to
make a hard choice between anonymity and concurrency. 4) In Ful-
gor and Rayo, users have at least partial knowledge about network
topology. In our design, none of the users will have knowledge
about any part of the network topology, except for knowing the
intermediaries. Non-Custodial Second Layer Financial Intermediary
(NOCUST) [13] is a payment network with a single intermediary.
The trusted intermediary computes the balance in a public ledger
for every user, not providing anonymity, value and balance pri-
vacy. We provide value privacy by a commitment scheme where a
sender provides commitments to the intermediaries and the com-
mitments are placed on the blockchain through intermediaries for
the receiver.

Teechain [14] uses trusted execution environments (TEEs) that
write entries to a public blockchain to enforce correct operation
against mutually distrusting entities. Although value privacy is
trivially provided in a Teechain network, linkability is a problem,
since any adversary can link the signed entry in the blockchain to
the TEE that made these updates into the blockchain. This system
also places the entirety of trust on the TEEs, thereby allowing the
system to be vulnerable to attacks on the TEEs. One example of
such a case would be the foreshadow attack [5]. We aim to provide
unlinkability providing a commitment scheme that would not reveal
any value transferred from any of the users in the network.

Khalil et al. proposed REVIVE [12], a payment channel network that
allows users to re-balance their share of coins in a channel without
having to communicate with the blockchain. However, the channel
re-balancing process is not transparent and requires an out of band
coordination. Moreover, REVIVE only works in a restricted class
of network topologies that has cyclic structures and it is not clear
that the re-balancing mechanism is feasible in a general topology.
Perun [8] proposed virtual payment networks over Blockchain.
Perun allows two parties to establish a virtual payment network
without interacting with the intermediaries. Although Perun was
the first to introduce the concept of a virtual payment network, they
propose an explicit re-balancing scheme and the sender/receiver
can be linked to the value of the payment done over the payment
network. In our design, we focus primarily on the sender/receiver
and value privacy.
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2.2 Cryptocurrencies

TumbleBit [11] provides a backward compatible, centralized mixing
service where several users transfers their funds to an entity called
tumbler, and the tumbler in turn returns them to the users at a
fresh address. In our network, we allow the users to do micro-
transactions, unlike [11], and preserve their privacy using ring
signatures and zero knowledge proofs. Bitcoin tumblers such as
Blindcoin [11] and Mixcoin [4] use a trusted third party to mix
Bitcoin addresses. CoinShuffle [26] and CoinShuffle++ [27] allow
only 538 users per mix, CoinJoin [17] allows just 50 users per mix.
In our network, we support over 800 users.

2.3 Credit Networks

SilentWhispers [15] presents a decentralized credit network (DCN)
architecture which consists of subsets of paths between the sender
and receiver calculated via several trusted entities called landmarks.
At regular time intervals, each landmark starts two instances of
breadth-first-search (BFS) rooted at itself. First one is between the
sender and itself and the second one between the receiver and itself.
These two paths are stitched forming a complete path between the
sender and receiver. [15] provides transaction integrity, account-
ability as well as sender receiver and transaction value privacy. It
does not provide detailed mechanisms for concurrent transactions
(which is essential for scalability). It is also vulnerable to deadlocks,
and requires a user to join the network only at fixed time inter-
vals. Prior to going offline, the user needs to handover the signing
keys and the transaction-related data to the landmarks which will
impersonate the user during her absence. In our paper, we have n
intermediaries out of which k intermediaries form a honest major-
ity and are online all the time, thereby reducing the trust placed on
a single intermediary. Also we do not require path-finding between
a sender and receiver.

The DCN presented by Roos et al [25] used graph embedding for
efficient routing, with support for concurrent transactions overcom-
ing the inefficiencies in [15]. The embedding algorithm constructs
a rooted spanning tree of the network graph. In [25]: a) Senders
choose random amounts to transmit along a path which might lead
to a high rate of transaction failure. b) The user has to go though a
waiting time before joining the network. Unlike [25], in our case,
there is no waiting time imposed on users, and users do not trans-
mit randomly-picked amounts, hence a transaction is guaranteed
to be successful.

Panwar et al. [21] very recently proposed a DCN system where users
can perform path-based transactions in a way that preserves sender,
receiver, and value privacy. In their system, users need to perform a
rather complicated and inefficient path-finding phase. Their system
also has a significantly high number of messages being written to
the blockchain in the course of a normal, successful transaction
(more in the case of rollbacks, and other edge cases), thus resulting
in very high blockchain fees being incurred per transaction. In our
system, we require only a single blockchain-write per transaction.

3 SYSTEM DESIGN

In this section, we describe the structure of our privacy protected
network model, introduce our notations, and describe the crypto-
graphic primitives we employ in our system.



3.1 Parties

In our system, senders and receivers form a set of users organized
into a ring. We have intermediaries I, . . ., I, who act as facilitators
for transactions between a sender and receiver. The intermediaries’
identities are publicly known to all users in the system, and all users
can contact the intermediaries. In Figure 1 we illustrate our system
model with n intermediaries and m users. All users in the ring will
sign messages using a ring signature scheme [24], to authenticate
each of their transactions. All the signatures produced by senders
and receivers in the ring will be anonymous from the intermediaries’
point of view. The only information an intermediary gleans by
inspecting a signature is that the signature was produced by a valid
user within the ring. We assume that a subset of k intermediaries
such that k < n, are honest and online all the time, hence we allow
for n — k intermediaries to be dishonest. All the intermediaries are
connected to each other and they communicate with each other over
secure and authenticated channels. We assume that the I, ..., I,
intermediaries are setup with their traditional digital signature
signing and verification keypairs (not ring signatures).

We do not make any trust assumptions on the users in the ring.
Any user can be malicious, will try to lie about their transaction
amounts, and will try to cheat other honest users.
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Figure 1. Figure showing system design representing a ring of m
users and n intermediaries, Ij, . . ., I,. The dark arrows represent

direct communication, dotted arrows indicate the communication

takes place via intermediaries.

3.2 Overview of a transaction

In our system, a sender, Alice picks a value v; that she wants to
transfer to a receiver, Bob, and creates a commitment to v;: Com;.
She picks a value t; « {0, 1}* which will be shared with Bob out-
of-band (A is security parameter). She encrypts ¢; and obtains C; =
Ex(t;), where K is a symmetric key shared with Bob. Next, she signs
(Com;, C;) using her ring signature signing key. The ring signature

scheme guarantees that her identity will be anonymous to all users
in the system, including the intermediaries. She then sends the tuple
(Com;, C;) and the signature over the tuple to k intermediaries. We
use the commitment scheme to provide value privacy to Alice.
Additionally, since we are modeling a credit network, we have a
party called a gateway, denoted by gw in the system; real-world
credit networks such as Ripple have gateway wallets. A gateway
is a well-known reputed wallet in the Ripple network that several
users can trust to create and maintain a credit link in a correct and
consistent manner.

The k-of-n intermediaries will then verify the signature, sign the
commitment and post their signed commitment and the original
commitment to the blockchain. The receiver Bob, will then do a
zero-knowledge proof (ZKP) with the k intermediaries to prove
that he knows the token t;, thus proving he is the right receiver. If
the ZKP verifies properly, Bob will be able to claim the v; coins in
the commitment. We give our notations in Table 1.

3.3 Cryptographic Primitives

In this section we give a brief description of the cryptographic
primitives that we employ in our system.

Ring signatures: A ring signature scheme [24] provides anonymity
to the users within a set called as a ring. It consists of two functions
RingSign and RingVerify that allows the users to sign and verify
using ring signature keys, respectively. All a verifier can tell looking
at a ring signature scheme is that some user within the ring has pro-
duced the signature. Using ring signatures, we hide the identity of
the sender and receiver involved in the transaction, thus providing
anonymity. Abe, Ohkubo, and Suzuki, in 2002, developed AOS ring
signatures [1] based on the DL assumption, which enabled gaining
significant savings in size and verification time for ring signatures.
Similarly Greg and Maxwell defined an elliptic curve method as a
new way of creating the ring signature which is another efficient
solution to save signature size and reduce verification times [19].
Constant Size Ring Signature Without Random Oracle by Bose et
al [10], presents a generic constant size ring signatures which is
independent of the cardinality of the ring, but uses non-standard
assumptions.

Zero knowledge proofs: A zero knowledge proof [9] is a technique
by which a prover can prove to a verifier that the prover knows
some secret, but without revealing the secret itself. In our system,
a receiver, Bob, proves to an intermediary, that he knows the token
t; contained in a given commitment tuple, (Com;, C;), without con-
veying any information apart from the fact that he knows the value
of t;. Hence using ZKPs, the receivers can validate themselves as
the right receiver.

Pedersen commitment scheme: A Pedersen commitment scheme [30]
allows one to commit to a chosen value, such that the commitments
are perfectly hiding. The commitment will not leak any information
about value (in an information-theoretic sense), while being binding
on the sender, i.e., the sender cannot open the commitment to any
other value. We use commitments to provide privacy of transaction
values from intermediaries.

4 ADVERSARY MODEL
In our system, the adversary can adaptively corrupt a single user or

a set of users in the ring. The corrupted user can be either the sender,
receiver or the intermediary. The adversary can be either from the



Table 1. List of notations

Variable Definition
A Security parameter
(SK;, VK;) Signing/verification keypair for user i
L,DL,... I, Set of n intermediaries
Com; Commitment i
ti Token i
Ci Encryption of ¢;
K Symmetric key
v Value committed to by sender
(PK;, DK;) Encryption/decryption keypair for i*/ user
o Signature
(SKgw, VKgw) Signing/verification keypair for gateway gw
(SK 1, VK Ij) Signing/verification keypair for intermediary I;

ring, or any outside user influencing honest users in the ring. Each
user i has her own signing and verification key pair (SK;, VK;).
By corrupting any sender, the adversary takes full control over
the user’s actions and the user’s signing key is compromised by
the adversary. Any corrupted sender Alice can promise a specific
amount say, v; to Bob, but provide a commitment with a lesser
value in the commitment. In case the adversary corrupts any of the
receivers in the ring, the corrupted receiver may have claimed the
right token from the k out of n intermediaries, but claim that he did
not get the correct value in the commitment. The adversary can
also corrupt a set of (possibly colluding) users not involved in the
transaction who meddle with the commitments.

We assume a honest majority k among the n intermediaries. The
adversary can corrupt up to a maximum of n — k intermediaries.
If an intermediary gets corrupted, it can collude with a sender or
receiver and forge commitments or acknowledgments respectively.
The corrupted intermediary can also modify the commitments made
by the sender. We assume that the gw and the set of intermediaries
do not collude with each other.

4.1 Privacy and Security properties

The following are the set of security and privacy properties offered
by our system.

Sender/receiver privacy: The adversary will not know the identity
of the sender or receiver since they cloak their identity among a
ring of users and validate their identity using ring signatures.
Unlinkability: Since the identities of the sender and receiver are
cloaked among a ring of users, any intermediary or adversary will
not be able to link commitments to a sender or receiver in the
payment ring. Additionally, no two commitments can be traced
back to the same user.

Value Privacy: Any adversary in the ring will not know the value
of a given transaction, since the value is secured by a commitment
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scheme along with a encrypted token, unless the adversary holds
the token to claim the value.

Lastly, our system offers one other desirable property:

Scalability: Our system allows users to do micro-payments. So users
could transact in fractions of regular cryptocurrency payments (e.g.,
$3 = 0.00073 Bitcoin).

5 OUR CONSTRUCTION

Our construction comprises of five phases: setup, ring signatures,
commitment, verify, and pay phases. In this section, we describe
each of those phases.

5.1 Setup Phase

In this phase, the users in a network and the intermediaries are
setup with their respective secret and verification keys. There are
m users and n intermediaries in our network. We assume that m
users form a ring. The ring member who produces the signature
is the signer. We assume that each user i in the ring has their own
verification key VK; and secret key SK;. The general notion of ring
signatures does not require any special properties, but assumes
that the signer uses trapdoor one-way permutations to generate
the ring signatures.

Algorithm 1 shows the steps involved in setting up keys for
all the users in ring and signing/verification keys for the in-
termediaries. In this algorithm, we create ring signature key-
pairs (VK1,SK1), (VKz, SK3), ....,(VKm, SKy,) for all users (Line
2). The signer does not need the knowledge, consent, or assis-
tance of the other ring members to put them in the ring; all she
needs is knowledge of their public verification keys. The next
part in the setup phase involves creating key pairs for the n in-
termediaries in the system. The verification and signing keys
(VKy,,SKy,), (VKy,, SKy,), ..., (VKy,, SK1,, ) are setup for each of the
intermediaries (Line 4). The intermediaries’ signing/verification
key-pairs are those of a traditional digital signature scheme (not ring
signatures). Similarly, the gateway gw has a signing/verification
key-pair denoted by (VKgy, SKgy) (Line 5).

Algorithm 1: Setup phase

Parties : m users and n intermediaries

1 fori€ [1..m] do

/* Create users in ring and setup signing and

verifying keys */
2 Each user creates her key-pair (VK;, SK;).
3 end
4 The intermediaries I . . . I create their key-pairs
(SK]I, VK[l),(SKIZ, VKIZ), ..... ,(SK[n, VKI").

5 gw creates signing and verification keys (SKg.y, VKgw)

5.2 Ring Signatures

We now describe Algorithm 2. In our construction we use a ring sig-
nature scheme [24] to provide sender/receiver anonymity. RingSign
denotes the algorithm that a user in the ring invokes to create a
ring signature on a message, msg. A sender, Alice, picks a random
initialization value a or “glue" from {0, 1}’1, and a message, msg to
be signed. Alice picks a random sk; for all the other users in the



ring. This is not the original secret key of the other users, rather
fake-secret keys created by Alice to cloak her identity among the m
users. Alice, then uses her knowledge of trapdoor permutations to
invert g;(sk;) (Line 4) defined in following way. For any A-bit input
sk; which is the message, define non-negative integers ¢; and r;,
so that sk; = gjn; + ri and 0 < r; < n;. Then

~aqini + (), if(qi + Dy < 22
gi(ski) = .
ski, otherwise.

)

For A-bit sk; define non-negative integers ¢; and r; so that
msg = qin; +ri and 0 < r; < m; . She creates a signature
RingSign (VKi, VK2, ..VKm; a; ski, ska..., skp) — o; in Line 7 of
this algorithm.

RingVerify describes the verification process by a verifier i. He
hashes the msg which is (Com;, C;) and computes the encryption
key, K = H(msg). Intermediaries then verify the signature by check-

ing the equation Ck, 4 (y1, Y2, .., Ya) 2 awhichisa combining func-
tion that takes input K and initialization value a which is used
to verify the signature o; produced by Alice using the RingSign
function. In our system, the intermediaries and the gateway wallet,
gw also run the RingVerify function in Algorithm 6. In a transaction
where Alice is the sender, the intermediary I; uses the RingVerify
function to verify the ring signature obtained on a msg from Alice
in Line 14 of RingVerify.

5.3 Commitment Phase

We now describe the commitment phase outlined in Algorithm 3.
The commitment phase consists of the sender and the n interme-
diaries. k out of n intermediaries are assumed to be available and
honest. The sender from the ring of m users creates commitments
for values to be sent to k receivers. We set the number of receivers
to be the same as the number of honest intermediaries for clarity
and ease of presentation, but in practice, they could be different.
Let us consider a scenario where a sender Alice chooses values
(amounts) vy, vy, . .., v (Line 2) to send to k receivers.

The commitments are created using the Pedersen commitment
scheme [30] where Alice chooses randomness x . . . x; for all the
k receivers (Line 2). Creating commitments helps to preserve value
privacy in our system. Every transaction value is protected such
that the intermediaries do not get to know any values transacted
between any pair of users. Alice then creates tokens t1, f2, ..., t}
which are sent out-of-band to every receiver, and each ¢; is unique
to a single receiver (Line 4). Alice then creates tuples containing
(Com;, C;) where C; is the encrypted t;, and PK; is the public en-
cryption key of the receiver. The main idea behind creating these
tokens is to ensure each valid receiver among the k receivers gets
the right commitment created for them. These tuples are shared to
the k intermediaries using a secret sharing scheme, e.g., Shamir’s
secret sharing scheme [28] (Line 7). In a secret sharing scheme, a
secret is divided among a group of n members, such that any k
out of them can collaboratively re-construct the secret, as given in
Algorithm 4.

Alice generates a signature o4 using

RingSign (msgcom, Vki, Vky, ..Vkm; a; sk1, ska..., skm)
tion defined in Algorithm 2, where msgcom = (S1...Sn)
(Lines 9, 10). Alice, also creates o, to be sent to
gw, where o, is the signature created on msg using

func-
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Algorithm 2: Ring Signatures

/* Ring Signatures */
1 Function
RingSign(msg, VK1, VK, ..VKu; a; sk, ska..., skr)
Data: msg, the verification keys, fake-secret keys are
the input.
Result: o;
2 for i € [1..m] do
3 User i picks picks a « {0, 1}* and computes msg to
be signed;
4 She picks sk; for all the other ring members
1 <i<m,i#p(pdenotes sender herself) and
computes y; = g; (sk;)
5 She solves y; :Ck, q (Y1, Y2, .., Ya) = a
6 She computes skj, = gp_l (up)
7 She creates signature on msg as:
Signsk,; (VK1, VK3, .VKp; a; skq, skz..., skg)
—> 0j
8 end
9 end
/* Verify function */

=

o Function RingVerify (msg, 0;)

Data: msg, signature is the input to this function
Result: true or false

11 for i€ [1..m] do

12 Verifier computes y; = g; (sk;)
13 He computes K = H(msg)
14 He verifies Ck, 4 (y1, Y2, - Ya) z a and does
? « »
Verifyyg; (o, msg) = true
15 end
16 end

RingSign (msg, Vki, Vka, .Vkm; a; sk1, ska..., skm),

where msg = (vj, ri, t;) (Line 10). Intermediaries I; . . . I} use the
SecRecover() function to retrieve the commitment-tuple pair (Line
14). I . . . I} verifies the (Com;,C;) and the signature, following

which the intermediaries post (acomj, Com j) to blockchain, where

0Com; is the signature intermediary j creates after verifying Com;
(Lines 15, 16, 17).

5.4 Zero Knowledge Proof Claim for Bob

In our system, we use zero knowledge proofs (ZKPs) to ensure that
a valid receiver authenticates himself to k out of n intermediaries.
Specifically, a receiver proves in zero knowledge that he knows the
value of the token t; contained in the sender’s tuple: (Com;,C; =
Epk,(ti)). We illustrate the ZKP in Algorithm 5. A sender Alice and
receiver Bob share a secret ¢; through out-of-band communication.
The intermediaries then verify if Bob is the valid receiver so that he
can claim his amount (payment) from the intermediaries. The ZKP
depicted in Algorithm 5 is straightforward, and we do not reiterate
the steps here. After confirming that Bob is a valid receiver the
intermediaries then sign a transcript of the proof, 7, and send the
proof along with the signature to the gateway wallet gw.



Algorithm 3: Commitment phase

Algorithm 5: Zero Knowledge proof for Bob

1
2

3

5

7

8
9
10

11

12

13

14

15

Input :Set of senders, Set of receivers, G, g,h € G, g = |G|
Output:oy, oy
Parties : Alice and set of n intermediaries
/* Alice creates commitments to amounts and
tokens, sends to n intermediaries */
fori € [1..k] do
Alice chooses values v; € Zg and randomness x; € Zg
She creates Com; = g¥i h*i
She creates C; = Epg; (t;) where t; € {0, 1}’1
She constructs commitment, token tuple (Com;, C;)
end
Alice runs
SecShare ((Com1,Cy1), ..., (Comy, Cy))
—> (81, 52, ..5,)
/* Alice signs the commitments */
fori € [1..k] do
Alice computes msgcom as K = (S1, Sz, ..Sn)
Alice calls function
RingSign (msgcom, VK1, VKz, ..VKm; a; sk, .., ski)
— 04
, and sends o4 to intermediaries.
She computes msg = (vj, ri, t;), calls
RingSign (msg, VK1, VK3, .VKy; a; sk1, ska..., ski)

—> Oyp
Alice sends oy, to gw.
end
/* Intermediaries verify the commitments */

fori € [1..k] do
forj € [1..k] do
I; runs
(ComJ-,Cj) « SecRecover (S1, S2, ...Sn)

I; calls RingVerify (o4, msg) 2 “accept”
If accept, I; do Sign (Comj, Cj) — 0Com; using SK,

(O’Comj, Comj) is posted on blockchain

end
end

Algorithm 4: Secret sharing scheme

1
2

4

foric [1..k] do

SecShare((Com1,Cy) . ..(Comy,Cy)) — (51,52, ..., Sn):
Splits a secret (Com1, C1) .. .(Comy, Cy) into n shares,
with each S; € Zg.

SecRecover(S1,Ss,...,5,)) —
(Com1,C1)...(Comy,Cy) : 1 S1,S2,...,Sy are k
different shares produced by the SecShare operation,
then the value (Comy,Cq) ... (Comy, Cy) that this
produces is the original secret value.

end
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Parties : Alice,Bob and n intermediaries
1 fori € [1..m] do
2 for j € [1..n] do
/* Prove that Bob is a valid receiver of

token t */
3 begin
4 Bob sends A < g* mod qto I;
5 I; picks s « Zg, sends Com (s) to Bob
6 Bob computes r1 < Zg,y; = g’"* mod g
7 Bob sends y; to I;
8 I; sends s to Bob
9 Bob verifies Com, does z = (ts + r1) mod g,
sends z to I;
10 I; verify g* 2 (A%y1) mod g
11 If true, then I; constructs

Signsk;, (s, Y,A,2,9,9,G, UComj) — 7, sends

to gw
12 end
13 end
14 end

5.5 Pay Phase

Algorithm 6 depicts the pay phase in which the gateway wallet,
gw releases the amount to the receiver, after the receiver has au-
thenticated himself to the k intermediaries. The gateway gw has its
own signing and verification keys (SKg., VKg ), that were setup
in Algorithm 1. Figure 2 shows the steps involved in gw releasing
an amount v; to a receiver, Bob’s wallet. The numbers in the figure
depict the order in which verification is carried out by gw.

In Algorithm 6, Bob signs (msgp, VK1, VK2, VKpm; a; ski, . . ., skg) —
op sends op to gw, where msgp is as defined in Line 2. Then,
the gw verifies if (07, msg) provided by Alice to gw in Line 10 of
Algorithm 3 is valid. If yes, the gw verifies the ZKP, 7, and the
signature of each intermediary, ccom;;Jj € [1..k] on r (Lines 6, 7,
8). If both are valid, then the gw verifies if the Com; provided by
Bob, matches with the commitment that is present in the proof
in Line 11 of Algorithm 5. If all the verification pass, gw releases
the value v; to Bob’s wallet (Line 10). In a scenario where any of
the verification fail, gw cancels the transaction. It would be a very
interesting idea to explore implementing this transaction using
smart contracts, which we envision as a part of our future work.

6 IMPLEMENTATION AND EVALUATION

We have implemented our system using Solidity [7], and used the
Charm cryptographic library [2] for implementing the Pedersen
commitments and ZKPs!. Our experiments were run on a desktop
class computer with Intel(R) Core(TM) i3-7100 CPU @ 3.90GHzx4
and 8GB RAM on ubuntu-16.04 platform. The participants in our
system are instantiated by an Ethereum instance with 100 Ethers
credited by default to each participant. The most efficient mixer

!https://github.com/sigcrypto/privacy



Algorithm 6: Pay Phase
Input :G,g € G, q=|G|,Com;,C;,v;
Output:v;
Parties : Alice, Bob, k intermediaries, gw
1 fori € [1..k] do
/* Pay v; amount to Bob
2 Bob computes msgp = ((s,y, A, 2, 9,9, G, OCom; ), ti),
calls
RingSign(msgp, VK1, VK2, VKp; a; ski, .., skx) — oB
3 Bob sends op to gw

*/

4 gw calls RingVerify (oy,, msg) Z {true, false}

5 if true then

6 gw does
Verifyvk,, (T, (s, y,A,2,9,9,G, Gcomj)) z
{true, false}

7 if true then

8 gw calls

RingVerify (0B, msgcom) z {true, false}
9 if true then
gw verifies if Com; = (¢¥%, k'), then

10
‘ releases v; to Bob’s wallet

11 end
12 end
13 end
14 else
15 | gw cancels transaction.
16 end
17 end
j %h;j, 4“/117.? e

4. gw verifies Com; and sends v;
to Bob's wallet
gw >
1~ Bob sends his zero knowledge

proof & token t;

Figure 2. Illustration of final pay phase. The dotted arrows repre-
sent the input to gw. Solid arrow represent flow of credit from gw
to Bob’s wallet. The numbers represent the sequence in which the
execution of transaction takes place.

network for Bitcoin supports up to a max. of 800 users [11]. Coin-
Join and Coin shuffle can support upto 50 and 538 users per mix
respectively, whereas our system can support more users than any
of them. The size of a ring signature is proportional to the number
of users in the ring, as shown in Table 2. A ring signature ensures
a signer can sign any message anonymously on behalf of a group.
Unfortunately, the size of the signature grows linearly with the
size of the ring, and becomes inefficient when the ring size is large.
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To mitigate this, it would be worthwhile to explore ring signature
schemes which offer constant-sized signatures such as [10]. Al-
though such signature schemes exist, they are proven secure in the
random oracle model and use non-standard assumptions, whereas
the schemes we use are based on the well-known RSA and discrete
logarithm assumptions. Table 3 shows the expenses in terms of

Table 2. Ring signature timings

Number of | Time taken | Time taken Size of signature
users in ring | to sign (sec) | to verify (sec) | (bytes)

100 4.222 8.940 2980

200 8.464 17.754 5945

400 18.324 34.393 11886

800 33.427 68.505 23757

Gas , ether, and equivalent USD for deploying the cryptographic
primitives. We used altbn128 elliptic curves in the implementation
of the ZKP, and implemented AOS ring signatures [19].

We also measured the time taken for creating and verifying a

Table 3. Deployment costs

Functionalities | Gas I ETH USD
Contract Migration 277398 | 0.00554796 | 0.832
altbn128 elliptic curves | 74748 | 0.00149496 | 0.224
ZKP 74684 | 0.00149368 | 0.224

AOS ring signatures 438206 | 0.00876412 | 1.315
Total 865036 | 0.01730072 | 2.595

ZKP and Pedersen commitment; the timings are given in Table 4.
The first column shows the average time taken to create a ZKP
proof and to create a Pedersen commitment. The second column
shows the average time taken to verify a ZKP or a commitment.
We recollect that in our system, we only need a honest majority k,
of n intermediaries. In our experiments, we set k = 7, and n = 10,
similar to [15], although one could vary k, with some tradeoffs.
Choosing a smaller k would require users to place more trust on
the intermediaries, whereas a higher k value would mae the system
incur more computational costs.

Table 4. Time for commitments and ZKPs

Time for creation | Time for Verifica-
(sec) tion (sec)

Zero  Knowl-| 0.00189 0.05948

edge Proof

Pedersen Com- | 0.0267 0.0267

mitment

We calculate the time taken for a transaction to go through in our
system using Equation 2. This equation specifies the total time
taken for cryptographic operations involved. The time taken for



Table 5. Max. users in ring & corresponding end-to-end
transaction time

Time taken for a transaction | Number of users in the Ring

4 Seconds [Ripple] 10 users
120 seconds [Ethereum] 400 users
1200 seconds [Bitcoin] 3200 users

ring signatures, ZKP and commitments are specified in Table 2 and
Table 4. § denotes the overhead time, which includes a standard
sign and verify operation by the intermediaries and other network
latencies in the system, which we assume would be lesser than the
cost of the major cryptographic operations.

Transaction time = k(Time taken for commitment) + 3(Ring Sign)
+3(Ring Verify) + k(Time taken for ZKP) + ¢
)

Using the timing values provided in Table 3 and Table 4 in Equa-
tion 2, we calculate the number of users in the ring with transaction
confirmation time for Ripple (4 Sec), Ethereum (2+ min) and Bitcoin
(20 min) [23], as reference, and the values are given in Table 5.
It is important to note that the time mentioned for these cryp-
tocurrencies are just transaction confirmation times, and the actual
end-to-end transaction time is a lot more, since it depends on block
creation for each of these transactions [3]. Whereas in our system,
the corresponding number of users in the ring as mentioned in
Table 5 could do an end-to-end transaction in the times given in first
column of Table 5, with total privacy and anonymity.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed techniques for providing user and
value privacy, as well as transaction integrity and security, while
mixing transactions in a credit network. Our experiments show that
our system can be deployed on a reasonably large networks, and is
comparable to mixer networks proposed for cryptocurrencies [11].
Although we envision our system to be of use in credit networks,
one can apply it to other payment networks too. In future work, we
plan to analyze the security and privacy properties of our system
in a formal model such as the Universal Composability framework
of Canetti [6], and prove its security. We also plan to study the
interesting problem of constructing virtual payment channels [8]
for credit networks.
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