
Off-chain Execution and Verification of
Computationally Intensive Smart Contracts

Emrah Sariboz, Kartick Kolachala, Gaurav Panwar, Roopa Vishwanathan, and Satyajayant Misra
Department of Computer Science

New Mexico State University

Las Cruces, NM, USA

{emrah, kart1712, gpanwar, roopav, misra}@nmsu.edu

Abstract—We propose a novel framework for off-chain exe-
cution and verification of computationally-intensive smart con-
tracts. Our framework is the first solution that avoids duplication
of computing effort across multiple contractors, does not require
trusted execution environments, supports computations that do
not have deterministic results, and supports general-purpose
computations written in a high-level language. Our experiments
reveal that some intensive applications may require as much as
141 million gas, approximately 71x more than the current block
gas limit for computation in Ethereum today, and can be avoided
by utilizing the proposed framework.

Index Terms—smart contract verification, verifiable computa-
tion

I. INTRODUCTION

A smart contract is a computer program that resides on

the Ethereum blockchain and gets executed automatically

when predetermined conditions are met. Depending on the

complexity, every transaction that modifies a smart contract’s

state consumes a certain amount of gas (the unit of cost in the

Ethereum blockchain). As a result of this, it becomes infeasible

to use smart contracts for computationally intensive applica-

tions such as image recognition and zero-knowledge proofs.

In this paper, we refer to such contracts as computationally

intensive smart contracts (CICs).

Recent studies have explored alternative solutions to elim-

inate the cost and make CIC execution scalable. Proposed

solutions to this end either replicate the CIC’s execution

across a small subset of nodes or require a Trusted Execu-

tion Environment (TEE), which engenders greater trust. An

alternative to the aforementioned methods is to outsource the

CIC computation to a third party that does the computation

and generates a proof of correctness for the same, that can

be verified in polynomial time. Using this approach, the client

can verify the returned computation’s correctness in a much

more efficient manner than re-executing it. Our work falls into

verifiable computation category where we propose a solution

Research supported by NSF awards #1800088, #2028797, #1914635, Intel
Labs, and the Federal Aviation Administration (FAA). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF, FAA, and
Intel Inc.

that is scalable, avoids duplicating computations, and does

not require tamper-resistant hardware or trusted execution

environments.

II. RELATED WORK

Trusted Hardware: TEE has been adopted to alleviate scala-

bility and confidentiality obstructions of smart contracts in [1]–

[3]. However, recent studies have identified several attack on

SGX — we avoid the impact as we do not need SGX [4]–[10].

Replicated Computation: Outsourcing CIC execution to a set

of delegators has been proposed by [11]; however, this model

suffers from the large overhead of replicated computation and

lacks support for randomized computations, which we address

in our work. Verifiable Computation: Interactive proofs (IPs)

[12] and probabilistically checkable proofs (PCPs) [13] laid

the foundations of provable verifiable computation which has

been studied in [14]–[21]. Despite promising asymptotics,

these proof systems are highly impractical and may take inor-

dinately long to verify instances with small input sizes [22].

Another line of work applies the above theoretical foundations

to practice on cloud computing settings studied in [23]–

[25]; however, they are far from being scalable for general-

purpose computation. Adoption of zk-SNARKs [26] to verify

smart contracts was proposed by [27]; however, their solution

requires that the application code be written in a domain-

specific language that they designed. This differs from our

work as our work supports computations that are written in a

high-level language.

III. CONSTRUCTION

The components of our framework are as follows: a client

(Alice) who wishes to outsource a computationally intensive

job, a worker (Bob) who does the computation for the client

in exchange for some monetary reward, a miner (Charlie) to

validate the transactions, and Broker contract, a smart contract

which acts as an intermediary between the client and the

worker.

Client’s Operations: Alice writes the details of the smart

contract to be executed to her publicly accessible server Step

1 in Figure 1. The details contain the inputs needed for

execution, the fee given to a worker, the collateral the worker

needs to deposit to register for this job, and the maximum

time she is willing to allot for the computation result to be978-0-7381-1420-0/21/$31.00 ©2021 IEEE

Fig. 1. Schematic diagram of interactions between the entities and the corresponding function calls in the framework.

delivered to her. She posts this job creation request to the

blockchain by interacting with the Broker Contract in Step

2. This request contains the URL of her server, which has all

the aforementioned details.

Worker’s Operations: If Bob is interested in executing the

computation, he goes to the specified server URL to check

whether he has enough resources to complete the computation

within the requested time interval in Step 3 and registers

for the job by depositing the required collateral to Broker

Contract in Step 4. He retrieves the inputs needed for the

computation from Alice’s server in Step 5. He performs the

computation locally in Step 6, generates proof of correctness,

and uploads them to his server in Step 7. He then submits

the URL to Broker Contract for the verification by calling

getPaid() function in Step 8 to get compensated for his work

which internally starts the proof-verification mechanism.

Miner’s Operations: Charlie picks up the transaction

posted by Bob, executes the Broker Contract, and retrieves

the result and proof from Bob’s server in Step 9. The Broker

Contract checks whether the proof was posted within a speci-

fied time limit, verifies the proof and result, and posts them to

Alice’s server. Broker Contract outputs a transaction paying

Bob his fee and refunding his collateral if the verifications are

successful in Step 10. However, Alice gets refunded her fee

and also gets Bob’s collateral if the verifications fail.

TABLE I
THE MEAN AND STANDARD DEVIATION FOR COMPUTATIONALLY

INTENSIVE APPLICATIONS

Computation Input KeyGen (s) ProofGen (s) Verify (ms)

Matrix Mult.
70×70 40.25±1.48 117.91±4.24 2±2
110×110 158.43±8.89 487.46±93.50 9±10

Image Match.
45×45 32.23±0.76 75.12±1.89 70±61
85×85 115.89±3.32 317.88±8.68 9±2

MultiVar Poly
500040 36.23±2.58 140.81±7.12 8±2
644170 65.70±3.60 1220.82±8.59 8±2

Floyd-Warshall
16×16 45.57±3.00 112.06±6.86 1±2
25×25 166.40±4.36 514.99±13.35 3±7

IV. RESULTS AND EVALUATION

The proposed framework’s performance has been evaluated

on four computationally intensive applications as in [22].

Matrix Multiplication takes two n×n matrices as an input,

M1 and M2, and computes M1 ·M2. Image Matching takes

a kw × kh (kw = kh = 3) sized image kernel and computes

the point in an image where the minimum difference happens

between the image and the kernel. Multi-Variate polynomial

evaluation takes a polynomial of degree m, containing (m+
1)k coefficients, and evaluates it over k (k = 5) variables

taken as inputs. Floyd-Warshall algorithm takes an n × n

matrix representing the adjacency matrix of an n-vertex graph.

It computes the shortest paths among all the vertices.

According to our calculations, the gas required to implement

these applications in smart contracts is infeasible given the

current block gas limit of ≈12 million [28], e.g., 142 million

gas units for image matching.

Evaluation: The above applications were written in C and

first transformed into an arithmetic circuit. Next, the Pinocchio

compiler is used to generate Quadratic Arithmetic Program

(QAP), evaluation and verification keys [22]. In our experi-

ments, the key generation phase is completed by the client

and given to the worker along with the QAP. On receiving

these parameters, the worker executes the code and posts the

proof to the server he controls.

Our experimental results, detailed in Table I, show that our

framework provides quick proof verification, for different sizes

of input parameters for all applications. The framework also

maintains a constant proof size of 288 bytes in all cases. As

expected, we have noticed an increase in the proof generation

time with an increase in the application parameters’ size. This

growth was linear for all except image matching, which was

super linear due to an increase in the number of multiplication

gates and equality comparisons in the equivalent arithmetic

table.

V. CONCLUSION

We proposed a novel framework for execution and the ver-

ification of the CICs by offloading them to a computationally

powerful entity using an incentive mechanism. Unlike other

proposed solutions, our work prevents replicated computation,

eliminates the need for TEEs, and supports computations with

random results.

2

REFERENCES

[1] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: practical smart contracts on
bitcoin,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 801–818.

[2] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution,” arXiv

preprint arXiv:1804.05141, 2018.

[3] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun, “Ace:
Asynchronous and concurrent execution of complex smart contracts,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 587–600.

[4] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels
for untrusted operating systems,” in 2017 USENIX Annual Technical

Conference (USENIX ATC) 17, 2017, pp. 299–312.

[5] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” in International Conference on

Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
69–90.

[6] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in 26th USENIX Security Symposium

(USENIX Security 17), 2017, pp. 1041–1056.

[7] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in 26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
557–574.

[8] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE

Symposium on Security and Privacy. IEEE, 2015, pp. 640–656.

[9] A. Nilsson, P. N. Bideh, and J. Brorsson, “A Survey of Published Attacks
on Intel SGX,” Tech. Rep.

[10] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
Intel SGX,” in Proceedings of the 10th European Workshop on Systems

Security, 2017, pp. 1–6.

[11] S. Das, V. J. Ribeiro, and A. Anand, “Yoda: Enabling computationally
intensive contracts on blockchains with byzantine and selfish nodes,”
arXiv preprint arXiv:1811.03265, 2018.

[12] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, “Inter-
active proofs and the hardness of approximating cliques,” Journal of the

ACM (JACM), vol. 43, no. 2, pp. 268–292, 1996.

[13] S. Arora and S. Safra, “Probabilistic checking of proofs: A new
characterization of np,” Journal of the ACM (JACM), vol. 45, no. 1,
pp. 70–122, 1998.

[14] P. Golle and S. G. Stubblebine, “Secure distributed computing in a
commercial environment,” in Financial Cryptography, 5th International

Conference, FC 2001, Grand Cayman, British West Indies, February

19-22, 2002, Proceedings, 2001, pp. 279–294.

[15] W. Du and M. T. Goodrich, “Searching for high-value rare events with
uncheatable grid computing,” in Applied Cryptography and Network

Security, Third International Conference, ACNS, 2005, pp. 122–137.

[16] R. Sion, “Query execution assurance for outsourced databases,” in
Proceedings of the 31st International Conference on Very Large Data

Bases VLDB, 2005, pp. 601–612.

[17] P. Golle and I. Mironov, “Uncheatable distributed computations,” in
Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at

RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001,

Proceedings, 2001, pp. 425–440.

[18] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified com-
putation with streaming interactive proofs,” in Innovations in Theoretical

Computer Science ITCS, 2012, pp. 90–112.

[19] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computa-
tion: interactive proofs for muggles,” in Proceedings of the 40th Annual

ACM Symposium on Theory of Computing STOC, 2008, pp. 113–122.

[20] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Advances in

Cryptology - CRYPTO, T. Rabin, Ed., 2010, pp. 465–482.

[21] K. Chung, Y. T. Kalai, and S. P. Vadhan, “Improved delegation of
computation using fully homomorphic encryption,” in Advances in

Cryptology - CRYPTO, 2010, pp. 483–501.

[22] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security

and Privacy. IEEE, 2013, pp. 238–252.
[23] S. T. V. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making

argument systems for outsourced computation practical (sometimes),”
in 19th Annual Network and Distributed System Security Symposium,

NDSS. The Internet Society, 2012.
[24] S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and

M. Walfish, “Taking proof-based verified computation a few steps closer
to practicality,” in Proceedings of the 21th USENIX Security Symposium.
USENIX Association, 2012, pp. 253–268.

[25] V. Vu, S. T. V. Setty, A. J. Blumberg, and M. Walfish, “A hybrid
architecture for interactive verifiable computation,” in IEEE Symposium

on Security and Privacy, SP. IEEE Computer Society, 2013, pp. 223–
237.

[26] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference, ser. ITCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 326–349. [Online].
Available: https://doi.org/10.1145/2090236.2090263

[27] J. Eberhardt and S. Tai, “Zokrates - scalable privacy-preserving off-
chain computations,” 2018 IEEE International Conference on Internet

of Things (iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-

SCom) and IEEE Smart Data (SmartData), pp. 1084–1091, 2018.
[28] Ethereum Stats, 2020 (accessed December 16, 2020). [Online].

Available: https://ethstats.net/

3

	Introduction
	Related Work
	Construction
	Results And Evaluation
	Conclusion
	References

