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ABSTRACT

Evidence suggests that signatures of health and disease, or digital
biomarkers, exist within the heterogeneous, temporally-dense data
gathered from smartphone sensors and wearable devices that can
be leveraged for medical applications. Modern smartphones contain
a collection of energy-efficient sensors capable of capturing the
device’s movement, orientation, and location as well characteris-
tics of its external environment (e.g. ambient temperature, sound,
pressure). When paired with peripheral wearable devices like smart
watches, smartphones can also facilitate the collection/aggregation
of important vital signs like heart rate and oxygen saturation. Here
we discuss our recent experiences with deploying an open-source,
cloud-native framework to monitor and collect smartphone sensor
data from a cohort of pregnant women over a period of one year. We
highlight two open-source integrations into the pipeline we found
particularly useful: 1) a dashboard-built with Grafana and backed
by Graphite—to monitor and manage production server loads and
data collection metrics across the study cohort and 2) a back-end
storage solution with InfluxDB, a multi-tenant time series database
and data exploration ecosystem, to support biomarker discovery
efforts of a multidisciplinary research team.
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1 INTRODUCTION

Although nascent, the use of smartphones as a passive-sensing
modality and research tool for health applications continues to grow
due to the array of embedded sensors (e.g. accelerometer, gyroscope,
GPS, etc.) and the ubiquity of ownership [10, 17]. Evidence for the
clinical utility of the data generated by smartphone sensors contin-
ues to mount as it has been used, for example, to passively monitor
cognitive function, mental health, cardiovascular activity [14], and
post-surgery recovery [15], among other applications. Data collec-
tion infrastructure and methods to extract clinically meaningful
signatures (i.e. digital biomarkers) from such data are active areas of
research. Additionally, the need to monitor such studies in near-real
time and support data exploration and larger machine-learning, post-
processing analysis by multidisciplinary research teams on traditional
high performance computing (HPC) systems poses unique infrastru-
ture challenges. Here we discuss our recent experiences deploying a
cloud-native framework to longitudinally collect smartphone sen-
sor data from a cohort of pregnant women over the duration of their
pregnancy (approximately one year). We discuss extensions to the
pipeline that support data collection/management and downstream
efforts to uncover biomarkers associated with the progression of
(un)healthy pregnancies. The resulting infrastructure is a blend of
commercial cloud and academic HPC resources.

2 DATA COLLECTION INFRASTRUCTURE

A number of solutions exist to collect data from smartphone sen-
sors. Common open-source platforms used for health research in-
clude Beiwe (beiwe.org) [16], AWARE (awareframework.com) [11],
and the MD2K Software Platform (md2k.org) [12], among others.
While implementations and data sampling strategies differ, the
frameworks all include a front-end smartphone application to col-
lect/transfer raw sensor data from individual devices and a web
server responsible for receiving/organizing data from a fleet of
these registered devices. All must operate under the limitations
imposed by Apple and Android SDKs in terms of how and to what
extent various sensors are exposed to developers.

Because it is open-source, supports both Android and Apple
operating systems, employs industry standard encryption, and de-
ploys natively on Amazon Web Services (AWS), we elected to use
the Beiwe platform depicted in Figure 1a and detailed in Torous et
al. [16]. The Beiwe web server runs on a t2.medium EC2 instance
and hosts a study manager portal in which participant IDs are
generated and study settings, like data sampling schedules, are set.
These settings are initialized within the Beiwe application running
on a participant’s smartphone following device registration.
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Figure 1: Infrastructure to collect, monitor, store, and analyze smartphone sensor data streams. (a) Beiwe open-source data
collection framework includes a front-end smartphone application to sample from embedded, web server, and S3 bucket to
store encrypted study data. (b) Data collection monitoring solution tracks EC2 server load/data ingress and data accumulation
in S3. (c) Back-end storage and data analysis/visualization solution with InfluxDB.

For our work, data was collected from the following physical
and virtual sensors: accelerometer, GPS, power/screen state, call
logs, gyroscope (i0S), heart rate if available (i0S watch), step count
and distance traveled (i0S watch + phone), and WiFi logs (Android).
Collection from data streams occurs at varying time schedules. For
example, data is collected in 10 sec on/off cycles from low-power
accelerometers and is intended to be used for activity/context recog-
nition over the course of an individual’s day. However, GPS data
is collected according to a 1 minute on/10 minute off schedule to
avoid rapidly draining battery life. The Beiwe application organizes
data by source and stores them in CSV files which are periodically
uploaded over WiFi to the web server. The server ultimately routes
data to an S3 bucket where the raw data remains encrypted.

3 REAL-TIME DATA ACQUISITION

Data drop-out was one of the first major challenges we identified
with using consumer smartphones as a health research tool. A num-
ber of causes lead to data not being collected and/or uploaded to the
Beiwe web server (see Kiang et al. [13] for detailed discussion). For
example, a participant may disable location services, accidentally
close the app from the task manager, allow their phone to run out
of battery, or delete the app because they did not wish to partici-
pate in the study further. Additionally, the operating system may
limit access to sensors for performance-related issues. Underlying
decisions to limit such access remains proprietary and cannot be
anticipated. This latter scenario often results in short-lived, tran-
sient data drop-out that is often uncovered in downstream analyses.
Based on our preliminary findings, user actions tend to result in
longer periods of missing data. Given the number of participants
and large number of sensors we track, it became necessary to cre-
ate a monitoring/management tool to rapidly and automatically

identify instances of significant data drop-out in real-time and trou-
bleshoot the underlying cause (e.g. so that a research coordinator
could contact participants to re-open the app or re-evaluate their
desire to participate in the study). Our study protocol does not allow
anyone other than the research coordinator to have direct access
to the raw sensor data for participants until after they complete
the study. Consequently, real-time monitoring strategies regarding
participant data fidelity must leverage file metadata only.

A variety of open-source tools can be used to design a compre-
hensive monitoring platform for longitudinal studies. Our approach
is illustrated in Figure 1b and consists of the following software
and system elements:

e collectd (Linux performance statistics collection daemon)
e graphite/carbon (time series storage and aggregation)
boto3 (Python SDK for AWS)

Grafana (dashboard monitoring platform)

AWS 83 bucket (raw storage for participant sensor data)
Linux virtual machine (VM) (dedicated monitoring/query
server)

The first aim of our monitoring solution is focused on watching
server loads and data ingress on the Beiwe web server collection
point. This server is critical to the execution of the study. It is the
central server that all participant’s smartphones communicate with
to upload locally cached data. In particular, we sought to ensure
that the chosen EC2 instance type for this server was sufficient to
respond to the demands of our study as more participants/phones
are added over time. For server tracking, we leverage the collectd [2]
daemon available from the underlying Linux distro (Ubuntu 16.04.6)
to track and gather performance statistics from the EC2 instance
hosting the Beiwe web server. In particular, we track performance
metrics for standard 1/5/15 minute cpu load averages, memory
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usage, disk usage, and receive/transmit network packets. We con-
figure this daemon to send packets over tcp to a separate monitoring
server hosted on a Linux VM at TACC. This monitoring VM runs
the carbon-cache daemon, a component of graphite [4] which listens
for time-series data and dumps to local disk.

Our second focus was to track individual sensor data as it was
uploaded. As highlighted in Figure 1a, the Beiwe software used
for the current study delivers encrypted sensor data organized by
participant into a top-level AWS S3 bucket. Files are stored on a per-
sensor basis (8 potential sensors for Android, 13 potential sensors
for i0S) in CSV format. Individual samples are aggregated into
small chunks with hundreds to thousands of objects uploaded to
S3 each day per study participant. Consequently, the number of
stored objects to track scales very quickly. For example, after one
year in our study, we have accumulated over 15.3 million object
stores. To detect potential data outages for participants, we created
a standalone S3 bucket monitoring tool in Python that leverages
the boto3library [1]. For convenience, this utility is executed on the
same Linux VM that is allocated to serve our Grafana dashboard [3]
and is automated via crontab execution at 8-hour intervals. The
general approach for this utility is to scan all objects within the S3
bucket to track how much sensor data is being accumulated per
participant as a function of time. Fortunately, Beiwe includes a Unix
epoch timestamp in the object filename (e.g. 1576542542834 . csv),
so we can use this to discern sensor timestamps without accessing
the raw contents directly. Object timestamps and their associated
file sizes are cached so that new study participants and sensor
uploads can be uniquely identified during subsequent executions
of the bucket scanning utility.

To integrate into a unified monitoring dashboard, this utility
uses the graphyte Python library [5] to send newly detected files
and their statistics (timestamp/filesize) to the carbon metrics server
described previously. Once ingested, we can use Grafana to create
dynamic snapshots tracking overall study statistics and individual
participant history to inform the study research coordinator. One
such example from the current study is highlighted in Figure 2. This
figure shows the time history of data coming from the accelerometer
of an anonymized participant (op11beg?2) over the course of a recent
3 month period. We leverage these types of plots to track each study
participant and troubleshoot those for which we have not received
data within the last seven days.

4 TOWARDS A DIGITAL BIOMARKER
DISCOVERY LAB

We have recently deployed, and are currently testing, an open-
source solution built around the InfluxDB v2.0 time series plat-
form [9] to effectively store heterogeneous, temporally-dense smart-
phone data and support the discovery of digital biomarkers associ-
ated with maternal and infant birth outcomes. Current components
and features of this pipeline (Figure 1c) leverage the scientific com-
puting ecosystem at TACC and are detailed in the following:
Extract-transform-load: After a participant has left the study,
their encrypted raw data is downloaded from the AWS S3 bucket to
a secure, HIPAA-compliant partition on Corral, a GPFS file system
at TACC. While the data is not inherently considered protected
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Figure 2: Derived monitoring example for accelerometer
data upload using Grafana dashboard.

health information, we selected this partition because of the sensi-
tive nature of GPS location data and the fact that abstracted medical
record data will be included in the future. The initial data collection
phase involving roughly 60 participants generated millions of indi-
vidual CSV files. For performance reasons and the fact that Corral
is a shared resource with limited inodes, raw data was aggregated,
ordered by calendar date and grouped by sensor stream to reduce
the underlying file count by several orders of magnitude. The vari-
ous data streams differ significantly in terms of their density and
are a direct result of sampling schedules. For example, for a single
participant with an iOS device, 116M accelerometer samples were
collected and only 96K power/screen state records over the same
10 month period.

The Influx CLI was used to transform the aggregated CSV files
into line protocol format [8] in which each line represents a data
point with a measurement (data stream), field set, tag set, and times-
tamp. This required for each data stream the creation of annotated
CSV headers that specified the mapping of column names and
data types to field and tag sets as well as the date-time column.
Although the Influx CLI supports writing directly to an InfluxDB
server, we elected to use open-source utility scripts, published on
the InfluxDB Github and provided as a benchmarking suite [7], that
support multi-threaded, batch uploads and performance profiling.
We modified the scripts, written in Go, to be compatible with In-
fluxDB v2.0. From a preliminary scaling study, average ingest rates
of 334,474.0, 718,327.5, 878,267.8, 853,420.3, and 868227.3 values/sec
were achieved with 2, 4, 6, 8, and 10 cores, respectively, on a single
Stampede2 Skylake node for a single participant’s aggregated ac-
celerometer data. Note: for administrative and security purposes,
data upload to an InfluxDB instance running on a Corral data server
was performed on a Stampede2 compute node via an ssh tunnel
through the login nodes, likely affecting write performance.

InfluxDB configuration: InfluxDB is optimized for writing
and querying high-density time series data. An influxdb instance
was deployed on a Corral server node with the majority of default
settings preserved. To accommodate high write-rates of data that
span a long period of time, we found it necessary to increase the
storage-cache-max-memory-size to 500MB (influxdb setting) and
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double the number of files (~2000) that can be concurrently opened
by altering the appropriate ulimit Linux setting.

Data exploration and visualization: For this use case, down-
stream analyses involve collaboration amongst a diverse, multi-
disciplinary team. Based on our initial experiences, the InfluxDB
environment appears well suited to provide a shared platform to
coordinate and enhance these efforts, especially as it pertains to
prototyping methods to uncover digital biomarkers from smart-
phone data. The Data Explorer (Figure 3), part of the InfluxDB UI,
provides an interface to graphically compose and execute com-
plex queries of the data and visualize the results, thus removing
the requirement that users be proficient programmers. We have
found this very useful as we can interrogate and explore the data
in real-time as a team. Figure 3 highlights a particular use case in
which we were interested in identifying patterns of missing GPS
data in two pilot study participants. The plot shows the number of
GPS records (y-axis) in one hour, non-overlapping windows over a
1.5 month period (x-axis). A significant drop in GPS data is readily
identified for the participant represented by the yellow trace as well
as a periodic decrease in samples for both participants, warranting
further investigation. The underlying Flux query was composed
with the UI and follows:

from(bucket: "beiwe-tacc-pilot")

|> range(start: 2019-09-11, stop: 2019-11-02)

[> filter(fn:(r) => r["id"]=="p1" or r["id"]=="p2")

|> filter(fn:(r) => r["_measurement"]=="gps")

|> filter(fn:(r) => r["_field"]=="1latitude")

|> aggregateWindow(every: 1h, fn:count)
Flux is an open-source, standalone scripting and query language,
packaged as part of the InfluxDB platform. There are currently
11 client libraries under active development that integrate with
InfluxDB v2.0 APL For prototyping biomarker discovery methods,
we have begun to use the influxdb-client-python client library [6] to
query and aggregate data, the results of which will be processed and
analyzed with forecasting and machine learning Python packages
within Jupyter notebooks. These methods will then be used to
analyze and process data at scale via batch HPC workflows.
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Figure 3: InfluxDB Data Explorer used to assess patterns in
GPS sampling/drop-out patterns in two participants (green
and yellow). Number of records are displayed on the y-axis
and time on the x-axis
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5 CONCLUSION

While this work is motivated by our current research aimed at dis-
covering digital biomarkers of pregnancy, the resulting infrastruc-
ture is domain-agnostic and could be used to monitor/investigate
other health conditions or perhaps the onset and population-spread
of infectious diseases. Monitoring data collection at scale across
many devices is critical for our work, and we highlighted a number
of open-source tools that can be combined effectively to derive
scalable monitoring and analysis solutions applicable to similar
multi-sensor studies. Extracting and fusing features from multi-
ple smartphone data streams is critical for us to discover digital
biomarkers associated with birth outcomes. Although still in testing,
we believe the InfluxDB platform is well-suited for these purposes
to temporally-align and query heterogeneous, dense time series
data as it is trivial and efficient with the UI and client libraries.
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