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ABSTRACT

Containerized applications have exploded in popularity in recent
years, due to their ease of deployment, reproducible nature, and
speed of startup. Accordingly, container orchestration tools such
as Kubernetes have emerged as resource providers and users alike
try to organize and scale their work across clusters of systems.
This paper documents some real-world experiences of building,
operating, and using self-hosted Kubernetes Linux clusters. It aims
at comparisons between Kubernetes and single-node container
solutions and traditional multi-user, batch queue Linux clusters.

The authors of this paper have background experience first run-
ning traditional HPC Linux clusters and queuing systems like Slurm,
and later virtual machines using technologies such as Openstack.
Much of the experience and perspective below is informed by this
perspective. We will also provide a use-case from a researcher who
deployed on Kubernetes without being as opinionated about other
potential choices.
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1 INTRODUCTION

Over the course of two years, we have built several Kubernetes
[28] clusters at the Texas Advanced Computing Center [25] for the
purpose of learning about the technology and to ultimately provide
better service to the scientific community, who are increasingly
using container technology in pursuit of their computational goals.
As of this writing these clusters have provided service to many
projects and domains. Over 1200 containers have been run on the
cluster in the last 30 days; currently 500 Running. Several long-
running pods have remained up for months. Over 100 namespaces,
from small individual user projects to funded projects, including:

e Dashboards on the UT Austin COVID-19 Modeling Consor-
tium [14]. They were able to scale the dashboard during high
load times without asking for more virtual machines. The
system has handled over 700,000 page views in 1 year.

e Designsafe [32]. Expanded offering of Jupyter notebooks
with higher memory and CPU allocation vs. virtual ma-
chines.

o Tapis [33]. Took advantage of Kubernetes deployment stan-
dards to manage a complex stack of containers, services, and
storage.

e Galaxy [30]. Ability to start and stop large numbers of cus-

tom containers for training workshops.

TACC’s production Jupyter Notebook service [31]. The added

capacity of the cluster allowed more and larger notebooks

to run.

Users have taken advantage of Kubernetes’ unique features such
as:

o Easy Deployment: As opposed to managing separate virtual
machines with small numbers of containers, Kubernetes
provides easy deployment of containers to a cluster. Think
“Slurm for containers.”

o Reproducibility: To use the cluster, users must codify their
app into a YAML text file, that can be understood and used
by others.

o Easy Continuous Integration and Deployment: YAML files can
be checked into a repository for CI/CD purposes.

o Ease of Validation: Any new software changes can be tested
quickly, without impacting production.

o Upcycling: Older hardware from other systems can be up-
cycled easily. Heterogeneous compute nodes are not a prob-
lem.
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® Resource Sharing: Kubernetes allows better sharing of re-
sources (hundreds of containers fit on a single node).

e Resource Availability: More hardware available to single con-
tainers (some nodes have 256 GB).

o Cost Effective: Whole stack is built from free & open source
tools.

o Simplified DevOps for web services: Kubernetes solves a host
of problems including service discovery, scaling, load bal-
ancing, monitoring and self-healing

2 CLUSTER ADMINISTRATION

Folks with Linux system administration experience should not be
intimidated by running their own Kubernetes cluster. It is relatively
simple to set up on a single node or small number of nodes for
experimentation and demonstrates excellent stability. Upgrades in
place have caused little downtime.

In order to get the most vanilla Kubernetes experience and gain
experience with its components, we used the “kubeadm"” installa-
tion method [9]. A lot of automation tools make assumptions and
system changes behind the scenes that end up being useful to know
about later. We tend to do manual installations first to understand
the steps, then use our familiar automation tools for subsequent
installations. Going back and automating with comfortable tools
(e.g. Ansible [4] or bash scripts) gives us full control over what is
deployed.

Due to the relative ease of setup using kubeadm, we have not
extensively explored the low-resource/development-oriented Ku-
bernetes derivatives such as MicroK8s [20] or K3s [8]. By following
the instructions one can have a working 1+ node functional Kuber-
netes stack with only about 5 commands [16].

Once the cluster itself is up, we focused on customizing for what
we considered would be the most critical components for users to
be able to get work done, namely:

e User separation (namespaces)

o Network separation (by namespace, using Flannel [17] or
Calico [21])

o Persistent storage

o External network visibility for apps

2.1 Persistent Storage

We provide storage for the cluster using Ceph [15]. We have had
great experience re-purposing used, heterogeneous hardware into a
storage cluster that has been relatively stable. As with Kubernetes,
we installed and managed the cluster somewhat manually using
standard installation instructions [3]. The cluster has remained
usable for 3 years, through several major software updates and
hardware disk failures.

Through the Kubernetes RBD (Rados Block Device) storage class
driver and open source RBD provisioner [13] users are able to create
their own persistent volumes and attach them to their containers.
This works well for apps like databases, in which it is critical that
data not be lost between restarts of the application container.

Other workflows, e.g. in a data import mechanism, might require
that several applications read and write from a single directory.
While RBD does not support this Read-Write-Many access mode
[12] directly, there is a simple workaround: It is easy to set up an NFS
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server container in one’s own namespace and export the volume to
the desired containers. This is a good example of granting users the
ability to provide for their own needs without admin intervention.

If given the credentials to do so by their Ceph admin, users
may also mount CephFS [1] directories as volumes directly in their
containers.

2.2 External Connectivity

We do not provide automatic public internet connectivity to our
Kubernetes cluster. This is done for technological, security, and
policy reasons. As of this writing we provide manually-configured
proxy access to services in the Kubernetes cluster. This is the only
non-self-serve aspect of the cluster.

Ingress [7] is considered a basic component in Kubernetes API,
but implementation on a bare metal/VM cluster introduces some
challenges, like provisioning IPs, and user permissions among them.
We have not yet attempted to implement a self-service functionality
for users yet. This is likely the next large Kubernetes challenge to
overcome in our self-hosted environment. The three components re-
quired are dynamic IP addresses, dynamic proxy setup, and Domain
Name Service (DNS).

MetallB [10] is a third-party plugin for Kubernetes that allows
admins or users to provision dynamic floating IP addresses. We
have tested this and it works well. It could be one component of a
self-hosted Ingress.

There are several dynamic proxy providers, some that are inter-
nal to Kubernetes and some that live outside the cluster. We have
not been able to evaluate them yet.

DNS is a challenge because it requires the user having control
of their domain name service, and making changes after a dynamic
IP is assigned. Further complicating matters is that SSL certificates
are usually required, which can involve yet a third entity.

3 KUBERNETES ADMINISTRATION

The following section will be of particular interest to project ad-
mins or those responsible for devops, gitops, or software stack
deployments.

One of the biggest benefits for devops staff is that Kubernetes
forces users to engage in reproducibility best practices. Configura-
tion, deployment, and storage must all be defined in easy-to-read
YAML files before deploying to the cluster. The only part of de-
ployment that is not de facto transparent is the container image.
Everything is very discoverable. By doing this, pods are able to
crash and be restarted by Kubernetes almost instantly, with little
to no impact to the application user.

3.1 User Isolation

Since we are operating a shared Kubernetes cluster, we need a
way to separate user workloads. A simple way to achieve this is
to create one namespace [11] for each user. In Kubernetes, access
to the API is controlled by tokens, and a default token is created
for each namespace. We create a fairly low-powered “login” node,
similar to an HPC Linux cluster. Users who are granted access to the
system login via ssh and find their credentials for the Kubernetes
namespace already present in their ~/.kube/config file. This is



Real-World, Self-Hosted Kubernetes Experience

sufficient to provide most users all the isolation they need to get
started creating application stacks.

Kubernetes does support much more elaborate permissions mod-
els viarole-based access control (RBAC) [22], but isolation by names-
pace achieves much of the desired result. It is similar to non-root
user accounts in a Linux environment. We usually create a names-
pace with the same name as the Linux user account accessing it.

3.2 Quotas and Resource Management

The namespace-centric model allows for some decent built-in re-
source limits via the ResourceQuota API object [23]. Namespaces
may be limited to aggregate use of CPU, memory, GPU, and other
consumables. Admins can configure their quotas to achieve differ-
ent goals for users.

In the case of a fairshare model, one could configure the quotas
so that no one namespace may consume too large a majority of the
cluster resources, blocking others.

In another model-as in our Jupyter Notebook cluster-we can
ensure that every notebook gets guaranteed access to a certain
amount of memory & CPU. Conveniently, fractions of CPU are
possible to enforce.

Anecdotally, we have found that a single compute node can
support hundreds of containers as long as they are not all going
full-bore all the time (i.e. are not all compute-heavy codes). Often,
overconsumption of resources is simply not a problem for the kinds
of applications being used.

3.3 Deprecation of Docker as Kubernetes
runtime

In 2020 it was announced that Kubernetes would discontinue sup-
port for Docker and transition to containerd as preferred container
runtime backend “containerd" [6].

Much has been written about this transition but this mostly
affects cluster admins, not users. Docker Hub is still used for the
primary container repository. Since containerd runs Docker images
natively, most users will never know if their Kubernetes runtime is
Docker- or containerd-based.

After some experimentation, it is possible-with a small amount
of downtime-to convert a Docker cluster to using containerd back-
end with only a restart to user pods. Ideally though, a whole new
cluster should be built and user workloads moved.

Initial testing has shown containerd to be at least as stable as
Docker in our environment, but as of this writing we have not had
enough time with containerd to make a long-term judgement.

Containerd offers fewer mature management tools than Docker.
In particular, the docker system prune has been useful for reclaim-
ing resources such as old images and volumes. Presumably these
tools will become more mature in containerd as it gains adoption.

4 USING KUBERNETES

Users who have already containerized their applications can bene-
fit from Kubernetes almost immediately. This section focuses on
developers and researchers who wish to deploy apps and get work
done with as little interference from the platform as possible.
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By the time an app is successfully deployed to Kubernetes, one
has already done much of the legwork to deploy it repeatably and
reliably:

e By building containers and uploading them to a registry,
they have codified the ability to build the app and have it
run consistently on most Linux systems.

e By using Persistent Volume Claims, we have insured that
our valuable data will be preserved even if containers die.

e By using ConfigMaps, we have separated our dynamic con-
figuration files.

Regarding the primary command for interacting with Kuber-
netes, we have found it advantageous to alias kubectl as k. This
saves many typed keystrokes, and helps to avoid the controversial
topic of how to pronounce the command [26].

4.1 Development Process

The Kubernetes application development process can be cumber-
some. Users who are not used to distributed and networked sys-
tems can find the learning curve steep. Successfully deploying an
application means creating a viable container image, mounting con-
figuration files, setting environment variables, allocating network
Services [24], viewing logs, etc.

The most common place for users to post their publicly-available
images is on Docker Hub [29]. Kubernetes necessarily requires ac-
cess to an image registry, or repository of container images. Our
normal mode of image creation is to develop and debug the indi-
vidual containers on local resources (e.g. Laptop or Linux virtual
machine with Docker.) The user then uploads the image to an im-
age registry. It is possible to build container images directly on the
Kubernetes cluster using a tool called Kaniko [2].

Traditional interactive debugging/tracing tools do not work on a
remote cluster, so users must rely on logs and performance analysis
tools. There are quite a few tools to assist with this, but we do not
yet have experience with them. One example of such is Jaeger [19].
We plan to evaluate these types of tools in the future.

4.2 Automation Helpers

There are many tools devoted to further automating the deployment
of apps on Kubernetes. Helm [18] is the most popular. Helm employs
“charts" which contains all of the resource definitions necessary to
run an application, tool, or service inside of a Kubernetes cluster.
We found that some Helm charts work out-of-the-box and some
require deeper knowledge of the specific Kubernetes deployment
and modification of the chart.

We also found that sometimes these automated tools make the
assumption that the user is the owner of the cluster and/or has
elevated administrative privileges. In our case users do not have
such permissions on the cluster, and end up troubleshooting the
automation tool instead of their application.

Thus, in keeping with the theme of developing a deep under-
standing of Kubernetes initially, we have yet to explore these high-
level tools in much detail. They can be very powerful and we look
forward to evaluating them in the future.

Next we will describe the experience of a real-world user who has
successfully taken advantage of the Kubernetes clusters at TACC,
with no prior Kubernetes experience.
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5 USER CASE STUDY: INFLUXDB AND
APPLICATION

This example involved prototyping and optimizing solutions for pro-
cessing and storing heterogeneous time-course data. It describes ex-
periences with InfluxDB [27] and Kubernetes by a single researcher,
using a user-level namespace within the shared Kubernetes cluster.

The Health Analytics and Life Sciences Computing Groups at
TACC provide computing and data storage support for the DARPA
Warfighter Analytics using Smartphone for Health (DARPA-WASH)
program. The DARPA-WASH program aims to uncover physiologi-
cal representative signals embedded within data collected from sen-
sors (e.g. accelerometer, gps, light sensors, etc.) built in to modern
smartphones [5]. Cohort studies, in which a smartphone application
facilitated the longitudinal collection of various data streams from
participants’ phones, generated significant amounts of heteroge-
neous time course data. One of the challenges presented was to take
this raw data ( 150M small files amounting to 10TBs), transform it,
and host it in an accessible, scalable way to support future analyses.

The Kubernetes deployment at TACC offered the perfect envi-
ronment to iteratively test and prototype the various components
of an ETL pipeline. It is important to note that the user had lim-
ited experience in standing up and managing databases as well as
system administration in general at the start of this project. From
their perspective, one of the strengths of the Kubernetes environ-
ment was the ease with which resources are accessed, managed
and provisioned. The abstraction of such tasks to Kubernetes ob-
jects allowed them to more quickly focus on prototyping the ETL
pipeline. For example, in a matter of minutes they were able to
deploy and explore various databases using Kubernetes deploy-
ments and pre-built Docker images hosted on Docker Hub. They
ultimately chose to use InfluxDB because it is optimized for reading,
writing, and querying high-density time series data, provides Ul
and dashboarding tools, and supports a number of different client
libraries (e.g. Python, Java, Go).

Two separate persistent volume claims were created and asso-
ciated with two NFS servers: one pair was used to host the raw,
smartphone data and the other was used to mount the InfluxDB
storage engine. Separating the two ensured that reading and writ-
ing IO, which was expected to be considerable given the size and
density of the data, were ultimately uncoupled from a performance
optimization standpoint. Kubernetes made it trivial to trade out
Pods responsible for different steps in the pipeline. For example,
shortly after deploying InfluxDB 1.8, version 2.0 was released, which
included significant changes. They were able to maintain the de-
ployment of InfluxDB 1.8 while simultaneously exploring version
2.0 using a separate pod. The researcher particularly appreciated
the fact that these deployments were containerized and that they
did not need to keep track of two different installs, which use similar
if not the same PATH variables, on their local machine.

The other major component of the pipeline was responsible
for transforming the data into the necessary format (i.e. InfluxDB
line protocol) for ingress into the database. Again, the inherent
modularization of the Kubernetes environment was ideal for testing
different approaches of converting and loading data. In one such
effort they deployed a “data science” pod (mounted with NFS server
hosting the raw data) and leveraged Kubernetes NodePort service
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to access interactive Jupyter notebooks and the InfluxDB Python
APL In their resulting solution they created a custom Docker image
containing open-source Go packages to convert raw CSV data to
InfluxDB line protocol and asynchronously post data to the Influx
server. Ultimately, they were able to achieve a write performance
of 2.6 million values/second using 15 processors and leveraged
the substantial RAM provided by the Kubernetes deployment at
TACC. They are now in the process of deploying this solution in a
production environment.

The researcher commented that the hardware available to each
pod was incredible: much larger than they previously had access
to.

The experience with Kubernetes was largely one of success. It
allowed them to more rapidly, iteratively test different components
of the ETL pipeline independently when compared to purely VM
options available. The size of the data and hardware requirements
prevented local development. While the researcher reported a learn-
ing curve, it was not overly prohibitive. The user looks forward to
future development on the system.

6 CONCLUSION

Kubernetes has become a popular tool for deploying both long-
running applications and short-term scientific computation jobs.
Here we have documented our experiences in building, operating,
and using Kubernetes in real-world scenarios. Hopefully others may
benefit from this experience and apply it in their own environments.
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