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We study accuracy of bootstrap procedures for estimation of
quantiles of a smooth function of a sum of independent sub-Gaussian
random vectors. We establish higher-order approximation bounds
with error terms depending on a sample size and a dimension explic-
itly. These results lead to improvements of accuracy of a weighted
bootstrap procedure for general log-likelihood ratio statistics. The
key element of our proofs of the bootstrap accuracy is a multivari-
ate higher-order Berry–Esseen inequality. We consider a problem of
approximation of distributions of two sums of zero mean indepen-
dent random vectors, such that summands with the same indices
have equal moments up to at least the second order. The derived
approximation bound is uniform on the sets of all Euclidean balls.
The presented approach extends classical Berry–Esseen type inequal-
ities to higher-order approximation bounds. The theoretical results
are illustrated with numerical experiments.

1. Introduction. In this paper we study accuracy of bootstrap proce-
dures for estimation of quantiles of statistics of the form ‖Sn‖ or f(Sn),
where ‖ · ‖ denotes the `2-norm, and f(·) : Rp 7→ R is a twice continuously
differentiable function with bounded second derivative,

Sn := n−1/2∑n
i=1Xi

for independent sub-Gaussian random vectors X1, . . . , Xn ∈ Rp with positive
definite covariance matrices Var(Xi) ∀ i = 1, . . . , n. We consider the non-
asymptotic setting, when the leading approximation errors depend on n
and the dimension p explicitly. This setting allows to assess accuracy and
limitations of a bootstrap approximation in terms of the dimension p and
the sample size n. Estimation of distribution of statistics of the types ‖Sn‖
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2 M. ZHILOVA

or f(Sn) is necessary for construction of confidence sets and hypothesis
testing in some important statistical models and problems, such as linear
regression model with unknown distribution of errors, general log-likelihood
ratio statistic, construction of confidence sets for multivariate sample mean.

We focus on two basic bootstrapping procedures. The first method con-
sidered here is the Efron’s bootstrap (introduced by Efron [14] in 1979),
where the resampling is performed uniformly at random with replacement
from the i.i.d. data X1, . . . , Xn ∈ Rp. In this case the bootstrap samples
X∗1 , . . . , X

∗
n have the distribution P∗(X∗j = Xi − X̄) = 1/n ∀i, j = 1, . . . , n,

where X̄ = n−1
∑n

i=1Xi, and P∗(·) := P(·
∣∣X1, . . . , Xn) . Define for the sum

Sn its bootstrap version:

S∗n := n−1/2∑n
i=1X

∗
i .

One of the main results of the paper is the following uniform approximation
bound on the set B of all Euclidean balls in Rp which holds with high
probability:

supB∈B

∣∣P (Sn ∈ B)−P∗
(
S∗n ∈ B

)∣∣ ≤ Cσ,K,z{pK/(K−2)/n
}1/2

,(1.1)

where K ≥ 3 is a natural number, and constant Cσ,K,z depends (up to log-
terms) on K, on value Cz introduced in (2.4) in Section 2, and on constant
σ2 > 0 which comes from the following condition on the moment generating
function of Xi: E

{
exp(α>Xi)

}
≤ exp

(
‖α‖2σ2/2

)
∀α ∈ Rp (see also Remark

4.3 in Section 4.3 for an asymptotic version of the statement).
The second of the considered methods is the weighted bootstrap. Here

X1, . . . , Xn ∈ Rp are assumed to be zero mean, independent but not neces-
sarily identically distributed. Introduce the following random variables

(1.2)
ε1, . . . , εn ∈ R , i.i.d., independent of {Xi}ni=1 ,

Eεi = 0, E(ε2
i ) = 1, E(ε3

i ) = 1, E(ε4
i ) <∞.

The weighted or the multiplier bootstrap approximation of Sn is:

(1.3) S
ab
n := n−1/2∑n

i=1Xiεi.

For this version of the bootstrap estimator we derive the following bound
which holds with high probability:

supB∈B

∣∣P (Sn ∈ B)−P∗
(
S
ab
n ∈ B

)∣∣ ≤ Cσ,z(p2/n)1/6(1.4)

for p ≤ C
√
n, where constant Cσ,z depends on value C̄z introduced in (2.7)

in Section 2, and on constants σ2
i > 0 which come from conditions on m.g.f.-s
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of Xi for each i = 1, . . . , n (an asymptotic version of the statement is given
in Remark 4.3, Section 4.3). Bounds (1.1) and (1.4) imply, in particular,
that if the random vector X1 is sub-Gaussian, and the ratio pK/(K−2)/n (or
p2/n for bound (1.4)) is rather small, then the bootstrap approximation is
accurate. In addition, we give an example of {Xi}ni=1 which justifies that the
condition p = o(n) (or p = o(n1/2) for the weighted bootstrap) as n→∞ is

necessary for the consistency result supB∈B

∣∣P (Sn ∈ B)−P∗
(
S∗n ∈ B

)∣∣ P→ 0

(or supB∈B

∣∣P (Sn ∈ B) − P∗
(
S
ab
n ∈ B

)∣∣ P→ 0 for the weighted bootstrap
method) as n→∞.

An important feature of the present results is that they do not involve any
asymptotic methods such as, for example, Edgeworth expansions that are
frequently employed for studying the rates of convergence of bootstrap esti-
mators. We develop a new non-asymptotic approach that allows to study
higher-order accuracy of bootstrap in high-dimensional setting. The key
element in the proofs of our theoretical results about bootstrapping is a
multivariate Berry–Esseen inequality in a nonclassical form which might be
interesting by itself.

We consider the problem of approximation of a probability distribution
of the sum Sn = n−1/2

∑n
i=1Xi, where Xi ∈ Rp are independent random

vectors such that EXi = 0 and E(‖Xi‖K) < ∞ for some K ≥ 3. The ap-
proximating distribution corresponds to the sum S̃n := n−1/2

∑n
i=1 Yi, where

Y1, . . . , Yn ∈ Rp are independent random vectors, independent of {Xi}ni=1

such that E(‖Yi‖K) <∞,

E(Xk
i ) = E(Y k

i ) ∀k = 1, . . . ,K − 1,(1.5)

and Yi=Zi+Ui for some independent random vectors Zi, Ui ∈ Rp , where Zi
are normally distributed with EZi = 0 . Throughout the paper the condition
E
(
Xk
)

= E
(
Y k
)
∀ k = 1, . . . ,K on the higher-order moments of random

vectors X = (x1, . . . , xp)
> ∈ Rp and Y = (y1, . . . , yp)

> ∈ Rp denotes that
for all degrees k = 1, . . . ,K and for all indices 1 ≤ i1, . . . , ik ≤ p

E(xi1 . . . xik) = E(yi1 . . . yik).(1.6)

In Lemma 3.1 we show that if a cardinality of a support of Xi is sufficiently
large, then the corresponding random vectors Zi, Ui always exist. The prob-
ability distribution of such constructed random vector S̃n turns out to be a
rather good approximation of a distribution of the initial sum Sn. One of
the main results in the paper is the following uniform Berry–Esseen type
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bound: for the set B of all Euclidean balls in Rp and for i.i.d. {Xi}ni=1

supB∈B

∣∣P(Sn ∈ B)−P(S̃n ∈ B)
∣∣

≤ CΣ,K

{
E
(
‖X1‖K + ‖Y1‖K

)}1/(K−2)
n−1/2,(1.7)

where constant CΣ,K depends on K and on eigenvalues of (VarZ1)−1. Bound
(1.7) includes the classical Berry–Esseen inequality, where the approximat-
ing distribution is multivariate normal i.e. Yi ∼ N (0,VarXi) and K = 3.
If K > 3, this bound exploits more information about coinciding moments,
than the normal approximation does, which leads to a better accuracy.

Our proof of bound (1.7) is based on the work of Bentkus [4], where the
author obtained a multivariate Berry–Esseen inequality involving the stan-
dard normal distribution, uniformly on the set of all Euclidean balls, and also
on the set of all convex sets in Rp. In this paper we extend the proof in the
work of Bentkus [4] to the “quasi-normal” case, i.e. for the approximation
with the sum S̃n of the convolutions Yi = Zi + Ui , where Zi are normally
distributed. This approach allows us to use both the properties of the nor-
mal distribution and the higher moments condition (1.5). Furthermore, if
‖X1‖2 ≤ p a.s., then inequality (1.7) implies

supB∈B

∣∣P(Sn ∈ B)−P(S̃n ∈ B)
∣∣ ≤ CΣ,K

{
pK/(K−2)/n

}1/2
.

In Lemma 2.1 in Section 2, we show that for K ≥ 3 the requirement
p = o(n(K−2)/K) as n→∞ is necessary for supx∈R |P(‖Sn‖ ≤ x)−P(‖S̃n‖ ≤
x)| → 0, n → ∞ for some approximating distribution S̃n, satisfying condi-
tions of Theorem 2.1.

Now let us discuss how Berry–Esseen type bound (1.7) leads to the re-
sults (1.1), (1.4) about bootstrap. In the framework of the Efron’s boot-
strapping scheme, condition (1.5) is modified with concentration bounds
for the higher-order bootstrap moments (equal to the empirical moments)
E∗(X∗i

k) = n−1
∑n

i=1(Xi − X̄)k for k = 2, . . . ,K − 1, where E∗(·) :=
E(·

∣∣X1, . . . , Xn). For the case of the weighted bootstrap, condition (1.2)

implies E∗(X
ab
i
k) = Xk

i E(εki ) = Xk
i , k = 2, 3. In this way, the concentration

properties of the empirical moments around the theoretical ones together
with the higher-order Berry–Esseen bounds of the form (1.7) determine ac-
curacy of the bootstrap procedures. Let us emphasize that the considered
higher-order approximations play a key role for obtaining the improved ac-
curacy of bootstrap procedures in terms of the ratio of p and n. For example,
consider the weighted bootstrap procedure with a simplified condition on the
random weights εi. If Eεi = 0 and E(ε2

i ) = 1, then

ESn = ES
ab
n , E(SnS

>
n ) = E(S

ab
nS

ab
n
>).(1.8)
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Using (1.8) and a normal approximation between probability distributions of
‖Sn‖ and ‖S ab

n‖ (e.g. the results of Bentkus [4], or the inequalities by Spokoiny
and Zhilova [35] for the non-i.i.d. case), one can obtain an approximation

bound similar to (1.4), with an error term
(
C3

ΣE
(
‖X1‖3

)
/
√
n
)1/4

which is
less sharp than (1.4) in the ratio between p and n. Using also the condition
E(ε3

i ) = 1, we obtain

∀α ∈ Rp E{(α>Sn)3} = E{(α>S
ab
n)3},(1.9)

and this property leads to the improved error term in (1.4). In order to
employ the information about the third moments, as in (1.9), one needs
to use an approximation scheme that is more general than the normal ap-
proximation. For this purpose we establish the multivariate higher-order
Berry–Esseen inequalities (Section 2).

The methods introduced in the paper allow to consider an important and
a more general model, namely, the Smooth Function Model introduced by
Bhattacharya and Ghosh [6] and Hall [16] (Chapter 2.4). In this model,
the object of interest is f(µ), where f : Rp 7→ R is a smooth function
and µ is an unknown expected value if Xi. The bootstrap estimators allow
to approximate f(X̄) − f(µ) in distribution, and, therefore, to establish
a confidence set for f(µ). This also includes the case, when one aims at
constructing a confidence set for µ in the form f(X̄ − µ). In Section 4 we
establish the approximation bounds similar to (1.1) and (1.4) for the Smooth
Function Model.

The weighted or the multiplier bootstrap procedure is useful in the situ-
ations, when it is required to resample a solution of estimating equations,
or a maximum likelihood estimator, or in the case when the random sum-
mands {Xi}ni=1 are not necessarily identically distributed (see, e.g., Mam-
men [27], Chatterjee and Bose [9]). The present results for the weighted
bootstrap lead also to an improvement of accuracy of a weighted bootstrap
procedure for general log-likelihood ratio statistics under possible model
misspecification. Spokoiny and Zhilova [35] considered the weighted boot-
strap for estimation of quantiles of a log-likelihood ratio, they showed that
if a parametric model is not severely misspecified, then the accuracy of
bootstrap log-likelihood ratio quantiles corresponds to the accuracy of the
normal approximation between statistics of the type ‖Sn‖ and ‖S ab

n‖. Using
inequality (1.4), we infer that the accuracy of the weighted bootstrap for
log-likelihood ratio depends rather on accuracy of the Wilks-type bounds,
than on the normal approximation. We employ this result for construction
of likelihood-based confidence sets.

Below we give an overview of the existing literature about bootstrap accu-
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racy. Resampling methods are widely used for statistical inference in various
applications. The bootstrap is well-known for its good performance in the
situations when the amount of data is small (see, e.g. Horowitz [19]), how-
ever, there are relatively few results about accuracy of the bootstrap in a
non-asymptotic set-up. Most of the existing results are quite recent. Arlot
et al. [2] studied generalized weighted bootstrap for construction of non-
asymptotic confidence bounds in `r -norm (r ∈ [1,∞]) for the mean value of
high-dimensional random vectors with a symmetric and bounded (or with
the normal) distribution. Chernozhukov et al. [10] established Gaussian ap-
proximation results, as well as accuracy of the multiplier and the Efron’s
bootstrap for maxima of sums of high-dimensional vectors in a very general
set-up. Chernozhukov et al. [11] extended the results from maxima to gen-
eral hyperrectangles and sparsely convex sets. The results of Chernozhukov
et al. [10, 11] allow the dimension p grow as O(exp(Cnc)) for some constants
c, C > 0. Spokoiny and Zhilova [35] considered the multiplier bootstrap for
estimation of quantiles of a general log-likelihood ratio under model mis-
specification. Zhilova [40] extended this methodology for the simultaneous
likelihood-based inference in the case of exponentially large number of mod-
els.

In the asymptotic high-dimensional setting when both the parameter di-
mension p and the sample size n are large, Bickel and Freedman [7], Mam-
men [25, 27] studied accuracy of the Efron’s and the wild bootstrap for the
linear regression model and for M-estimators; Chatterjee and Bose [9] stud-
ied generalized bootstrap for estimating equations also in high-dimensional
asymptotic framework. Mammen [27] studied validity and higher-order ac-
curacy of the wild bootstrap (or Wu’s bootstrap, first proposed by Wu [38])
under the condition E(ε3

i ) = 1 on the weights, in context of linear contrasts
in high dimensional linear models and for bootstrapping F-tests. Liu [23]
used the condition E(ε3

i ) = 1 in order to obtain the second order accuracy
of the wild bootstrap.

One of the basic ways of studying the properties of bootstrap procedures
is to consider asymptotic approximations of distributions of an initial statis-
tic and its bootstrap estimate, e.g. using central limit theorems or their
refinements with Edgeworth expansions (see Præstgaard [29], Præstgaard
and Wellner [30], Hall [16], Mammen [26], Barbe and Bertail [3], Shao and
Tu [33], van der Vaart and Wellner [37], Janssen and Pauls [22], and refer-
ences therein). Berry–Esseen type inequalities had been first used by Singh
[34] and Liu [23] in the framework of bootstrap. Holmes and Reinert [17]
established bootstrap consistency in various settings using Stein’s method.

Below we discuss the literature about Berry–Esseen type bounds. The
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problem of approximation of a probability distribution of the sum Sn belongs
to the class of Central Limit Problems which has a long history of studies,
see the paper by Loève [24] for a detailed overview. Ibragimov [21] studied
convergence of a distribution of Sn in case of i.i.d. scalar summands, to
the standard normal law, under the higher moments condition; the author
obtained a higher-order accuracy using Edgeworth expansion. Zolotarev [43]
introduced pseudomoments, which characterize closeness of moments of two
distributions, for estimation of convergence rates in limit theorems; such
limit theorems are called nonclassical. In the multivariate case, some of the
first nonclassical results about normal approximation on closed convex sets
had been obtained by Paulauskas [28], Rotar’ [31] and Ul’yanov [36]. To
the best of our knowledge, the problem of approximation of a probability
distribution of Sn under the higher moments condition (1.5) and with an
explicit dependence on the dimension p, had not been studied before.

Now let us summarize the contribution of this paper to the existing litera-
ture. In order to study the properties in a high-dimensional non-asymptotic
setting, one needs to use new approaches and techniques. The methodology
developed in this paper allows to consider higher-order properties of boot-
strap methods in the modern set-up. To the best of our knowledge this had
not been done in the earlier literature. The main theoretical tools, namely,
the multivariate higher-order Berry–Esseen inequalities might be interesting
by themselves. The approximation bounds established here allow to track
the dependence of the error terms on the dimension, on the sample size, and
on the moments of the considered distributions. We provide examples, show-
ing that the obtained error rates cannot be improved under the considered
conditions. In addition, we refined an accuracy of the weighted/multiplier
bootstrap procedure for the general log-likelihood ratio statistics.

Structure of the paper. The results about accuracy of bootstrap rely
on Berry-Essen type inequalities, for this reason we first present the lat-
ter results in Sections 2 and 3. Section 4 contains theoretical results about
accuracy of the bootstrap. Sections A and B in the supplement [41] con-
tain proofs of the statements from Sections 2 and 4 respectively. Section 5
presents results of numerical experiments.

Notation. ‖ · ‖ denotes the Euclidean norm for vectors and the operator
norm for matrices or tensors; S+

p denotes the set of symmetric positive
definite real-valued matrices of size p×p ; B is the set of all closed Euclidean
balls in Rp; Ip is the identity matrix of size p × p ; if X is a vector in Rp,
Xk stands for the tensor power X⊗k ; for f : Rp 7→ R and h ∈ Rp, f (s)(x)hs

denotes the higher-order directional derivative (h>∇)sf(x); C indicates a
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positive generic constant unless specified otherwise.

2. Higher-order Berry–Esseen inequalities. Consider independent
random vectors X1, . . . , Xn ∈ Rp such that ∀i = 1, . . . , n EXi = 0 ,
Var(Xi) ∈ S+

p , E(‖Xi‖K) < ∞ for some integer K ≥ 3 . Let Y1, . . . , Yn ∈
Rp be independent random vectors, and such that ∀i = 1, . . . , n

(2.1)
Yi is independent of X1, . . . , Xn, E(‖Yi‖K) <∞,

E(Xk
i ) = E(Y k

i ) ∀k = 1, . . . ,K − 1.

A formal definition of the equality of the higher-order moments of vector-
valued random variables (as in (2.1)) is given in (1.6). We assume also that
∀i = 1, . . . , n

(2.2)
∃ independent r.v. Zi, Ui ∈ Rp s.t. Yi

d
= Zi + Ui,

EZi = EUi = 0, Zi ∼ N (0,Σz,i) for some Σz,i ∈ S+
p .

Consider the following sums of mutually independent random vectors with
zero mean:

Sn := n−1/2∑n
i=1Xi, S̃n := n−1/2∑n

i=1Yi.(2.3)

We establish uniform approximation bounds between probability distribu-
tions of Sn and S̃n on the set B of all Euclidean balls in Rp. Theorems 2.1
and 2.2 treat the cases when {Xi}ni=1 are i.i.d. and independent but not
necessarily identically distributed vectors correspondingly. For the case of
i.i.d. summands Xi (and, hence, i.i.d. Zi) denote

(2.4) Σz := Σz,i = Var(Zi), Cz := ‖Σ−1/2
z ‖.

Theorem 2.1. Consider the random vectors {Xi}ni=1 introduced above,
suppose that they are i.i.d., and that there exist i.i.d. approximating random
vectors {Yi}ni=1 meeting conditions (2.1) and (2.2). It holds for the sums Sn
and S̃n defined in (2.3)

sup
B∈B

∣∣P(Sn ∈ B)−P
(
S̃n ∈ B

)∣∣ ≤ CB,iid

{
CKz E

(
‖X1‖K + ‖Y1‖K

)}1/(K−2)

n1/2
,

where constant CB,iid > 0 depends only on K; a detailed definition of CB,iid

is given in the proof (see (A.52) in Section A.2 of the supplement [41]).
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Remark 2.1 (The case of the normal approximation). If the approx-
imating random vectors Yi are normally distributed, then Ui ≡ 0 , Yi ∼
N (0,Var(Xi)) , Σz = Var(Xi) , and Cz = ‖{Var(Xi)}−1/2‖. Furthermore,
if K = 3 and Yi are standard normal, then the bound in Theorem 2.1 is
similar to the classical multivariate Berry–Esseen inequality by Bentkus [4].
If K > 3 and Yi are normally distributed, the term ‖X1‖ enters the bound
above with a better power, than in the classical case where K = 3. In this
way, Theorem 2.1 extends the classical normal approximation result.

Remark 2.2 (Dependence on Cz). The approximation bound in Theo-

rem 2.1 depends on Cz = ‖Σ−1/2
z ‖ , where Σz is a covariance matrix of the

normal component Zi of the approximating distribution Yi . In Lemma 3.1
(Section 3) we show that if a cardinality of a support of Xi is sufficiently
large, then there exist random vectors Ui such that Σz is positive definite.
Therefore, it holds λ−1

Σ ≤ Cz < ∞, where λ2
Σ is the smallest eigenvalue of

VarXi. In Lemma 3.2 we consider the case when the number of coinciding
moments between Xi and Yi is K−1 = 3; we show that for any c0 ∈ (0, λΣ),
there exists distribution Yi = Zi + Ui such that Cz < c−1

0 . Hence Cz can be
taken as a generic constant for K = 4. Moreover, if the coordinates of the
vector Xi are mutually independent, then the problem of characterizing Σz

and Cz becomes one-dimensional and, therefore, Cz does not depend on p
in this case.

Remark 2.3 (Accuracy of the approximation). The error term in The-

orem 2.1 is proportional to
{
pn−(K−2)/K)

}1/(K−2)
if ‖X1‖, ‖Y1‖ ≤

√
p a.s.

In Lemma 2.1 below, we show that for K ≥ 3 condition p = o(n(K−2)/K) as
n → ∞ is necessary for supx∈R |P(‖Sn‖ ≤ x) −P(‖S̃n‖ ≤ x)| → 0, n → ∞
under the conditions of Theorem 2.1.

Lemma 2.1 (Necessity of the condition p = o(n(K−2)/K)). Let {Xi}ni=1

be random vectors as in Theorem 2.1. Suppose that E(‖Xi‖K+2) < ∞ for
an integer K > 3. There exist random vectors {Yi}ni=1 satisfying conditions
of Theorem 2.1, and s.t. that the condition p = o(n(K−2)/K) for n → ∞ is
necessary for supx∈R |P(‖Sn‖ ≤ x)−P(‖S̃n‖ ≤ x)| → 0 as n→∞.

Remark 2.4. In the recent paper Zhai [39] considers a multivariate CLT
in W2-distance. The author shows that if X1, . . . , Xn ∈ Rp are i.i.d. with
mean zero and such that ‖Xi‖ ≤ β a.s. for some constant β > 0, then

W2(Sn, Z) ≤ 5
√
pβ(1 + log n)/

√
n,(2.5)
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where Z ∼ N (0,VarX1), and W2 is the 2-Wasserstein distance. This result
implies, that if β ≤ C√p, thenW2(Sn, Z) ≤ Cp(1+log n)/

√
n. In Lemma 2.2

below, we consider a uniform bound on supB∈B |P(Sn ∈ B)−P(Z ∈ B)|,
using the result (2.5). It turns out that under conditions (2.1), (2.2) for
K ≥ 4, the higher-order Berry–Esseen type inequality in Theorem 2.1 yields
a better accuracy w.r.t. the sample size n, and w.r.t. the ratio between p
and n. Indeed, inequality (2.6) below, which follows from the results of Zhai
[39], has an error term of order (p2/n)1/3 (up to log n). Whereas Theorem
2.1 (for the case Yi ∼ N (0,VarXi)) provides a smaller error term of order
(pK/(K−2)/n)1/2 for K ≥ 4.

Lemma 2.2. Let X1, . . . , Xn ∈ Rp be i.i.d. random vectors, such that
VarXi = Ip and ‖Xi‖ ≤ β a.s. for some constant β > 0. Let Z ∼ N (0, Ip).
The results of Zhai [39] imply

supB∈B |P(Sn ∈ B)−P(Z ∈ B)| ≤ C1p
1/3β2/3(1 + log n)/n1/3

≤ C2p
2/3(1 + log n)/n1/3,(2.6)

where in the latter inequality one takes β ≤ c√p. Here c, C1, and C2 denote
positive generic constants.

Now let us consider the case when the random summands Xi are inde-
pendent but not necessarily identically distributed (non-i.i.d.). Denote

(2.7) Σ̄z := n−1∑n
i=1Σz,i, C̄z := ‖Σ̄−1/2

z ‖.

Theorem 2.2. Consider random vectors {Xi}ni=1 introduced above, sup-
pose that they are independent but not necessarily identically distributed, and
that there exist independent approximating vectors {Yi}ni=1 meeting condi-
tions (2.1) and (2.2). It holds for the sums Sn and S̃n defined in (2.3)

sup
B∈B

∣∣P (Sn ∈ B)−P
(
S̃n ∈ B

)∣∣ ≤ CB,ind

{
C̄Kz
∑n

i=1E
(
‖Xi‖K + ‖Yi‖K

)
n−K/2

} 1
K+1 ,

where constant CB,ind > 0 depends only on K, it is defined in the proof (see
(A.57) in Section A.3 of the supplement [41]).

Remark 2.5. The proof of Theorem 2.1 largely exploits the assump-
tion that the summands {Xi}ni=1 are identically distributed, and it does not
directly apply to the non-i.i.d. case. This causes a difference between the
error terms in Theorems 2.2 and 2.1, however, the critical ratio of p and n
(namely, pK/(K−2)/n) in the error terms remains the same in both results.
We leave an improvement of the power 1/(K+1) in the non-i.i.d. case for the
future work.
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Remark 2.6. The proofs of the Berry–Esseen type inequalities (Theo-
rems 2.1 and 2.2) exploit the following properties of the set B (cf. Bentkus
[4, 5] and Chernozhukov et al. [10, 11]):

• Invariance under rescaling and under taking shifts, i.e. if B ∈ B, then
∀x ∈ Rp and ∀a ∈ R, a > 0 it holds aB + x ∈ B.

• Invariance under taking ε-neighborhood w.r.t. the `2-norm: consider an
arbitrary B ∈ B, B = Br(x0) := {x ∈ Rp : ‖x− x0‖ ≤ r} , then the ε-
neighborhood of B reads as Bε = Br+ε(x0), if r + ε ≥ 0, and Bε = ∅
otherwise. Therefore Bε ∈ B.

The same properties hold for the set H of all half-spaces in Rp. In propo-
sition A.1 (Section A.3 of the supplement [41]), we consider a higher-order
Berry–Esseen approximation for Sn uniformly over the set H , similarly to
Theorems 2.1 and 2.2.

Corollary 2.1 below follows directly from the previous theorems and the
triangle inequality. It justifies a higher-order accuracy of approximation be-
tween two probability distributions with matching moments.

Corollary 2.1. Consider random vectors {Xi}ni=1 introduced above,
and suppose that there exist independent approximating vectors {Yi}ni=1

meeting conditions (2.1) and (2.2). Consider also independent random vec-
tors X ′1, . . . , X

′
n ∈ Rp , that are independent of {Xi}ni=1, {Yi}ni=1, and such

that ∀i = 1, . . . , n E
(
‖X ′i‖K

)
<∞, E

(
Xk
i

)
= E

(
X ′i

k) ∀k = 1, . . . ,K−1. Let

also S′n := n−1/2
∑n

i=1X
′
i, and ∆′n := supB∈B

∣∣P (Sn ∈ B)−P
(
S′n ∈ B

)∣∣ .
1. If conditions of Theorem 2.1 are fulfilled and {X ′i}ni=1 are i.i.d. Let

also LK := E
(
‖X1‖K + ‖Y1‖K

)
and L′K := E

(
‖X ′1‖K + ‖Y1‖K

)
, then

∆′n ≤ CB,iidC
K/(K−2)
z

{
L

1/(K−2)
K + L

′ 1/(K−2)
K

}
n−1/2.

2. If conditions of Theorem 2.2 are fulfilled and {X ′i}ni=1 are not nec-
essarily identically distributed. Let also L̄K := n−1

∑n
i=1 E(‖Xi‖K +

‖Yi‖K) and L̄′K := n−1
∑n

i=1 E(‖X ′i‖K + ‖Yi‖K), then

∆′n ≤ CB,indC̄
K/(K+1)
z

{
L̄

1/(K+1)
K + L̄

′ 1/(K+1)
K

}
n−0.5(K−2)/(K+1).

3. Properties of the approximating distribution.

Lemma 3.1 (Existence of the approximating distribution). Let a random
vector X be supported in a closed set A ⊆ Rp, and let X be such that
EX = 0 , VarX ∈ S+

p , E(‖X‖K+2) <∞ for some integer K ≥ 2 . If X is
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continuously distributed, there exists a random vector Y := Z+U , such that
E(‖Y ‖K+2) < ∞ , where Z,U ∈ Rp are independent, Z ∼ N (0,Σz) for
some Σz ∈ S+

p , and E(Xk) = E(Y k) for all k = 0, . . . ,K . Furthermore,
if X is a sub-Gaussian random vector, then there exists a sub-Gaussian
approximating distribution Y satisfying the above conditions. If X has a
discrete probability distribution supported on M points in Rp such that each
coordinate of X is supported on at least m points in R, then the lemma’s
statement holds for X when M ≥ 1 + (K + 2)mp−1.

Proof of Lemma 3.1. Denote mk := E(Xk), and uk := E(Uk) for k =
0, 1, 2, . . . Conditioning on U leads to L (Y

∣∣U) = N (U,Σz) and to the
following system of linear equations:

m0 = E(Z + U)0 = u0, m2 = E(Z + U)2 = u2 + Σz,

m1 = E(Z + U) = u1, m3 = E(Z + U)3 = u3,

mK = E(Z + U)K = K!
∑[K/2]

l=0 Sp1KuK−2l ⊗ vec(Σz)
l{l!(K − 2l)!2l}−1,

where Sp1K is the symmetrizer operator acting on the K-th tensor power of
Rp; this formula for the raw moments of the multivariate normal distribution
is given in the work Holmquist [18]. The solution {uk(Σz)}Kk=0 of this system
depends on Σz continuously. Moreover,

(3.1) if Σz = 0 , then uk(Σz) = mk ∀ k = 0, . . . ,K.

In order to prove the lemma’s statement, it is sufficient to show that there
exists Σz ∈ S+

p , s.t. the solution {uk(Σz)}Kk=0 also solves the following
multivariate truncated moment problem:

given a p -dimensional real multisequence {uk(Σz)}Kk=0 , does there exist a
positive Borel measure µ s.t. suppµ ⊆ A and

∫
Rp x

kdµ(x) = uk(Σz) ∀ k =
0, . . . ,K ?

The work of Curto and Fialkow [13] provides necessary and sufficient
conditions for solvability of multivariate truncated moment problems. Be-
fore stating these conditions we introduce some notation. Let PK denote
the space of polynomials: Rp 7→ R, of degree ≤ K , and with real coefficients.
A polynomial p = p(x) =

∑
|i|≤K aix

i ∈ PK is positive (or strictly positive)

on A, if p(x) ≥ 0 (or p(x) > 0) for all x ∈ A . Here i := (i1, . . . , ip) ∈ Np0 de-

notes multi-index, |i| =
∑p

j=1 ij , and xi := xi11 . . . x
ip
p . For a multisequence

{ui}|i|≤K the Riesz functional L : PK 7→ R is defined as L(
∑
|i|≤K aix

i) :=
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|i|≤K aiui . If the truncated moment problem is soluble, we can write

(3.2) L(p) =
∑
|i|≤K aiui =

∫
Rpp(x)dµ(x).

Curto and Fialkow [13] showed that a multisequence {ui}|i|≤K solves the
multivariate truncated moment problem on the set A iff there exists an ex-
tension {ũi}|i|≤K+2 of {ui}|i|≤K (i.e. ũi = ui for all i : |i| ≤ K ), such that

for the corresponding Riesz functional L̃(
∑
|i|≤K+2 aix

i) :=
∑
|i|≤K+2 aiũi

it holds:

(3.3) if p ∈ PK+2 and p is positive on A, then L̃(p) ≥ 0.

Firstly, consider the case of a continuously distributed X. Due to the
definitions of mk and uk, and by the theorem of Curto and Fialkow [13]
there exists an extension {mk}K+2

k=0 , s.t. its corresponding Riesz functional

L̃m(
∑
|i|≤K+2 aix

i) :=
∑
aimi satisfies (3.3). Moreover, if p ∈ PK+2 is s.t.

p(x) > 0 ∀x ∈ A, then L̃(p) > 0 ; if L̃(p) = 0 for some p ∈ PK+2 nonnega-
tive on A, then P (∀x ∈ A p(x) = 0) = 1. The extension {mk}K+2

k=0 leads to

the extended sequence {ũk(Σz)}K+2
k=0 . Property (3.1), continuity of the solu-

tions {ũk(Σz)}K+2
k=0 w.r.t. Σz , and (3.2) imply that there exists some Σz ∈

S+
p s.t. the corresponding Riesz functional L̃u(p) :=

∑
|i|≤K+2 aiũi(Σz) > 0

for all p =
∑
|i|≤K+2 aix

i ∈ PK+2 such that p > 0 on A (here we use that
S+
p is a dense subset of the set of symmetric positive semidefinite matrices

in Rp×p; see e.g. Chapter 2.4 in Boyd and Vandenberghe [8]). This finalizes
the proof for the continuous case.

Now let X have a discrete probability distribution. Let m denote the min-
imal cardinality of the supports of X’s coordinates. Consider a polynomial
q ∈ PK+2 of degree K + 2, such that q 6≡ 0 on the support A. Accord-
ing to the Schwartz-Zippel Lemma by Schwartz [32] and Zippel [42], the
number of zeros of q is ≤ (K + 2)mp−1. Hence, if the set A contains at
least 1+(K+2)mp−1 points, then for any non-zero and positive polynomial
q, L̃(q) > 0 , where L̃ is the Riesz functional, considered in the previous
paragraph. This allows to apply here the arguments for the continuous case.

If X is sub-Gaussian, then
∣∣mkγ

k
∣∣1/k ≤ {

E|γ>X|k
}1/k ≤ C

√
k ∀k ≥

1, ∀γ ∈ Rp : ‖γ‖ = 1. Since the solutions uk(Σz) are linearly dependent on
{mk}, the sub-Gaussian property holds for the moments uk(Σz) as well.

Lemma 3.2 (Choice of Cz for 3 coinciding moments). Let X ∈ Rp be a
random vector satisfying conditions of Lemma 3.1 for K = 3. Let λΣ denote
the smallest eigenvalue of Σ := Var(X). Then for any c0 ∈ (0, λΣ) there
exist independent random vectors Z,U ∈ Rp , such that for Y=Z + U , it
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holds E(‖Y ‖4) <∞ , E(Xk) = E(Y k) for k = 1, 2, 3 , and Z ∼ N (0,Σz) ,
where Σz is some symmetric matrix with the smallest eigenvalue > c0.

Proof of Lemma 3.2. Consider random variable ε ∈ R independent
of X and s.t. Eε = 0,E(ε2) = α,E(ε3) = 1 for some α ∈ (0, 1). Such
distribution exists by the criterion for solubility of the truncated Hamburger
moment problem (see Curto and Fialkow [12]). Indeed, if the Hankel matrix

( 1 0
0 α ) has a positive Hankel extension

(
1 0 α
0 α 1
α 1 β

)
for some β = E(ε4), then

there exists such random variable ε.
Take X̃ := Xε, then EX̃ = 0,E(X̃2) = αΣ,E(X̃3) = E(X3). By Lemma

3.1 ∃ r.v. Ỹ = Z̃ + Ũ ∈ Rp s.t. Z̃ and Ũ are independent of each other,
Z̃ ∼ N (0, Σ̃z) for some Σ̃z ∈ S+

p , and E(X̃k) = E(Ỹ k) ∀ k = 0, 1, 2, 3 . Let

Z̃1 ∼ N (0, (1−α)Σ) be independent of all random vectors considered in the
proof, take Y := Ỹ + Z̃1 = Z̃ + Z̃1 + Ũ , then it holds E(Y ) = 0,E(Y 2) =
αΣ + (1−α)Σ = Σ, and E(Y 3) = E(Ỹ 3) = E(X3). The normal part of Y is
Z := Z̃+ Z̃1 ∼ N (0, (1−α)Σ+Σ̃z). Let λz denote the smallest eigenvalue of
VarZ, then (1 − α)λΣ < λz < λΣ, where λΣ > 0 is the smallest eigenvalue
of Σ. Hence, taking α = 1− c0/λΣ, we obtain the lemma’s statement.

4. Validity and accuracy of the bootstrap procedures. Here we
study accuracy of the Efron’s and the weighted bootstrap procedures in
various settings. We begin with the Efron’s bootstrap in Section 4.1; Sections
4.2, 4.4 present the results for the weighted bootstrap.

4.1. Efron’s bootstrap. Let X1, . . . , Xn be i.i.d. random vectors with Σ :=
Var(Xi) ∈ S+

p , let also Xi be sub-Gaussian, i.e. it holds for some σ2 > 0 and
for all α ∈ Rp

E
{

exp(α>Xi)
}
≤ exp

(
‖α‖2σ2/2

)
.(4.1)

Assume that there exist i.i.d. random vectors Y1, . . . , Yn satisfying (2.1), (2.2)
for some integer K ≥ 3. Introduce resampled variables X∗1 , . . . , X

∗
n with zero

mean, according to the Efron’s bootstrap methodology (Efron [14], Efron
and Tibshirani [15]): P∗(X∗i = Xj − X̄) = 1/n ∀i, j = 1, . . . , n, where
X̄ = n−1

∑n
i=1Xi, and P∗(·) = P(·

∣∣X1, . . . , Xn). In this way, {X∗j }nj=1 are

i.i.d., E∗(X∗j ) = 0, and E∗(X∗j
k) = n−1

∑n
i=1(Xi − X̄)k, for k ≥ 1. The

bootstrap approximation of the sum Sn is S∗n := n−1/2
∑n

i=1X
∗
i . Denote

CX := ‖Σ−1/2‖. By this definition, CX < Cz. Assume also that a p.d.f.
of X is bounded with a constant cf > 0. In the statements in Section 4,
including the theorems below, we use notation from the previous Section 2,

e.g. constant CB,iid. Let also C̃x,k :=
(
1 + 2

√
x/p+ 2x/p

)k/2
.
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Theorem 4.1 (Accuracy of the bootstrap for Sn on the set B). Suppose
that the above conditions are fulfilled, then the following uniform bound holds
on the set B of all Euclidean balls with probability ≥ 1− 6e−x for x > 0:

supB∈B

∣∣P (Sn ∈ B)−P∗
(
S∗n ∈ B

)∣∣
≤ ∆∗B,iid := CB,iid

{
CKz E

(
‖X1‖K + ‖Y1‖K

)}1/(K−2)
n−1/2

+ CB,iid(2C̃x,K)1/(K−2)(Czσp
1/2)K/(K−2)n−1/2 +Rn,K ,

where Rn,K ≤ C
√
p/nC2

zσ
K+1CK−1

X Cx,K , and Cx,K is defined in (B.27);
a detailed definition of Rn,K is given in (B.9), (B.10) (Section B.1 in the
supplement [41]).

Remark 4.1. The error term ∆∗B,iid in the above result consists of two
parts: one part corresponds to the higher-order Berry–Esseen type inequal-
ities, another part Rn,K comes from concentration bounds for higher-order
empirical moments of Xi. If the ratio pK/(K−2)/n is small, then the first part
is small as well. Furthermore, ∀K ≥ 3 pK/(K−2)/n ≥ p/n. In Lemma 4.1 (in
Section 4.3), we consider an example where the condition p/n = o(1) for
n→∞ is required for the bootstrap consistency.

In the following theorem we study accuracy of the Efron’s bootstrap pro-
cedure for the Smooth Function Model introduced by Bhattacharya and
Ghosh [6] and Hall [16] (Chapter 2.4). In this model the object of interest is
f(µ), where f : Rp 7→ R is a smooth function and µ is an unknown expected
value if Xi. The bootstrap estimators allow to approximate f(X̄) − f(µ)
in distribution, and, therefore, to establish a confidence set for f(µ). This
also includes the case, when we aim at constructing a confidence set for
µ in the form f(X̄ − µ). Consider i.i.d. X1, . . . , Xn ∈ Rp with mean µ
and sub-Gaussian tail behavior, i.e. condition (4.1) holds for Xi − µ. Let
f : Rp 7→ R be at least twice continuously differentiable function, s.t.
∀h ∈ Rp supx∈Rp |f (2)(x)h2| ≤ Cf,2‖h‖2 for some constant Cf,2 > 0. As-
sume also that f ′(µ) 6= 0, and ‖f ′(µ)‖ > Cf,l

√
p for some constant Cf,l > 0.

Denote the resampled i.i.d. data X∗1 , . . . , X
∗
n and the bootstrap empirical

mean as follows:

P∗(X∗i = Xj) = 1/n ∀i, j = 1, . . . , n, and X̄∗ := n−1∑n
i=1X

∗
i .

Theorem 4.2 shows that the c.d.f. of f(X̄)− f(µ) is uniformly well approx-
imated by the c.d.f. of f(X̄∗)− f(X̄) conditioned on {Xi}ni=1.
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Theorem 4.2 (Accuracy of the bootstrap for the Smooth Function Model).
Let the above assumptions and conditions of Theorem 4.1 be fulfilled. It holds
with probability ≥ 1− 6e−x for x > 0:

supt∈R
∣∣P (f(X̄)− f(µ) ≤ t

)
−P∗

(
f(X̄∗)− f(X̄) ≤ t

)∣∣
≤ ∆∗f,iid := 2Cf,2Czσ

2C̃x,2C
−1
f,l (p/n)1/2 + CB,iidC

K/(K−2)
z CM,Kn

−1/2

+ CB,iid(2C̃x,K)1/(K−2) {Czσ}K/(K−2) n−1/2 +R1,n,K ,

where CM,K :=
[
‖E(X1 − µ)K‖+ ‖E(Y1 − µ)K‖

]1/(K−2)
, the term C̃x,K is

described in the previous statement, and R1,n,K ≤ Cn−1/2C2
zσ

K+1CK−1
X Cx,K

is defined in (B.14) and (B.14) (Section B.1 in the supplement [41]).

Corollary 4.1. Consider the following upper quantile functions of the
bootstrap approximations: Q∗2(α) := inf {t ∈ R : P∗ (‖S∗n‖ > t) ≤ α} , Q∗f (α) :=

inf
{
t ∈ R : P∗

(
f(X̄∗)− f(X̄) > t

)
≤ α

}
for α ∈ (0, 1) . Let x > 0. Theo-

rems 4.1 and 4.2 imply the following two bounds:∣∣P(‖Sn‖ > Q∗2(α)
)
− α

∣∣ ≤ 2∆∗B,iid + 6e−x,∣∣P (f(X̄)− f(µ) > Q∗f (α)
)
− α

∣∣ ≤ 2∆∗f,iid + 6e−x.

4.2. Weighted bootstrap. Let X1, . . . , Xn be independent random vec-
tors with Σi := Var(Xi) ∈ S+

p , let also {Xi}ni=1 be sub-Gaussian, i.e. it

holds for some σ2
i > 0, ∀α ∈ Rp, and ∀ i = 1, . . . , n E

{
exp(α>Xi)

}
≤

exp
(
‖α‖2σ2

i /2
)
. Denote σ̄2

k := n−1
∑n

i=1 σ
2k
i . Assume that there exist i.i.d.

random vectors Y1, . . . , Yn satisfying (2.1) and (2.2) for K = 4. Assume
also that p.d.f.-s of Xi are bounded with a constant cf > 0. The bootstrap
random weights ε1, . . . , εn , are taken as in (1.2). These are some exam-
ples of such random weights (here zi ∼ N (0, 1), independent of ei, ci, bi ):
(1 − 2−2/3)1/2zi + 2−1/3 (ei − 1) for ei ∼ exp(1) ; 2−1/2zi + 2−1(ci − 1) for
ci ∼ χ2

1; (1 − 3−2/3)1/2zi + 3−1/32(bi − 0.5) for bi ∼ Bernoulli(0.5). More
examples of the bootstrap weights satisfying (1.2) can be found in the works
of Liu [23] and Mammen [27].

The weighted bootstrap approximation of the sum Sn is S
ab
n := n−1/2

∑n
i=1Xiεi.

The probability distribution of S
ab
n is taken conditioned on {Xi}ni=1 .

Theorem 4.3 (Accuracy of the weighted bootstrap for Sn on the set B).
Let the above conditions be fulfilled, then it holds with probability ≥ 1−6e−x

for x > 0:

supB∈B

∣∣P (Sn ∈ B)−P∗
(
S
ab
n ∈ B

)∣∣
≤ ∆

ab
B,w,ind := CB,w,ind

{
C̄4
z

∑n
i=1E

(
‖Xi‖4 + ‖Yi‖4

)
/n2
}1/5

+R2,3,
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where for p ≤ C
√
n it holds R2,3 ≤ C(C̄z ∨ σ̄4

1C̃x,4{1 + E(ε4
i )})(p/

√
n)1/3; a

detailed definition of R2,3 is given in (B.17), and constant CB,w,ind > 0 is
defined in (B.16) (Section B.2 in the supplement [41]).

Remark 4.2. Lemma 3.2 implies (see also Remark 2.2) that for the case
K = 4, C̄z in Theorem 2.2 can be taken as a generic constant independent
of the dimension p. The result in Theorem 4.3 relies on the Berry–Esseen
type inequality in Theorem 2.2, and, therefore, we can take C̄z = const in
the above statement.

Corollary 4.2. Consider the following upper quantile function of the
approximating sum obtained using the weighted bootstrap: Q

ab
2,w(α) := inf{t ∈

R : P∗ (‖S ab
n‖ > t) ≤ α}, α ∈ (0, 1) . Theorem 4.3 implies the following bound∣∣P(‖Sn‖ > Q

ab
2,w(α)

)
− α

∣∣ ≤ 2∆
ab
B,w,ind + 6e−x for x > 0.

4.3. Some remarks about accuracy of the bootstrap procedures.

Remark 4.3 (Theorems 4.1, 4.3 in the asymptotic form). If the con-
ditions of Theorem 4.1 are fulfilled and Cz is dimension-free, then taking
x = log(2n), using the Borel-Cantelli lemma, and the deviation inequality
for ‖X‖2 by Hsu et al. [20] (see also Section B.4 in the supplement [41]), we
have with probability one

supB∈B

∣∣P (Sn ∈ B)−P∗
(
S∗n ∈ B

)∣∣
= O

(
{pK/(K−2)/n}1/2{1 + log(n)/p}

K
2(K−2) + (p/n)1/2{1 + log(Kn)/p}

(K−1)
2
)

for n → ∞ and K ≥ 3. Similarly, given the conditions of Theorem 4.3, it
holds with probability one

supB∈B

∣∣P (Sn ∈ B)−P∗
(
S
ab
n ∈ B

)∣∣
= O

(
(p/
√
n)1/3{1 + log(n)/p7/6 + (p2/n)1/5{1 + log(n)/p}2/5}

+ (p/
√
n)2/3{1 + log(n)/p}2

)
for p ≤ Cn and n→∞.

Theorem 4.3 implies that if the ratio p2/n (up to log n) is small, then
the weighted bootstrap approximation has a good accuracy. Lemma 4.1 be-
low shows that the condition p2/n = o(1) for n → ∞ is necessary for the
weighted bootstrap consistency.

Lemma 4.1 (Necessary conditions on p and n for the bootstrap consis-
tency). Let Xi ∼ N (0, Ip), i = 1, . . . , n be i.i.d. random vectors. Consider
Sn, S∗n, and S

ab
n as in Theorems 4.1 and 4.3. Then
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(a) p = o(n) for n → ∞ is necessary for supx∈R |P∗(‖S∗n‖2 ≤ x) −
P(‖Sn‖2 ≤ x)| P→ 0,

(b) p2 = o(n) for n → ∞ is necessary for supx∈R |P∗(‖S
ab
n‖2 ≤ x) −

P(‖Sn‖2 ≤ x)| P→ 0.

Remark 4.4. In Theorem 4.3, the bootstrap weights ε1, . . . , εn satisfy
the 3-rd moment condition (1.2). This is very similar to taking K = 4
in Theorem 4.1 for the Efron’s bootstrap. It is not possible to continue
the sequence of moments (1.2) like E(ε4

i ) = 1, . . . , since the corresponding

Hankel matrix
(

1 0 1
0 1 1
1 1 1

)
fails the criterion for solubility of the Hamburger

moment problem (see, e.g., Akhiezer [1]). Together with Lemma 4.1 and
the preceding results in Section 4, this implies that under the conditions of
Theorem 4.1, the Efron’s bootstrap yields a better accuracy w.r.t. the ratio
between p and n, than the considered weighted bootstrap scheme.

Remark 4.5. In Theorems 4.1-4.3, the sub-Gaussian tail behavior (con-
dition (4.1)) is required in order to apply concentration bounds for the
higher-order moments of Xi (see Section B.4 in the supplement [41]). In
the asymptotic set-up, one can relax this condition, assuming, e.g. bound-
edness of the K-th moments of Xi, i = 1, . . . , n.

4.4. Weighted bootstrap for log-likelihood ratio statistics. Here we con-
sider a weighted (or a multiplier) bootstrap procedure for estimation of
quantiles of log-likelihood ratio statistics. Before describing the procedure
and formulating a theoretical result, we give some necessary definitions.

Let y = (y1, . . . , yn) denote the data sample, y1, . . . , yn are i.i.d. ran-
dom observations from a probability space (Ω,F ,P) . Introduce some known
parametric family {Pθ} := {Pθ � µ0, θ ∈ Θ ⊆ Rp} , here µ0 is a σ -finite
measure on (Ω,F) which dominates all Pθ for θ ∈ Θ . The true data
distribution P is not assumed to belong to the family {Pθ} , thus our anal-
ysis includes the case when the parametric family {Pθ} is misspecified.
{Pθ} induces the following (quasi)log-likelihood function for the sample

y : L(θ) = L(θ,y) := log
(
dPθ
dµ0

(y)
)
. The target parameter θ0 is defined

by projecting the true probability distribution P on the parametric fam-
ily {Pθ} , using Kullback-Leibler divergence: θ0 := argminθ∈Θ KL(P,Pθ) =
argmaxθ∈Θ EL(θ). The (quasi) maximum likelihood estimate (MLE) is de-
fined as θ̃ := argmaxθ∈Θ L(θ). Let QL(α) denote the upper quantile func-
tion of square root of the two times log-likelihood ratio statistic: QL(α) :=
inf
{
t ≥ 0 : P

(
L(θ̃) − L(θ) > t2/2

)
≤ α

}
. QL(α) is a critical value of the
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likelihood-based confidence set E (α) :

E (t) :=
{
θ : L(θ̃)− L(θ) ≤ t2/2

}
, P {θ0 ∈ E (QL(α))} ≥ 1− α.(4.2)

Probability distribution of L(θ̃)−L(θ0) depends on the unknown parameter
θ0 and P, hence, in general, quantiles of L(θ̃)− L(θ0) are also unknown.

Consider the weighted (or the multiplier) bootstrap procedure which al-
lows to estimate the distribution of L(θ̃) − L(θ0) . Let u1, . . . , un be i.i.d.
random variables:

ui := εi + 1, for εi defined in (1.2), independent of y.

The bootstrap log-likelihood function L
ab
(θ) equals to the initial one L(θ)

weighted with the random bootstrap weights ui :

L
ab
(θ) :=

∑n
i=1 log

(
dPθ
dµ0

(yi)
)
ui.

Recall that P∗(·) := P(·
∣∣ {yi}ni=1) and E∗(·) := E(·

∣∣ {yi}ni=1) . It holds

E∗L
ab
(θ) = L(θ) , therefore, θ̃ = argmaxθ∈Θ L(θ) = argmaxθ∈Θ E∗L

ab
(θ),

and the MLE θ̃ can be considered as a bootstrap analogue of the unknown
target parameter θ0 . The bootstrap likelihood ratio statistic is defined as

L
ab
(θ̃

ab
)− L

ab
(θ̃) := supθ∈Θ L

ab
(θ)− L

ab
(θ̃).

L
ab
(θ̃

ab
) − L

ab
(θ̃) can be computed for each i.i.d. sample of the bootstrap

weights u1, . . . , un , thus we can calculate empirical probability distribution
function of L

ab
(θ̃

ab
)− L ab

(θ̃) and estimate its quantiles. Denote

Q
ab
L(α) := inf

{
t ≥ 0 : P∗

(
L
ab
(θ̃

ab
)− L

ab
(θ) > t2/2

)
≤ α

}
.(4.3)

Theorem 4.4 below provides a two-sided bound on the coverage error of
the likelihood confidence set (4.2) based on the bootstrap quantile Q

ab
L(α) .

Let us introduce some additional notation before stating the theorem. De-

note `i(θ) := log
(
dPθ
dµ0

(yi)
)

, d2
0 := −E`′′1(θ0) , here `′i(θ) := ∇θ`i(θ). Take

Xi := d−1
0 `′i(θ0). By previous definitions, such defined {Xi}ni=1 are i.i.d with

zero mean. Moreover, if conditions from Section B.3 in the supplement [41]
are fulfilled, then E(‖Xi‖4) < ∞. Let Y1, . . . , Yn be i.i.d. vectors meeting
conditions (2.1) and (2.2) for K = 4, and Cz,L := ‖{Var(Zi)}−1/2‖. Now we
are ready to formulate the following
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Theorem 4.4. If the conditions from Section B.3 in the supplement [41]
are fulfilled, then it holds with probability ≥ 1− 10e−x for x > 0

supt≥0

∣∣P{L(θ̃)− L(θ0) ≤ t
}
−P∗

{
L
ab
(θ̃

ab
)− L

ab
(θ̃) ≤ t

}∣∣ ≤ ∆L, and∣∣P{θ0 /∈ E (Q
ab
L(α))

}
−α
∣∣ ≤ 2∆L + 10e−x, where

∆L ≤ CB,w,ind

{
C4
z,LE

(
‖d−1

0 `′1(θ0)‖4 + ‖Y1‖4
)
/n
}1/5

(4.4)

+RL,2,3 + Cz,LC(p+ x)n−1/2,

where for p ≤ C
√
n it holds RL,2,3 ≤ C(Cz,L∨(νa)4C̃x,4{1+E(ε4

i )}) (p/
√
n)

1/3
;

is defined in (B.17); a more detailed definition of the error term ∆L is given
in (B.20), CB,w,ind is defined in (B.16) (Section B.2 in the supplement [41]).

Remark 4.6. The third term in bound (4.4) comes from Wilks-type
approximations for the likelihood ratios L(θ̃) − L(θ0) and L

ab
(θ̃

ab
) − L ab

(θ̃)
(see the proof in Section B.3 in the supplement [41] for more details); the first
two terms in (4.4) come from the Berry–Esseen type inequality justifying
the weighted bootstrap procedure on the set B (Theorem 4.3). Due to the
assumed sub-Gaussian tail behavior of d−1

0 `′i(θ0), the first term is bounded
from above with Cpn−1/2 with large probability. Thus, in Theorem 4.4 both
Wilks-type bound and the higher-order Berry–Esseen type inequality yield
similar ratios between p and n in the error of approximation ∆L.

5. Numerical experiments. This section presents results of simula-
tion studies, illustrating accuracy of the considered Berry–Esseen bounds
and the bootstrap procedures.

5.1. Berry–Esseen inequality. Figure 1 shows the c.d.f.-s of Sn, S̃n and
N (0, 1) for the sample size n = 50, dimension p = 1 and number K − 1 = 3
of equal moments of Sn and S̃n. Similarly Figure 2 shows c.d.f.-s of ‖Sn‖2,
‖S̃n‖2 and χ2

p for n = 50, p = 7 and K − 1 = 3. Distributions of Xi

and Yi are described in the bottom of each of the Figures 1 and 2. The
c.d.f.-s are obtained from 15 · 103 i.i.d. samples. Both figures agree with the
theoretical results about the higher order Berry–Esseen bounds: the latter
approximation has a better accuracy than the Gaussian approximation.

5.2. Bootstrap. Here we examine accuracy of the bootstrap procedures
for ‖Sn‖ (described in Section 4) by computing coverage probabilities using
bootstrap quantiles Q

ab
2 (α). All the results are collected in Table 1. Columns

n, p, L (εi) , L (Xi,j) show the sample size, the dimension, the distribution
of the bootstrap weights εi, and the distribution of Xi,j , where i.i.d. coor-
dinates Xi,j are s.t. Xi = (Xi,1, . . . , Xi,p)

>. Nominal coverage probabilities
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Fig 1. Distribution functions of Sn and S̃n for n = 50, p = 1, K = 4.

c.d.f. of N (0, 1); c.d.f. of Sn for Xi ∼ (lnN (0, 1)− 1.649)/2.161;
c.d.f. of S̃n for Yi = Zi + Ui, Ui ∼ (Pareto(0.5, 4.1)− 0.661) · 4.333.

Fig 2. Distribution functions of ‖Sn‖2 and ‖S̃n‖2 for n = 50, p = 7, K = 4.

c.d.f. of χ2
p;

c.d.f. of ‖Sn‖2 for Xi = (Xi,1, . . . , Xi,p)
>, Xi,j are i.i.d.,

Xi,j ∼ (lnN (0, 1)− 1.649)/2.161;

c.d.f. of ‖S̃n‖2 for Yi = (Zi,1 + Ui,1, . . . , Zi,p + Ui,p)
>, Ui,j are i.i.d.,

Ui,j ∼ (Pareto(0.5, 4.1)− 0.661) · 4.334.

1 − α are given in the second row 0.975, 0.95, 0.90, 0.85, . . . , 0.50 . All the
rest numbers represent frequencies of the event {‖Sn‖ ≤ Q

ab
(α)}, computed

for different n, p, α, L (εi) , and L (Xi,j), from 7 ·103 i.i.d. samples {Xi}ni=1

and {εi}ni=1. We consider three types of the bootstrap weights: first one
εi = zi + ui, with ui ∼ (Bernoulli(b) − b)σu, b = 0.276, σu ≈ 2.235, and
zi ∼ N (0, σ2

z), σ
2
z ≈ 0.038, for this case Eεi = 0, E(ε2

i ) = E(ε3
i ) = 1,
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therefore εi meet conditions (1.2). The second type is εi ∼ N (0, 1), in
this case E(ε3

i ) 6= 1, and the approximation accuracy corresponds to the
classical normal approximation with a larger error term. In this numeri-
cal experiment we check, whether the additional condition E(ε3

i ) = 1 im-
proves numerical performance of the weighted bootstrap for ‖Sn‖. The
third type of the weights Multinom. corresponds to the multinomial dis-
tribution Multinomial(n; 1/n, . . . , 1/n), i.e., to the classical Efron’s boot-
strap scheme. Table 1 confirms the higher-order properties of the bootstrap
schemes for most of the computed coverage probabilities.

Table 1
Coverage probabilities P

(
‖Sn‖ ≤ Q◦2(α)

)
Confidence levels

n p L (Xi,j) L (εi) 0.975 0.95 0.90 0.85 0.80 0.70 0.60 0.50

400 40

χ2
1 − 1

L (zi + ui) 0.982 0.957 0.910 0.855 0.804 0.701 0.595 0.491
N (0, 1) 0.984 0.960 0.914 0.862 0.810 0.704 0.597 0.495

Multinom. 0.983 0.960 0.916 0.864 0.812 0.702 0.593 0.492

Pareto∗
L (zi + ui) 0.984 0.964 0.917 0.865 0.813 0.704 0.593 0.490
N (0, 1) 0.986 0.972 0.925 0.873 0.821 0.707 0.589 0.480

Multinom. 0.989 0.969 0.927 0.875 0.822 0.710 0.591 0.475

lnN ∗(2.5)

L (zi + ui) 0.996 0.987 0.958 0.912 0.863 0.711 0.555 0.416
N (0, 1) 0.998 0.992 0.973 0.934 0.880 0.725 0.543 0.387

Multinom. 0.998 0.994 0.967 0.914 0.847 0.678 0.511 0.390

150 15

χ2
1 − 1

L (zi + ui) 0.983 0.958 0.907 0.855 0.807 0.703 0.596 0.492
N (0, 1) 0.986 0.965 0.915 0.863 0.811 0.706 0.595 0.485

Multinom. 0.986 0.964 0.912 0.855 0.826 0.683 0.576 0.468

Pareto∗
L (zi + ui) 0.985 0.967 0.920 0.869 0.807 0.695 0.585 0.472
N (0, 1) 0.990 0.974 0.931 0.882 0.820 0.697 0.580 0.459

Multinom. 0.988 0.973 0.926 0.866 0.804 0.683 0.561 0.449

lnN ∗(2.5)

L (zi + ui) 0.992 0.978 0.936 0.889 0.830 0.674 0.514 0.386
N (0, 1) 0.995 0.987 0.956 0.910 0.851 0.693 0.507 0.357

Multinom. 0.996 0.987 0.949 0.891 0.818 0.656 0.494 0.349

50 5

χ2
1 − 1

L (zi + ui) 0.985 0.961 0.906 0.853 0.798 0.688 0.582 0.483
N (0, 1) 0.988 0.969 0.915 0.862 0.804 0.688 0.572 0.466

Multinom. 0.985 0.959 0.900 0.845 0.785 0.667 0.555 0.454

Pareto∗
L (zi + ui) 0.983 0.960 0.911 0.852 0.795 0.675 0.560 0.460
N (0, 1) 0.986 0.967 0.923 0.866 0.804 0.673 0.546 0.432

Multinom. 0.984 0.960 0.908 0.844 0.777 0.650 0.528 0.424

lnN ∗(1.5)

L (zi + ui) 0.977 0.956 0.903 0.839 0.775 0.638 0.532 0.411
N (0, 1) 0.983 0.965 0.920 0.858 0.795 0.645 0.506 0.382

Multinom. 0.980 0.958 0.901 0.833 0.763 0.621 0.493 0.383

Here Pareto∗ and lnN ∗(σ2) denote zero mean distributions Pareto(0.5, 4.1)− 0.661

and lnN (0, σ2)− eσ
2/2 correspondingly.
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SUPPLEMENTARY MATERIAL

Supplement to “Nonclassical Berry–Esseen inequalities and ac-
curacy of the bootstrap”
(). The supplementary material contains proofs of the results from Sections
2 and 4.
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