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Abstract. In this paper, we propose Plane Wave Elastography (PWE), a novel
ultrasound shear wave elastography (SWE) approach. Currently, commercial
methods for SWE rely on directional filtering based on the prior knowledge of
the wave propagation direction, to remove complicated wave patterns formed
due to reflection and refraction. The result is a set of decomposed directional
waves that are separately analyzed to construct shear modulus fields that are then
combined through compounding. Instead, PWE relies on a rigorous representation
of the wave propagation using the frequency-domain scalar wave equation
to automatically select appropriate propagation directions and simultaneously
reconstruct shear modulus fields. Specifically, assuming a homogeneous, isotropic,
incompressible, linear-elastic medium, we represent the solution of the wave
equation using a linear combination of plane waves propagating in arbitrary
directions. Given this closed-form solution, we formulate the SWE problem as a
nonlinear least-squares optimization problem which can be solved very efficiently.
Through numerous phantom studies, we show that PWE can handle complicated
waveforms without prior filtering and is competitive with state-of-the-art that
requires prior filtering based on the knowledge of propagation directions.

Keywords: Ultrasound shear wave elastography (SWE), frequency-domain, scalar wave
equation, plane wave, soft tissue, cancer diagnosis, lesion, phantom.

1. Introduction

Soft tissue pathology is known to be correlated with change in tissue stiffness (Shiina
et al. 2015). For instance, an increase in cellular density caused by malignant
tumors, leads to an increased tissue stiffness (Mehrmohammadi et al. 2014, Barr
& Zhang 2015, Gerber et al. 2017). Ultrasound elastography methods utilize this
correlation by mechanically exciting the tissue and analyzing the subsequent motion
to quantify its stiffness over a region of interest (ROI). Various clinical studies of such
methods indicate their relevance for non-invasive monitoring and diagnosis of breast
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and liver diseases among others (Athanasiou et al. 2010, Sigrist et al. 2017). In the
case of breast cancer for instance, Itoh et al. (2006) used the quantitative ratio of
lesion to background stiffness to determine the probability of malignancy, with higher
contrasts indicating higher probability of the lesion being malignant.

Different ultrasound elastography techniques exist in the literature that can
broadly be categorized into strain imaging and shear wave elastograohy (SWE)
methods (Sigrist et al. 2017). Particularly, SWE methods generate and track shear
waves that travel in the tissue with wave-speeds considerably smaller than their
compressional counterparts (typically below 10 m/s) and have a low frequency content
(below 1500 Hz). In these methods, the tissue excitation is achieved by a vertical
displacement (1 − 20 μm) using an acoustic radiation force (ARF) impulse from an
ultrasound push beam, while high frame-rate ultrasound imaging techniques are used
to track the induced shear wave (Deng et al. 2016). The supersonic shear imaging
(SSI) method proposed by Bercoff et al. (2004), is one of the early works to outline
the SWE approach and demonstrate its performance. On the other hand, the comb-
push ultrasound shear elastography (CUSE) of Song et al. (2012), is a more recent
work that relies on simultaneous, parallel ARF beams and compounding to improve
the quality of shear modulus1estimations.

A number of different SWE algorithms have been proposed to estimate the shear
modulus field from wave data. For instance, Bercoff et al. (2004) utilized the scalar
wave equation along with the Fourier-transformed second-order derivatives of the
scalar displacement field, while McLaughlin & Renzi (2006) proposed the use of a
level-set function of wave-front arrival time. However, most currently used SWE
methods, including the commercialized versions of SSI (Athanasiou et al. 2010) and
CUSE (Denis et al. 2015) systems, utilize the time-of-flight (ToF) technique to estimate
the wave-speed and corresponding shear modulus field (Tanter et al. 2008, Palmeri
et al. 2008, Rouze et al. 2012, Song et al. 2012, Song et al. 2014, Carrascal et al. 2017).
For instance, (Tanter et al. 2008, Song et al. 2014) utilize cross-correlation of the
signal at nearby locations along the propagation direction (typically the lateral axis)
to estimate the ToF, i.e., the time that it takes the wave-front to reach the second
point from the first point. Alternatively, the time-to-peak of shear waveform can also
be used to estimate the time-of-flight (Palmeri et al. 2008, Rouze et al. 2012, Carrascal
et al. 2017). These methods assume that the medium is locally homogeneous, isotropic,
incompressible, and linear-elastic (Palmeri et al. 2016) and rely on the prior knowledge
of the propagation direction which is assumed to be perpendicular to the ARF push
axis (Deng et al. 2016). This assumption is reasonable for ‘directional’ shear waves
with flat wave-fronts; see (Sigrist et al. 2017) for details. We define a directional shear
wave as a wave that has a clear dominant propagation direction.

In the presence of inhomogeneities like tumors, shear waves scatter due to
reflection and refraction, violating the directionality assumption of ToF methods,
which can lead to artifacts in the estimated shear modulus field (Deffieux et al. 2011,
Parker et al. 2017). Directional filters are then necessary to remove the reflections
and obtain directional waves (Manduca et al. 2003, Deffieux et al. 2011, Lipman
et al. 2016). In their simplest form, directional filters are frequency-domain projections
that only retain the wave components aligned with the given propagation direction;
see (Deffieux et al. 2011) for details. They decompose the shear wave into a set of
directional waves that can be separately analyzed via the ToF method. In addition to

1 Shear modulus is one of the several quantities used to measure the stiffness of materials.
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reflection and refraction, noise in the wave data can create artifacts in the estimated
fields and a second radial filter is often necessary to improve the signal-to-noise ratio;
see Appendix A for details. Ultimately, the shear modulus fields corresponding to
different directions are combined through compounding (averaging) to obtain a final
shear modulus field. When the direction of propagation is not aligned with the
lateral axis, one dimensional (1D) analysis can overestimate the wave-speed. The
fast shear compounding (FSC) method proposed by Song et al. (2014) utilizes a 2D
analysis of wave-speed along with prior filtering for robust shear modulus estimation in
inhomogeneous mediums. It extends the CUSE method (Song et al. 2012) to include
multiple simultaneous ARF beams with arbitrary known directions. In Section 4, we
compare our proposed approach to this method.

Another set of SWE methods exist that rely on similar assumptions but
perform the wave-speed (phase velocity) analysis in the frequency domain (Chen
et al. 2004, Chen et al. 2009, Budelli et al. 2016, van Sloun et al. 2017, Kijanka
& Urban 2018). For instance, the local phase velocity imaging method proposed by
Kijanka & Urban (2018), relies on short space 2D Fourier transform analysis of the
wave data to extract the most dominant wavenumber within a homogeneous window.
Assuming a directional propagation within the window, the phase velocity is estimated
as the ratio of angular frequency to wavenumber. As discussed earlier, the assumption
of directional propagation breaks down in the presence of inhomogeneities. Another
family of frequency-domain methods utilize the elastodynamic partial differential
equation (PDE) to rigorously model the shear wave propagation in this general form,
automatically accounting for reflection and refraction. These methods can be classified
into direct (Park & Maniatty 2006) and iterative (Eskandari et al. 2008, Ghosh
et al. 2017, Aquino & Bonnet 2019) approaches. Direct methods, although more
efficient, are sensitive to noise. The iterative methods on the other hand, despite
versatility, are computationally demanding which has limited their practical utility.

It is known that for shear waves induced by ARF beams, the displacement
component parallel to the push axis is dominant (Palmeri et al. 2016). Thus, we
can use a scalar wave equation, instead of the elastodynamic PDE, to capture only
the dominant shear wave component. Relying on this observation, we develop a novel
frequency-domain SWE approach, called Plane Wave Elastography (PWE), that does
not require the prior knowledge of propagation direction and is considerably more
computationally efficient than the PDE-constrained approaches. More specifically,
given a homogeneous subdomain within the ROI, we represent the solution of the
scalar wave equation as a linear combination of plane waves with arbitrary propagation
directions. Using this representation, we formulate the SWE problem as a nonlinear
least-squares problem that can be efficiently solved for the constant wave-speed within
the subdomain. The PWE method relaxes the need for prior denoising by relying on
a regularized least-squares formulation and directional filtering through automatic
selection of dominant plane waves and does not require the post-processing step of
compounding. Moreover, the optimal mean squared error (MSE) is an indicator of
how closely the data conforms to the scalar wave equation. This can be used to
provide feedback on the quality of reconstruction since higher levels of MSE indicate
deviation from the wave model due possibly to noise. Finally, when the geometry of
inclusions is known, e.g., from B-mode images, the PWE method can reconstruct the
shear modulus field by a single solve for each homogeneous subdomain.

In summary, compared to the common SWE methods, our approach (i) has
competitive reconstruction performance without relying on prior denoising, directional
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filtering and the prior knowledge of the propagation direction, or the need for
compounding, (ii) provides feedback on quality of reconstructions using the MSE, and
(iii) can take advantage of the prior knowledge of the inclusion geometry, if available,
to speed up computations and improve the estimation contrast.

A closely related approach to PWE was proposed by Baghani et al. (2011)
for magnetic resonance elastography (MRE). In their approach, the solution of an
elastodynamics PDE was approximated using a set of plane wave expansions in a
similar vein as in our PWE approach. However, their work considers a vector-valued
problem in which all components of displacements are required. This is not directly
applicable to an ultrasound modality where only one component of displacement is
usually available. Our approach improves upon this previously proposed method in
several key aspects by: i) adapting the plane-wave expansion to the scalar wave
equation, thus enabling the use of ultrasound tracking, ii) decreasing the ensuing
computational cost, iii) adding a multi-frequency treatment and, iv) incorporating
the systematic and consistent treatment of noise through regularization which enables
more accurate reconstructions without prior filtering. A comparison of the approach
proposed by Baghani et al. (2011) to other popular MRE techniques is given by
Honarvar et al. (2017). Finally, Parker et al. (2017) also utilized a plane-wave
expansion, but to model narrow-band reverberant wave fields in which, no propagation
direction is dominant. This does not apply to the ARF-based SWE problem considered
here which often has a few dominant directions.

The remainder of this paper is organized as follows. In Section 2, we formulate
the SWE problem and in Section 3, we present the PWE approach to solve it. In
Section 4, we present various phantom studies demonstrating the performance of the
PWE method. Section 5 is dedicated to discussing various aspects of our method
highlighting its strengths and weaknesses, and Section 6 concludes the paper.

2. Problem Formulation

2.1. Scalar Wave Equation

Let ΩROI ⊂ R2 denote the region of interest (ROI) and consider a shear wave
propagating in ΩROI in response to one or a set of acoustic radiation force (ARF)
push beams applied outside ΩROI; let û(t,x) : [0, T ]×ΩROI → R2 denote the in-plane
displacement at time t and point x due to this shear wave. Ultrasound transducers
often only measure the dominant component of the displacement parallel to the push
directions; let û(t,x) = ûd(t,x) denote this dominant component.

Assuming that the medium is isotropic, incompressible, and linear-elastic
(Palmeri et al. 2016), and assuming that the ARF push beams are applied outside
the ROI, we can represent the propagation of the shear wave in ΩROI using the scalar
wave equation

ρ ¨̂u = ∇ · (µf∇û),

where ρ = 1000 kg/m3 is the mass density of the soft tissue and µf : ΩROI → R++ is
the shear modulus field; R++ denotes the positive real numbers. Note that the shear
modulus is related to the shear wave-speed cf : ΩROI → R++ as

µf (x) = ρ c2f (x). (1)

Let u : ΩROI → C denote the Fourier transformed signal with respect to the temporal
coordinate at a frequency ω, i.e., u(x;ω) = F {û(t,x)}. Then, given frequency ω, the
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(a) (b)

Figure 1: A plane wave and a shear wave field obtained by superposing plane waves within
a homogeneous subdomain Ω = [0, 40] × [0, 40] mm2 with wave-speed c = 5 m/s at frequency
ω = 500π rad/s. (a) Fig. 1a shows the imaginary component of the plane wave (4) with
d = [cos(30o), sin(30o)]. (b) Fig. 1b depicts the imaginary component of the shear wave obtained
from (3) by superposing nb = 12 plane waves with 30o angular spacing and random coefficients with
arbitrary units.

scalar wave equation can be written in the frequency-domain as

ρω2u+∇ · (µf∇u) = 0. (2)

Consider a homogeneous subdomain Ω ⊂ ΩROI with constant shear modulus
µ = µf (x ∈ Ω). Then, we can write solutions to the scalar wave equation (2) in Ω as
a linear combination of basis functions φj(x) : Ω→ C, i.e.,

u(x) =
∑nb

j=1
aj φj(x), (3)

where nb is the number of basis functions, aj ∈ C, and the basis functions φj(x) are
plane waves explicitly given by

φj(x) = exp
(
i
ω

c
dj · x

)
. (4)

In this expression, i denotes the unit imaginary number, c = cf (x ∈ Ω) is the constant
wave-speed within the homogeneous subdomain Ω, and dj ∈ R2 are unit direction
vectors of propagation, i.e., ‖dj‖ = 1, where ‖·‖ denotes the Euclidean `2-norm. Fig.
1 depicts a plane wave of form (4) and a shear wave obtained by superposing nb = 12
plane wave bases according to (3). By increasing nb and appropriate selection of
coefficients aj in (3), we can approximate any solution to the scalar wave equation (2)
arbitrarily close in a normed sense (Colton & Kress 2001).

2.2. Shear Wave Elastography Problem

Let ŷ(t) ∈ Rm denote the temporal signal measured at m points xi ∈ Ω for
i ∈ {1, . . . ,m} and y ∈ Cm denote the corresponding (discrete) Fourier transformed
signal at a frequency ω. The objective of the elastography problem then is to find the
constant shear modulus µ or equivalently the wave-speed c within the homogeneous
subdomain Ω. Given the basis expansion (3), we can formulate this problem as a
nonlinear least-squares optimization problem as follows:

min
c, a

1

m
‖Φ(c) a− y‖2 , (5)
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where a = [a1, . . . , anb
] is the vector of coefficients and Φ ∈ Cm×nb is the design

matrix with
Φij = φj(xi) (6)

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , nb}.
Whenever the number of measurements m is less than the number of bases nb,

the optimization problem (5) is ill-posed. Furthermore, often the measured signal is
contaminated with noise and we do not want the solution (3) of the wave equation
(2) to perfectly match the measurements y. To address these challenges, we add a
regularization term to (5) that improves stability and allows us to control how closely
we fit the data:

min
c, a

1

m
‖Φ(c) a− y‖2 + τ ‖a‖2 ,

where τ ∈ R++ is the regularization parameter. Note that the use of regularization
encourages selection of a subset of plane waves and helps distinguish dominant
propagation directions by penalizing nonzero coefficients aj .

So far we have utilized the data at a single frequency ω. It is often necessary to
consider a set of dominant frequencies {ω1, . . . , ωnω

}, where nω denotes the number
of frequencies. Given measurements yk ∈ Cm for k ∈ {1, . . . , nω}, we use the linear
expansion (3) with coefficients ak to represent the solution of the scalar wave equation
(2) at frequency ωk. Then, the corresponding elastography problem is given by

min
c

∑nω

k=1
min
ak

1

m
‖Φk(c) ak − yk‖2 + τ ‖ak‖2 . (7)

Shear wave data are often calculated from the in-phase-quadrature data using
an autocorrelation algorithm (Kasai et al. 1985) and are given as particle velocity

and not displacement. Noting that F
{

˙̂u
}

= iωF {û} = iω u, we can represent the

(discrete) Fourier transformed velocity data with an expansion similar to (3) and
scaled coefficients. Therefore, regardless of whether displacement or velocity data are
used, the elastography problem is formulated as (7). In the next section, we discuss
an efficient approach to solve this optimization problem.

3. Plane Wave Elastography

3.1. Solution to the Elastography Problem in a Homogeneous Subdomain

Solving the optimization problem (7) can be challenging due to nonlinearity; see
Appendix B. However, for a fixed wave-speed c, (7) is a standard `2-regularized least-
squares problem whose solution for each frequency, is given in closed-form by

a∗k(c) =

(
1

m
Φk(c)HΦk(c) + τ I

)−1

Φk(c)Hyk, (8)

where I ∈ Rnb×nb is the identity matrix and the superscript H denotes the
conjugate transpose operator. Given this closed-form expression and since within
the homogeneous subdomain Ω, the wave-speed c is a constant scalar, we can utilize
a global search algorithm or a simple discretization method to find the optimal wave-
speed as

c∗ = argmin
c∈[cmin,cmax]

∑nω

k=1

1

m
‖Φk(c) a∗k(c)− yk‖2 + τ ‖a∗k(c)‖2 , (9)
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ROI

window

Figure 2: Schematic of the PWE algorithm to estimate the shear modulus field in an inhomogeneous
ROI. The white dots depict ns discretization points within the ROI. The main idea is to estimate the
field at each discretization point by a window Ωl of size w × w centered at that point. The contour
plot shows the magnitude of Fourier transformed data at 800 Hz for the digital phantom of Section
4.1 as an example, where the white dashed lines delineate the boundary of the inclusion. In practice,
the PWE Algorithm 1 utilizes nω dominant frequencies within each window.

where cmin, cmax ∈ R++ are the lower-bound and upper-bound on the wave-speed and
a∗k(c) is the optimal regularized least-squares solution (8) for a given wave-speed c.

Assume that we use a limited number of basis functions nb and frequencies nω
along with appropriate regularization to prevent overfitting the noise. Then, the value
of the least-squares term corresponding to the optimal wave-speed c∗ can be used as
a measure of conformity of the data to the scalar wave equation (2); the smaller the
least-squares error, the closer the data is to the underlying physics. Thus, we can use
this feedback to evaluate the quality of reconstruction. Particularly, we use the mean
squared error (MSE), given by

MSE =
1

mnω

∑nω

k=1
‖Φk(c∗) a∗k(c∗)− yk‖2 , (10)

as a measure of the quality of reconstruction in Ω.

3.2. Plane Wave Elastography Algorithm

Our solution in Section 3.1 was for a homogeneous subdomain Ω with constant shear
modulus. To estimate the shear modulus field µf (x) over an inhomogeneous ROI, we
discretize the ROI into ns grid points and use windows of size w ∈ R++ with constant
shear moduli. Particularly, for a point xl ∈ ΩROI we define a window (subdomain) Ωl

as
Ωl = xl +

[
−w

2
,
w

2

]
×
[
−w

2
,
w

2

]
. (11)

We solve (9) to estimate the wave-speed cl and the corresponding shear modulus µl

within Ωl and assign the value to point xl, constructing in this way, a discretized
vector of estimations µ ∈ Rns

++ for the shear modulus field µf (x); see Fig. 2.
The Plane Wave Elastography (PWE) approach is summarized in Algorithm 1.

The algorithm starts by requiring the ns discretization points and window size w, as
well as the number of plane wave basis functions nb and dominant frequencies nω. In
line 2, given the (discrete) Fourier transformed displacement signal yROI, it selects the
regularization parameter τ ; see Section 3.3 for details. Then, the algorithm loops over
the ns discrete points within the ROI. In line 4, given the measurements within window
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Algorithm 1 Plane Wave Elastography Algorithm

Require: Discretization of the ROI and window size w;
Require: Number of basis functions nb and dominant frequencies nω;
Require: Shear wave measurement signal ŷROI(t);

1: Compute the Fourier transformed data yROI;
2: Select the regularization parameter τ ;
3: for l ∈ {1, . . . , ns} do
4: Get measurements yk ∈ Cm within window Ωl for dominant frequencies k ∈

{1, . . . , nω};
5: Compute the wave-speed cl from (9) and the corresponding MSE value from (10);
6: end for
7: Compute the shear modulus vector µ ∈ Rns

++ from (1);
8: Return µ and the corresponding MSE vector (10);

Ωl for l ∈ {1, . . . , ns}, it extracts the nω dominant frequencies contributing the highest
amount of energy to the Fourier spectrum, and the corresponding measurements
yk ∈ Cm for k ∈ {1, . . . , nω}. Then, in line 5, it computes the constant wave-speed cl
for window Ωl from (9) and the corresponding MSE from (10). In line 7, µ collects
the estimated shear moduli corresponding to all discretization points xl within the
ROI. Given µ, we can approximate the shear modulus field µf (x) at any point x via
interpolation.

3.3. Parameter Selection

Next, we discuss the important parameters that affect the performance of the PWE
Algorithm 1. As discussed in Section 1, an important advantage of the PWE approach
is that it does not rely on the directionality of the propagation, due to the plane wave
representation in (3). In the absence of any prior knowledge on the directionality of
the propagation, we choose the directions dj to uniformly sample [0, 2π], i.e.,

dj =

[
cos

(
2π

j

nb

)
, sin

(
2π

j

nb

)]
. (12)

As we demonstrate in Section 4, in practice often nb ≤ 12 directions are sufficient to
resolve the propagating waves.

An important parameter for the PWE method is the number of dominant
frequencies nω. In principle, increasing nω adds more information and leads to
more accurate reconstructions. However, one should take caution not to include very
high frequencies with unfavorable signal to noise ratios, i.e., ωmax = 2πfmax must
be upper-bounded, where fmax is the corresponding frequency in Hertz. Another
important parameter is the lower-bound ωmin = 2πfmin on dominant frequencies,
which determines the longest wavelength λmax in the data. More specifically, λmax =
ĉmax/fmin where ĉmax is the unknown maximum wave-speed in the ROI. As a general
rule of thumb, for data with a high signal-to-noise ratio (SNR), the window size must
be larger than λmax/5 to ensure that waves can be resolved with a window of size w.
Note that w also determines the number of measurements m used to estimate the wave-
speed in each subdomain Ωl. Using at least m > nb measurements is required to ensure
that the design matrix (6) is well-conditioned. When the SNR is low, larger values of w
should be used to ensure that the measurements contain adequate information about
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the unknown wave speed. In practice, the range of dominant frequencies [fmin, fmax]
and the spatial resolution of measurements are fixed for a given shear wave data but
both ĉmax and SNR are unknown. As a result, for best reconstructions we might need
to adjust w. The quality of reconstructions by the PWE Algorithm 1 are often better
for data with higher SNR and fmin for which smaller values of w can be used.

When data is noisy, a major parameter that affects the reconstruction is the
regularization parameter τ . As discussed in Section 2.2, proper selection of τ allows us
to simultaneously perform filtering and reconstruction. In this paper, we utilize the L-
curve approach to select τ . This involves plotting the regularization term

∑nω

k=1 ‖a∗k‖
2

in (9) versus the sum-of-squares value (a constant multiple of MSE (10)) as a function
of τ and selecting the regularization parameter corresponding to the point of maximum
curvature in the L-curve;2see (Hansen 2010). In Section 4.4, we present parameter
study results to further clarify the discussion of this section.

3.4. Prior Knowledge of ROI Geometry

In practice, the prior knowledge of the location and shape of inclusions
(inhomogeneities) within the ROI might be available, e.g., from B-mode images. In
that case, we can estimate the shear modulus field with a considerably fewer solves
than what is needed in Algorithm 1, which requires one solution per discretization
point. Particularly, consider a decomposition of the ROI into ns non-overlapping
subdomains such that ΩROI =

⋃ns

l=1 Ωl, where within Ωl the shear modulus is constant
and equal to µl. Then, solving (9) with measurements belonging to Ωl, we obtain an
estimate of the wave-speed cl and the corresponding shear modulus µl from (1) and
we can estimate the shear modulus field as

µf (x) =
∑ns

l=1
µl 1Ωl

(x), (13)

where the indicator function 1Ωl
(x) = 1 if x ∈ Ωl and is zero otherwise.

4. Experiments

In this section, we present phantom studies to demonstrate the performance of
the PWE Algorithm 1. Particularly, we first study a digital phantom with a
complex inclusion mimicking a malignant tumor to induce reflections and refractions,
demonstrating the ability of PWE to resolve complicated wave patterns without
prior filtering. Then, we consider two categories of phantom experiments. The first
category involves four simultaneous ARF push beams applied using a curved-array
ultrasound transducer at different angles and validates in practice, the ability of the
PWE approach to resolve waves traveling at unknown arbitrary directions. We also
consider the more common case of two parallel push beams generated by a linear
transducer. For these phantom experiments, we calculate the shear wave data from
the in-phase-quadrature data using an autocorrelation algorithm (Kasai et al. 1985).
Finally, we study the effect of various parameters on the performance of PWE to
further illustrate the discussion of Section 3.3.

In each case, in addition to nominal values, we report reconstructions by the fast
shear compounding (FSC) method, proposed by Song et al. (2014), to validate the

2 Due to the extra minimization with respect to wave-speed in (7), the curve generated in this way is
not exactly the L-curve but as we show in Section 4, this version can still be used to select appropriate
regularization parameters.
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PWE reconstructions and demonstrate that PWE performs at least as well as the state-
of-the-art3, even though it does not require prior filtering or post-processing. Note
that the FSC method strongly relies on directional filtering to ensure the directionality
of the waves and radial filtering in the spatial frequency domain, to enhance the SNR;
see Appendix A for details. In the case of a multi-push excitation, the FSC method
reconstructs shear modulus fields individually for each filtered direction and then
uses compounding to combine the reconstructions. In the following, we fine-tune the
parameters of this method for best possible reconstructions. We particularly report
the window size defined similar to (11), and the patch size which is the distance
between pairs of points used for cross-correlation to determine the time-of-flight; see
(Song et al. 2014) for details.

To measure the reconstruction performance, we report the average shear moduli
µb = avg(µΩb

) and µi = avg(µΩi
) over the background Ωb and inclusion Ωi along

with the standard deviations std(µΩb
) and std(µΩi

), where µΩb
and µΩi

denote the
estimated shear modulus vector µ confined to subdomains Ωb and Ωi, respectively.
For phantom experiments, we obtain an approximation of the inclusion geometry
from B-mode images. We also report the contrast-to-noise ratio (CNR), defined as

CNR = 20 log10

∣∣avg(µΩb
)− avg(µΩi

)
∣∣√

std2(µΩb
) + std2(µΩi

)
. (14)

Throughout this section, for PWE reconstructions we use nω = 10 dominant
frequencies and nb = 12 basis functions and set the maximum frequency to fmax =
1500 Hz; see Section 4.4 for the reasoning behind this selection. We also set the wave-
speed bounds in (9) to cmin = 1 m/s and cmax = 10 m/s, which is a reasonable range for
soft tissue (Sarvazyan et al. 2013). Moreover, to conform to the ultrasound coordinate
system convention, where the transducer is located on top, in the following plots we
use axial or depth axis z and lateral axis x with the origin located on the top-left
corner.

4.1. Single-push Digital Phantom

In this section, we study the performance of PWE for a 40 mm×40 mm digital phantom
with an inclusion mimicking a malignant tumor, see e.g. (Liu et al. 2016, Fig. 1),
with a background shear modulus of 5 kPa and inclusion shear modulus of 19 kPa;
see Fig. 3 for the shape of the inclusion. To simulate the shear wave propagation,
we discretize the domain with a spatial interval of ∆x = 250 μm and temporal step-
size of ∆t = 100 μs and solve the 2D incompressible elastodynamic PDE (Aquino &
Bonnet 2019) in FEniCS (Alnaes et al. 2015) using a mixed finite element method,
subject to an unfocused ARF impulse modeled by a sinusoidal traction with frequency
of 1000 Hz along the right side of the domain. The duration of the impulse was
10 ∆t and the duration of the simulation was 20 ms. In the following, we study the
performance of PWE without and with noise over a 30 mm×30 mm ROI.

The plots in the first row of Fig. 3 show the reconstructions for noiseless data.
For PWE results, we set the minimum frequency to fmin = 500 Hz after inspecting the
Fourier transfer spectrum, and the window size to w = 1.50 mm, accordingly. Because
the data is noiseless, a wide range of values are appropriate for the regularization

3 FSC method is commercially used on General Electric LOGIQ E9 SWE system (Song et al. 2015).
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Figure 3: PWE and FSC reconstructions for the digital phantom. Inclusion boundaries are delineated
by black dashed lines. The first row corresponds to noiseless data while the second row corresponds to
data contaminated with additive Gaussian noise. Column (a) includes the reconstructions obtained
using the FSC method whereas column (b) includes the PWE reconstructions. Column (c) depicts
the MSE fields (10) for the PWE reconstructions. In column (d), we compare the ground-truth shear
modulus with the estimated values along the horizontal line passing through the center of the ROI,
depicted by the white dashed lines in the shear modulus contour plots.

parameter; we set τ = 10−4 from the L-curve analysis. From the PWE reconstruction,
the average background and inclusion shear moduli are µb = 4.89 ± 1.27 kPa and
µi = 14.76 ± 3.36 kPa, respectively. The contrast-to-noise ratio is CNR = 8.78 dB.
Referring to the MSE field in column (c) of Fig. 3, observe that the regions at the
boundary of inclusion and background have the highest MSE values (10) since at those
regions, the assumption of homogeneity breaks down (the windows cover parts of both
the inclusion and background). Moreover, generally the MSE values are smaller inside
the inclusion indicating better agreement with the wave equation (2). This could be
due to the fact that the inclusion is farther away from the ARF push-beam location;
because the ARF is not modeled in (2), regions close to it will have higher discrepancy
with the model and thus, higher MSE values. For the FSC method (Song et al. 2014),
we get µb = 5.15± 1.25 kPa and µi = 15.12± 3.28 kPa and CNR = 9.08 dB, where we
use a window size of 1.00 mm and patch size of 0.75 mm. Referring to cross-section
plots in column (d) of Fig. 3, observe that the inclusion edges are smoothed out due
to windowing, resulting in slightly skewed estimations compared to the ground truth.

To investigate the effect of noise, we contaminated the simulated shear wave data
with additive Gaussian noise decreasing the signal-to-noise ratio to SNR = −9.05 dB.4

The plots in the second row of Fig. 3 show the reconstructions for this case. In the
presence of noise, larger window sizes are required for the same minimum frequency
fmin = 500 Hz, to ensure that more measurements with adequate information content
are included for reasonable reconstructions. Using w = 5.50 mm and τ = 10−2 from
the L-curve analysis, we get µb = 5.09±1.20 kPa and µi = 13.35±3.71 kPa, and CNR
= 6.52 dB from the PWE method. Referring to the MSE feedback in column (c), we
can see that the MSE values are orders of magnitude higher in this case indicating

4 Although Gaussian noise is not an accurate model of the ultrasound noise, it has been used in
the literature regardless; see e.g., (Kijanka et al. 2018). In the next sections, we study phantom
experiments that inherently contain realistic ultrasound noise.
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Figure 4: The geometry of the Type IV CIRS phantom and the location of the 20 mm spherical
inclusion for multi-push data. The dashed lines delineate the approximate orientation of the four
push beams while the arrows show the directions of propagation and the approximate focal depths
(40 mm) along the push beam axes. Finally, the square box depicts the 30 mm×30 mm ROI.

considerable disagreement with the wave equation (2). Because the noise is uniformly
added across all spatial locations, the MSE values are very close throughout the ROI.
Finally using the FSC method, we get µb = 5.42± 1.52 kPa and µi = 14.87± 3.97 kPa
and CNR = 6.94 dB, where we use a window size of 2.00 mm and patch size of 1.75 mm.
Note that prior filtering to improve the SNR is essential to obtaining reasonable
reconstructions using the FSC method in the presence of noise.

4.2. Multi-push CIRS Phantom

Next, we consider a phantom with nominal background shear modulus of 8.33 kPa and
a single spherical inclusion with shear modulus of 26.66 kPa and diameter of 20 mm
(Model 049, CIRS, Inc., Norfolk, VA), excited by four simultaneous ARF push beams
transmitted by a C5-2 curved-array transducer (Verasonics, Inc., Kirkland, WA) and
measured with a research scanner (V1, Verasonics, Inc., Kirkland, WA). Each push
beam used 16 elements, and the beams were moved to the edge of the transducer such
that two beams were formed on the extreme left and right sides of the array and 64
elements in the center were inactive. We study two ARF push configurations with
push frequency of 4.09 MHz: (i) one push with duration of 400 μs; (ii) four repeated
pushes of duration 200 μs separated by 800 μs of waiting, generating a repeated push
of 1000 Hz. This repeated push is intended to excite a wider frequency range (Urban
& Greenleaf 2008). A movie of the vertical shear wave velocity component generated
under these two push configurations can be found in (Khodayi-mehr et al. 2020). Fig.
4 depicts the geometry of the phantom and the 30 mm×30 mm ROI along with the
approximate location of the inclusion and the focused push beams (focal depth is
40 mm). Note that the prior knowledge of the push beam angles and equivalently the
propagation directions, is not required for PWE. The spatial spacing of the shear wave
data was 240 μm while the temporal interval was 360 μs. The duration of the signal
was 20 ms.

The plots in the first row of Fig. 5 depict the reconstructions for the push
configuration (i). For the PWE results in column (b), we use fmin = 300 Hz and
w = 7.67 mm ≈ 32 × 240 μm and set nb = 12 as before. Note that nb = 12 basis
functions are sufficient to reconstruct the field even though the PWE Algorithm 1 is
unaware of the propagation directions. We use a regularization parameter of τ = 10−2,
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Figure 5: PWE and FSC reconstructions of the shear modulus field for the multi-push data where the results in each row correspond to one ARF configuration.
Column (a) includes the FSC reconstructions whereas column (b) includes the PWE reconstructions. Column (c) plots the MSE feedback (10) corresponding
to the PWE reconstructions. In column (d) we compare the estimated shear modulus fields without and with the prior knowledge of inclusion geometry, to the
nominal values along the horizontal line passing through the center of the ROI, depicted by the white dashed lines in the shear modulus contour plots.
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Figure 6: L-curves for the multi-push data with the two ARF configurations. The ideal value of
the regularization parameter is the point of maximum inflection corresponding to τ = 10−2 for both
cases; see Section 3.3 for more details.

Table 1: Average shear moduli µb and µi for the background and inclusion and the CNR (14), for
the PWE and FSC methods, corresponding to the multi-push data and Fig. 5. The nominal values
for the shear moduli of background and inclusion are 8.33 kPa and 26.66 kPa, respectively.

method
push configuration (i) push configuration (ii)

µb (kPa) µi (kPa) CNR (dB) µb (kPa) µi (kPa) CNR (dB)

PWE 9.33± 2.16 21.69± 5.79 6.02 9.92± 1.95 20.59± 5.43 5.33

FSC 10.01± 2.50 19.70± 1.89 8.08 12.39± 3.48 19.93± 3.62 3.54

PWE with prior 9.00 23.22 - 11.93 25.00 -

FSC with prior 8.82 21.43 - 12.43 22.11 -

obtained from the L-curve in Fig. 6; see Section 3.3 for details. The average shear
moduli are µb = 9.33 ± 2.16 kPa and µi = 21.69 ± 5.79 kPa and the contrast-to-
noise ratio (14) is CNR = 6.02 dB; see Table 1 for a summary of the estimated shear
modulus values for the reconstructions of this section. Given the prior knowledge of
inclusion geometry from the B-mode image in Fig. 4, we get more accurate estimates
µb = 9.00 kPa and µi = 23.22 kPa, where we use settings similar to the previous
reconstruction and set τ = 10−2 from the L-curve analysis; see Section 3.4 for details.
Note that in this case, a scalar estimation is obtained for the background and inclusion;
as a result, the standard deviation is zero and the CNR is infinite.

The contour plot in column (a) of Fig. 5 shows the corresponding FSC
reconstruction for push configuration (i). To obtain the FSC estimate, using
directional filters we decompose the shear wave into four directional waves traveling
along angles −32.1o,−26.6o, 206.6o, and 212.1o, and rely on a radial filter to enhance
the SNR. We use window and patch sizes of 3.83 mm and 3.59 mm, respectively. After
constructing the shear modulus estimates for the individual waves, we combine them
using compounding; see (Song et al. 2014) for details. The average shear moduli in
this case are µb = 10.01 ± 2.50 kPa and µi = 19.70 ± 1.89 kPa and the contrast-to-
noise ratio (14) is CNR = 8.08 dB. We also performed a reconstruction given the
prior knowledge of the geometry, where we average the values from windows that
completely fall within the background or inclusion. Using a similar window size, we
get the improved estimates µb = 8.82 kPa and µi = 21.43 kPa.

The plots in the second row of Fig. 5 depict the reconstructions for push
configuration (ii). This ARF configuration results in a wider frequency range
at the expense of lower SNR which requires larger window sizes for acceptable
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reconstructions. For PWE, we use fmin = 100 Hz and w = 10.54 mm and τ = 10−2

from Fig. 6, resulting in µb = 9.92 ± 1.95 kPa and µi = 20.59 ± 5.43 kPa and CNR
= 5.33 dB. Relying on the prior knowledge of inclusion geometry and with τ = 10−3

obtained from the L-curve analysis, we get µb = 11.93 kPa and µi = 25.00 kPa. It can
be seen that using the prior knowledge improves the estimation inside the inclusion
but deteriorates it for the background. This is due to the fact that parts of the
background have higher noise levels and solving the SWE problem (7) only once,
lumps all measurements into a single estimate. In practice it might be beneficial to
decompose the background into multiple subdomains.

Plots in column (c) of Fig. 5 show the MSE (10) feedback from the PWE method
for the two ARF configurations. Note the higher variations in background MSE values
for both cases. Note also that the values for configuration (ii) are an order of magnitude
higher indicating further inconsistency with the physics of the wave propagation. This
lower SNR is also evident from Fig. 6 where the L-curve for configuration (ii) is shifted
to the right (higher sum of squares).

Finally, column (a) in the second row of Fig. 5 shows the FSC reconstruction
where we perform similar filtering procedures to decompose the wave and improve
the SNR. With window and patch sizes of 4.31 mm and 4.07 mm, we get µb =
12.39± 3.48 kPa and µi = 19.93± 3.62 kPa and CNR = 3.54 dB. Relying on the prior
knowledge of the geometry and with window and patch sizes of 2.87 mm and 2.64 mm,
we get µb = 12.43 kPa and µi = 22.11 kPa. It seems that in these experiments, PWE
reconstructions are more accurate, and the performance of the FSC method degrades
more with noise than the PWE method; similar behavior was observed for other data
with similar push configuration.

4.3. Parallel Double-push CIRS Phantoms

In this section, we consider phantoms with two parallel ARF pushes applied using a
Verasonics V1 system with a L7-4 transducer (Philips Healthcare, Andover, MA)
on the sides of the phantom at 30 mm focal depth. Specifically, we consider a
homogeneous phantom with nominal background shear modulus of 8.33 kPa (Model
039, CIRS, Inc., Norfolk, VA), a soft Type I cylindrical inclusion with diameter
10.40 mm and nominal shear modulus of 2.66 kPa, and three stiff Type IV cylindrical
inclusions with diameters 10.40 mm, 6.49 mm, and 4.05 mm and nominal shear
modulus of 26.66 kPa (Model 049A, CIRS, Inc., Norfolk, VA). The push duration
was 400 μs and the push frequency was 4.09 MHz. The push beams were generated
by 32 active elements located at the edges of L7-4 probe. Fig. 7 shows the B-mode
image for the phantom with inclusion size of 6.49 mm along with the position of the
push beams and the 16 mm×16 mm ROI. The spatial spacing of the shear wave data
was 154 μm while the temporal intervals were 240 μs and 80 μs for the homogeneous
phantom and with inclusions, respectively. The duration of the signal was 10 ms in all
cases.

Fig. 8 shows the reconstructions for both PWE and FSC methods over a
16 mm×16 mm ROI without and with the prior knowledge of inclusion geometry, while
Table 2 reports the corresponding average shear moduli and CNR values (14). For
the PWE reconstructions, by inspecting the Fourier spectrums, for all cases except
for the soft inclusion, we set the minimum frequency to fmin = 500 Hz, for the soft
inclusion we set fmin = 100 Hz, and the window size to w = 3.70 mm in all cases. In
each case, the regularization parameter τ is selected according to an L-curve similar
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Figure 7: The geometry of the Type IV CIRS phantom and the location of the 6.49 mm cylindrical
inclusion for the parallel double-push case. The dashed lines delineate the approximate locations of
the two push beams while the arrows show the directions of propagation and the approximate focal
depths (30 mm) along the push beam axes. The rectangular box depicts the 16 mm×16 mm ROI.

Table 2: Average shear moduli µb and µi for the background and inclusion and the CNR (14), for the
PWE and FSC methods, corresponding to the double-push data and Fig. 8. The nominal values for
the shear moduli of background and soft and stiffer inclusions are 8.33 kPa, 2.66 kPa, and 26.66 kPa.

method

homogeneous soft inclusion (10.40 mm) stiff inclusion (10.40 mm)

µb µb µi CNR µb µi CNR

(kPa) (kPa) (kPa) (dB) (kPa) (kPa) (dB)

PWE 5.22± 0.00 7.17± 1.94 3.93± 1.11 3.20 10.69± 2.88 25.89± 4.53 9.04

FSC 5.32± 0.20 7.86± 2.73 4.11± 1.29 1.88 11.24± 3.81 25.62± 2.97 9.47

PWE with prior 5.17 6.03 3.31 - 10.12 28.77 -

FSC with prior 5.27 7.07 3.02 - 8.42 27.63 -

method

- stiff inclusion (6.49 mm) stiff inclusion (4.05 mm)

- µb µi CNR µb µi CNR

- (kPa) (kPa) (dB) (kPa) (kPa) (dB)

PWE - 8.72± 2.07 21.92± 3.58 10.07 8.10± 1.57 17.71± 2.90 9.30

FSC - 8.95± 2.23 20.81± 2.72 10.56 8.01± 1.16 15.46± 1.80 10.84

PWE with prior - 8.46 24.10 - 7.94 22.35 -

FSC with prior - 7.71 22.11 - 7.76 17.39 -

Table 3: Regularization parameter τ , selected by the L-curve analysis, for the PWE reconstructions
in Fig. 8 corresponding to the double-push data.

inclusion type without prior with prior

homogeneous 10−3 10−2

soft inclusion (10.40 mm) 10−2 10−3

stiff inclusion (10.40 mm) 10−2 10−1

stiff inclusion (6.49 mm ) 10−3 10−2

stiff inclusion (4.05 mm) 10−6 10−6

to Fig. 6; see Table 3 for numerical values. For the FSC method, we use window
and patch sizes of 1.85 mm and 1.69 mm, respectively. Note that as in the previous
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Figure 8: PWE and FSC reconstructions for the double-push phantom data with a soft Type I
inclusion and three stiff Type IV inclusions. Each row includes the reconstructions for one inclusion.
Columns (a) and (b) include the FSC and PWE reconstructions, respectively. Column (c) plots
the MSE feedback (10) corresponding to the PWE reconstructions. In column (d) we compare the
estimated shear modulus fields without and with the prior knowledge of inclusion geometry, to the
nominal values along the horizontal line passing through the center of the ROI, depicted by the white
dashed lines in the shear modulus contour plots.

cases, the PWE method is unaware of the directions of propagation. Nevertheless, the
PWE reconstructions without prior directional filtering are competitive with the FSC
method and often more accurate, when compared to the nominal values reported
by the manufacturer. For the homogeneous case in the first row of Fig. 8, the
estimates are not in agreement with the nominal values due possibly to the change in
mechanical properties of the phantom over time5 (Baghani et al. 2011) but the PWE
and FSC estimates are in agreement with each other. From Table 2, observe that

5 The homogeneous phantom was manufactured before April 12, 2014 and is over six years old.
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Figure 9: Absolute errors of the average background and inclusion shear moduli as a function of the
basis number nb. (a) Fig. 9a corresponds to the multi-push data of Section 4.2 with push configuration
(i). (b) Fig. 9b corresponds to the double-push data of Section 4.3 for inclusion diameter of 6.49 mm.

the FSC reconstructions have slightly better CNR values due to compounding, which
naturally increases the CNR because of averaging and reduced variance. Also, the
reconstructions with prior knowledge of the geometry often lead to a better contrast
between the background and inclusion.

4.4. Parameter Study

In this section, we study the effect of important parameters, discussed in Section
3.3, on PWE reconstructions. In each case, we optimally select all other parameters
including the regularization parameter. First, we consider the effect of basis number
nb on PWE reconstructions. In Fig. 9, we plot the absolute errors of µb and µi

compared to the nominal values for the multi-push data with push configuration (i),
and the double-push data with 6.49 mm inclusion size, discussed in Sections 4.2 and
4.3, respectively. From Fig. 9a corresponding to the multi-push data, it can be seen
that nb = 2, 4 are insufficient to resolve the shear wave particularly in the background,
but the reconstructions seem to plateau beyond nb = 8. Unlike the multi-push data,
it can be seen from Fig. 9b that for the double-push data, only two basis functions are
adequate since these two bases happen to align with the directions of propagation. In
both cases, because of appropriate regularization, the solutions stay stable as we keep
increasing the number of basis functions. Note that throughout the results, we used
nb = 12 bases to reconstruct the shear modulus fields although the true propagation
directions might not align with such a sparse discretization. This indicates that PWE
can reconstruct the shear modulus field even if the dominant propagation directions
are not fully recovered. In Appendix B, we further elaborate on this point.

To study the rest of the important parameters for PWE, we consider the double-
push data with 6.49 mm inclusion as a representative example. First, we investigate
the effect of the number of frequency nω and minimum frequency fmin on CNR (14)
and normalized error, defined as err = ‖µ− µnom‖/‖µnom‖, where µ is the output of
PWE Algorithm 1 and µnom is the corresponding nominal vector of values. Fig. 10
shows the results for three different frequency numbers nω and a range of minimum
frequency fmin values. As discussed in Section 3.3, increasing nω and fmin generally
leads to better reconstructions. However, there is a value of fmin above which the
selected frequencies mostly contain noise and are not as informative; this is the reason
for upward trend in Fig. 10a for large values of fmin. This upward trend starts earlier
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Figure 11: Absolute errors of the average background and inclusion shear moduli as a function of the
window size w for the double-push data of Section 4.3 with inclusion diameter of 6.49 mm.

for larger nω since given a large value of fmin, using more frequencies, leads to earlier
inclusion of higher frequency noisy data.

Finally, we study the effect of window size w. Fig. 11 shows a bar plot similar to
Fig. 9, where we compare the average estimates in the background and inclusion to
the nominal values. As discussed in Section 3.3, overly small values of w, compared
to the wavelength corresponding to fmin, cannot resolve the waves and result in
poor reconstructions. On the other hand, large values of w result in over-smoothed,
poor reconstructions. This can be seen here for the estimation of the inclusion
shear modulus. Note that among the parameters studied in this section, the error
values are more sensitive to window size w and minimum frequency fmin. Since for a
given dataset, the range of dominant frequencies [fmin, fmax] is determined, to obtain
reasonable reconstructions, we need to adjust w; the lower fmin, the larger w needs to
be for accurate reconstruction; see Section 3.3.

5. Discussion

The PWE Algorithm 1 depends on a number of parameters. Among those, the
number of dominant frequencies and plane wave basis functions can generally be
fixed, as in Section 4. The frequency range [fmin, fmax] is dictated by the shear
wave data and should be selected by inspecting the Fourier spectrum and the
knowledge of fmin enables the selection of window size w, as discussed in Section
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3.3. Ultimately, the only parameter that needs to be tuned in practice is the
regularization parameter τ for which we outlined the L-curve approach in Section
3.3. Moreover, unlike the reconstructions in Section 4 which are based on data
obtained from acquisitions with different settings, in practice the PWE algorithm
will be used on an ultrasound system with consistent acquisition settings and noise
characteristics. Under these circumstances, all of the parameters including τ can
often be pre-selected. For instance, observe the consistency among parameters used for
double-push reconstructions of Section 4.3. Finally, the FSC method (Song et al. 2014)
used for validation in Section 4, requires selecting at least as many parameters. These
include the propagation directions, window and patch sizes, and parameters of the
directional and radial filters including temporal and spatial frequency ranges, and
power and order; see Appendix A.

As we discussed in Section 4.4, when the plane wave directions in (4) happen to
align with the propagation direction, PWE can reconstruct the shear modulus field
with a few basis functions; see Fig. 9b. This means that we can exploit the prior
knowledge of propagation directions if available, by using a non-uniform distribution
on the directions instead of the uniform distribution in (12). PWE can also be utilized
with prior filtering and compounding, similar to the FSC method. When multiple sets
of data from independent experiments are available, instead of compounding, we can
also (i) extend the optimization objective in (7) to include another summation over
these sets of data, or (ii) superpose the data and process them at once as a single
multi-push data.

As discussed in Section 3.1, the MSE is only reliable if precautions are
taken to prevent overfitting by appropriately selecting the regularization parameter.
Throughout the paper, we used a constant regularization parameter for each
reconstruction, selected using the L-curve approach, that on average best balances
the least-squares and regularization terms over the ROI; see Section 3.3 for details.
This value of regularization parameter might not prevent overfitting in local regions
that are considerably noisier than the rest of the ROI. An example of this can be
found in the reconstructions of Figure 5 where overestimation of the shear modulus
inside inclusions is not reflected in the corresponding MSE plots. It is possible but
computationally expensive and often unnecessary, to tune the regularization parameter
for individual windows.

The computational cost of the PWE Algorithm 1 depends on the basis number
nb, the measurement number m, the number of frequencies nω, method used to solve
(9), and the number of subdomains ns. From (8), it can be seen that the dependence
on the number of bases and measurements is O(mn2

b + n3
b) in the worst case while

from (9), dependence on nω is linear. Assuming we use a simple discretization of
the feasible wave-speed range [cmin, cmax] with nc points to approximately solve (9),
dependence on nc is also linear. Thus, the worst case computational cost of solving (7)
for a homogeneous subdomain is bounded by O(n2

b (m+ nb)nω nc). From Algorithm
1, observe that there is an explicit loop over the ns subdomains. Thus, the worst case
computational cost of the PWE algorithm is bounded by O(n2

b (m + nb)nω nc ns).
Nevertheless, the optimal coefficients for different frequencies can be calculated
independently and in parallel using (8). Moreover, the solution for each subdomain
is independent and can be parallelized. Thus, the effective cost is only bounded by
O(n2

b (m+nb)nc). Note that the window size w affects the computational cost through
the number of measurements m and dependence on the regularization parameter τ
is negligible. The reconstructions reported in this paper typically require less than a
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minute on a desktop computer with an Intel Core i9-3.10 GHz processor and 128 GB
of memory, using our initial implementation of PWE. This computation time could
however be considerably improved due the highly parallelizable nature of PWE and
particularly, by utilizing GPUs to solve the linear system in (8).

The proposed PWE method has potential in other elastography approaches
particularly in those that use vibration for excitation resulting in complicated motion
fields that cannot easily be directionally decoupled. This includes magnetic resonance
elastography (Muthupillai et al. 1995), vibration-based ultrasound elastography (Zhao
et al. 2014), passive ultrasound elastography (Catheline et al. 2008, Brum et al. 2015),
and optical coherence elastography (Liu et al. 2020b, Liu et al. 2020a).

Finally, processing in vivo patient data poses new challenges that we plan to
investigate. This includes the viscoelastic nature of the soft tissue, as opposed to
the elastic assumption made in this paper, and significantly higher noise levels due
to physiological movement, severe inhomogeneity of the soft tissue, and dissipation
caused by viscosity. As we demonstrated in Section 4.2, PWE seems to be more
robust to noise than FSC and has potential for even more improvement when applied
to in vivo data with low SNR. It is known that in addition to the shear modulus, the
shear viscosity of soft tissue also has diagnostic value (Kumar et al. 2018). PWE can
be extended to estimate the shear viscosity by considering a complex modulus in wave
equation (2) and conducting a 2D search instead of the line search in (9).

6. Conclusion

We proposed PWE, a novel ultrasound SWE approach that unlike commonly used
techniques, can handle multiple waves with arbitrary incident angles at once and
does not rely on directionality of the propagation or the prior knowledge of the
propagation direction. We demonstrated through various phantom studies that PWE
can reconstruct the shear modulus field with an accuracy comparable to state-of-
the-art and provide feedback on the reconstruction. When the prior knowledge
of the inclusion geometry was available, we obtained more efficient and accurate
reconstructions.
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Appendix A. Connection to Directional Filter

In Section 1, we discussed the importance of directional filtering to time-of-flight
(ToF) methods. Here we discuss the connection between directional filtering and the
PWE method. The directional filter operates on the 3D Fourier transformed signal
in the spatial frequency domain. Let κ1 and κ2 denote the components of spatial
frequency (wavenumber). Given a propagation direction θ0, the directional filter is
defined in the κ1−κ2 plane as max[0, cos(θ−θ0)]p, where θ denotes the angle in polar
coordinates and the power p is a parameter to be chosen; in (Manduca et al. 2003),
2 ≤ p ≤ 3. Fig. A1 depicts the directional filter for θ0 = 135o. This filter is
applied across all positive temporal frequencies ω > 0. For negative frequencies, the
direction needs to be reversed since those waves travel backward in time. Often, a
radial component is also added to improve the SNR by eliminating oscillations with
unrealistically high wavenumbers. In (Manduca et al. 2003), this radial component is
a bandpass Butterworth filter. As we discussed in Section 4, both the directional and
radial components are essential for ToF methods.

To see the connection between the PWE method and the directional filter,
observe that given a frequency ω and for each angle θ0, there exists a plane wave
that travels in the direction d = [cos θ0, sin θ0]. Because ToF technique relies on
directional propagation, we need to manually decompose the shear wave into its
directional components specified by angles θ0, process each component separately,
and then combine them through compounding. The PWE method on the other hand,
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Figure B1: The real component of the fabricated data (units are arbitrary) within a homogeneous
subdomain Ω = [0, 40] × [0, 40] mm2 with wave-speed of c = 5 m/s at frequency ω = 600π rad/s,
composed of 5 plane waves propagating at uniformly spaced angles; the wave traveling at angle 72o

is dominant. The white stars indicate the grid of 5× 5 measurements used for elastography.

searches for dominant directions to capture the shear wave in its entirety (including
the reflections and refractions) and to simultaneously compute the wave-speed that
best describes the observed data at once. This removes the need for the arbitrary
compounding (averaging) step6and instead selects the shear modulus value considering
all data together. To improve the nonlinearity of the PWE optimization problem and
at the expense of increasing the dimension of the problem being solved, we explicitly
discretized the plane wave directions θ0 in (12) to obtain a finite set of nb plane wave
basis functions given by (4). The dominance of each direction dj in capturing the
shear wave is then determined by the magnitude of the corresponding basis coefficient
aj . Note that the plane waves in expansion (3) are fundamental solutions of the
scalar wave equation (2) and form a complete set of basis functions meaning that by
increasing nb, we can approximate the solution to the wave equation as closely as we
desire (Colton & Kress 2001).

Appendix B. Nonlinearity of Objective Function

In this appendix, we consider more closely the ability of the PWE method to recover
dominant propagation directions and the importance of this ability for reconstructing
the desired shear modulus field. We also take a closer look at the shape (nonlinearity)
of the objective function in (9) and how the presence of noise and absence of
true propagation directions affect it. For simplicity, we use simulated data in a
homogeneous medium with shear modulus of µ = 25 kPa, amounting to a wave-
speed of c = 5 m/s. We directly fabricate a frequency-domain displacement field
using (3) composed of 5 plane waves propagating with uniform angular spacing of
72o at frequency ω = 600π rad/s. Fig. B1 shows the real component of the field
along with a grid of m = 5 × 5 measurements used for elastography. We choose
the coefficients in (3) such that the dominant propagation directions are ordered as
[72o,−72o, 0o,−144o, 144o].

In Table B1 we study the effect of including the true propagation directions
and noise on recovering the dominant propagation directions. To include the true
directions, we use nb = 20 whereas to exclude them, we set nb = 21. Furthermore, we

6 One could for instance argue for selecting the point-wise maximum of the shear modulus fields
instead of averaging. There is no particular advantage to compounding via averaging.
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Table B1: Effect of excluding true propagation directions and noise on recovering the dominant
propagation directions using PWE for the fabricated frequency-domain displacement data.

true directions noiseless measurements noisy measurements

included [72o,−72o, 0o,−144o, 144o] [72o,−72o, 0o, 144o,−126o]

excluded [69o,−34o, 34o,−69o, 0o] [69o,−34o, 120o,−69o, 34o]

Table B2: The estimated shear modulus value (kPa) using the PWE method for the homogeneous
medium with the ground-truth value of 25 kPa.

true directions noiseless measurements noisy measurements

included 25.00 24.90

excluded 25.50 25.10

use additive Gaussian noise resulting in SNR = 19.92 dB. In the noiseless case, we set
the regularization parameter to τ = 10−10 whereas in the noisy cases, we use τ = 10−2.
Observe that when true directions are included, in the absence of noise the true
directions are exactly recovered up to their dominancy order. On the other hand, in the
presence of noise the last dominant direction is not in the top five selected directions.
When the true directions are excluded, the less dominant directions −144o and 144o

are not closely approximated in the top five propagation directions although plane
waves close to these directions might still have high coefficients. The reason for this
behavior is that `2-regularization is known to result in many small coefficients. Using
a regularization term in (7) that enhances sparsity helps with better recovering the
dominant directions at the expense of higher computational cost but as we show
next, exactly recovering these dominant directions is not necessary for accurate shear
modulus estimation.

To further elaborate on the last comment, we study the performance of PWE using
displacement data corresponding to two frequencies ω = 600π rad/s and 1200π rad/s
with SNR = 19.92 dB and SNR = 21.84 dB for noisy measurements. Fig. B2 depicts
the objective function in (9) for the four different cases of including or excluding
true directions and noiseless or noisy data. Observe that the objective in all cases is
extremely non-smooth. Also notice that the individual frequencies can have multiple
local minima, some of which might have a smaller objective value than the true wave-
speed. Nevertheless, the total objective function summed over the two frequencies
often has its global minimum close to the true wave-speed. This shows the importance
of using large number of frequencies nω to ensure that enough information is available
for reconstruction. Finally, notice that when the true directions are excluded from
reconstruction or data are noisy, the global minimum becomes less prominent. Table
B2 reports the estimated constant shear modulus value at each case. Note that
although when the true directions are excluded, the dominant directions might not
be properly identified as we observed in Table B1, the PWE method still succeeds in
approximating the true shear modulus values.
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Figure B2: Objective function in (9) as a function of the constant wave-speed c (homogeneous
medium) for the fabricated data with 5 plane waves at two frequencies ω = 600π rad/s and
1200π rad/s. (a) Fig. B2a shows the objective function for the case of noiseless data when the true
propagation directions are included in the bases (3). (b) Fig. B2b shows the similar plot for noisy
data. Plots in the second row exclude the true propagation directions. (c,d) Fig. B2c corresponds to
noiseless data whereas Fig. B2d depicts the objective for noisy data.
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