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Abstract

We study the combinatorial Reeb flow on the boundary of a four-dimensional
convex polytope. We establish a correspondence between “combinatorial Reeb
orbits” for a polytope, and ordinary Reeb orbits for a smoothing of the poly-
tope, respecting action and Conley-Zehnder index. One can then use a com-
puter to find all combinatorial Reeb orbits up to a given action and Conley-
Zehnder index. We present some results of experiments testing Viterbo’s
conjecture and related conjectures. In particular, we have found some new
examples of polytopes with systolic ratio 1.

1 Introduction And main results

This paper is about computational methods for testing Viterbo’s conjecture and
related conjectures, via combinatorial Reeb dynamics.

1.1 Review of Viterbo’s conjecture

We first recall two different versions of Viterbo’s conjecture. Consider R?" = C"
with coordinates z; = x; + v/ —1y; for ¢ = 1,...,n. Define the standard Liouville

form
n

1
Ao = 3 ; (@; dy; — y; da;) .

Let X be a compact domain in R?" with smooth boundary Y. Assume that X is
“star-shaped”, by which we mean that Y is transverse to the radial vector field.
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Then the 1-form A = Ag|y is a contact form on Y. Associated to A are the contact
structure & = Ker(A\) C TY and the Reeb vector field R on Y, characterized by
dA\(R,) = 0 and A(R) = 1. A Reeb orbit is a periodic orbit of R, i.e. a map
v:R/TZ — Y for some T > 0 such that 7/(¢t) = R(7(t)), modulo reparametrization.
The symplectic action of a Reeb orbit 7, denoted by A(7), is the period of v, or
equivalently

A(v) = /R/TZ 7 No- (1.1)

Reeb orbits on Y always exist. This was first proved by Rabinowitz [22] and is a
special case of the Weinstein conjecture; see [I7] for a survey. We are interested here
in the minimal period of a Reeb orbit on Y, which we denote by A (X) € (0, 00),
and its relation to the volume vol(X) of X with respect to the Lebesgue measure.
For this purpose, define the systolic ratio

Amin (X)n

sys(X) = n!vol(X) "

The exponent ensures that the systolic ratio of X is invariant under scaling of X;
and the constant factor is chosen so that if X is a ball then sys(X) = 1.

Conjecture 1.1 (weak Viterbo conjecture). Let X C R** be a compact conver
domain with smooth boundary such that 0 € int(X). Then sys(X) < 1.

Conjecture [1.1] asserts that among compact convex domains with the same vol-
ume, Ay, is largest for a ball. Although the role of the convexity hypothesis is
somewhat mysterious, some hypothesis beyond the star-shaped condition is neces-
sary: it is shown in [I] that there exist star-shaped domains in R* with arbitrarily
large systolic ratidl One motivation for studying Conjecture is that it implies
the Mahler conjecture in convex geometry [4].

To put Conjecture in more context, recal]ﬂ that a symplectic capacity is
a function ¢ mapping some class of 2n-dimensional symplectic manifolds to [0, oo},
such that:

e (Monotonicity) If there exists a symplectic embedding ¢ : (X,w) — (X', '),
then ¢(X,w) < (X', ).

e (Conformality) If r > 0 then ¢(X,rw) = re(X,w).

Tt is further shown in [2] that there are star-shaped domains in R* which are dynamically
convex (meaning that every Reeb orbit on the boundary has rotation number greater than 1, see
Proposition a) below) and have systolic ratio 2 — ¢ for € > 0 arbitrarily small.

2The precise definition of “symplectic capacity” varies in the literature. For an older but
extensive survey of symplectic capacities see [7].



Of course we can regard (open) domains in R?*" as symplectic manifolds with the
restriction of the standard symplectic form w = Y | dx; dy;. Conformality for a
domain X C R?" means that c(rX) = r?c¢(X).

Following the usual convention in symplectic geometry, for r» > 0 define the ball

B(r)={z€C" | nlz]* <r}

and the cylinder
Z(r)={z€C"|mlal* <r}.

We say that a symplectic capacity c is normalized if it is defined at least for all
compact convex domains in R?" and if

c(B(r)) =c(Z(r)) =r.

Note that the symplectic capacity ¢(Z(r)) is defined as the limit of ¢(E;), where
E; C R?™ is a sequence of ellipsoids exausting Z(r).

An example of a normalized symplectic capacity is the Gromov width cg,,
where cg;(X,w) is defined to be the supremum over r such that there exists a
symplectic embedding B(r) — (X,w). It is immediate from the definition that cg,
is monotone and conformal. Since symplectomorphisms preserve volume, we have
car(B(r)) = r; and the Gromov nonsqueezing theorem asserts that g, (Z(r)) = r.

Another example of a normalized symplectic capacity is the Ekeland-Hofer-
Zehnder capacity, denoted by cgpz. If X is a compact convex domain with smooth
boundary such that 0 € int(X), therf]

CEHZ(X) = Amin<X)- (1-2>

This is explained in [5, Thm. 2.2], combining results from [8] [15].

Any symplectic capacity which is defined for compact convex domains in R?"
with smooth boundary is a C° continuous function of the domain (i.e., continuous
with respect to the Hausdorff distance between compact sets), and thus extends
uniquely to a C° continuous function of all compact convex sets in R?".

Conjecture 1.2 (strong Viterbo conjectureﬂ). All normalized symplectic capacities
agree on compact convex sets in R*",

3Since translations act by symplectomorphism on R?", the symplectic capacities of X are in-
variant under translation. However, we will often assume that 0 € int(X) so that we can sensibly
discuss the Reeb flow on 0.X.

4The original version of Viterbo’s conjecture from [25] asserts that a normalized symplectic
capacity, restricted to convex sets in R?" of a given volume, takes its maximum on a ball. (This
follows from what we are calling the “strong Viterbo conjecture” and implies what we are calling
the “weak Viterbo conjecture”.) Viterbo further conjectured that the maximum is achieved only
if the interior of the convex set is symplectomorphic to an open ball; cf. Question @ below.
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Remark 1.3. Convexity is a key hypothesis in both the weak and strong versions
of the Viterbo conjecture. For star-shaped domains that are not convex, counterex-
amples to the conclusion of the strong Viterbo conjecture were given in [13, Thm.
1.12], and counterexamples to the conclusion of the weak Viterbo conjecture were
given later in [I, Thm. 2]. In [II, Cor. 5.2], it is shown exactly where the conclu-
sions of the strong and original Viterbo conjectures start to fail in a certain family
of non-convex examples.

Conjecture [I.2] implies Conjecture [I.1] because if Conjecture [I.2] holds, and if X
is a compact convex domain with smooth boundary and 0 € int(X), then

Anin(X)" = cpnz(X)" = car(X)" < nlvol(X).

Here the second equality holds by Conjecture [1.2} and the inequality on the right
holds because if there exists a symplectic embedding B(r) — X, then r"/n! =
vol(B(r)) < vol(X).

There are also interesting families of non-normalized symplectic capacities. For
example, there are the Ekeland-Hofer capacities defined in [9]; more recently, and
conjecturally equivalently, positive S'-equivariant symplectic homology was used in
[10] to define a symplectic capacity cfl for each integer k£ > 1. Each equivariant
capacity c; ' (X) is the symplectic action of some Reeb orbit, which when X is generic
(so that A is nondegenerate) has Conley-Zehnder index n — 1+ 2k (see below).
Some other symplectic capacities give the total action of a finite set of Reeb orbits,
such as the ECH capacities in the four-dimensional case [I§], or the symplectic
capacities defined by Siegel using rational symplectic field theory [24].

Conjectures|l.1]and |1.2|are known for some special examples such as S'-invariant
convex domains [11], but they have not been well tested more generally. To test
Conjecture and as a first step towards computing other symplectic capacities
and testing conjectures about them, we need good methods for computing Reeb
orbits, their actions, and their Conley-Zehnder indices. The plan in this paper is
to understand Reeb orbits on a smooth convex domain in terms of “combinatorial
Reeb orbits” on convex polytopes approximating the domain.

1.2 Combinatorial Reeb orbits

Let X be any compact convex set in R* with 0 € int(X), and let y € dX. The
tangent cone, which we denote by TyJr X, is the closure of the set of vectors v such
y+ev € X for some € > 0. For example, if X is smooth at y, then T;X is a closed
half-space whose boundary is the usual tangent space 7,0.X.

Also define the positive normal cone

NfX={veR"|(z—yv)<0VzeX}.
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If 0X is smooth at y, then NyJr X is a one-dimensional ray and consists of the outward
pointing normal vectors to 0.X at y.
Finally, define the Reeb cone

RIX =T/ X NiN, X

where i denotes the standard complex structure on C"* = R?". We show that R; X
is nonempty in the cases of interest for this paper in Lemma [3.4 If 0X is smooth
near y, then R;r X is the ray consisting of nonnegative multiples of the Reeb vector
field on 0X at y. Indeed, in this case we can write

T,0X = {veR™ | (v,v) =0}

where v is the outward unit normal vector to 90X at y; and the Reeb vector field at
y is given by

R, =2 (1.3)

(v,y)

Figure 1: We depict the tangent, normal and Reeb cones for two points p,q € X in
a polytope X C R2.

Suppose now that X is a convex polytope (i.e. a compact set given by the
intersection of a finite set of closed half-spaces) in R?*" with 0 € int(X). Our
convention is that a k-face of X is a k-dimensional subset F' C 0X which is the
interior of the intersection with X of some set of the hyperplanes defining X. For
a given k-face F', the tangent cone T; X, the positive normal cone N;’ X, and the
Reeb cone R; X are the same for all y € F. Thus we can denote these cones by
THX, Ni X, and R} X respectively.

We will usually restrict attention to polytopes of the following type:

Definition 1.4. A symplectic polytope in R* is a convex polytope X in R* such
that 0 € int(X) and no 2-face of X is Lagrangian, i.e., the standard symplectic form
Wy = Z?zl dx; dy; restricts to a nonzero 2-form on each 2-face.



Symplectic polytopes are generic, in the sense that in the space of polytopes in
R* with a given number of 3-faces, the set of non-symplectic polytopes is a proper
subvariety. Moreover, the boundary of a symplectic polytope in R* has a well-posed
“combinatorial Reeb flow” in the following sensef’}

Proposition 1.5 (Lemma . If X is a symplectic polytope in R*, then the Reeb
cone RE-X is one-dimensional for each face F.

Definition 1.6. Let X be a symplectic polytope in R*. A combinatorial Reeb
orbit for X is a finite sequence v = (I'y,...,['x) of oriented line segments in 0.X,
modulo cyclic permutations, such that for each 1 =1,... k:

e The final endpoint of I'; agrees with the initial endpoint of I';11 1od -

e There is a face F' of X such that int(I';) C F', the endpoints of I'; are on the
boundary of (the closure of) F, and T'; points in the direction of R} X.

The combinatorial symplectic action of a combinatorial Reeb orbit as above is

defined by
k
Acomb(’y) - Z/ )\0-
i=1 /T

To give a better idea of what combinatorial Reeb orbits look like, we have the
following lemma.

Lemma 1.7. (proved in Let X be a symplectic polytope in R*. Then the Reeb
cones of the faces of X satisfy the following:

o If E is a 5-face, then REX consists of all nonnegative multiples of the Reeb
vector field on E.

o If F is a 2-face, then REX points into a 3-face E adjacent to F, and agrees
with REX .

e If L is a 1-face, then one of the following possibilities holds:

— R} X points into a 3-face E adjacent to L and agrees with REX. In this
case we say that L is a good 1-face.

— R} X is tangent to L, and does not agree with REX for any of the 3-faces
E adjacent to L. In this case we say that L is a bad 1-face.

)

SThere is also a more general notion of “generalized Reeb trajectory” on the boundary of a
compact convex convex set in R?” whose interior contains the origin; see Definition below. We
do not know whether the generalized Reeb flow on the boundary of a four-dimensional symplectic
polytope is well posed.



e If P is a O-face, then R5X points into a 3-face E or bad 1-face L adjacent to
F and agrees with REX or R} X respectively.

Remark 1.8. The reason we assume that X has no Lagrangian 2-faces in Defi-
nition is that if ' is a Lagrangian 2-face, then R} X is two-dimensional and
tangent to F. In fact, OR;X = Rj, X UR}, X where E; and E; are the two 3-faces
adjacent to F'. In this case we do not have a well-posed “combinatorial Reeb flow”
on 0X.

Definition 1.9. A combinatorial Reeb orbit as above is:
e Type 1 if it does not intersect the 1-skeleton of X;

e Type 2 if it intersects the 1-skeleton of X, but only in finitely many points
which are some of the endpoints of the line segments I';;

e Type 3 if it contains a bad 1-face.

Figure 2: We depict sub-trajectories of the three types of orbits, in red. Each cube
above represents a 3-face of a hypothetical 4-polytope.

It follows from the definitions that each combinatorial Reeb orbit is of one of the
above three types. Type 1 Reeb orbits are the most important for our computations.
We expect that Type 2 combinatorial Reeb orbits do not exist for generic polytopes;
see Conjecture below. Type 3 combinatorial Reeb orbits generally cannot be
eliminated by perturbing the polytope; but we will see in Theorem M(iii) below
that they do not contribute to the symplectic capacities that we are interested in.
See Remark 5.8 for some intuition for this.

1.3 Rotation numbers and the Conley-Zehnder index

Let X be a compact star-shaped domain in R* with smooth boundary Y. Let
®, 'Y — Y denote the time ¢ flow of the Reeb vector field R. The derivative
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of ®; preserves the contact form A and so defines a map on the contact structure
¢ = Ker(\), namely
APy &y — Sa(y)
for each y € Y. The map d®, is symplectic with respect to the symplectic form d\|¢
on €.
We say that a Reeb orbit v : R/TZ — Y is nondegenerate if the “linearized
return map”

ddr : f,y(o) — f,y(g) (14)

does not have 1 as an eigenvalue. The contact form A is called nondegenerate if all
Reeb orbits are nondegenerate.

Now fix a symplectic trivialization 7 : & — Y x R2?. If v is a Reeb orbit as
above, then the trivialization 7 allows us to regard the map as an element of
the 2-dimensional symplectic group Sp(2). Moreover, the family of maps

B2 55 0 ™ £ > B2} (1.5)

defines a path ¢, in Sp(2) from the identity to the map , and thus an element
of the universal cover §1;(2) of Sp(2). As we review in Appendix [A| any element of
%(2) has a well-defined rotation number. We denote the rotation number of ¢,
by

p(y) €R.

Note that the rotation number p(7) does not depend on the choice of symplectic
trivialization 7 of £. Since Y ~ S3, any two such trivializations are homotopic,
giving rise to a homotopy of paths whose final endpoints are conjugate in
Sp(2). Invariance of the rotation number then follows from Lemma

If ~ is nondegenerate (which holds automatically when p(7) is not an integer),
then the Conley-Zehnder index of v is defined by

CZ(v) = [p(M] + [p(7)] € Z. (1.6)

Proposition 1.10. Let X be a compact strictly convex domain in R* with smooth
boundary Y and with 0 € int(X). Then:

(a) Every Reeb orbit v in' Y has p(vy) > 1. In particular, if v is nondegenerate
then CZ(~y) > 3.

(b) There exists a Reeb orbit v which is action minimizing, i.e. A(Y) = Amin(X),
with
p(y) < 2.
If ~v is also nondegenerate then the inequality is strict, so that CZ(~y) = 3.
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Proof. (a) was proved by Hofer-Wysocki-Zehnder [14].

(b) follows from the construction of the Ekeland-Hofer-Zehnder capacity and an
index calculation of Hu-Long [16]. In fact, it was recently shown by Abbondandolo-
Kang [3] and TIrie [20] that cguz(X) agrees with a capacity defined from symplectic
homology, which by construction is the action of some Reeb orbit v with p(vy) < 2,
with equality only if v is degenerate. O

Suppose now that X is a symplectic polytope in R*. As we explain in Defini-
tion [2.23] each Type 1 combinatorial Reeb orbit 7 has a well-defined combinatorial
rotation number, which we denote by peomp(y) € R. There is also a combinato-
rial notion of nondegeneracy for v, which automatically holds when peomn(7) ¢ Z.
When 7 is a nondegenerate Type 1 combinatorial Reeb orbit, we can then define its
combinatorial Conley-Zehnder index by analogy with as

CZcomb(/y) = chomb(’y)J + Irpcomb(’Y)—l : (17)

The combinatorial rotation number and combinatorial Conley-Zehnder index of a
Type 2 combinatorial Reeb orbit are not defined; and although we do not need this,
it would be natural to define the combinatorial rotation number and combinatorial
Conley-Zehnder index of a Type 3 combinatorial Reeb orbit to be 4o0.

1.4 Smooth-combinatorial correspondence

Let X be a convex polytope in R?". If € > 0, define the e-smoothing of X by
X, ={z e R™| dist(z,X) < ¢}. (1.8)

The domain X, is convex and has C'-smooth boundary. The boundary is C*
smooth except along strata arising from the boundaries of the faces of X; see
for a detailed description.

Our main results are the following two theorems, giving a correspondence be-
tween combinatorial Reeb dynamics on a symplectic polytope in R*, and ordinary
Reeb dynamics on e-smoothings of the polytope.

There is a slight technical issue here: since 0X. is only C' smooth, the Reeb
vector field on X, is only C?, so that for a Reeb orbit v, the linearized Reeb flow
(1.4) might not be defined. If « is transverse to the strata where 0X. is not C'*
(which is presumably true for all v if X and ¢ are generic), then the Reeb flow in a
neighborhood of v has a well-defined linearization; we call such orbits linearizable.
It turns out that a non-linearizable Reeb orbit v on 0X. still has a well-defined
rotation number p(7), defined in §5.4]

The following theorem describes how combinatorial Reeb orbits give rise to Reeb
orbits on smoothings. See Lemma for a more precise statement.
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Theorem 1.11. (proved in Let X be a symplectic polytope in R*, and let
~v be a nondegenerate Type 1 combinatorial Reeb orbit for X. Then for all ¢ > 0
sufficiently small, there is a distinguished Reeb orbit 7. on 0X. such that:

(i) 7. converges in C° to v as e — 0.

(11) limg_m A(’Yg) - Acomb(’Y)'
(iii) e is linearizable and nondegenerate, p(Ve) = peomn (), and CZ(7:) = Cleomp(7y)-

The following theorem describes how Reeb orbits on smoothings give rise to
combinatorial Reeb orbits.

Theorem 1.12. (proved in Let X be a symplectic polytope in R*. Then there
are constants cp > 0 for each 0-, 1-, or 2-face F of X with the following property.

Let {(gi,7:) }iz1.... be a sequence of pairs such that €; > 0; ; is a Reeb orbit on
0X.,; and e; — 0 as 1 — oo. Suppose that p(vy;) < R where R does not depend on
1. Then after passing to a subsequence, there is a combinatorial Reeb orbit v for X
such that:

(i) v converges in C° to v as i — oc.

)
(1) limjee A7) = Acomn(7)-
(iii) v is either Type 1 or Type 2.
)

(iv) If v is Type 1, then for i sufficiently large, ~; is linearizable and p(vy;) =
Peomb (7). If v is also nondegenerate, then for i sufficiently large, ; is nonde-
generate and CZ(7;) = Cleomp(7y)-

(v) Let Fy, ..., Fy denote the faces containing the endpoints of the segments of the
combinatorial Reeb orbit ~v. Then

ZCFi <R. (1.9)

Remark 1.13. One can compute explicit constants ¢ — see §6.2]for the details — and
the resulting bound is crucial in enabling finite computations. For example,
combinatorial Reeb orbits with a given action bound could have arbitrarily many
segments winding in a “helix” around a bad 1-face. However the bound ensures
that combinatorial Reeb orbits with too many segments will not arise as limits of
sequences of smooth Reeb orbits with bounded rotation number.
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Remark 1.14. The methods of this paper can be used to prove a version of Theorem
[L.11] (omitting the condition (c) on the rotation number and Conley-Zehnder index)
for polytopes X C R*" for 2n > 4, under the hypothesis that the (2n — 2)-faces of
X are symplectic. Generalizing Theorem to higher dimensions would be less
straightforward, as its proof in four dimensions depends crucially on estimates on
the rotation number in §5] Higher dimensional analogues of these estimates are an
interesting topic for future work.

Theorem [1.12] allows one to compute the EHZ capacity of a four-dimensional
polytope as follows:

Corollary 1.15. Let X be a symplectic polytope in R*. Then

CEHZ (X) = min{Acomb(v)} (110)

where the minimum is over combinatorial Reeb orbits v with . cp, < 2 which are
either Type 1 with peomp(7y) < 2 or Type 2.

Remark 1.16. If the coordinates of the vertices of X are rational, then the com-
binatorial action of every combinatorial Reeb orbit is rational. It follows from
Theorem that in this case, cguz(X), as well as the other symplectic capacities
mentioned in determined by actions of Reeb orbits, are all rational.

To explain why Corollary follows from Theorem [1.12] we need to recall a
result of Kiinzle [21] as explained by Artstein-Avidan and Ostrover [5].

Definition 1.17. If X is any compact convex set in R*" with 0 € int(X), a gener-
alized Reeb orbit for X is a map v : R/TZ — 0X for some T > 0 such that - is
continuous and has left and right derivatives at every point, which agree for almost
every t, and the left and right derivatives at ¢ are in Rﬂj(t)X . If v is a generalized

Reeb orbit, define its symplectic action by (|1.1]).

Proposition 1.18. [5, Prop. 2.7] If X is a compact convex set in R*" with 0 €
int(X), then

cpnz(X) = min{A(7y)}
where the minimum is taken over all generalized Reeb orbits.
Proof of Corollary[1.15 Pick a sequence of positive numbers &; with lim;_,, &; = 0.
For each i, by equation (1.2)), we can find a Reeb orbit 7; on 9X,, with A(y;) =
cenz(X.,). By Proposition[L.10|(b), we can assume that p(v;) < 2. By Theorem|[1.12]

it follows that after passing to a subsequence, there is a combinatorial Reeb orbit ~
for X, satisying the conditions in Corollary [1.15] such that

Acomp(7) = lim A(y;) = klgl& cenz(Xe,) = cenz(X).

1—00
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Here the last equality holds by the C° continuity of cgyz. We conclude that
cpnz(X) > min{Acomn(7)}

where the minimum is over combinatorial Reeb orbits 7 satisfying the conditions in
Corollary

The reverse inequality follows from Proposition because by Definitions
and , every combinatorial Reeb orbit is a generalized Reeb orbit. (For a sym-
plectic polytope in R*, a “generalized Reeb orbit” is equivalent to a generalization
of a “combinatorial Reeb orbit” in which there may be infinitely many line seg-
ments. ) O

Remark 1.19. Haim-Kislev [12] Thm. 1.1] gives a different formula for cgpy of a
convex polytope, which is valid in R?" for all n. That formula implies that in the
minimum ([1.10]), we can also assume that v has at most one segment in each 3-face.

1.5 Experiments testing Viterbo’s conjecture
If X is a convex polytope in R?", define its systolic ratio by

n
sys(X) = —CE'HZ(X) .
n!vol(X)
Note that cguyz is translation invariant, so we can make this definition without
assuming that 0 € int(X).

Since every compact convex domain in R** can be C° approximated by convex
polytopes, it follows that the weak version of Viterbo’s conjecture, namely Conjec-
ture is true if and only if every convex polytope X has systolic ratio sys(X) < 1.
The combinatorial formula for the systolic ratio given by Corollary allows us
to test this conjecture by computer when n = 2. In particular, we ran optimization
algorithms over the space of k-vertex convex polytopes in R* to find local max-
ima of the systolic ratioﬁ. In the results below, when listing the vertices of specific
polytopes, we use Lagrangian coordinates (x1, Z2,y1, y2)-

5-vertex polytopes (4-simplices).
Experimentallyﬂ, every 4-simplex X has systolic ratio
sys(X) < 3/4.

6This is a somewhat involved process; convergence to a local maximum becomes very slow once
one is close. It helps to mod out the space of polytopes by the 15-dimensional symmetry group
generated by translations, linear symplectomorphisms, and scaling. To find exact local maxima,
one can look at symplectic invariants, such as areas of 2-faces, and guess what these are converging
to.

"Perhaps this could be proved analytically using the formula in [I2, Thm. 1.1].

12



The apparent maximum of 3/4 is achieved by the “standard simplex” with vertices
(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1).

Remark 1.20. Corollary does not directly apply to (a translate of) this poly-
tope because it has some Lagrangian 2-faces. For examples like these, we find
numerically that a slight perturbation of the polytope to a symplectic polytope (to
which Corollary does apply) has systolic ratio very close to the claimed value.
One can compute the systolic ratio of a polytope with Lagrangian 2-faces rigorously
using a generalization of Corollary For the particular example above, one can
also compute the systolic ratio by hand using [12], Thm. 1.1].

We have found families of other examples of 4-simplices with systolic ratio 3/4,
including some with no Lagrangian 2-faces. An example is the simplex with vertices

(0,0,0,0), (1a _1/370a0)a (07 _1/3a 170)7 (_2/37 _172/370)7 (0,0,0, 1)

6-vertex polytopes.

We found families of 6-vertex polytopes with systolic ratio equal to 1. An example
is the polytope with vertices

(0707()’0)7 (1707070)a (0707 170)a (Oa 0707 1)7 (Oa _1a 170)7 (_17 _]-707 1)

(Apparently the previous minimum number of vertices of a known example with
systolic ratio 1 was 12, given by the Lagrangian product of a triangle and a square
[23, Lem. 5.3.1]. Some more examples of Lagrangian products with systolic ratio 1
are presented in [6].)

7-vertex polytopes.

We also found families of 7-vertex polytopes with systolic ratio 1. One example has
vertices

(0,0,0,0),(1,0,0,0),(0,0,1,0), (0,0,0,1),
(1/3,-2/3,2/3,0), (=1, —1,0,1/2),(0,0,1/3,—1/3).

Presumably there exist k-vertex polytopes in R* with systolic ratio equal to 1 for
every k > 6.
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The 24-cell.

We also found a special example of a polytope with systolic ratio 1: a rotation of
the 24-cell (one of the six regular polytopes in four dimensions). See for details.
We have heavily searched the spaces of polytopes with 7 or fewer vertices and
have not found any counterexamples to Viterbo’s conjecture. For polytopes with 8
vertices, our computer program starts becoming slower (taking seconds to minutes
per polytope on a standard laptop), and we have not yet searched as extensively.

Towards a proof of the weak Viterbo conjecture?

Let X be a star-shaped domain in R* with smooth boundary Y. Following [1], we
say that X is Zoll if every point on Y is contained in a Reeb orbit with minimal
action. Note that:

(a) If X is strictly convex and a local maximizer for the systolic ratio of convex
domains in the C° topology, then X is Zoll.

(b) If X is Zoll, then X has systolic ratio sys(X) = 1.

Part (a) holds because if X is strictly convex and if y € Y is not on an action mimiz-
ing Reeb orbit, then one can shave some volume off of X near y without creating
any new Reeb orbits of small action. Part (b) holds by a topological argument going
back to [26]. (In fact one can further show that X is symplectomorphic to a closed
ball; see [1, Prop. 4.3].) Of course, these observations are not enough to prove Con-
jecture (1.1, since we do not know that the systolic ratio for convex domains takes a
maximum, let alone on a strictly convex domain. But this does suggest the following
strategy for proving Conjecture via convex polytopes.

Definition 1.21. Let X be a convex polytope in R* with 0 € int(X). We say that X
is combinatorially Zoll if there is an open dense subset U of X such that every
point in U is contained in a combinatorial Reeb orbit (avoiding any Lagrangian
2-faces of X') with combinatorial action equal to cguz(X).

We have checked by hand that the above examples of polytopes with systolic
ratio equal to 1 are combinatorially Zoll. This suggests:

Conjecture 1.22. Let X be a convex polytope in R* with 0 € int(X). Then:
(a) If X is combinatorially Zoll, then sys(X) = 1.
(b) If k is sufficiently large (k > 6 might suffice) and if X maximizes systolic ratio

over convex polytopes with < k wvertices, then X is combinatorially Zoll.
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Part (a) of this conjecture can probably be proved following the argument in
the smooth case. Part (b) might be much harder. But both parts of the conjecture
together would imply the weak Viterbo conjecture (using a compactness argument
to show that for each k the systolic ratio takes a maximum on the space of convex
polytopes with < k vertices).

Question 1.23. If a convex polytope X in R* is combinatorially Zoll, then is int(X)
symplectomorphic to an open ball?

1.6 Experiments testing other conjectures

One can also use Theorems and to test conjectures about Reeb orbits that
do not have minimal action. For example, if X is a convex domain with smooth
boundary and 0 € int(X) such that A\g|spx is nondegenerate, and if k is a positive
integer, define

Ap(X) = min{A(y) | CZ(v) = 2k + 1}, (1.11)

where the minimum is over Reeb orbits v on 0X. In particular A;(X) = Awyin(X)
by Proposition [1.10[b).

Conjecture 1.24. For X as above we have Az(X) < 2A4,(X).

This conjecture has nontrivial content when every action-minimizing Reeb orbit
has rotation number at least 3/2. (If an action-minimizing Reeb orbit has rotation
number less than 3/2, then its double cover has Conley-Zehnder index 5 and thus
verifies the conjectured inequality.) To explain how to test this, we need the following
definitions.

Definition 1.25. Let X be a symplectic polytope in R*. Let L > 0. We say that
X is L-nondegenerate if:

e X does not have any Type 2 combinatorial Reeb orbit v with Acomb(y) < L.

e Every Type 1 combinatorial Reeb orbit v with Acomp(7) < L is nondegenerate,
see Definition [2.23]

It follows from Theorem that if a symplectic polytope X is L-nondegenerate,
then for all € > 0 sufficiently small, all Reeb orbits on 90X, with action less than L
are nondegenerate.

Conjecture 1.26. For any integer k and any real number L, the set of L-nondegenerate
symplectic polytopes with k vertices is dense in the set of all k-vertex convex polytopes
containing 0, topologized as an open subset of R*.
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Definition 1.27. Let k be a positive integer and let X be a symplectic polytope in
R*. Suppose that X is L-nondegenerate and has a combinatorial Reeb orbit v with
A(y) < L and CZeomp(y) = 2k + 1. By analogy with (1.11)), define

A (X)) = min {Acomb(7) | CZeomn () = 2k + 1}

where the minimum is over combinatorial Reeb orbits v with combinatorial action
less than L.

Conjecture is now equivalentff| to the following:

Conjecture 1.28. Let X be a symplectic polytope in R*. Assume that AP™P(X)
and A (X) are defined. Then

AP™(X) < 245™0(X).

One can use Theorems and to compute A™P(X). One can then
test Conjecture by using optimization algorithms to try to maximize the ratio
AP (X)) /(2A%mP (X)), So far we have not found any example where this ratio is
greater than 1.

The rest of the paper

In we investigate Type 1 combinatorial Reeb orbits in detail, we define the
combinatorial rotation number, and we work out the example of the 24-cell. In §3]
we establish foundational facts about the combinatorial Reeb flow on a symplectic
polytope. In we review a symplectic trivialization of the contact structure on
a star-shaped hypersurface in R* defined using the quaternions. We explain a key
curvature identity due to Hryniewicz and Salomao which implies that in the convex
case, the rotation number of a Reeb trajectory increases monotonically as it evolves.
In §5| we study the Reeb flow on a smoothing of a polytope. In §6] we use this work to
prove the smooth-combinatorial correspondence of Theorems and [[.12] In the
appendix, we review basic facts about rotation numbers that we need throughout.
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2 Type 1 combinatorial Reeb orbits

Let X be a symplectic polytope in R*. In this section we give what amounts to an
algorithm for finding the Type 1 combinatorial Reeb orbits and their combinatorial
symplectic actions, see Proposition . (Our actual computer implementation uses
various optimizations not discussed here.) We also define combinatorial rotation
numbers and work out the example of the 24-cell.

2.1 Symplectic flow graphs

We start by defining “symplectic flow graphs” in any even dimension. In the next
subsection (, we will specialize to certain 2-dimensional flow graphs that keep
track of the combinatorics needed to find Type 1 Reeb orbits on the boundary of a
symplectic polytope in R*.

Definition 2.1. A linear domain is an intersection of a finite number of open or
closed half-spaces in an affine space, or an affine space itself.

Definition 2.2. The tangent space T'A of a linear domain A is the tangent space
T, A for any x € A; the tangent spaces for different x are canonically isomorphic to
each other via translations.

Definition 2.3. Let A and B be linear domains. An affine map ¢ : A — B is the
restriction of an affine map between affine spaces containing A and B. Such a map
induces a map on tangent spaces which we denote by T'¢ : TA — T'B.

Definition 2.4. Let A and B be linear domains. A linear flow from A to B is a
triple & = (D, ¢, f) consisting of:

e the domain of definition: a linear domain D C A.
e the flow map: an affine map ¢ : D — B.
e the action function: an affine function f: D — R.

We sometimes write ® : A — B. In the examples of interest for us, ¢ is injective,
and f > 0.
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Definition 2.5. Let ® = (D, ¢, f) be a linear flow from A to B and let ¥ = (E, 1, g)
be a linear flow from B to C'. Their composition is the linear flow Vo ® : A — C
defined by

Vod = (¢ " (E)pod,f+goda).

Remark 2.6. Composition of linear flows is associative, and there is an identity
linear flow ¢4 : A — A given by 14 = (A,id4,0). If &; = (D;, ¢4, f;) is a linear flow
from A;_; to A; fori=1,... k, and if ® = (D, ¢, f) is the composition $jo0-- -0 Py,
then for x € D, we have

k

f(z) :Zfi((¢i—1o"'o¢1)($))- (2.1)

i=1
Definition 2.7. A linear flow graph G is a triple G = (I', A, ®) consisting of:
e A directed graph I" with vertex set V(I') and edge set E(T").

e For each vertex v of I, an open linear domain A,.

e For each edge e of I" from u to v, a linear flow ®, = (D, ¢, fe) : Ay — A,.

—>»> @

Figure 3: An example of a flow graph with 4 nodes and 4 edges. The linear domains
and flows are depicted above their corresponding nodes and edges.

Let G = (T, A, ®) be a linear flow graph. If p = e;...¢e; is a path in T' from u
to v, we define an associated linear flow

q)P = (Dp>¢pafp) : Au — Av
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by
¢, =P, 0---00,.

Definition 2.8. A trajectory v of G is a pair v = (p,z), where p is a path in T
and x € D,,.

Definition 2.9. A periodic orbit of G is an equivalence class of trajectories v =
(p, ) where p is a cycle in I" and « is a fixed point of ¢,, i.e. ¢,(x) = z. Two such
trajectories v = (p, ) and n = (q,y) are equivalent if there are paths r and s in I'
such that p = rs, ¢ = sr, and ¢,.(z) = y. We often abuse notation and denote the
periodic orbit by v = (p, x), instead of by the equivalence class thereof.

Definition 2.10. The action of a periodic orbit v = (p,x) is defined by f(v) =
fo(@).

Definition 2.11. A periodic orbit v = (p,x), where p is a cycle based at wu, is
degenerate if the induced map on tangent spaces 1'¢, : T'D,, — TD,, has 1 as an
eigenvalue. Otherwise we say that v is nondegenerate.

Definition 2.12. An 2n-dimensional symplectic flow graph G is a quadruple
G = (', A, w,®) where:

o (I A, ®) is a linear flow graph in which each linear domain A, has dimension
2n.

e w assigns to each vertex v of I' a linear symplectic form w, on T'A,.

We require that if e is an edge from u to v, then ¢iw, = w,.

2.2 The symplectic low graph of a 4d symplectic polytope

Definition 2.13. Let X be a symplectic polytope in R*. We associate to X the
two-dimensional symplectic flow graph G(X) = (I', A,w, ®) defined as follows:

e The vertex set of I' is the set of 2-faces of X. The linear domain associated
to a vertex is simply the corresponding 2-face, regarded as a linear domain in
R*. If F is a 2-face, then the symplectic form wy on T'F is the restriction of
the standard symplectic form wy on R%.

o If I} and F, are 2-faces, then there is an edge e in I' from F} to Fy if and
only if there is a 3-face F adjacent to F; and F5, and a trajectory of the Reeb
vector field Rg on E from some point in F; to some point in F5. In this case,
the linear flow

(I)e = (D67¢€7f€) : Fl — FQ

is defined as follows:
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— The domain D, is the set of x € F} such that there exists a trajectory of
Rg from x to some point y € F5.

— For z as above, ¢.(x) = y, and f.(z) is the time it takes to flow along
the vector field Rg from x to y, or equivalently the integral of Ay along
the line segment from x to y.

In the above definition, note that ¢. and f. are affine, because the vector field
Rg on E is constant by equation (1.3]). A simple calculation as in [14, Eq. (5.10)]
shows that the map ¢, is symplectic.

Proposition 2.14. Let X be a symplectic polytope in R*. Then there is a canonical
bijection

{periodic orbits of G(X)} <— {Type 1 combinatorial Reeb orbits of X }.

If (p,z) is a periodic orbit of G(X), and if v is the corresponding combinatorial
Reeb orbit, then
f(pv I’) = Acomb('Y)- (22)

Proof. Suppose (p = ey - - - ex, x) is a periodic orbit of G(X). Let F; denote the 3-face
of X associated to e;. There is then a combinatorial Reeb orbit v = (L4, ..., L),
where L; is the line segment in E; from ¢e_1 0 -+ 0 ¢, (T) 10 ¢, 0 -+ 0 ¢, (x). It
follows from Definitions [I.6] and that this construction defines a bijection from
periodic orbits of G(X) to combinatorial Reeb orbits of X. The identification of

actions ([2.2)) follows from equation (2.1)). ]

By Proposition , to find the Type 1 Reeb orbitsﬂ of X, one can compute
the symplectic flow graph G(X) = (I', A,w, ®), enumerate the cycles in the graph
I', and for each cycle p, compute the fixed points of the map ¢, in the domain D,,.
In order to avoid searching for arbitrarily long cycles in the graph I' in the cases of
interest, we now need to discuss combinatorial rotation numbers.

2.3 Combinatorial rotation numbers

Definition 2.15. A trivialization of a 2n-dimensional symplectic flow graph G =
(I', A,w, ®) is a pair (7, ¢) consisting of:

9When testing Viterbo’s conjecture and related conjectures, although all Type 1 orbits of X are
detected by the flow graph G(X), in view of Corollary 1.13 we must also account for Type 2 orbits.
One can do this by either (1) extending G(X) to a flow graph that includes the lower-dimensional
faces of X or (2) working with a flow graph G(X) whose linear domains Ap are the closures of the
2-faces, rather than 2-faces themselves. We use the first strategy in our computer program.
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e For each vertex u of I', an isomorphism of symplectic vector spaces

Tu : (T Ay, wy) = (RZ",WO).

e For each edge e in I from u to v, a lift gﬁbiw € éB(Qn) of the symplectic matrix

Ty 0 T © 7'u_1 € Sp(2n).

Here wy denotes the standard symplectic form on R?", and %(Zn) denotes the
universal cover of the symplectic group Sp(2n). We sometimes abuse notation and
denote the trivialization (7, ¢) simply by 7.

Ifp=e;...e,is apathin I from u to v, we define

;Z;p,’r = ;genﬂ' ©--+0 5@1,7' € %(2”)

Definition 2.16. Let G = (I', A,w, ®) be a 2-dimensional symplectic flow graph,
let 7 be a trivialization of GG, and let p be a path in I". Define the rotation number
of p with respect to 7 by

p-(p) = p(dps) € R,
where the right hand side is the rotation number on %(2) reviewed in Appendix .

Suppose now that X is a symplectic polytope in R*. We now define a canonical
trivialization 7 of the symplectic flow graph G(X) which has the useful property
that if (p, z) is a periodic orbit of G(X), and if «y is the corresponding combinatorial
Reeb orbit on X from Proposition [2.14] then the rotation number p,(p) is the limit
of the rotation numbers of Reeb orbits on smoothings of X that converge to 7.

Fix matrices i,j,k € SO(4) which represent the quaternion algebra, such that i
is the standard almost complex structure. It follows from the formula wy(V, W) =
(iV, W), together with the quaternion relations, that the matrices i, j, and k are
symplectic. In examples below, in the coordinates x1, s, y1, y2, We use the choice

~1 ~1 ~1

Definition 2.17. Let X be a symplectic polytope in R*. We define the quater-
nionic trivialization (7, ¢) of the symplectic flow graph G(X) as follows.
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e Let F' be a 2-face of X. We define the isomorphism
7r: TF — R?

as follows. By Lemma [I.7] there is a unique 3-face E adjacent to F' such that
the Reeb cone R} consists of the nonnegative multiples of the Reeb vector
field Rg, and the latter points into F from F'. Let v denote the outward unit
normal vector to E. If V € TF, define

(V) = (V,jv), (V. kv)). (2.3)

e If e is an edge from F) to F5, define aeﬁ € §f)(2) to be the unique lift of the
symplectic matrix
Tr, 0 Toe o 7' € Sp(2) (2.4)

that has rotation number in the interval (—1/2,1/2].

The following lemma verifies that this is a legitimate trivialization.

Lemma 2.18. Let X be a symplectic polytope in R*. If F is a 2-face of X, then
the linear map Tr in (2.3)) is an isomorphism of symplectic vector spaces.

Proof. Let E and v be as in the definition of 7. Then {iv, jv,kr} is an orthonormal
basis for TE. We have wy(iv, jv) = wo(iv,kv) = 0 and wy(jv,kv) = 1. If V and W
are any two vectors in TF C TFE, then expanding them in this basis, we find that
WO(Vv W) = WO(TF(v)v TF<W)) H

Remark 2.19. An alternate convention for the quaternionic trivialization would
be to define an isomorphism
75 TF — R?
as follows. Let E’ be the other 3-face adjacent to F' (so that the Reeb vector field
Rpg points out of E along F'), and let v/ denote the outward unit normal vector to
E'. Define
(V) = ((V.jv), (V. k).

This is also an isomorphism of symplectic vector spaces by the same argument as
in Lemma [2. 18]

Definition 2.20. If X is a symplectic polytope in R* and F' is a 2-face of X, define
the transition matrix

vp=7po(mp)”" €8Sp(2).

Lemma 2.21. If X is a symplectic polytope in R* and F is a 2-face of X, then the
transition matriz Vg is positive elliptic (see Definition .
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Proof. We compute that

(i)t = (jy’ _ ) gy ) iy’) . (2.5)

(iv', v) (iv',v)

To simplify notation, write a; = (V/,v), ay = (iV/,v), a3 = (jv/,v), and ay = (k/', v).

It then follows from ([2.3)) and (2.5 that

2 2
b = 1 (alaQ—&3a4 —a2—a4>
R

s az+a3  ayay + azay

Then Tr(vyp) = 2(V,v) € (—2,2), so Y is elliptic. Moreover as > 0 by Lemma
below, so ¥ is positive elliptic. O

Corollary 2.22. If E is a 3-face of X, if F1 and F» are 2-faces of X, and if there
is a trajectory of the Reeb vector field on E from some point in Fy to some point in
F,, then ¢, has rotation number in the interval (0,1/2).

Proof. It follows from the definitions that the map (2.4) agrees with the transition
matrix 1¥p,. By Lemma [2.21] this matrix is positive elliptic. It then follows from
Lemma [A 8| that its mod Z rotation number is in the interval (0,1/2). O

Definition 2.23. Let X be a symplectic polytope in R*. Let v be a Type 1 com-
binatorial Reeb orbit for X.

e We define the combinatorial rotation number of v by

pcomb(’y) = Pr (p)7

where (p,x) is the periodic orbit of G(X) corresponding to 7 in Proposi-
tion [2.14] and 7 is the quaternionic trivialization of X.

e We say that 7 is nondegenerate if the periodic orbit (p, z) is nondegenerate
as in Definition [2.11] In this case we define the combinatorial Conley-
Zehnder index of 7 by equation ([1.7)).

Remark 2.24. By Corollary[2.22, the combinatorial rotation number is the rotation
number of a product of elements of Sp(2) each with rotation number in the interval
(0,1/2). A formula for computing the rotation number of such a product is given

by Proposition [A.9]
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2.4 Example: the 24-cell

We now compute the symplectic flow graph G(X) = (I', A,w, ®) and the quater-
nionic trivialization 7 for the example where X is the 24-cell with vertices

(£1,0,0,0), (0, +1,0,0), (0,0, £1,0), (0,0,0, £1), (£1/2, £1/2, +1/2, £1/2).

The polytope X has 24 three-faces, each of which is an octahedron. The 3-faces
are contained in the hyperplaces

j:[L‘lﬂ:I'Q = ]_, ﬂ:]flﬂ:yl = 17 :l:[L‘lji:yQ = ]_, :i:.l’g:l:yl = 17 j:[L‘g:iZyQ = ]_, iylﬂ:yg =1.

There are 96 two-faces, each of which is a triangle; thus the graph I' has 96 vertices.
It follows from the calculations below that none of the 2-faces is Lagrangian, so that
X is a symplectic polytope.

To understand the edges of the graph I', consider for example the 3-face F
contained in the hyperplane x; 4+ y; = 1. The vertices of this 3-face are

(1,0,0,0),(1/2,£1/2,1/2,4+1/2),(0,0,1,0).
The unit normal vector to this face is

(1,0,1,0).

1
V= —
V2
The Reeb vector field on E is

0 0
Thus the Reeb flow on E flows from the vertex (1,0,0,0) to the vertex (0,0, 1,0)
in time 1/2. Each of the four 2-faces of F adjacent to (1,0,0,0) flows to one of the
four 2-faces of E adjacent to (0,0, 1,0), by an affine linear isomorphism.

For example, let F; be the 2-face with vertices (1,0,0,0), (1/2,1/2,1/2,£1/2),
and let F be the 2-face with vertices (0,0,1,0), (1/2,1/2,1/2,£1/2). Then F; flows
to F3, so there is an edge e in the graph I' from F) to F;. More explicitly, we can
parametrize F) as

[ttt ity ittt 1
2 7 2 7 2 7 2

), t17t2>0, t1+t2<1,

and we can parametrize F5 as

<t1+t2 t1 +to 1_t1+752 1 —to

t1,to >0, 1+t < 1.
27 27 27 2)7 1,02 71+2
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With respect to these parametrizations, the low map ¢, is simply

gbe(tl) t2) - (tla t2)
The domain D, of ¢, is all of F}, and the action function is

1—t, —1t
folty, ta) = %

It turns out that for every other 3-face E’, there is a linear symplectomorphism
A of R* such that AX = X and AE = E’. In fact, we can take A to be right
multiplication by an appropriate unit quaternion. It follows from this symplectic
symmetry that the Reeb flow on each 3-face behaves analogously. Putting these
Reeb flows together, one finds that the graph I' consists of 8 disjoint 12-cycles.
(This example is highly non-generic!) Further calculations show that for each 12-
cycle p, the map ¢, is the identity, so that every point in the interior of a 2-face is
on a Type 1 combinatorial Reeb orbit. Moreover, the action of each such orbit is
equal to 2. In particular, X is “combinatorially Zoll” in the sense of Definition [1.21}
Also, the volume of X is 2, so X has systolic ratio 1. B

To see how the quaternionic trivialization works, let us compute ¢, . for the edge
e above. For the 2-face F} above, the isomorphism 7p, is given in terms of the unit
normal vector v to E. We compute that

1 1
jv=—(0,1,0,—1), kv=-—(0,1,0,1).
j ﬂ( ) \/5( )

It follows that in terms of the basis (9y,, 0;,) for TF;, we have

_ (o1
TFl—\/ilo.

For the 2-face I, above, the isomorphism 7p, is given in terms of the unit normal
vector to the other 3-face adjacent to F,. This other 3-face is in the hyperplane
o + y1 = 1 and so has unit normal vector

1
v = —(0,1,1,0).
ﬁ( )

We then similarly compute that in terms of the basis (0y,,0;,) for T'Fy, we have

_ (1o
AR

Therefore the matrix ([2.4)) for the edge e is

1
_ -1 0 01 0 —1
TF20T¢eOTF11:(1 1) (1 0) :(1 1).
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This matrix is positive elliptic and has eigenvalues e*/3. It follows that its lift 5877

in Sp(2) has rotation number 1/6.
For one of the other three edges associated to E, the matrix ([2.4]) is the same as

above, and for the other two edges associated to E, the matrix is <} _01>, whose

lift also has rotation number 1/6. It then follows from the quaternionic symmetry of
X mentioned earlier that for every edge €’ of the graph I', the lift 56177 is one of the
above two matrices with rotation number 1/6. One can further check that for each
12-cycle in the graph, one obtains just one of the above two matrices repeated 12
times, so each corresponding Type 1 combinatorial Reeb orbit has rotation number
equal to 2.

3 Reeb dynamics on symplectic polytopes

The goal of this section is to prove Proposition [I.5] and Lemma [I.7] describing the
Reeb dynamics on the boundary of a symplectic polytope in R%.

3.1 Preliminaries on tangent and normal cones

We now prove some lemmas about tangent and normal cones which we will need;
see for the definitions.
Recall that if C' is a cone in R™, its polar dual is defined by

C’={yeR™| (z,y) <0VxeC}.
Lemma 3.1. Let X be a convez set in R™ and let y € 0X. Then
N;X: (T;X)O, TJX: (N;X)".

Proof. If C'is a closed cone then (C°)° = C, so it suffices to prove that N X =
(T, X)e.

To show that N, X C (1,7 X)°, let v € N X and w € T, X; we need to show
that (v,w) < 0. By the definition of 77X, there exist a sequence of vectors {w;}
and a sequence of positive real numbers {¢;} such that y + e;w; € X for each i and
lim; o w; = w. By the definition of N7 X we have (v, w;) <0, and so (v,w) < 0.

To prove the reverse inclusion, if v € (T,FX)°, then for any x € X we have
r—yeTrX, so(v,r—y) <0. It follows that v € N, X. O

If X is a convex polytope in R and if E is an (m — 1)-face of X, let vg denote
the outward unit normal vector to E.
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Lemma 3.2. Let X be a conver polytope in R™ and let F' be a face of X. Let

E,, ..., Ey denote the (m — 1)-faces whose closures contain F'. Then
TiX ={weR" | (w,vg) <0 Vi=1,...,k}, (3.1)
N{X = Cone (vg,,...,vg,)- (3.2)

Proof. Let y € F, and let B be a small ball around y. Then BN X = N;(B N H;)
where {H;} is the set of all defining half-spaces for X whose boundaries contain F'.
The boundaries of the half-spaces H; are the hyperplanes that contain the (m — 1)-
faces Ey, . .., Ey. It follows that BNX is the set of x € B such that (z—y, vg,) < 0 for
each i = 1,..., k. Equation follows. Taking polar duals and using Lemma

then proves ((3.2)). H

Lemma 3.3. Let X be a convex polytope in R™ and let F' be a face of X. Let
v e Np X\ {0} and let w € TEX \ {0}. Then (v,w) = 0 if and only if there is a
face E of X with F C F such that v € Nt X and w € THE.

Here if E # F then T E denotes the tangent cone of the polytope E at the face
F of E; if E = F, then we interpret To £ = TF.

Proof of Lemma[3.3. As in Lemma [3.2] let Fi,..., E) denote the (m — 1)-faces
adjacent to F'.

(=) By the definitions of Nt X and T X, if v € NfX and w € T# X then
(v,w) < 0. Assume also that v and w are both nonzero and (v,w) = 0. Then we
must have v € N X and w € 9T} X; otherwise we could perturb v or w to make
the inner product positive, which would be a contradiction.

Since w € 9T X, it follows from that (w,vg,) = 0 for some i. By renum-
bering we can arrange that (w,vg,) = 0 if and only if i < [ where 1 <[ < k. Let
E =nl_/E;. Then E is a face of X adjacent to F, and w € T} E.

We now want to show that v € NAX. By (3.2), we can write v = Zle a;VE,
with a; > 0. Since (v,w) = 0 and (w,vg,) = 0 for i < and (w,vg,) < 0 for i > I,
we must have a; = 0 for ¢ > [. Thus v € Cone(vg,,...,Vg), so by again,
veENLX.

(<) Assume that there is a face F adjacent to X such that v € N X and
w E T;E. We can renumber so that £ = ﬂézlEi where 1 < [ < k. Then v €
Cone(vg,,...,vg), and (w,vg,) =0 for i <1, so (v,w) = 0. O

3.2 The combinatorial Reeb flow is locally well-posed

We now prove Proposition [1.5] asserting that the “combinatorial Reeb flow” on the
boundary of a symplectic polytope in R* is locally well-posed. This is a consequence
of the following two lemmas:
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Lemma 3.4. Let X be a convex polytope in R*, and let F be a face of X. Then the
Reeb cone
REX =iN, X NTEX

has dimension at least 1.

Note that there is no need to assume that 0 € int(X) in the above lemma,
because the Reeb cone is invariant under translation of X.

Lemma 3.5. Let X be a symplectic polytope in R* and let F be a face of X. Then
the Reeb cone REX has dimension at most 1.

Proof of Lemma|3.4. The proof has four steps.

Step 1. We need to show that there exists a unit vector in RfX. We first
rephrase this statement in a way that can be studied topologically.

Define

B = {(v,w) € NiX x TFX | [lol| = ] = 1, {v,w) = 0}.
Define a fiber bundle 7 : Z — B with fiber S? by setting
Z(vw) = {u e R* | lu|| =1, (u,v) = O}.
Define two sections
Sp,81: B— Z

by

So(v, w) = v,

s1(v,w) = w.
To show that there exists a unit vector in R}X , we need to show that there exists
a point (v,w) € B with so(v,w) = s1(v,w).

Step 2. Let
By={w e oTfX | ||lw||=1}.

The space By is the set of unit vectors on the boundary of a nondegenerate cone, and
thus is homeomorphic to S2. Recall from the proof of Lemma [3.3|that if (v,w) € B
then w € By. We now show that the projection B — By sending (v, w) — w is a
homotopy equivalence.

To do so, observe that by Lemma [3.3] we have

B=|J {veNiX||v]l =1} x {w e THE | |lw| = 1} . (3.3)

FCE
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If F'is a 3-face, then in the union (3.3), we only have ' = F'; there is a unique
unit vector v € N X, and so the projection B — By is a homeomorphism.

If F' is a 2-face, then in (3.3), E can be either F itself, or one of the two three-
faces adjacent to F', call them FE; and FE5. The contribution from £ = F is a
cylinder, while the contributions from F = E; and FE, are disks which are glued to
the cylinder along its boundary. The projection B — By collapses the cylinder to a
circle, which again is a homotopy equivalence.

If Fis a 1-face, with k adjacent 3-faces, then the contribution to from E =
F consists of two disjoint closed k-gons. Each 2-face E adjacent to F' contributes a
square with opposite edges glued to one edge of each k-gon. Each 3-face E adjacent
to F' contributes a bigon filling in the gap between two consecutive squares. The
projection B — By collapses each k-gon to a point and each bigon to an interval,
which again is a homotopy equivalence.

Finally, suppose that F' is a O-face. Then E = F makes no contribution to
(3-3), since TF = {0} contains no unit vectors. Now By has a cell decomposition
consisting of a k-cell for each (k + 1)-face adjacent to F. The space B is obtained
from By by thickening each 0-cell to a closed polygon, and thickening each 1-cell to
a square. Again, this is a homotopy equivalence.

Step 3. The S%-bundle Z — B is trivial. To see this, observe that Z is the
pullback of a bundle over N/ X \ {0}, whose fiber over v is the set of unit vectors
orthogonal to v. Since N X\ {0} is contractible, the latter bundle is trivial, and thus
so is Z. In particular, the bundle Z has two homotopy classes of trivialization, which
differ only in the orientation of the fiber. We now show that, using a trivialization
to regard sq and s; as maps B — S2, the mod 2 degrees of these maps are given by
deg(sp) = 0 and deg(s;) = 1.

It follows from the triviality of the bundle Z that deg(sg) = 0.

To prove that deg(s;) = 1, we need to pick an explicit trivialization of Z. To do
so, fix a vector vy € int(T X). Let S denote the set of unit vectors in the orthogonal
complement vy. Let P : R* — vg denote the orthogonal projection. We then have
a trivialization

Z—=BxS

sending
(v, w), u) — ((v, w), Pu/|[Pul).

Note here that for every (v,w) € B, the restriction of P to v’ is an isomorphism,
because otherwise v would be orthogonal to vy, but in fact we have (v,v) < 0.

With respect to this trivialization, the section s; is a map B — S which is the
composition of the projection B — By with the map By — S sending

w +— Pw/||Pw||.
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The former map is a homotopy equivalence by Step 2, and the latter map is a
homeomorphism because vy is not parallel to any vector in 977 X. Thus deg(s;) = 1.

Step 4. We now complete the proof of the lemma. Suppose to get a contradiction
that there does not exist a point p € B with so(p) = s1(p). It follows, using a
trivialization of Z to regard sy and s, as maps B — S?, that s; is homotopic to
the composition of sy with the antipodal map. Then deg(s;) = — deg(sp). This
contradicts Step 3. n

Remark 3.6. It might be possible to generalize Lemma to show that if X is
any convex set in R?" with nonempty interior and if z € X, then the Reeb cone
R X is at least one dimensional.

We now prepare for the proof of Lemma |3.5]

Lemma 3.7. Let X be a convex polytope in R2". Then for every face F' of X, there
exists a face E with F' C E such that

REX C THE.

Proof. Let {E;}Y | denote the set of faces whose closures contain F. By Lemma ,
we have

N
RiX c | JTHE:. (3.4)
i=1
Let V denote the subspace of R*" spanned by R;X. Note that since the latter

set is a cone, it has a nonempty interior in V. We claim now that V' C T'E; for some
i. If not, then V NTE; is a proper subspace of V' for each i. But by (3.4]), we have

REX = (UTHE)NREX C (UTE)NV.

This is a contradiction, since the left hand side has a nonempty interior in V', while

the right hand side is a union of proper subspaces of V.
Since V' C T'E;, it follows that R X C T) E;, because by (3.4) again,

RiX = REXNV = REX NTE,

J

C TE;N (UT;E]) = TrE;, 0

Lemma 3.8. Let X be a convex polytope in R2", and let F be a face of X. Let
v € RpX. Suppose that v € int(TH E) for some (2n — 1)-face E whose closure
contains F'. Then v 1s a positive multiple of ivg.
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Proof. Let E = Ey, ..., Ey denote the (2n — 1)-faces whose closures contain F', and
let v; denote the outward unit normal vector to E. Since v € int(TF E), we have
(v,11) =0 and (v,1;) < 0 for i > 1. Since —iv € N£ X, it follows from Lemma

that we can write v

—iv = Z a;v;
i=1
with a; > 0. Since (v,iv) = 0, we conclude that a; = 0 for ¢ > 1. Thus —iv = ajvy,
and a; > 0. ]

Proof of Lemma[3.5. Suppose vy, vy are distinct unit vectors in R} X. By Lemma ,
there is a 3-face E such that vy and v; are both in 7T’ ;5 E. In particular, v; and v,
are linearly independent.

Since vy and v; are both in the cone RfX, it follows that if ¢ € [0, 1] then the
affine linear combination (1—t)wvg+tv; is also in this cone. Since vy and v; are linearly
independent, these affine linear combinations cannot be in the interior of T E, or
else this would contradict the projective uniqueness in Lemma [3.8, Consequently
v and v; are both contained in T E’ for some 2-face E' on the boundary of E.

We now have

w(vg, v1) = (vg, —ivy) <0,

where the inequality holds since vy € T4 X and —iv; € N;jX. By a symmetric
calculation, w(vy,vg) < 0. It follows that w(vy, vy) = 0. Since vy and vy are linearly
independent vectors in T'E’, this contradicts the hypothesis that w|rg is nondegen-
erate. 0

3.3 Description of the Reeb cone

We now prove Lemma [I.7], describing the possibilities for the Reeb cone of a face of
a symplectic polytope in R*.

Lemma 3.9. Let X be a convex polytope in R* and let F be a 2-face of X. Let
and Fy denote the 3-faces adjacent to F, and let v; denote the outward unit normal
vector to Ej;.

(a) If (ivy, 1) < 0, then every nonzero vector w in the Reeb cone REI points into
Ey from F, that is w € int(T{ E}).

ivy,19) > 0, then every nonzero vector w in the Reeb cone points ou
b) If (i 0, th y t n the Reeb Ry, points out
of Ey from F, that is w € int(=T{ E)).

(c) If (ivy,12) =0, then F is Lagrangian.
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Proof. Let n denote the unit normal vector to F' in T'E; pointing into E;. The
vector 7 must be a linear combination of 14 and v, (since it is normal to F), it
must be orthogonal to vy (since it is tangent to Ej), and it must have negative inner
product with v (since it points into Ej). It follows that

—vy + (1, V)11
| — v + <V17V2>V1H'

The vector w points into F; if and only if (n,w) > 0, and the vector w points
out of Fj if and only if (n,w) < 0. For w in the Reeb cone of E;, we know that w
is a positive multiple of iv;. By equation (3.5]), we have

. _<iV17V2>
,v) = .
) = o

Thus if (ivy,v,) is nonzero, then it has opposite sign from (n,w). This proves (a)
and (b).

If (ivy, 1) = 0, then w(ivy,ive) = 0, but iy and ivy are linearly independent
tangent vectors to F', so F' is Lagrangian. This proves (c). O

Lemma 3.10. Let X be a convex polytope in R* and let F be a 2-face of X. If
TFNREX # {0}, then F is Lagrangian.

Proof. If w € TF N R}y X, then for any other vector u € T'F, we have
w(w,u) = (iw,u) =0
since —iw € N X. If we also have w # 0, then it follows that F'is Lagrangian. [

Proof of Lemma[I.7. If F is a 3-face, then by the definition of the Reeb cone, RfX
consists of all nonnegative multiples of ivg; and ivg is a positive multiple of the
Reeb vector field on F' by equation ([1.3)).

Suppose now that F'is a k-face with k£ < 3, and that w is a nonzero vector in
the Reeb cone R} X. Applying Lemma to v = —iw and w, we deduce that there
is a face E of X with F' C F such that —iw € Nt X and w € TA E. In particular,

weTENRLX. (3.6)

By Lemma [3.10] and our hypothesis that X is a symplectic polytope, E is not a
2-face.

If F is a 2-face, we conclude that w is in the Reeb cone RLX for one of the
3-faces F adjacent to F'. By Lemma |3.9, w must point into E.

If F'is a 1-face, then F is either a 3-face adjacent to F', or F' itself. In the case
when E = F, the vector w cannot be in the Reeb cone of any 3-face F3 adjacent
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to F. The reason is that if Fb is one of the two 2-faces with F' ¢ F, C Fj, then
by Lemma [3.9] the Reeb cone of Fj is not tangent to Fj, so it certainly cannot be
tangent to F'.

If F is a O-face, then E is adjacent to F' and is either a 3-face or a 1-face. If E
is a 1-face, then it is a bad 1-face by (3.6). O

4 The quaternionic trivialization

In this section let Y C R* be a smooth star-shaped hypersurface with the contact
form A = )|y and contact structure £ = Ker(\). We now define a special trivializa-
tion 7 of the contact structure &, and we prove a key property of this trivialization.

4.1 Definition of the quaternionic trivialization

The following definition is a smooth analogue of Definition [2.17]

Definition 4.1. Define the quaternionic trivialization
T:&E =Y xR? (4.1)

as follows. If y € Y and V € T))Y, let v denote the outward unit normal to Y at y,
and define
(V) = (y, (V.jv), (V.kv)) .

By abuse of notation, for fixed y € Y we write 7 : §, — RR? to denote the restriction
of (4.1) to &, followed by projection to R2.

From now on we always use the quaternionic trivialization 7 for smooth star-
shaped hypersurfaces in R*.

Lemma 4.2. The quaternionic trivialization T is a symplectic trivialization of £.
Proof. Same calculation as the proof of Lemma [2.18(a). O

Remark 4.3. The inverse
7Y xR ¢

is described as follows. Recall from that the Reeb vector field at y is a positive
multiple of iv. Then 77*(y, (1,0)) is obtained by projecting juv to &, along the Reeb
vector field, while 77!(y, (0,1)) is obtained by projecting kv to &, along the Reeb
vector field.
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4.2 Linearized Reeb flow
We now make some definitions which we will need in order to bound the rotation

numbers of Reeb orbits and Reeb trajectories.

Definition 4.4. If y € Y and t > 0, define the linearized Reeb flow ¢(y,t) €
Sp(2) to be the composition

71 dds T
R* 2 & == o) — R? (4.2)

where ®; : Y — Y denotes the time ¢ flow of the Reeb vector field, and 7 is the
quaternionic trivialization. Define the lifted linearized Reeb flow ¢(y,t) € Sp(2)
to be the arc

;Z;(y, t) = {¢(y7 S)}se[o,t]- (43>

Note that we have the composition property

Oy, t2 + t1) = ¢, (y), t2) © Gy, t1).
Next, let P¢ denote the “projectivized” contact structure
PE=(E\ 2)/ ~

where Z denotes the zero section, and two vectors are declared equivalent if they
differ by multiplication by a positive scalar. Thus P¢ is an S*-bundle over Y. The
Reeb vector field R on Y canonically lifts, via the linearized Reeb flow, to a vector
field R on P¢.

The quaternionic trivialization 7 defines a diffeomorphism
7:P6E =Y x S.

Let
o:P¢ — St

denote the composition of 7 with the projection Y x St — S*t.
Definition 4.5. Define the rotation rate
r:P¢—R
to be the derivative of o with respect to the lifted linearized Reeb flow,
r = Ro.

Define the minimum rotation rate

Tmin - ¥ — R
by

Tmin(Y) = grgﬂgg 7(y).
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It follows from ({A.6) and (A.7)) that we have the following lower bound on the
rotation number of the lifted linearized flow of a Reeb trajectory.

Lemma 4.6. Let y be a smooth star-shaped hypersurface in R*, let y € Y, and let
t > 0. Then

p((y, 1)) > /O t Tmin (Ps(y))ds.

4.3 The curvature identity

We now prove a key identity which relates the linearized Reeb flow, with respect to
the quaternionic trivialization 7, to the curvature of Y. This identity (in different
notation) is due to U. Hryniewicz and P. Salomao [19]. Below, let S : TY ®TY — R
denote the second fundamental form defined by

S(u, w) = (Vv w),

where v denotes the outward unit normal vector to Y, and V denotes the trivial
connection on the restriction of TR* to Y. Also write S(u) = S(u,u).

Proposition 4.7. Let Y be a smooth star-shaped hypersurface in R*, let y € Y, let
0 € R/2nZ, and write 0 = 021 € R/Z. Then at the point T~ (y, o) € P, we have

Ro =

gy () + Sleos(@)jy +sin(B)kv)) (4.4)

Proof. 1t follows from the definitions that

27 Ro = (Lp((cos0)jv + (sin6)kv), (sin 6)jv — (cos 0)kv)
= — (cos? 0)(Lrjv, kv) + (sin? 0) (L kv, jv) (4.5)
+ (sin @ cos 0) ((Lrjv, jv) — (Lrkv, kv)).

We compute

(Lrjv,kv) = (Vgjv — VR, kv)

2 . .
= gy (Vudv ko) — (Vi ko))
2 . .
= (—(Vuv,iv) = (Vyv,jv))
2 . .
= gy ("S@) = 5G). (4.6)
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Here in the second to third lines we have used the fact that multiplication on the
left by a constant unit quaternion is an isometry. Similar calculations show that

(Lrkv, jv) = (S(iv) + S(kv)) , (4.7)

(v,y)

2
(v, y)
Plugging (4.6)), (4.7) and (4.8) into (4.5)) proves the curvature identity (4.5)). O

Remark 4.8. Since the second fundamental form is positive definite when Y is
strictly convex, and positive semidefinite when Y is convex, by Lemma [4.6{ we obtain
the following corollary: IfY is a convex star-shaped hypersurface in R* then Ro > 0
everywhere, so ¢(y,t) has nonnegative rotation number for ally € Y and t > 0. If
Y is a strictly convex star-shaped hypersurface in R* then Ro > 0 everywhere, so
o(y,t) has positive rotation number for ally € Y and t > 0.

(Criv,jv) = —(Crkv,kv) =

S(jv, kv). (4.8)

5 Reeb dynamics on smoothings of polytopes

In §5.1] and we study the Reeb flow on the boundary of a smoothing of a
symplectic polytope in R, In and we explain some more technical issues
arising from the fact that the smoothing is only C', and in particular how to make
sense of the “rotation number” of Reeb trajectories. In §5.5 we derive important

lower bounds on this rotation number.

5.1 Smoothings of polytopes

If X C R™ is a compact convex set and € > 0, define the e-smoothing X, of X by
equation . Observe that X, is convex. Denote its boundary by Y. = 0X.. We
now describe Y, more explicitly, in a way which mostly does not depend on . We
first have:

Lemma 5.1. If X is a compact convex set then
Y. ={y e R™ | dist(y, X) = ¢}.

Proof. The left hand side is contained in the right hand side because distance to X
is a continuous function on R™. The reverse inclusion holds because given y € R™
with dist(y, X) = ¢, since X is compact and convex, there is a unique point x € X
which is closest to y. By convexity again, X is contained in the closed half-space
{z € R"™ | (z,y — x) < 0}. It follows that dist(t(y — x), X) = et for ¢t > 0, so that
y € 0X.. H
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Definition 5.2. If X C R™ is a compact convex set, define the “blown-up bound-

29

ary
Yo={(y,v) |y € X, ve NI X, [v] =1} C 9X x §™1.

We then have the following lemma, which is proved by similar arguments to
Lemma 5.1t
Lemma 5.3. Let X C R™ be a compact convex set and let € > 0. Then:

(a) There is a homeomorphism
Yo — Y.

sending (y,v) — y + €v.

(b) The inverse homeomorphism sends y — (x,e (y — x)) where x is the unique
closest point in X to y.

(¢) Fory €Y., if x is the closest point in X to y, then the positive normal cone
N;XE 1s the ray consisting of nonnegative multiples of y — x.
Suppose now that X C R™ is a convex polytope and ¢ > 0.
Definition 5.4. If F'is a face of X, define the e-smoothed face

F.={zeY,|dist(z, F) =¢}.

By Lemma [5.3] we have
Y.=| |E
F

and
F.=F+{ve NiX||v| =€}

Note that each F. is a C*° smooth hypersurface, and where the closure of one F.
meets another, the outward unit normal vectors agree. It follows that Y. is a C*
smooth hypersurface, and it is C*° except along stratalﬂ of the form OF + {v €
NEX | |v] =€}

5.2 The Reeb flow on a smoothed symplectic polytope

Suppose now that X is a symplectic polytope in R* and € > 0. As noted above,
Y. = 0X. is a C' convex hypersurface, and as such it has a well-defined C° Reeb
vector field, which is smooth except along the strata of Y; arising from the boundaries
of the faces of X. We now investigate the Reeb flow on Y. in more detail, as well as

the lifted linearized Reeb flow ¢ from Definition

19We do not also need to mention strata of the form F + 0{v € N X | |v| = €}, because any
point in 8N;X is contained in NEX where F is a face with F' C OF.
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General remarks.

By Lemma 5.3 a point in Y; lives in an e-smoothed face F. for a unique face F' of
X, and thus has the form y + ev where y € F and v € N X is a unit vector. By
equation (L.3) and Lemma [5.3|c), the Reeb vector field at y + v is given by

2iv

Ryyev = ( (5.1)

v,y) +¢e

Lemma 5.5. The Reeb vector field (5.1)) on the e-smoothed face F., regarded as a
map F. — R, depends only v € N X and not on the choice of y € F.

Proof. This follows from equation (5.1)), because for fixed v € N} X and for two
points y,y’ € F, by the definition of positive normal cone we have (v,y—y') =0. O

Smoothed 3-faces.

The Reeb flow on a smoothed 3-face is very simple.

Lemma 5.6. Let X C R* be a symplectic polytope, let € > 0, and let E be a 3-face
of X with outward unit normal vector v.

(a) The Reeb vector field on E., regarded as a map E. — R*, agrees with the Reeb
vector field on E, up to rescaling by a positive constant which limits to 1 as
e — 0.

(b) If~:1]0,t] = E. is a Reeb trajectory, then ¢(~(0),t) =1 € Sp(2).

(c) If y € OF, then at the point y + ev € Y, the Reeb vector field on Y. is not
tangent to OF..

Proof. (a) This follows from equation (5.1]).

(b) For s € [0, t], the Reeb flow ®, : Y. — Y is a translation on a neighborhood
of v(0). Consequently the linearized Reeb flow d®, : &) — & (s is the identity,
if we regard &) and &(s) as (identical) two-dimensional subspaces of R*. The
quaternionic trivialization 7 : R* — &5 likewise does not depend on s € [0,1].
Consequently ¢(y,s) = 1 for all s € [0,#]. Thus ¢(y,t) is the constant path at the
identity in Sp(2).

(c) It is equivalent to show that the Reeb vector field on E at y is not tangent to
OF. If the Reeb vector field on E at y is tangent to OF, then it is tangent to some
2-face F' C OF. By Lemma the face 2-face F' is Lagrangian, contradicting our
hypothesis that the polytope X is symplectic. O
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Smoothed 2-faces.

Let F be a 2-face. Let E; and F3 be the 3-faces adjacent to F. By Lemma [L.7], we
can choose these so that Rp, points out of F; and a similar argument shows that
then Rp, points into F'. Let v; and v, denote the outward unit normal vectors to
E; and FEs respectively. By Lemma , the normal cone N consists of nonnegative
linear combinations of v, and . Let {v,w} be an orthonormal basis for F L such
that the orientation given by (v,w) agrees with the orientation given by (v, 15).
For i = 1,2 we can write v; = (cos 0;)v + (sin6;)w where 0 < 0y — 6; < m. We then
have a homeomorphism

F x [91,92] i) Fs7

' (5.2)
(y,0) — y + e((cos @)v + (sinf)w).

In the coordinates (y,#), the Reeb vector field R on F. depends only on 6 by
Lemma [5.5] and has positive 0y coordinate for both 6§ = 6, and 6 = 6, by our choice
of labeling of F; and F,. By equation , Lemma , and our hypothesis that
the polytope X is symplectic, the dy component of the Reeb vector field is positive
on all of F.

Let Up. C F denote the set of y € I such that the Reeb flow on Y. starting
at (y,01) € F. stays in F. until reaching a point in F' x {3}, which we denote by
(@Fe(y),62). Thus we have a well-defined “flow map” ¢p. : Up. — F.

Lemma 5.7. Let I be a two-face of a symplectic polytope X C R*. Then:
(a) The flow map ¢p. : Upe — F above is translation by a vector Vi, € TF.
(b) |VEe| = O(e) and lim,_,o Up. = F.

(c) Lety € Upe and let t be the Reeb flow time on F; from y+cvy to ¢ppe(y)+cvs.
Then ¢(y,t) € Sp(2) agrees with the transition matriz Vg in Definition

and ¢(y,t) € Sp(2) is the unique lift of Yp with rotation number in the interval

(0,1/2).

Proof. (a)Ify,y € Up,, then it follows from the translation invariance in Lemmal5.5]
that ¢rc(y) —y = dr:(y') — ¥/, S0 ¢r. is a translation.

(b) Tt follows from equation that for each v, the Reeb vector field R, ,,
regarded as a vector in R*, has a well-defined limit as € — 0, which by Lemma [3.10
is not tangent to F. Since 9y, regarded as a vector in R*, has length ¢, it follows
that the flow time of the Reeb vector field on F. from F' x {61} to F' x {6} is
O(e). Consequently the translation vector Vg has length O(g), and the complement
F\ Up. of the domain of the flow map is contained within distance O(e) of OF.
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(c) Write yy = y + vy and y2 = ¢p(y) + c1n. By part (a) and the translation
invariance in Lemma [5.5, the time ¢ Reeb flow ®; on Y; restricted to Up. + vy is a
translation in R%. Hence the derivative of ®; on the full tangent space of Y., namely

dd, : T, Y. — T, Y-,

restricts to the identity on TF. We now have a commutative diagram

¢, —— TF — R2

wl ol [
Euo » TF 5 R2.

Here the upper left horizontal arrow is projection along the Reeb vector field in
T,, Y., and the lower left horizontal arrow is projection along the Reeb vector field in
T,,Y:. The right horizontal arrows were defined in Definition and Remark [2.19]
The left square commutes because d®; preserves the Reeb vector field. The right
square commutes by Definition [2.20] The composition of the arrows in the top row
is the quaternionic trivialization 7 on §,,, and the composition of the arrows in the
bottom row is the quaternionic trivialization 7 on §,,. Going around the outside of
the diagram then shows that ¢(y,t) = ¢¥p.

To determine the lift g(y, t), note that this is actually defined for, and depends
continuously on, any € > 0 and any pair of hyperplanes E; and Es that do not
contain the origin and that intersect in a non-Lagrangian 2-plane F. Thus we can
denote this lift by ¢(E;, Es,¢) € Sp(2). Now fixing F1, F', and &, we can interpolate
from E; and Fj via a 1-parameter family of hyperplanes { E,}scp1,9) such that 0 ¢ £

and F1 N Eg = F for 1 < s < 2. The rotation number p : Sp(2) — R then gives us
a continuous map

f : (172] — R7
5 p (5(E1, E575>)
We have lim \; 5(E1’ Eg,e) =1, so limg; f(s) = 0. On the other hand, for each
s € (1,2], the fractional part of f(s) is in the interval (0,1/2) by Lemma [2.21] Tt

follows by continuity that f(s) € (0,1/2) for all s € (1,2]. Thus f(2) € (0,1/2),
which is what we wanted to prove. O

Smoothed 1-faces.

The Reeb flow on a smoothed 1-face is more complicated, but we will not need to
analyze this in detail. We just remark that one can see the difference between good
and bad 1-faces in the Reeb dynamics on their smoothings. Namely:
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Remark 5.8. If L is a bad 1-face, then by definition, there is a unique unit vector
v € N X such that iv is tangent to L. The line segment L +ev C L. is then a Reeb
trajectory. On the complement of this line in L., the Reeb vector field spirals around
the line, with the number of times that it spirals around going to infinity as ¢ — 0.
This gives some intuition why Type 3 combinatorial Reeb orbits do not correspond
to limits of sequences of Reeb orbits on smoothings with bounded rotation number.

By contrast, if L is a good 1-face, then the Reeb vector field on L. always has a
nonzero component in the N;” X direction.

Smoothed 0O-faces.

If P is a O-face, then by Lemma , P. is identified with a domain in S3. By equation
(5.1), the Reeb vector field on this domain agrees, up to reparametrization, with
the standard Reeb vector field on the unit sphere in R*.

5.3 Non-smooth strata

We now investigate in more detail how Reeb trajectories on Y. intersect the strata
where Y, is not C*.

Let 3 denote the subset of Y. where Y. is not locally C*°. By the discussion at
the end of §5.1 we can write

Y=Y1UX¥U¥;
where:
e Y, is the disjoint union of sets
P+{ve N/ X||v|=¢} (5.3)
where P is a vertex of X, and L is a 1-face adjacent to P.
e Y, is the disjoint union of sets
L+{veNLX||v]|=¢} (5.4)
where L is a 1-face, and F' is a 2-face adjacent to L.

e Y5 is the disjoint union of sets
F+cev

where F' is a 2-face, and v is the outward unit normal vector to one of the two
3-faces F/ adjacent to F.
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Lemma 5.9. Let X C R* be a symplectic polytope, let € > 0, and let 7 : [a,b] — Y.
be a Reeb trajectory. Then there exist a nonnegative integer k and real numbers
a <t <ty<--- <t <b with the following properties:

(a) y(t;) € ¥ for each i.
(b) For each i =0,...,k, one of the following possibilities holds:

(i) v maps (t;,tiy1) to Y=\ X. (Here we interpret ty = a and ty41 =b.)

(i) v maps (t;,tiv1) to a Reeb trajectory in a component of ¥1. (Each com-
ponent of X1 contains at most one Reeb trajectory of positive length.)

(i) v maps (ti,tiy1) to a Reeb trajectory in a component of ¥y. (This can
only happen when the corresponding 2-face F is complex linear, and in
this case the component of ¥y is foliated by Reeb trajectories.)

Proof. We need to show that a Reeb trajectory intersects ¥ in isolated points, or in
Reeb trajectories of the types described in (ii) and (iii).

We have seen in that the Reeb vector field is transverse to all of ¥3. Thus
the Reeb trajectory 7 intersects X3 only in isolated points.

Next let us consider the Reeb vector field on a component of 35 of the form
(5-4). Asin §5.2] let E; and E» denote the 3-faces adjacent to F, with outward unit
normal vectors v; and v, respectively. The smoothing F. is parametrized by .
This parametrization extends by the same formula to a parametrization of F. by
F x [01,05]. The latter parametrization includes the component of Yy as the
restriction to L x [0y, 6]. By equation (5.1)), at the point corresponding to (y, ) in
, the Reeb vector is given by

2

R = (cos 00T Gmd)w.g) T Ei((cos @)v + (sinf)w). (5.5)

This vector is tangent to the component if and only if the orthogonal projection
of i((cos@)v + (sin@)w) to F' is parallel to L.

If the projections of iv and iw to F' are not parallel, then this tangency will only
happen for isolated values of 6, and since the Reeb vector field on F. always has a
positive dy component, a Reeb trajectory will only intersect the component in
isolated points.

If on the other hand the projections of iv and iw to F' are parallel, then there is a
nontrivial linear combination of iv and iw whose projection to F' is zero. This means
that there is a nonzero vector v perpendicular to F' such that iv is also perpendicular
to F. This means that F* is complex linear, and thus F' is also complex linear.
Then iv and iw are both perpendicular to F', so in the parametrization , the
Reeb vector field vector field is a just a positive multiple of 0.
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The conclusion is that a Reeb trajectory will intersect each component
of ¥ either in isolated points, or (when F' is complex linear) in Reeb trajectories
which, in the parametrization (5.2)), start on L x {6} and end on L x {6}, keeping
the L component constant.

Finally we consider the Reeb vector field on a component of ¥;. The set of
vectors v that arise in is a domain D in the intersection of the sphere |v| = ¢
with the hyperplane L. As we have seen at the end of the Reeb vector field
on Y, at a point in agrees, up to scaling, with the standard Reeb vector field
on the sphere |v| = ¢, whose Reeb orbits are Hopf circles. There is a unique Hopf
circle C' contained entirely in L*. All other Hopf circles intersect L' transversely.
Thus any Reeb trajectory in Y. intersects the component in isolated points
and /or the arc corresponding to C'N D, if the latter intersection is nonempty. ]

5.4 Rotation number of Reeb trajectories

Suppose v : [a,b] — Y. is a Reeb trajectory. Let D C Y. be a disk through ~(a)
tranverse to vy, and let D' C Y. be a disk through ~(b) transverse to v. We can
identify D with a neighborhood of 0 in &, and D’ with a neighborhood of 0 in
&), via orthogonal projection in R* If D is small enough, then there is a well-
defined map continuous map ¢ : D — D’ with ¢(v(a)) = ~(b), such that for each
x € D, there is a unique Reeb trajectory near v starting at = and ending at ¢(z).

Lemma 5.10. Let X be a symplectic polytope in R*, let e > 0, and let v : [a,b] — Y.
be a Reeb trajectory. Then there is a unique (independent of the choice of D and
D’) homeomorphism

Py &) — &)
such that:

(a) b
lim ¢(z) — Py(z) —0. (5.6)
>0 |z
(b) Py is linear along rays, i.e. if v € &) and ¢ > 0 then P,(cx) = cP,(x).
This map P, has the following additional properties:

(¢) If v does not include any arcs as in Lemma[5.9(i)-(ii), and in particular if v
does not intersect any smoothed 0-face or smoothed 1-face, then P, is linear.

(d) Fort € (a,b) we have the composition property
P, =P,

lit.6) © L V(0"
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(e) Fort € [a,b], the homeomorphism R* — R? given by the composition

2 1 P’”[a b] T 2
R* =& — &o — R
is a continuous, piecewise smooth function of t.

Proof. Uniqueness of the homeomorphism P, follows from properties (a) and (b).
Independence of the choice of D and D’ follows from properties (a) and (b) together
with continuity of the Reeb vector field. Assuming existence of the homeomorphism
P, the composition property (d) follows from uniqueness.

We now need to prove existence of the homeomorphism satisfying properties (a),
(b), (c), and (e). Let a <t <ty < --- <ty <b be the subdivision of the inteveral
la,b] given by Lemma . For i = 0,...,k, let v; denote the restriction of v to
[ti,ti11], where we interpret ¢y = a and t; = b. It is enough to prove existence of a
homeomorphism

Py &) — Syt

with the required properties for each i. The desired homeomorphism P, is then
given by the composition P - -- F.

For case (i) in Lemma [5.9) a homeomorphism P,, with properties (a), (b), and
(e) is given by the usual linearized return map on the smooth hypersurface Y. \ ¥
from t; + 6 to t;41 — 9, in the limit as 6 — 0. Since P,, is linear, we also obtain
property (c).

For case (ii) or (iii) in Lemma[5.9] the existence of P,, with the desired properties
follows from the fact that ~; is on a smooth hypersurface separating two regions of
Y., on each of which the Reeb vector field is C'*°. O]

Remark 5.11. In case (ii) or (iii) above, the description of the Reeb flow in §5.2)
allows us to write down the map P, quite explicitly. Namely, for a suitable trivi-
alization, P, is given by the flow for some positive time of a continuous, piecewise
smooth vector field V' on R2, which is the derivative of a shear on one half of R2,
and which is the derivative of a rotation or the identity on the other half of R2. For
case (ii), the vector field has the form

_ _yaam x Z Oa
Vi ={ o E20 (57)
For case (iii), the vector field has the form
| z0,, x>0,
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Since the map P, : §ya) — () sends rays to rays, it induces a well-defined map

P&y ) — P&ywy. It follows from Lemma [5.10(c),(d) and equations (5.7) and (5.8)

that the latter map is C*. Similarly to (4.2)), we obtain a C! diffeomorphism of S*
given by the composition

S T Py 5 Pl — S
— P&ya) — P&y — 5™

Stealing the notation from Definition , let us denote this map by ¢(y,t) where
y =7(a) and t = b — a. By analogy with (4.3)), we define

(g(yﬂf) = {¢(y7 5)}56[0,15} € fﬂﬁ‘(‘sl)

This then has a well-defined rotation number, see Appendix A, which we denote by

p(v) = p(é(y,t)) € R.

5.5 Lower bounds on the rotation number

We now prove the following lower bound on the rotation number.

Lemma 5.12. Let X be a symplectic polytope in R*. Then there exists a constant
C > 0, depending only on X, such that if € > 0 is small, then the following holds.
Let v : [a,b] — Y. be a Reeb trajectory, and assume that if t € (a,b) and E is a
3-face then v(t) ¢ E.. Then

p(7) =2 CeH(b—a).

Proof. Define a function

re Y, — R
as follows. A point Y. can by uniquely written as y 4+ cv where y € Y and v is a
unit vector in N,F X. Then define

Py ) = min o (S(i0) + S(cos()jv + sin(@)kv)).  (5.9)

oer/2xZ w((v,y) + €)
Here S : TY. — R is the single-argument version of the second fundamental form,
which is well-defined, even though along the non-smooth strata of Y. there is no
corresponding bilinear form.
More explicitly, T} 1., Yz, regarded as a subspace of R*, does not depend on e. A
tangent vector V' € T,.,Y- can be uniquely decomposed as

V=Vr+Vy (5.10)
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where Vp € T,0X is tangent to a face F' such that y € F and v € N X, and
VN € TUN; X is perpendicular to v. We then have

S(V) =Y Vnl% (5.11)

Lemma [£.6] and Proposition [4.7] carry over to the present situation to show that

o) > / P (5)) ds. (5.12)

In (5.9), by compactness, there is a uniform upper bound on (v, y) for y € X and
v € Ny X a unit vector. Thus by (5.11]) and (5.12)), to complete the proof of the
lemma, it is enough to show that there is a constant C' > 0 such that

|(iv) x| + |(cos(h)jv + sin(0)kv)x|> > C (5.13)

whenever y € 0X, v € N;X is a unit vector, § € R/27Z, and y + €v is not in the
closure of E. where F is a 3-face. To prove this, it is enough to show that for each
k-face F' with k < 3, there is a uniform positive lower bound on the left hand side
of for all y € F, all unit vectors v in N} X that are not normal to a 3-face
adjacent to F', and all 6.

If k = 2, then we have a positive lower bound on |(iv)y|?> by the discussion of
smoothed 2-faces in §5.2

If k£ = 1, denote the 1-face F' by L. If v is on the boundary of N; X, then we
have a positive lower bound on |(iv)y|* as in the case k = 2 above. Suppose now
that v is in the interior of N}t X. We have a positive lower bound on |(iv)x|* when
ivy is away from the Reeb cone of L. This is sufficient when L is a good 1-face.
If L is a bad 1-face, then we have to consider the case where iv is on or near the
Reeb cone RIX . If iv is in the Reeb cone, then all vectors in V' € T,,.,Y; that
are not in the real span of the Reeb cone R} X have Vy # 0. Since the vectors
cos(6)jv + sin(f)kv are all unit length and orthogonal to iv, we get a positive lower
bound on |(cos(6)jv + sin(f)kv)y|* for all  when iv is on or near the Reeb cone.

Suppose now that & = 0. If v is on the boundary of N;" X, then the desired lower
bound follows as in the cases k = 1 and k = 2 above. If v is in the interior of Ni X,
then we have |(iv)y|? = 1. O

We now deduce a related rotation number bound. Let 7 : [a,b] — Y. be a Reeb
trajectory. By Lemma 5.3 we can write

V() = y(t) +ev(t)
where y(t) € 0X and v(t) is a unit vector in N;Et)X for each t.
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Lemma 5.13. Let X be a symplectic polytope in R*. Then there exists a constant
C > 0, depending only on X, such that if € > 0 is small and 7 : [a,b] — Y is a
Reeb trajectory as above, then

b
o) = € [ slas
Proof. By Lemma it is enough to show that there is a constant C' such that
[v'(s)| < Ce™t.
To prove this last statement, observe that by equation , in the notation ([5.10))

we have )
2e~

(v(s),y(s)) + ¢

v'(s) =

(iv(s))n-
Thus -
—
V'(s)] < :
M TN R
If y € 0X and v € N, X is a unit vector, then (v,y) > 0 because X is convex and

0 € int(X). By compactness, there is then a uniform lower bound on (v,y) for all
such pairs (y,v). ]

6 The smooth-combinatorial correspondence

We now prove Theorems and [1.12]

6.1 From combinatorial to smooth Reeb orbits

We first prove Theorem In fact we will prove a slightly more precise statement
in Lemma [6.1] below.

Let X be a symplectic polytope in R* and let v = (Ly,..., L) be a Type 1
combinatorial Reeb orbit. This means that there are 3-faces Fi, ..., F} and 2-faces
Fy, ..., Fy such that F; is adjacent to F;_; and F;, and L; is an oriented line segment
in F; from a point in F; to a point in Fj,; which is parallel to the Reeb vector field
on F;. Here the subscripts ¢ — 1 and ¢ + 1 are understood to be mod k. Below
we will regard 7 as a piecewise smooth parametrized loop v : R/TZ — X, where
T = Acomp(77), which traverses the successive line segments L; as Reeb trajectories.

Lemma 6.1. Let X be a symplectic polytope in R, and let v = (L1, ..., L) be a
nondegenerate Type 1 combinatorial Reeb orbit. Then there exists & > 0 such that
for all ¢ > 0 sufficiently small:
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(a) There is a unique Reeb orbit . on the smoothed boundary Y. such that

7. — Y|co < 6.

(b) 7. converges in C° to v as e — 0.

c) Ve does not intersect F. where F' is a 0-face or 1-face.

( ) - comb(fY) = 0(6)

)
(c)
(d) . is linearizable, i.e. has a well-defined linearized return map.
)
) 7 is nondegenerate, p(7V:) = peomp(7Y), and CZ(Ve) = CZeomb(7Y)-

(e
(f

Proof. Setup. For ¢ = 1,...,k, let p; denote the initial point of the segment L;.
Using the notation F;, F; above, let D; denote the set of points y € F; such that
Reeb flow along FE; starting at y reaches a point in Fj,, which we denote by ¢;(y).
Thus we have a well-defined affine linear map

¢i: Dy — Fiyy.
and by definition ¢;(p;) = pi+1. In particular, the composition
¢k0---0¢1:F1 —>F1

is an affine linear map defined in a neighborhood of p; sending p; to itself. For
V € T'F; small, this composition sends

P+ V—p + AV,

where A is a linear map TF; — TF). Since the combinatorial Reeb orbit v is
assumed nondegenerate, the linear map A does not have 1 as an eigenvalue.
By Lemma [5.7|(a), the Reeb flow along the smoothed 2-face (F;). induces a
well-defined map
Ore Upe — F; (6.1)

which is translation by a vector Vg ..

Proof of (a). If € > 0 is sufficiently small, then p; is in the domain Up, . for each
i, and Reeb orbits on Y. that are C° close to v correspond to fixed points of the
composition

Pre0PpO-- 0 P20 0p 001 1 — 1. (6.2)
It follows from the above that for V' € T'F; small, the composition (6.2)) sends

P4V —p + AV + W, (6.3)
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where W, € TF; has length O(e). Since the linear map A — 1 is invertible, the
affine linear map has a unique fixed point p; + V for some V € TF;. If ¢
is sufficiently small, this fixed point will also be in the domain of the composition
(6.2), and thus will correspond to the desired Reeb orbit ..

Proof of (b). This holds because for the above fixed point, V' has length O(¢).

Proof of (c). The Reeb orbit ~. does not intersect F. where F is a 0-face or
1-face, by the definition of the domain of the map .

Proof of (d). This follows from Lemma [5.10]c).

Proof of (e). The symplectic action of the Reeb orbit . is the sum of its
flow times over the smoothed 2-faces (Fj)., plus the sum of its flow times over
the smoothed 3-faces (E;).. The former sum is O(e) as explained in the proof of
Lemma [5.7(b). The latter sum is (1 4+ O(e)) times the sum of the corresponding
flow times over the 3-faces F;, and the latter differs from Acomp(7) by O(e), because
the fixed point of has distance O(g) from p.

Proof of (f). Let T. denote the period of ., and let y. be a point on the image of
v. in Ey. If F is a 2-face, let ¢ € %(2) denote the lift of the transition matrix g
in Definition with rotation number in the interval (0,1/2). By Lemmas [5.6{b)
and (c), the lifted return map (E(yg, T.) is given by

g(y& Te) = QZF;C ©--+0 {EFl- (64)

Nondegeneracy of the combinatorial Reeb orbit v means that the projection

o(ye, Tz) = Y, 0 -~ 0, € Sp(2)

does not have 1 as an eigenvalue, so . is nondegenerate. Moreover, it follows from
(6.4) and the definition of combinatorial rotation number in Definition that

Peomb(7) = p(7:). This implies that CZeomp(7) = CZ(7:). O

6.2 From smooth to combinatorial Reeb orbits

Proof of Theorem[1.13. We proceed in four steps.
Step 1. We claim that for each ¢, the Reeb orbit 7; can be expressed as a
concatenation of a finite number, k;, of arcs such that:

(a) Each endpoint of an arc maps to the boundary of E., where E is a 3-face.
(b) For each arc, either:

(i) There is a 3-face E such that the interior of the arc maps to E.,, or

(ii) No point in the interior of the arc maps to E., where E is a 3-face.
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The above decomposition follows from parts (a) and (b)(i) of Lemma [5.9] be-
cause the boundary of E., where E is a 3-face is contained in the singular set X.
(Note that the decomposition into arcs in Lemma is a subdivision of the above
decomposition into arcs. Moreover, if k; > 1, then k; is even and the arcs alternate
between types (i) and (ii).)

Step 2. We claim now that there is a constant C' > 0, not depending on ¢, such
that if v : [a.b] — Y%, is an arc of type (ii) above, then if we write (t) = y(t) +&;v(t)

for y(t) € 0X and v(t) € N;Et)X a unit vector, then we have

b
/ [v'(s)ds| > C. (6.5)

To see this, note that by (a) above, there are 3-faces £ and E’ such that v(a) €
E., and y(b) € E.. Then v(a) = vg, where vy denotes the outward unit normal
vector to F, and likewise v(b) = vg. If E # E’, then the integral in (6.5)) is
bounded from below by the distance in S® between vy and vy, and this distance
has a uniform positive lower bound because X has only finitely many 3-faces, each
with distinct outward unit normal vectors.

We now consider the case where £ = E’. The proof of Lemma, |5.13| shows that
there is a neighborhood U of vg in S, and a constant C' > 0, such that for any
point y + ;v € Y, \ E., with v € U, with respect to the decomposition (5.10)), we
have |(iv)x|*> > C. By shrinking the the neighborhood U, we can replace this last
inequalty with ((iv)y, vg) > 0. Since v/(t) is a positive multiple of (iv(t)), it follows
that the path [a,b] — S sending ¢ +— v(t) must initially exit the neighborhood U
before returning to vg. So in this case, we can take the constant C' in to be
twice the distance in S? from vy to OU.

Step 3. We now show that we can pass to a subsequence so that the sequence
of Reeb orbits 7; on Y., converges in C° to a Type 1 or Type 2 combinatorial Reeb
orbit v for X.

By Lemma and our hypothesis that p(y;) < R, we must have k; > 1 when
7 is sufficiently large. Then, by Lemma and Step 2, there is an i-independent
upper bound on k;. We can then pass to a subsequence such that k; is equal to an
even constant k.

By compactness, we can pass to a further subsequence such that the endpoints
of the k arcs from Step 1 for ~; converge to k points in the 2-skeleton of X. By
Lemma [5.6] the k/2 arcs of type (i) converge to Reeb trajectories on 3-faces of
X. On the other hand, by Lemma , for each arc of type (ii), the length of its
parametrizing interval converges to 0. A compactness argument also shows that
there is an upper bound on the length of the Reeb vector field on Y;,. It follows
that each arc of type (ii) is converging in C° to a point. Then ~; converges in C°
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to a Type 1 or Type 2 combinatorial Reeb orbit consisting of the line segments on
3-faces given by the limits of the k/2 arcs of type (i).

Step 4. To complete the proof, we now prove that the subsequence and limiting
orbit constructed above satisfy all of the requirements (i)-(v) of the theorem.

We have proved assertions (i) and (iii). Assertion (ii) follows from the proof of
Lemmal6.1)(e). Assertion (iv) follows from the proof of Lemmal[6.1}(d),(f). Assertion
(v) follows from Lemma and Step 2. (To get explicit constants C'r, one only
needs to consider the case E # E’ in Step 2.) O

A Rotation numbers

Let %(2) denote the universal cover of the group Sp(2) of 2 x 2 real symplectic
matrices. Let Diff(S') denote the group of orientation-preserving C' diffeomor-
phism of S' =R/Z, and let Iif/f(S 1) denote its universal cover. In this appendix,
we review two invariants of elements of %(2), and more generally [/)\1&(5 D): the ro-
tation number p and the “minimum rotation number” r. The former is a standard
notion in dynamics and is a key ingredient in Theorem [I.12} and we use the latter
to bound the former. We also explain how to use rotation numbers to efficiently
compute certain products in Sp(2), which is needed for our algorithms.

A.1 Rotation numbers of circle diffeomorphisms

We can identify the universal cover Diff(S!) with the group of C'! diffeomorphisms
® : R — R which are Z-equivariant in the sense that ®(t+1) = ®(¢)+1 for all t € R.
Such a diffeomorphism of R descends to an orientation-preserving diffeomorphism
of S*, and this defines the covering map Diff(S*) — Diff(S?).

Definition A.1. Given o € S!, we define the rotation number with respect to

o, denoted by -
1o : Diff(S') — R,

as follows. Let ® be a Z-equivariant diffeomorphism of R as above. Let t € R be a
lift of 0 € R/Z. We then define

ro(P) = O(t) — t. (A.1)

Definition A.2. Given ® € Diff(S'), we define the rotation number

p(@) = tim 2P e g (A.2)

n—00 n

UFor the most part we could work more generally with orientation-preserving homeomorphisms.
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where o € S!. This limit does not depend on the choice of o. Equivalently,

p(®) = lim ) (A.3)
n—o0 n
where t € R.
Note that we have the Z-equivariance property
p(®+1) = p(P) + 1. (A.4)

We can bound the rotation number as follows.

Definition A.3. We define the minimum rotation number 7 : ]ﬁ(Sl) — R by

r(®) = minr, (). (A.5)

oeSt

Alternatively, if ® € ]/)\ff(s ') is presented as a piecewise smooth path {¢;}iefo 1
in Diff(S!) with ¢y = idg:1, then

Ld
r(®) = min/o £¢S(O'>d8.

oeSt

In particular, it follows that

(@) > /0 " nin (%QZ)S(J)) ds. (A.6)

oest

It follows from the definitions that

p(@) > (D). (A7)

A.2 A partial order

Definition A.4. We define a partial order > on f):f/f(S 1) as follows:
® > VU if and only if 7,(®) > r,(¥) for all s € S*. (A.8)
Equivalently, ®(t) > W(t) for all t € R.

Lemma A.5. The partial order > on 1/5273”(51) 1s left and right invariant.
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Proof. Let ®, ¥, 0 € [f)\i?f(Sl), and suppose that ® > U, i.e.
a(t) > u(t) (A9)

for every t € R. We need to show that O > VO and 0P > OVU.
Since © : R — R is an orientation preserving diffeomorphism, it preserves the

order on R, so it follows from (A.9) that
O(2(t)) = O(¥ (1))

for every t € R, so 9 > OVU.
On the other hand, replacing ¢ by O(t) in the inequality (A.9), we deduce that

(6(1)) = W(O(1))
for every t € R, so PO > VO. n
Lemma A.6. If , ¥ € b\zﬁ(sl) and ® > U, then p(®) > p(V).

Proof. By (A.3), it is enough to show that given ¢ € R, we have ®"(¢t) > U"(¢)
for each positive integer n. This follows by induction on n, using the fact that ®
preserves the order on R. O

A.3 Rotation numbers of symplectic matrices

There is a natural homomorphism Sp(2) — Diff(S?), sending a symplectic linear
map A : R? — R? to its action on the set of positive rays (identified with R/Z
by the map sending ¢t € R/Z to the ray through e*™). This lifts to a canonical
homomorphism §15(2) — 151?]?(5 ). Under this homomorphism, the invariants 7, 7,
and p defined above pull back to functions gf)(?) — R, which by abuse of notation
we denote using the same symbols. .

We can describe the rotation number p : Sp(2) — R more explicitly in terms of
the following classification of elements of the symplectic group Sp(2).

Definition A.7. Let A € Sp(2). We say that A is

positive hyperbolic if Tr(A) > 2 and negative hyperbolic if Tr(A) < —2.

a positive shear if Tr(A) = 2 and a negative shear if Tr(A) = —2.
e positive elliptic if —2 < Tr(A) < 2 and det([v, Av]) > 0 for all v € R?\ {0}.

e negative elliptic if —2 < Tr(A) < 2 and det([v, Av]) < 0 for all v € R?\ {0}.
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By the equivariance property ((A.4)), the rotation number p : %(2) — R descends
to a “mod Z rotation number” p: Sp(2) — R/Z.

Lemma A.8. The mod Z rotation number p : Sp(2) — R/Z can be computed as
follows:

0 if A is positive hyperbolic or a positive shear,

H(A) = % zf . A’ z'§ negqtz’ye hyperbglic or a negic;tige shear, X
0 if A is positive elliptic with eigenvalues e**™° for 6 € (0, 3),
—0 if A is negative elliptic with eigenvalues e**™ for 6 € (0, %)

Proof. In the first two cases, A has 1 or —1 as an eigenvalue. This means that there
exists s € S! which is fixed or sent to its antipode, and one can use this s in the
definition .

In the third case, A is conjugate to rotation by 276. One can then lift A to
an element of Sp(2) whose image in Diff(S') is a Z-equivariant diffeomorphism
¢ : R — R such that |®"(t) —t —nf| < 1 for each ¢ € R. It then follows from ({A.3])
that p(®) = 0. The last case is analogous. O

A.4 Computing products in §f)(2)

Observe that Sp(2) can be identified with the set of pairs (A,r), where A € Sp(2)
and r € R is a lift of p(A) € R/Z. The identification sends a lift A to the pair
(4, p(A4)).

For computational purposes, we can keep track of the lifts of A using less infor-
mation, which is useful when for example we do not want to compute p(A) exactly.
Namely, we can identify a lift A with a pair (A,r), where r is either an integer (when
A has positive eigenvalues), an open interval (n,n + 1/2) for some integer n (when
A is positive elliptic), a half-integer (when A has negative eigenvalues), or an open
interval (n — 1/2,n) (when A is negative elliptic).

The following proposition allows us to compute products in the group §f)(2) in
terms of the above data, in the cases that we need (see Remark [2.24).

Proposition A.9. Let A, B € 51/7(2) Suppose that p(A) € (0,1/2). Then

DO | —

p(B) < p(AB) < p(B) +

To apply this proposition, if for example B is described by the pair (B, (m,m+
1/2)), then it follows that AB is described by either (AB, (m,m + 1/2)), (AB,m +
1/2), or (AB,(m +1/2,m + 1)). To decide which of these three possibilities holds,
by Lemma it is enough to check whether AB is positive elliptic, has negative
eigenvalues, or is negative elliptic.
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Proof of Proposition[A.9. Let ® and ¥ denote the elements of [/)EE(S 1) determined
by Aand B respectively. Let © : R — R denote translation by 1/2. By Lemma ,
A projects to a positive elliptic element of Sp(2). It follows that with respect to the
partial order on Diff(S 1), we have

idg < ¢ <0O.
By Lemma we can multiply on the right by ¥ to obtain
U< U < OV,
Using Lemma [A.6] we deduce that
p(¥) < p(PV) < p(OV).

Since ¥ comes from a linear map, it commutes with ©, so we have
1
p(OF) = p(¥) + 3.

Combining the above two lines completes the proof. n
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