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Abstract—In multi-stream sequential change-point detection it
is assumed that there are M processes in a system and at some
unknown time, an occurring event changes the distribution of
the samples of a particular process. In this article, we consider
this problem under a sampling control constraint when one is
allowed, at each point in time, to sample a single process. The
objective is to raise an alarm as quickly as possible subject to
a proper false alarm constraint. We show that under sampling
control, a simple myopic-sampling-based sequential change-point
detection strategy is second-order asymptotically optimal when
the number M of processes is fixed. This means that the proposed
detector, even by sampling with a rate 1/M of the full rate, enjoys
the same detection delay, up to some additive finite constant, as
the optimal procedure. Simulation experiments corroborate our
theoretical results.

Index Terms—Asymptotic optimality, change-point detection,
myopic sampling, CUSUM, quickest detection.

I. INTRODUCTION

SEQUENTIAL change-point detection for multi-stream
data under sampling control has many important real-

world applications such as quality control, surveillance or
security, etc. Under a general setting, there are M processes
or data streams available in a system, and at some unknown
point in time, an occurring event impacts one of the available
processes by changing the distribution of its samples. Unlike
the conventional problem where one samples simultaneously
all streams, under a sampling constraint scenario we are
allowed to sample only one of the M local streams at each
time. This constraint may be imposed due to sampling costs
or limitations to the on-line processing power. We understand
that in addition to the usual problem of developing a stopping
strategy for signaling the detection of the change we must also
provide a sampling strategy for the sampling of the available
streams.

When we can sample all streams simultaneously without
any constraint, this problem has been well studied in the
sequential change-point detection literature [1]. An intuitive
and efficient method is to monitor each individual process
by a local CUSUM procedure and then raise a global alarm
when any local CUSUM raises an alarm. This is equivalent
to raising an alarm when the maximum of M local CUSUM
statistics exceeds a threshold. In the sequel we will refer to
this detection procedure as the full-sampling method.

When there is sampling control as to which process must be
sampled at each time instant, literature is rather limited. The
only existing result is [2] which proposes an algorithm that
performs reasonably well in simulations but has no theoretical
justification to support it. Related work is also [3] which

proposes a data-efficient sampling technique but applies to a
single data stream.

We should mention that sampling control has also been
extensively used in two other well-known problems: sequential
hypothesis testing and the multi-armed bandit problems. Pio-
neering work in sequential hypothesis testing for M = 2 pro-
cesses, when the data are Bernoulli distributed, can be found
in [4]. Sequential hypothesis testing for the homogeneous
case and for general M was considered in [5] but with the
special requirement of identifying only a single process under
the alternative hypothesis. The same switching and stopping
strategy we propose in our current work, is optimum for this
problem as well and, remarkably, the optimality turns out
to be exact. Later in [6] we find an asymptotic optimality
theory for sequential hypothesis testing problems when one is
allowed to sample K ≥ 1 out of M processes at each time.
Finally, important results for the multi-armed bandit problem
are offered in [7] where the first asymptotic optimality theory
is developed.

The problem we are attempting to solve in this work
has two major differences compared to sequential hypothesis
testing and the multi-armed bandit problem: a) data collected
from unaffected process provide no useful information for the
affected stream, and b) data collected from the process to be
affected before the change also provide no information about
detection.

In this work we focus on an asymptotic optimality theory for
sequential change-point detection for multi-stream data under
sampling control. Our main result consists in proving that a
simple myopic sampling scheme is second-order asymptot-
ically optimum when the number M of processes is fixed.
The main idea of the proposed detection strategy consists in
exploring each local process periodically and decide whether
or not a change took place. If we decide positively then we
stop and raise a global alarm while if the decision is negative
we switch to the next process. To the best of our knowledge,
a second-order asymptotically optimum result is proved for
the first time for the problem of multi-stream data monitoring
under sampling control when time is discrete and the processes
are inhomogeneous.

As one of our reviewers correctly pointed out, our pro-
posed myopic sampling strategy is similar to the “cyclic-
return system of observations over M directions” scheme
proposed in [8] (see also [9]). We should emphasize that the
mathematical formulation, models and technical details in [8]
exhibit significant differences compared to the ones adopted
here. Indeed, in [8] it is assumed that the change occurs
with the same probability in any of the M local streams or
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directions (namely, there exists a prior). In our study we adopt
a worst-case scenario which is consistent with Lorden’s single
stream min-max approach. In [8] the analysis is focused on
continuous-time and continuous path (Wiener) processes with
all local streams or directions being homogeneous. In our
work we adopt discrete-time and inhomogeneous processes
across different local streams. These essential dissimilarities
require the employment of alternative analytical tools in
order to be able to tackle problems that are not present
in Wiener processes as, for example, overshoots. We must
mention that the absence of overshoots in the continuous-
time and continuous-path case allows for the derivation of
fairly accurate expressions for the average detection delay and
average time between false alarms, while in discrete time the
analysis can only provide bounds of the appropriate order
of magnitude. What is also interesting is that the proposed
scheme in [8] turns out to be a repeated CUSUM test even
though CUSUM, at the time, was not yet known for its
optimality properties. Finally, we should add that we believe
that under a more complicated setup where one is allowed
to observe more than one local streams simultaneously, it is
unclear how the methodology in [8] can be extended. On the
other hand, our approach, as we discuss in Section IV, does
not seem to have this problem.

The remainder of our paper is organized as follows. In
Section II, we mathematically formulate the problem of inter-
est, review existing methods and present our candidate sam-
pling/stopping strategy. In Section III, we prove the second-
order asymptotic optimality property of our scheme when M
is fixed. In Section IV we provide certain remarks concerning
possible extensions to more complicated scenarios and dis-
cuss the corresponding challenges. Numerical simulations are
offered in Section V to illustrate the agreement between theory
and practice. Finally, in Section VI we draw our conclusions
and discuss future research topics. Technical proofs appear in
the Appendix.

II. PROBLEM FORMULATION AND BACKGROUND

To simplify our presentation we divide the current section
into three parts. In Section II-A, we present the mathematical
formulation of our problem. In Section II-B we review the
CUSUM test for sequential change-point detection. We also
recall the myopic and certain simple and well known sampling
policies. Finally, in Section II-C, we present our candidate
scheme that applies the myopic sampling policy to the problem
of interest.

A. Mathematical Formulation

Suppose there are M statistically independent processes in
a system, and denote with Xi

t the observation from the i-th
process at time t, where i = 1, . . . ,M and t = 1, 2, . . . .
Initially, the system is in the in-control state and the data
stream {Xi

t} from the ith process produces i.i.d. samples
following the density fi(X). At some unknown time τ , an
event occurs which leads the system out-of-control with one
of its M processes, say, the i-th, changing to i.i.d. samples

following a new density gi(X). Specifically, if the ith data
stream is affected, then

Xi
t ∼

{
fi(X), if t ≤ τ
gi(X), if t > τ,

(1)

while Xj
t ∼ fj(X) for j 6= i and all t > 0.

Under the classical setup when the full data information
is available at each time t we observe the complete set of M
samples {X1

t , · · · , XM
t }. However, when we adopt a sampling

control policy then we are allowed to access only one of
these M data points. This clearly requires the definitions of
a sequence of sampling indices {Rt} with Rt ∈ {1, . . . ,M}.
Rt is random and points to the process that must be sampled
during the next time instant t+1. The sampling constraint can
be expressed as

1{Rt=1}+ · · ·+1{Rt=M} = 1, for all times t = 1, 2, . . . ,
(2)

where 1A denotes the indicator function of the event A.
As we discuss next, due to the existence of various pos-

sibilities, we need to introduce several sequences of sigma-
algebras (filtrations). With {F i

t } we denote the filtration
generated by the ith process, namely, F i

t = σ{Xi
1, . . . , X

i
t}.

Then we define the filtration {Ft} containing the complete
information where Ft = F 1

t ∪· · ·∪FM
t . Finally, by sampling

one out of M processes at each time instant we generate
the filtration {FR

t } with FR
t = σ{XR0

1 , . . . , X
Rt−1

t }. A
sequential change-point detection procedure under sampling
control contains two components, the sampling policy {Rt}
and the stopping time T . For the sampling policy each Rt
is FR

t -measurable (we use the already available samples up
to time t to decide which stream to sample at the next time
instant t+1). The stopping time T is {FR

t }-adapted (uses all
samples up to and including time t in order to decide whether
to stop and raise an alarm at t or continue sampling according
to Rt).

If our intention is to follow the min-max approach suggested
by Lorden [10] it is, unfortunately, not obvious how to
define our performance criterion due to the existence of these
mutliple filtrations. In fact there are different possibilities we
can end up with if we adopt the general performance criterion
introduced in [11]. By modeling the change-point time τ as
a stopping time (the time we stop using the nominal data)
then, if τ is {Ft}-adapted, namely has access to the whole
information, and after following a worst-case scenario for
the unknown change-time τ , we can define the performance
criterion as

D(T ) = sup
t≥0

ess sup Et[T − t|Ft, T > t], (3)

where with Pt(·),Et[·] we denote the probability measure and
the corresponding expectation induced by the change occurring
at τ = t. Alternatively, we can have change-point mechanisms
that rely on individual streams and decide when to impose the
change in each process by using the local samples. In this case
we must define a criterion for each stream

Di(T ) = sup
t≥0

ess sup Eit[T − t|F i
t , T > t]. (4)
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where now Pit(·),Eit[·] denote the probability measure and the
corresponding expectation induced by the change occuring at
Process i at time τ = t. It is the second performance criterion
in (4) which is mostly adopted in the literature and we also
intend to follow here in our analysis. Regarding the detection
part, we must point out that the stopping time T can be
adapted to any other filtration which is not necessarily the
same as the one used by the change-time τ . Indeed T depends
on the information which becomes available to the scientist
responsible for detection. This information does not have to
be the same as the information employed by the change-point
mechanism for deciding when to impose the change [11].
Regardless of this observation, the goal is always the same,
namely, to solve the constrained min-max problem

inf
T,{Rt}

Di(T ) = inf
T,{Rt}

sup
t≥0

ess sup Eit[T − t|F i
t , T > t], (5)

subject to E∞[T ] ≥ γ > 1, where P∞(·),E∞[·] denote the
probability measure and the corresponding expectation under
the nominal probability measure (namely when the change
occurs at∞) and T and {Rt} are defined over the appropriate
filtration. As we can see the false alarm constraint requires the
average false alarms period to be no less than some prescribed
value γ > 1.

For the constrained problem in (5) it is very unrealis-
tic to expect that we can find a single sampling/stopping
policy capable of exactly optimizing it, simultaneously for
all i = 1, . . . ,M . The goal of this work is to show that
in fact such a possibility exists (by proposing a particular
solution) but within the class of policies that are second-order
asymptotically optimum.

B. Review of Change-Point Methods

Focusing on solving (5) with Di(T ) defined in (4) we first
consider the case where there is a genie that provides the index
i of the process where the change occurs. If we know i then
there is no reason to sample any other process, consequently
Rt = i at all times and we can limit T to be {F i

t }-adapted.
In this case it is well known that the optimum stopping time
is the CUSUM defined as

Ti(Ai) = inf{t > 0 : W i
t ≥ Ai}, (6)

where W i
t is the CUSUM statistic [12] that satisfies the

recursion

W i
t = max{W i

t−1, 0}+ log
gi(X

i
t)

fi(Xi
t)
, (7)

for t > 0 and is initialized with W i
0 = 0. Threshold Ai is

selected so that the false alarm constraint is met with equality.
Proof for first-order asymptotic optimality was offered in
Lorden [10] while exact optimality can be found in [13]. It
is clear that there is no detection strategy that can outperform
the CUSUM test that knows where (but not when) the change
occurs.

A more practically interesting scenario consists in having
access to the complete data set but not knowing where and
when the change occurs. Again, there is no need to specify a
sampling strategy {Rt} since we sample all processes. Cleary

T is now {Ft}-adapted, namely the stopping time uses all the
information up to time t to decide whether to stop at t or not.
In this case we run local CUSUMs in parallel, one for each
process and as it is proven in [1] we raise an alarm whenever
one of the M stopping times stops. More specifically if Ti is
defined as in (6) then the combination

TFull = min{T1(A), · · · ,TM (A)}, (8)

with all CUSUM having the same threshold A, is asymptoti-
cally optimum in the sense that is solves the problem defined in
(5) asymptotically as γ →∞. In fact we can rewrite TFull(A)
as

TFull(A) = inf{t > 0 : max
1≤i≤M

W i
t ≥ A}, (9)

where, essentially, in the test we apply the generalized likeli-
hood ratio with respect to index i. In Theorems 9.2.1 and 9.2.2
of [1], it is shown that TFull(A) is second-order asymptotically
optimum when the number M of processes is fixed. This
means that we minimize each detection delay Di(T ) up to
an O(1) quantity which is independent from the false alarm
constraint parameter γ in (5).

C. Review of Sampling Policies

Under sampling control there is the need to define a
sampling policy {Rt} since, as we explained, at each time
instant we are allowed to sample only one out of the M
processes. Consequently let us review sampling possibilities
that are widely adopted in the literature.

The most straightforward policy consists in sampling each
process periodically meaning that Rt = t mod M + 1 where
we visit each process deterministically every M samples. It is
not difficult to show that this sampling strategy will lead to a
detection delay which is M times larger than the optimum
which, as mentioned, is enjoyed by the CUSUM stopping
time Ti that knows where the change occurs. Clearly, this
observation makes unrealistic any expectation for establishing
second-order (in fact even first-order) asymptotic optimality
with this form of sampling.

An alternative widely used policy is the myopic (or greedy)
sampling policy (MSP) which samples the process exhibiting
the maximal immediate reward. A general implementation
of the myopic sampling policy is to define local statistics
W̃ i
t , i = 1, · · · ,M that summarize the immediate sampling

rewards for each process at time t and then sample the process
with the largest local statistic W̃ i

t (with random sampling or
pre-assigned order in case of ties). This type of sampling
is frequent in the multi-armed bandit problem and there is
extensive literature as to which is the most suitable selection
for the local statistic W̃ i

t .
Our intention is to use the myopic sampling policy for

the problem of interest. It is clear that a natural candidate
for the local statistic W̃ i

t is the CUSUM statistic defined in
(7). However, in order for our sampling/stopping policy to
be complete, we need to explicitly specify three points that
are unclear: (i) How should we update the local statistic of
a process not being sampled. (ii) How should we break ties
when the largest local statistic occurs at multiple processes.
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This is particularly important when all local CUSUM statistics
become simultaneously 0 (which is a very frequent event
under the nominal regime). (iii) When should we raise a
global alarm. While it is possible to give intuitively meaningful
answers to these three points, the challenge is to accompany
them with theoretical justification capable of establishing the
desired form of asymptotic optimality.

III. MAIN RESULTS

In this section we introduce our candidate
sampling/stopping strategy and establish its asymptotic
optimality characteristics. Again we break our presentation
into parts. In Section III-A we define our candidate stopping
time TMSP implemented with the help of the myopic
sampling policy. We also provide answers to the three points
we mentioned in the previous section. In Section III-B, we
study the non-asymptotic properties of the false-alarm and
detection delay of TMSP. We conclude the presentation of
our main results by establishing the second-order asymptotic
optimality of our candidate test, in Section III-C.

A. Candidate Sampling/Stopping Strategy

At a high level, our algorithm is based on the myopic sam-
pling policy and mimics the full-sampling method TFull(A) in
(9) under the sampling control constraint. Here we exploit the
prior knowledge that there is only one process which changes,
and thus propose to sample each process until we are confident
to decide whether a change has occurred or not. If we detect
a change, then we stop and raise a global alarm. If we decide
there is no change, then we deterministically switch to the
next process to sample and repeat the previous step. Switching
follows a periodic pattern starting from Process 1 and going to
ProcessM . When we reach ProcessM and decide to switch
again we simply restart from Process 1. We repeat these steps
until we raise an alarm.

Let us now define our scheme rigorously through the
recursive definition of the statistics W̃ i

t , i = 1, . . . ,M and
the sampling sequence {Rt}. At time t−1 assume we already
have available W̃ i

t−1, i = 1, . . . ,M and Rt−1 with the latter
pointing to the next process to be sampled at time t. For the
local statistics we have the recursions

W̃ i
t = max{W̃ i

t−1, 0}+ 1{i=Rt−1} log
gi(X

i
t)

fi(Xi
t)

=

{
max{W̃ i

t−1, 0}, if i 6= Rt−1

max{W̃ i
t−1, 0}+ log

gi(X
i
t)

fi(Xi
t)
, if i = Rt−1,

(10)

and for the sampling sequence

Rt =

{
Rt−1 if W̃Rt−1

t > 0

Rt−1 mod M + 1 if W̃Rt−1

t ≤ 0.
(11)

For all i = 1, · · · ,M we initialize with W̃ i
0 = 0 and R0 =

1. Similarly to the full-sampling method TFull(A) in (9), we
propose the stopping time TMSP defined as

TMSP(A) = inf

{
t > 0 : max

1≤i≤M
W̃ i
t ≥ A

}
, (12)

where threshold A is selected to meet the false alarm con-
straint.

We observe that we continue sampling Process i as long as
W̃ i
t > 0 and switch to the next process when W̃ i

t ≤ 0. It is
easy to see that we can equivalently define TMSP with a single
test statistic that satisfies the update

W̃t = max{W̃t−1, 0}+ log
gRt−1(X

Rt−1

t )

fRt−1
(X

Rt−1

t )
, (13)

with W̃0 = 0 and the sampling policy

Rt =

{
Rt−1 if W̃t > 0

Rt−1 mod M + 1 if W̃t ≤ 0,
(14)

with R0 = 1. The stopping time TMSP can then be equiva-
lently written as

TMSP(A) = inf
{
t > 0 : W̃t ≥ A

}
. (15)

The recursion in (13) and the definition of our stopping time in
(15) are clearly very CUSUM-like, the only difference being
that instead of always sampling the same process which is the
practice in the regular CUSUM, every time the test statistic
W̃t falls bellow 0, we switch to testing the next process by
restarting and forgetting the whole past. Let us summarize the
proposed scheme.

Step 1: Sample Process 1 until W̃t /∈ (0, A). If W̃t ≥ A, we
stop sampling and raise a global alarm; otherwise if W̃t ≤ 0,
we switch to sampling Process 2.

Step 2: Sample Process 2 until W̃t /∈ (0, A). If W̃t ≥ A, we
stop sampling and raise a global alarm; otherwise if W̃t ≤ 0,
we switch to sampling Process 3.

...
Step M : Sample ProcessM until W̃t /∈ (0, A). If W̃t ≥ A,

we stop sampling and raise a global alarm; otherwise if W̃t ≤
0, we switch to sampling Process 1.

Step M + 1: Go back to Step 1.
The reason we expect that TMSP defined in (12) will

enjoy second-order optimality properties is because when we
start sampling a process we practically apply a sequential
probability ratio test (SPRT) with the lower threshold set to 0.
We recall that the classical CUSUM is also a repeated SPRT
test with lower threshold equal to 0 only, as mentioned, it is
always applied onto the same process. Here, what we propose
is that every time we restart the SPRT we switch to the next
process. Processes that do not change or the process which will
change but is still under the pre-change state drive the SPRT
to 0 very quickly with short random periods. When we hit
post-change data then with high probability the corresponding
SPRT will remain at this process and drive its statistic towards
the high threshold to raise an alarm.

B. Finite-Sample Properties

To establish the desired asymptotic optimality characteristic
for TMSP we first need to introduce certain finite-sample
properties. We start by making some standard assumptions
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encountered in the classical sequential detection literature. For
i = 1, . . . ,M we have

(A1): Ii∞ =

∫
log

fi(X)

gi(X)
fi(X)dX > 0,

Ii0 =

∫
log

gi(X)

fi(X)
gi(X)dX > 0,

(A2): Ji∞ =

∫ (
log

fi(X)

gi(X)

)2

fi(X)dX <∞,

Ji0 =

∫ (
log

gi(X)

fi(X)

)2

gi(X)dX <∞,

In other words we define the information numbers and make
the Assumption (A1) that they are bounded away from 0 mean-
ing that pre- and post-change densities must be essentially
different. Assumption (A2) is technical and states that the
second moments of the log-likelihood ratios are bounded away
from∞. Clealy (A2) implies that the information numbers are
also bounded away from ∞.

To establish the second-order asymptotic optimality, we
need to compare the performance of our proposed stopping
time TMSP against the optimum performance delivered by
the CUSUM stopping time Ti(Ai). Since there are no exact
formulas for both schemes we present useful estimates that
will allow us to achieve our goal. We start with the CUSUM
test for which the next lemma provides the required estimates
most of which are already established in the literature.

LEMMA 1 Under Assumptions (A1), (A2), the CUSUM tests
Ti(A), i = 1, . . . ,M , satisfy the following bounds for the
average period of false alarms

eA ≤ E∞[Ti(A)] ≤ CieA, (16)

while for the worst-case average detection delays
A

Ii0
− Li ≤ Di

(
Ti(A)

)
≤ A

Ii0
+ Ui. (17)

The quantities Ci,Ui,Li are positive constants that depend
only on fi, gi and not on A.

Proof: The results of this lemma are already available
in the literature. But, for completeness we decided to include
them here with a parallel effort to provide explicit formulas for
the constant parameters appearing in the estimates. All details
are given in the Appendix.

The next theorem provides corresponding estimates for the
proposed stopping time TMSP.

THEOREM 1 Under Assumptions (A1), (A2) the proposed
stopping time TMSP(A) defined in (12) satisfies the following
lower bound for the average false alarm period

eA ≤ E∞[TMSP], (18)

while for the worst-case average detection delays for i =
1, . . . ,M , satisfy the upper bounds

Di(TMSP) ≤ A

Ii0
+ Ui +D(M − 1), (19)

where Ui are the constants from (17) in Lemma 1 and D is a
constant that depends on all {fi, gi}, i = 1, . . . ,M but not
on A.

Proof: At this point let us only provide a high-level sketch
of the proof deferring the technical details to the Appendix.
The key idea is to relate TMSP to the following M prototype
SPRTs: For i = 1, · · · ,M , a prototype SPRT applied to the
ith process is defined as

T i = inf

{
t > 0 : Sit =

t∑
`=1

log
gi(X

i
`)

fi(Xi
`)
6∈ (0, A)

}
. (20)

Consider now the sequence {T`}, ` = 1, 2, . . . , of SPRTs
applied to the data streams when we employ the periodic
sampling policy. Then it is clear that each T` has the same dis-
tribution as a particular prototype SPRT T i. In fact ` and i are
related through the equation i = (`−1) mod M+1 suggesting
that the distributions of {T1, T2, . . .} change periodically with
period M . In addition, if we define (a stopping time) k to be
the first time the SPRT of the process being tested crosses the
upper boundary A, then our proposed stopping time TMSP can
be written as the sum

TMSP = T1 + T2 + · · ·+ Tk =

k∑
`=1

T`. (21)

The average of TMSP can therefore be computed by analyzing
the sequence {T1, T2, . . .} with each stopping time, as men-
tioned, matching in distribution one of the M prototype SPRTs
{T 1, . . . , T M}.

C. Second-Order Asymptotic Optimality

Using Lemma 1 and Theorem 1 we are now able to establish
the second-order asymptotic optimality property for TMSP.
The optimum detection delay grows to infinity as the false
alarm parameter γ →∞. Our intention is to show that TMSP

has a detection delay which, for each i, grows to infinity at the
same rate as the optimum CUSUM test that knows where the
change occurs. More specifically we will show that the two
performances can differ at most by a bounded constant which
does not depend on γ.

If we know that the change is going to occur at Process i
then the best detection delay performance, as we mentioned,
is delivered by the CUSUM stopping time Ti(Ai) with Ai
selected so that the false alarm constraint is safisfied with
equality. In fact there is absolutely no other stopping time that
can enjoy better performance since Ti(Ai) uses information
which is absolutely relevant to the corresponding detection
task while any other stopping time defined on a different
filtration will use information that is not related to the change
at Process i. We have the following corollary that establishes
the second-order optimality of TMSP simultaneously for all
i = 1, . . . ,M .

COROLLARY 1 Let A = log γ, then our proposed stopping
time TMSP(A) defined in (12) satisfies both the false alarm
and the sampling control constraint. If for each i = 1, . . . ,M ,
we have the optimum CUSUM tests Ti(Ai) with Ai selected
to satisfy the false alarm constraint with equality, then

0 ≤ Di

(
TMSP(A)

)
−Di

(
Ti(Ai)

)
≤ CM, (22)

for proper constant C.
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Proof: Since we are interested in a change at Process i,
in order to establish second-order asymptotic optimality we
need to compare the performance of our test with the optimum
performance delivered by CUSUM. The first step consists in
estimating this performance. Note that Ti(Ai) and TMSP(A)
are two different stopping times, therefore they do not neces-
sarily share the same threshold. In fact we need to compute
the threshold Ai of the CUSUM test that delivers the optimum
performance and this is guaranteed only by the threshold
that meets the false alarm constraint with equality1. Since for
the average false alarm period we have bounds from (16) in
Lemma 1, if we replace A with Ai and set E∞[Ti(Ai)] = γ
then we conclude that log Ci+Ai ≥ log γ ≥ Ai or equivalently
log γ ≥ Ai ≥ log γ − log Ci, suggesting that the optimum
threshold Ai that meets the false alarm constraint may differ
from log γ at most by a constant independent from γ. Sub-
stituting the bounds for Ai in the bounds for the worst-case
detection delay of CUSUM in (17), we obtain

log γ

Ii0
− Li −

log Ci
Ii0
≤ Di

(
Ti(Ai)

)
≤ log γ

Ii0
+ Ui. (23)

As we can see the optimum performance can differ from log γ
Ii0

at most by a constant.
We now focus on the proposed TMSP(A) then, from (18)

in Theorem 1 if we select A = log γ we can see that TMSP

satisfies the false alarm constraint. We must point out that
this threshold does not deliver the best performance for TMSP

which is reserved for the threshold that meets the false alarm
constraint with equality. But if we can show that this non-
best performance differs from the optimum (delivered by
CUSUM) by only a constant the same will be true for the
best performance. The proposed stopping time TMSP with
threshold A = log γ exhibits a worst-case average detection
delay from (19) that satisfies

Di(TMSP) ≤ A

Ii0
+Ui+D(M −1) =

log γ

Ii0
+Ui+D(M −1).

(24)
Since Ti(Ai) provides the smallest detection delay for a
change occurring in Process i we can write using the lower
bound from (23)

0 ≤ Di(TMSP)−Di(Ti) ≤ Ui+Li+
log Ci
Ii0

+D(M−1). (25)

If we select C = max{D,max1≤i≤M (Ui + Li + log Ci
Ii0

)} we
can use it to strengthen (25) and prove (22). This completes
the proof.

IV. REMARKS

Let us now discuss possible extensions and corresponding
challenges we may encounter.

1) Our theoretical results still hold if one uses the
slightly different form of the CUSUM statistic Ŵt =

1We would like to emphasize that for the optimum performance, which is
our point of reference for asymptotic optimality, it is not enough to simply
satisfy the false alarm constraint, we need to satisfy it with equality. Otherwise
the performance we compute is clearly not the optimum.

max{W̃t, 0}. We have the following update of the test
statistic for this version

Ŵt = max

{
Ŵt−1 + log

gRt−1(X
Rt−1

t )

fRt−1
(X

Rt−1

t )
, 0

}
(26)

while the sampling policy becomes

Rt =

{
Rt−1 if Ŵt > 0

Rt−1 mod M + 1 if Ŵt = 0,
(27)

As we can see by comparing (13) to (26) in this version
the attractive linearity property no longer holds for Ŵt.

2) The second-order asymptotic optimality property is as-
sured under the assumption that the number M of
processes is fixed. Since our finite-sampling estimates
hold for any given M we can easily deduce that our
proposed scheme can still enjoy first-order asymptot-
ically optimality when M → ∞ provided that the
constants entering in the estimates of the CUSUMs
and the proposed TMSP are uniformly bounded in M
(for example when all processes follow the same pre-
and post-change density) while the number of processes
grows to ∞ as M = o(log γ).

3) A possible extension is to allow sampling of more than
one processes at each time instant. This can be particu-
larly advantageous when the number M of processes is
large or when more than one processes may be affected
(change) simultaneously. The sampling control in (2) can
therefore be relaxed to

1{Rt=1} + · · ·+ 1{Rt=M} = Q, (28)

for all times t = 1, 2, . . . and some integer Q ∈
{1, . . . ,M}. In particular, when Q = M , this corre-
sponds to the full-sampling scenario. We can now extend
the myopic sampling policy to this more general case by
sampling the Q processes corresponding to the Q largest
W̃ i
t values. Unfortunately, analyzing this more general

sampling scheme is not as simple as the case Q = 1 we
already examined. For the analysis we note that we have
now Q SPRTs running in parallel which, unfortunately,
are not synchronized. It is in fact this last observation
that makes the analysis challenging.

4) The previous general case enjoys a considerable sim-
plification when we can have a change in only one
process. A possible solution strategy consists in adopting
a block sampling policy that satisfies the sampling
control requirement (2) as follows: We divide the M
processes into Q blocks, where each block contains
roughly [MQ ] local processes. In each block, we sample
cyclically following the procedure proposed for the case
Q = 1 and we update the statistic of each process as in
(13). We raise a global alarm when any statistic crosses
the upper threshold.
Regarding the analysis, denote by T̃MSP the corre-
sponding block-sampling-based scheme subject to the
sampling control in (28). Then it can be shown that

eA

Q
≤ E∞[T̃MSP] and Di(T̃MSP) ≤ A

Ii0
+ Ui +DM

Q
.

(29)
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Quantity D is the constant already introduced in (19) of
Theorem 1 and it is related to all {fi, gi}, i = 1, . . . ,M .
To satisfy the false-alarm constraint in (5) we select A =
log γ + logQ and this yields

Di(T̃MSP) ≤ log γ

Ii0
+

logQ

Ii0
+ Ui +DM

Q
, (30)

which can ensure second-order asymptotic optimal-
ity when M is fixed. In the case where we allow
M,Q → ∞ it is possible to enjoy first-order asymp-
totic optimality if the following two rates are satisfied:
logQ = o(log γ) and M

Q = o(log γ). The latter is a clear
improvement over the rate M = o(log γ) required when
Q = 1.

5) Under a high-dimensional setting where M � log γ if
multiple processes undergo a change, myopic sampling
policy might turn out to be overly greedy and it might
be necessary to encourage the exploration of processes
that have not been sampled. A possible means to achieve
this (see [2]) is to introduce a compensation coefficient
∆ ≥ 0 to the local processes that are not being sampled.
In other words modify the update in (10) as follows

W̃ i
t =

{
max{W̃ i

t−1, 0}+ ∆, if i 6= Rt−1

max{W̃ i
t−1, 0}+ log

gi(X
i
t)

fi(Xi
t)
, if i = Rt−1,

(31)
which increases the chance of the myopic sampling
policy to select unobserved processes. It is shown in
[2] numerically that a suitable choice of ∆ > 0 can
significantly improve performance, but it is still an
open problem the rigorous theoretical analysis of this
sampling scheme.

V. SIMULATIONS

In this section, we conduct Monte Carlo simulation studies
to corroborate our theoretical results. Assume fi = f ∼
N(0, 1), and gi = g ∼ N(µ, 1). We consider µ = 0.5, 1 and
M = 2, 3, 5 and simulate all six combinations of µ and M
values. In each of these cases, we report the detection delay of
our proposed stopping time TMSP under the sampling control
Q = 1 (blue) and we compare it against the optimum CUSUM
procedure Ti which knows where the change occurs (black)
and TFull which has access to the full data set but does not
know where the change occurs (red).

All competing schemes have either a CUSUM or a
CUSUM-like update consequently we can safely claim that
the worst case scenario for the detection delay is when the
change occurs at τ = 0. Furthermore, regarding our scheme,
we consider the least favorable scenario of the change occuring
in the M th process which is the last to be sampled by our
method. This clearly adds an extra initial delay until our test
rejects the first M−1 processes and starts sampling the correct
process. We compare the detection delay of the three tests as
a function of the average false alarm period. This is achieved
by performing 100, 000 Monte Carlo independent runs for
different values of the threshold A.

From Fig. 1, it is clear that the gap between the three
curves remains bounded for all values of γ (actually the curves

Average False Alarm Period ( =2 andM ¹=0.5)

A
v
er
a
g
e
D
et
ec
ti
on

D
el
ay

Average False Alarm Period ( =2 andM ¹=1)

A
v
er
ag

e
D
et
ec
ti
on

D
el
ay

Average False Alarm Period ( =3 andM ¹=0.5)

A
v
er
a
g
e
D
et
ec
ti
on

D
el
ay

Average False Alarm Period ( =3 andM ¹=1)

A
v
er
ag

e
D
et
ec
ti
on

D
el
ay

Average False Alarm Period ( =5 andM ¹=0.5)

A
v
er
ag
e
D
et
ec
ti
o
n
D
el
a
y

Average False Alarm Period ( =5 andM ¹=1)

A
v
er
ag

e
D
et
ec
ti
on

D
el
ay

Fig. 1. Average detection delay as a function of average false alarm period
for proposed TMSP (blue), full-sampling TFull (red) and optimum CUSUM
TM (black) for M = 2, 3, 5 for detecting a change in the mean of a Gaussian
from 0 to µ > 0. Top figures correspond to µ = 0.5 and bottom to µ = 1.

become parallel suggesting that the gap tends to a constant).
This is consistent with our theoretical result that the proposed
scheme is second-order asymptotically optimum when M is
fixed. We also observe that the gap between the blue and the
black curve increases with M which is again consistent with
the upper bound recorded in (25) in Corollary 1. A similar
phenomenon occurs for TFull but, as we can see, it is far less
pronounced which is of course expected since for this test we
sample all processes simultaneously and therefore there is no
initial delay to start sampling the affected process.

VI. CONCLUSION

Sequential change-point detection with sampling control is
an important and challenging topic with many applications.
In this work we developed a detection strategy based on
the simple idea of myopic sampling. Interestingly with this
simple sampling scheme we are able to establish second-order
asymptotic optimality when the number M of processes is
fixed and first-order when M increases to infinity but at a
proper rate as compared to the false alarm parameter γ.

Future work may include extension to the case where
we have multiple processes that simultaneously undergo a
change and we are allowed to sample more than one processes
simultaneously at each time instant.

APPENDIX

PROOF OF LEMMA 1: Even though the estimates of Lemma 1
are already established elsewhere, for completeness we high-
light the corresponding proofs referencing the original work
where these proofs appear. The reason in doing so is to present
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explicit formulas for the various constants that appear in these
estimates.

Important elements for demonstrating the necessary bounds
constitute the ladder variables, see [14], Chapter VIII.4, de-
fined as

τ i− = inf

{
t > 0 : Sit =

t∑
`=1

log
gi(X

i
`)

fi(Xi
`)
≤ 0

}
,

τ i+ = inf

{
t > 0 : Sit =

t∑
`=1

log
gi(X

i
`)

fi(Xi
`)
> 0

}
.

(32)

We also need to define a third stopping time for A ≥ 0

τ iA = inf

{
t > 0 : Sit =

t∑
`=1

log
gi(X

i
`)

fi(Xi
`)
≥ A

}
. (33)

From classical renewal theory and under Assumptions (A1),
(A2), we have that Ei0[τ i+],E∞[τ i−] are both finite constants
that depend only on {fi, gi}, see [17], Theorem C, p. 748 or
[18]. This is true because the statistic Sit is a random walk with
positive drift Ii0 > 0 under the post-change regime and negative
drift −Ii∞ < 0 under the nominal regime. We also have the
following interesting equalities from [14], Corollary 8.39

Ei0[τ i+] =
1

Pi0(τ i− =∞)
, E∞[τ i−] =

1

P∞(τ i+ =∞)
, (34)

while for τ iA a useful estimate [18], Theorem 1 regarding the
overshoot of the threshold A

Ei0[Siτ i
A
−A] ≤ Ji0

Ii0
, (35)

with the upper bound being constant and valid for all A ≥ 0.
We would like to relate the three stopping times τ i−, τ

i
+, τ

i
A

to the SPRT T i defined in (20). The first observation is that
the SPRT can be written as T i = min{τ i−, τ iA}. Regarding the
sequential hypothesis testing procedure implemented by the
SPRT we have the two error probabilities αi = P∞(SiT i ≥ A)
which is the Type-I error and βi = Pi0(ST i ≤ 0) which is
the Type-II. For τ i− we can immediately conclude that for
i = 1, . . . ,M we have T i = min{τ i−, τ iA} ≤ τ i−. We also
note that the event {SiT i ≤ 0} implies {τ i− < ∞}, namely
that τ i− will also stop. However, it is clear that we can have
the latter event occurring without the former. This suggests for
the Type-II error that βi = Pi0(SiT i ≤ 0) ≤ Pi0(τ i− <∞) and
in combination with (34) we have

1

1− βi
≤ 1

1− Pi0(τ i− <∞)
=

1

Pi0(τ i− =∞)
= Ei0[τ i+].

(36)
Since CUSUM is a repeated SPRT applied to the same

process we have [14]

E∞[Ti(A)] =
E∞[T i]
αi

,

Di

(
Ti(A)

)
= Ei0[Ti(A)] =

Ei0[T i]
1− βi

.

(37)

In (37) we also indicated the well known fact that the worst-
case average detection delay for the classical CUSUM occurs
for τ = 0 when its test statistic is initialized with W i

0 = 0.

Focusing on the average time to false alarm E∞[Ti(A)], to
establish the lower bound in (16) we observe that T i ≥ 1
since we take at least one sample, consequently E∞[T i] ≥ 1.
Furthermore, from the estimates provided by Wald [15] we
know that αi ≤ e−A. Substituting in (37) proves the lower
bound. The upper bound requires more work. From T i ≤ τ i−
we have E∞[T i] ≤ E∞[τ i−] which, as we argued, is bounded.
We now need a lower bound for αi. We can write

αi = P∞(SiT i ≥ A) = Ei0[e−S
i
T i1{Si

T i≥A}]

= e−AEi0[e−(S
i
T i−A)|SiT i ≥ A](1− βi)

≥ e−Ae−E
i
0[S

i
T i−A|Si

T i≥A](1− βi)

= e−A exp

{
−
Ei0[(SiT i −A)1{Si

T i≥A}]

1− βi

}
(1− βi),

(38)

where we used Jensen’s inequality. As mentioned the SPRT
satisfies T i = min{τ i−, τ iA}. From this equality we conclude
that (SiT i −A)1{Si

T i≥A} = (Si
τ i
A
−A)1{τ i

A<τ−} ≤ (Si
τ i
A
−A)

and therefore, using (35), we obtain Ei0[(SiT i−A)1{Si
T i≥A}] ≤

Ei0[Si
τ i
A
−A] ≤ Ji0

Ii0
. Additionally, as we argued above, we have

1 − βi ≥ Pi0(τ i− = ∞) = 1
Ei
0[τ

i
+]

. If we substitute in (38)
we strengthen the inequality and we obtain a lower bound for
αi. Substituting this lower bound in (37) provides the desired
upper bound

E∞[Ti(A)] ≤

(
E∞[τ i−]Ei0[τ i+]e

−Ei
0[τ

i
+]

Ji0
Ii0

)
eA, (39)

and therefore we can define Ci = E∞[τ i−]Ei0[τ i+]e
−Ei

0[τ
i
+]

Ji0
Ii0 .

Consider now the worst-case average detection delay
Di

(
Ti(A)

)
. To find the upper bound in (17), we combine

Corollary 1 from [18] with (36) and obtain

Di

(
Ti(A)

)
= Ei0[Ti(A)] =

Ei0[T i]
1− βi

≤ A

Ii0
+ Ei0[τ i+]

Ji0
Ii0
, (40)

suggesting that Ui = Ei0[τ i+]
Ji0
Ii0

, see also [10] and [16]. To find
an equivalent lower bound we use Wald’s lower bound for the
expectation of the SPRT [15]

Ei0[T i] ≥ 1

Ii0

{
(1− βi) log

1− βi
αi

+ βi log
βi

1− αi

}
, (41)

from which we conclude

Di

(
Ti(A)

)
≥ 1

Ii0

{
log

1− βi
αi

+
βi

1− βi
log

βi
1− αi

}
≥ 1

Ii0

{
log

1

αi
+ log(1− βi) +

βi
1− βi

log βi

}
,

(42)
where the last inequality resulted by removing the nonnegative
term βi

1−βi
log 1

1−αi
. Recall that αi ≤ e−A and βi ≤ 1− 1

Ei
0[τ

i
+]

,
furthermore by taking the derivative we can prove that the
function log(1 − β) + β

1−β log β is decreasing in β ∈ [0, 1],
consequently

Di

(
Ti(A)

)
≥ A

Ii0
− Li (43)
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with Li = 1
Ii0
{log(Ei0[τ i+])+(Ei0[τ i+]−1) log(

Ei
0[τ

i
+]

1−Ei
0[τ

i
+]

)} which

is clearly nonnegative since τ i+ ≥ 1. This concludes the proof
of the lemma. �

PROOF OF THEOREM 1: Let us start by considering the
lower bound for the average false alarm period in (18). As
we mentioned, we intend to to analyze the proposed scheme
TMSP by using (21). The main challenge comes from the fact
that these SPRTs require different time steps. However, due
to the periodic nature of their corresponding distributions it is
possible to come up with interesting formulas. In particular
recalling that with P∞(·),E∞[·] we denote the probability
measure and the corresponding expectation under the pre-
change regime then, using (21) we can write

E∞[TMSP] = E∞

[
k∑
`=1

T`

]

=

∞∑
`=1

E∞[T`]P∞(k ≥ `)

= Ω∞ + ω∞Ω∞ + ω2
∞Ω∞ + · · · = Ω∞

1− ω∞
(44)

where, as in Lemma 1, αi = P∞(ST i ≥ A) denotes the Type-
I error probability of the SPRT T i when applied onto the ith
process as in (20) and where

ω∞ = P∞(k > M) =
M∏
m=1

(1− αm),

Ω∞ =
M∑
j=1

E∞[T i]
j−1∏
m=1

(1− αm),

(45)

with
∏b
a = 1 when a > b. The formulas in (44) and (45) are a

consequence of the fact that the delays T`, ` = 1, 2, . . . of the
SPRTs comprising TMSP in (21), have the same distribution as
the T i, i = 1, . . . ,M defined in (20) with the correspondence
between the two sets of SPRTs being periodic with period M
and of the form ` → i = (` − 1) mod M + 1. Finally, we
must mention that in (44) the most crucial point is the fourth
equality which is true because T` and 1{k≥`} = 1{k>`−1}
are functions of non-overlapping data (the event {k > ` −
1} depends on data used by T1, . . . , T`−1) therefore, due to
independence accros space and time, and the fact that each T`
has no memory of past data we conclude that T` and 1{k≥`}
are independent. As in Lemma 1 we note that T` ≥ 1 and
αi ≤ e−A, therefore (45) implies

ω∞ ≥ (1− e−A)M ,

Ω∞ ≥
M∑
j=1

(1− e−A)j−1

=
(

1− (1− e−A)M
)
eA.

(46)

Using these lower bounds in (44) yields (18) and proves the
desired false alarm estimate. Consider now the second estimate
depicted in (19) for the detection delay. As we mentioned in
Section V, the test statistic we are employing is CUSUM-like,

therefore the worst-case scenario occurs when the change is
at time τ = 0. Furthermore we experience the longest initial
delay in our scheme when the change occurs at ProcessM ,
since then our test has to first go through all the other processes
before sampling the one that has changed. We recall that
PM0 (·) denotes the probability measure induced by the change
occurring at the M th process at time τ = 0 and EM0 [·] the
corresponding expectation. It is then clear that all processes
for i = 1, . . . ,M − 1 are under the nominal regime while
only the last process is under the alternative. Similarly to the
previous case we can write

DM (TMSP) = EM0 [TMSP]

= ΩM + ωMΩM + ω2
MΩM + · · · = ΩM

1− ωM
(47)

where

ωM = PM0 (k > M) = βM

M−1∏
m=1

(1− αm)

ΩM = EM0 [T M ]
M−1∏
m=1

(1− αm) +
M−1∑
j=1

E∞[T j ]
j−1∏
m=1

(1− αm),

(48)

where, as in Lemma 1, βi = Pi0(ST i ≤ 0) denotes the Type-II
error probability. Since 0 ≤ αi, βi ≤ 1, using (47) and (48)
we have the following upper bound

DM (TMSP) ≤ EM0 [T M ]

1− βM
+

1

1− βM

M−1∑
j=1

E∞[T j ]. (49)

In (49), in the first term of the right hand side, we recognize
the detection delay of a CUSUM with threshold A applied
solely to the M th process. For this quantity we have thee
upper bound from (17) of Lemma 1 yielding

DM (TMSP) ≤ A

IM0
+ UM +

1

1− βM

M−1∑
j=1

E∞[T j ]. (50)

As pointed out in Lemma 1, UM is a constant that depends
only on fM and gM and not on A.

Since the change may occur at any process we can write
similar estimates for any Process i, specifically

Di(TMSP) ≤ A

Ii0
+ Ui +

1

1− βi

M∑
j=1,j 6=i

E∞[T j ]. (51)

To bound the M − 1 terms in the sum in (51) we need
to bound βi and E∞[T i] which can be accomplished by
employing the ladder variables defined in (32). Combining
(51) and (36) we can write

Di(TMSP) ≤ A

Ii0
+ Ui + Ei0[τ i+]

M∑
j=1,j 6=i

E∞[τ j−]. (52)

Since, as we argued in the proof of Lemma 1, both averages
Ei0[τ i+],E∞[τ i−] are finite under (A1), (A2), if we define

D =

(
max

1≤i≤M
Ei0[τ i+]

)(
max

1≤i≤M
E∞[τ i−]

)
(53)

and use it to strengthen the inequality in (52) we obtain (19).
This completes the proof. �
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