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Abstract—The multi-stream quickest detection problem with
unknown post-change parameters is studied under the sampling
control constraint, where there are M local processes in a system
but one is only able to take observations from one of these M local
processes at each time instant. The objective is to raise a correct
alarm as quickly as possible once the change occurs subject to
both false alarm and sampling control constraints. We propose
an efficient myopic-sampling-based quickest detection algorithm
under sampling control constraint, and show it is asymptotically
optimal in the sense of minimizing the detection delay under our
context when the number M of processes is fixed. Simulation
studies are conducted to validate our theoretical results.

Index Terms—Asymptotic optimality, change-point detection,
quickest detection, sampling control.

I. INTRODUCTION

The quickest detection problem has a wide range of real-
world applications ranging from quality control in manufac-
turing to environmental monitoring to biosurveillance, see
Tartakovsky, Nikiforov, and Basseville [1]. When one monitors
observations from M = 1 single local process whose distribu-
tion might change at some unknown time τ, this is the classical
quickest detection problem and has been studied extensively
in the past fifty years. In recent years, research of monitoring
M ≥ 2 local processes receives extensive attentions, e.g., Mei
[2], Xie and Siegmund [3], and Chan [4].

In this paper, we investigate the quickest detection problem
when monitoring M ≥ 2 local processes, but with a new twist
of the sampling control constraint where we are able to observe
only one of these M local processes at each time instant.
To be more concrete, under our setup, there are M possible
local processes whose pre-change distributions are known.
At some unknown time τ, the distribution of exactly one of
these M local processes changes to an unknown post-change
distribution which is assumed to belong to a general family
of class of distributions. However, due to the communication
or resource constraints, we are only able to take observations
from exactly one of these M processes at each time instant.
Our objective is how to take observations adaptively from
these M local processes and how to use the observed data to
raise a correct alarm as quickly as possible once the change
occurs subject to both the false alarm and sampling control
constraints.

This problem was first investigated in Shiryaev [5] which
was motivated from signal/target detection when the radar
sensor can only monitor one out of M directions at a time.

Recently it was re-visited by Xu, Mei and Moustakides [6],
[7] for asymptotic minimax optimality theories, and also
extended to Gauss-Markov random fields by Heydari, Tajer
and Poor [8]. All these research assume that the post-change
distribution is completely specified, and here we assume that
the post-change distribution includes unknown parameters.
Meanwhile, when the sampling control is over the time do-
main, an efficient-data-sampling quickest detection technique
is developed in Banerjee and Veeravalli [9] when monitoring
a single local process. When the objective is to test hypothesis
or optimize regrets, extensive research has been done in the
literature of sequential hypothesis testing and multi-armed
bandit problems, and many efficient sampling control algo-
rithms have been developed. For a limited list of references,
see Chernoff [10], Tsopelakos, Fellouris, and Veeravalli [11],
Lai and Robbins [12], Nitinawarat, Atia and Veeravalli [13],
Naghshvar and Javidi [14].

The main contribution of this paper is to propose an efficient
myopic-sampling-based quickest detection algorithm under
the sampling control constraint, and show that our proposed
algorithm is asymptotically optimal when the number M of
processes is fixed and the average run length to false alarm
constraint γ goes to ∞. Our main idea is to explore each
local process extensively to decide whether or not there is a
local change, and then switch to new processes only when
we are confident that the existing process does not involve
any local change. Even with the sampling rate of 1/M at
each time instant, our proposed algorithm is shown to have
the same first-order detection delay performance as the oracle
CUSUM procedure when the dimension M << log γ as the
average run length to false-alarm constraint γ goes to ∞,
but its performance degraded noticeably when the dimension
M becomes larger. It remains an open problem to develop
asymptotically optimal theories for high-dimensional streams
under the sampling control.

The remainder of the paper is organized as follows. In
Section II, we state the mathematical formulation of our
problem and review some existing methods. In Section III,
we present our proposed algorithm and provide its theoretical
properties. Numerical simulations are presented in Section
IV to illustrate the performance properties of our proposed
algorithm. The technical proofs are presented in the Appendix.



II. PROBLEM FORMULATION AND METHODS REVIEW

In the multi-stream quickest detection problem, suppose
there are M statistically independent lcoal processes in a
system, and denote with Xi

t the observation from the i-th
process at time t, where i = 1, . . . ,M and t = 1, 2, . . . .
Let fθ(x) be the density function of the normal distribution
N(θ, σ2) with mean θ and known variance σ2. Initially, the
system is in the in-control state and the data stream {Xi

t}
from the i-th process produces i.i.d. samples following the
density fθi(X) with known mean θi. At some unknown time
τ , a triggering event occurs to the system and one of its M
processes, say, the i-th, changes to i.i.d. samples following a
new unknown density fφi(X), i.e., with a new unknown mean
φi. Specifically, if the i-th data stream is affected, then

Xi
t ∼

{
fθi(X), if t ≤ τ
fφi(X), if t > τ,

(1)

whereas Xj
t ∼ fθj (X) for j 6= i and all t > 0. Here we

consider in detail the one-sided change-point problem where
it is assumed that φi > θi for all i = 1, · · · ,M .

Let us now discuss the sampling control constraints. To
be mathematically rigorous, define a sequence of sampling
indices {Rt} with Rt ∈ {1, . . . ,M}, where Rt is a random
variable and {Rt = m} means that we will sample the m-
th local process at the time instant t. Under our sampling
constraint, we are allowed to access only one of these M
local process at each time t, and this can be expressed as

1{Rt=1}+ · · ·+1{Rt=M} = 1 for all times t = 1, 2, . . . , (2)

where 1A denotes the indicator function of the event A.
Thus in the multi-stream quickest detection problem under

sampling control, an algorithm consists two elements: one is
the sampling policies, e.g., choose {Rt} for all time instants
t subject to (2), and the other is the decision policy that is
defined as the stopping time T with respect to the observed
data sequence {Xi=Rt

t }t≥1. Note that the sampling decision
Rt depends only on those observed data up to time t− 1, and
the stopping time {T = t} means that we raise an alarm at
time t.

Following the classical minimax formulation for quickest
detection proposed by Lorden [15], we are interested in finding
a procedure ({Rt}t=1,··· ,∞,T) that minimizes the worst-case
detection delay

Di(T) = sup
t≥0

ess sup Eit[T− t|F i
t ,T > t]. (3)

for any i = 1, 2, · · · ,M when the i-th process is affected by
the change, subject to the average run length to false-alarm
constraint

E∞[T] ≥ γ > 1. (4)

Here Pit(·),Eit[·] denote the probability measure and the cor-
responding expectation induced by the change occuring at
the i-th process at time τ = t and P∞(·),E∞[·] denote
the probability measure and the corresponding expectation
induced by the change occuring at ∞. In addition, F i

t is the

σ-algebra generated by observed data/information on the i-th
process up to time t.

Let us now review some existing research that is related
to our problem and proposed algorithm. Under the simplest
scenario where we had the prior knowledge on the index of
i where change occurs to and the full information of post-
change distribution fφi , it is natural to always sample the i-th
process, i.e., Rt ≡ i for all t, and the corresponding optimal
procedure will be the well-known CUSUM procedure:

Toracle(A) = inf{t > 0 :W i
t ≥ A} (5)

where W i
t is the CUSUM statistics recursively defined as

W i
t = max{W i−1

t , 0}+ log
fφi(X

i
t)

fθi(X
i
t)

for t ≥ 1 (6)

and W i
0 = 0, see Moustakides [16]. Here we use Toracle

to emphasize that this CUSUM procedure makes an oracle
assumption of known affected local process and known post-
change distribution.

Note that it is highly non-trivial to develop an efficient
algorithm under our setup due to two challenges: the first is
that the post-change distributions are unknown. This challenge
has been addressed in Lorden and Pollak [17] when monitoring
M = 1 local process. Their idea is to estimate the post-
change parameter by the average of recent observations after
the candidate change-point, and update the local statistics as
in the classical CUSUM statistic in (6). To be more specific,
when monitoring the i-th local process, the estimator θ̂t,i for
the i-th process at time instant t can be defined as

θ̂t,i = max(θl,i,

∑t−1
n=g(t)X

i
n

t− g(t)
), (7)

where θl,i is the lower bound of the post-change parameter
and g(t) ≥ 0 is the candidate change-point that is defined as
the last time up to time t when local CUSUM-type statistics
are zero. The local statistics W̃ i

t can then be defined as in
the recursion (6) with φi = θ̂it, which yields to Lorden and
Pollak’s procedure

TLP(A) = inf{t > 0 : W̃ i
t ≥ A}. (8)

The second challenge is that the index of i of affected local
process is unknown, and thus it is unclear how to choose
sampling indices {Rt} suitably so as to detect the change
quickly. A naive sampling idea is to sample each local process
periodically, i.e., Rt = t modM + 1 for all time instants
t = 1, 2, · · · , and each process is visited only once during
each M time instants. Combing this naive sampling policy
with Lorden and Pollak’s procedure in (8) yields the following
quickest detection algorithm:

Tnaive(A) = inf{t > 0 : max{W̃ 1
t , · · · , W̃M

t } > A} (9)

where W̃ i
t (i = 1, · · · ,M) is only updated when Rt = i. In

the sequel we will refer (9) as the naive algorithm with the
naive periodic sampling policy.



Clearly, the naive algorithm in (9) seems to be inefficient,
as it might spend too much time on those M − 1 unaffected
processes. To the best of our knowledge, no efficient algo-
rithms have been developed in the quickest detection literature
to simultaneously address these two challenges of unknown
post-change distribution and unknown index of affected local
process.

III. OUR PROPOSED ALGORITHM

In this section we present an efficient quickest detection
algorithm under the sampling control constraint (2). Our key
idea is based on a myopic sampling policy where we continue
to sample a process until we are confident to make one of the
following two decisions: either a change has occurred or no
changes have occurred. For better presentation, we split this
section into two subsections. In Section III-A, we propose
our algorithm including both the myopic sampling policy and
the stopping time TMSP. In Section III-B we investigate the
theoretical properties of our proposed algorithm TMSP.

A. Algorithm Development

There are three essential components in our proposed algo-
rithm: (i) how to construct and update local statistics for all
local processes including the process not being sampled; (ii)
how to decide which local process to be sampled based on
these local statistics, and (iii) when to raise a global alarm.

At the high level, our proposed algorithm exploits the
prior knowledge that there is only one process affected by
the change, and adopts the myopic sampling policy that
samples the local process with the maximum local statistics.
By choosing local statistics as those in Lorden and Pollak’s
procedure (8), the myopic sampling policy implies that we
sample each process until we are confident to decide whether
a change has occurred or not. If there is a local change, then
we stop and raise a global alarm. If there are no local changes,
then we switch to sample the next local process. We repeat
these steps until we raise a global alarm.

Let us now define our proposed algorithm under the sam-
pling control constraint (2). We start with the construction and
update of local statistics W̃ i

t . There are two cases, depending
on whether a local process is sampled or not. If a local process
is not sampled, then we update W̃ i

t as max{W̃ i
t−1, 0}. If a

local process is sampled, then we update W̃ i
t as in Lorden

and Pollak’s procedure (8). To be more specific, let θ̂t,i be the
estimate of the post-change parameter for the i-th process at
time t, which will be defined in a little bit later, and the local
statistics W̃ i

t can be defined recursively as

W̃ i
t = max{W̃ i

t−1, 0}+ 1{i=Rt} log
fθ̂t,i(X

i
t)

fθi(X
i
t)

=

 max{W̃ i
t−1, 0}, if i 6= Rt

max{W̃ i
t−1, 0}+ log

fθ̂t,i
(Xit)

fθi (X
i
t)
, if i = Rt,

(10)

with the initial values W̃ i
0 = 0 for all i = 1, · · · ,M .

Our proposed stopping time TMSP is then defined as

TMSP(A) = inf

{
t > 0 : max

1≤i≤M
W̃ i
t ≥ A

}
, (11)

for some pre-specified constant A.
As for the post-change parameter estimators θt,i, by (10),

we only need to pay attention to the sampled local process and
thus adopt the same idea as in Lorden and Pollak’s procedure
(8). To be more concrete, at time instant t, assume that we
sample at the i-th process, and denote by M(t) the total time
instants in which we have consecutively sampled at the i-th
process. In other words, we observed data from the i-th process
during the time period of t−M(t)+1 to t. Here we propose to
estimate the post-change parameter based on the observed data
from the i-th process during the time period of t−M(t) + 1
to t− 1, as we save the data at the time instant t for quickest
detection, not for parameter estimation. Mathematically, we
can define the estimator θ̂t,i based on the method of moments
(MOM) estimator of the distribution in (1):

θ̂t,i = max
{
θl,i,

∑t−1
j=t−M(t)+1X

i
j

M(t)− 1

}
(12)

with 0/0=−∞. Here θl,i is the lower bound of the post-change
parameter.

It remains to define the sampling policies {Rt}. At the high
level, the sampling policy {Rt} at time instant t can be defined
by the local statistics W̃ i

t−1 at time instant t − 1, which in
turn depends on the sampling policy {Rt−1} at time instant
t−1. Here our proposed algorithm keeps sampling on Process
i as long as the local statistics W̃ i

t > 0 and switches to the
next process when W̃ i

t ≤ 0. Mathematically, in our proposed
algorithm, the sampling policy {Rt} at time instant t can be
defined by the local statistics W̃ i

t−1 at time instant t− 1:

Rt =

{
Rt−1 if W̃Rt−1

t−1 > 0

Rt−1 modM + 1 if W̃Rt−1

t−1 ≤ 0.
(13)

with initial values R0 = 1.
In summary, our proposed algorithm can be summarized as

follows:
Step 1: Sample Process 1 until W̃ 1

t /∈ (0, A). If W̃ 1
t ≥ A,

we stop sampling and raise a global alarm; otherwise if W̃ 1
t ≤

0, we switch to sampling Process 2.
Step 2: Sample Process 2 until W̃ 2

t /∈ (0, A). If W̃ 2
t ≥ A,

we stop sampling and raise a global alarm; otherwise if W̃ 2
t ≤

0, we switch to sampling Process 3.
...
Step M : Sample ProcessM until W̃M

t /∈ (0, A). If W̃M
t ≥

A, we stop sampling and raise a global alarm; otherwise if
W̃M
t ≤ 0, we switch to sampling Process 1.
Step M + 1: Go back to Step 1.

B. Theoretical Properties

In this subsection, we will investigate the theoretical prop-
erties of our proposed algorithm TMSP in (11). First, we need



to make necessary assumptions. As in Lorden and Pollak
[17], we assume that the post-change parameter φi and the
pre-change parameter θi is separable by the cutoff value
θl,i(i = 1, · · · ,M), i.e., θi < θl,i < φi. for all i = 1, · · · ,M .
Moreover, we assume that Kullback-Leibler information num-
bers are positive and finite for all i = 1, · · · ,M :

I(θi, φi) =

∫
log

fθi(X)

fφi(X)
fθi(X)dX ∈ (0,∞),

I(φi, θi) =

∫
log

fφi(X)

fθi(X)
fφi(X)dX ∈ (0,∞). (14)

For normal distributions, both Kullback-Leibler information
numbers are the same and become (θi−φi)2/(2σ2). Here we
adopt general notations, as we feel our results below hold for
more general distributions.

Now we are ready to present the theoretical properties of
our proposed algorithm TMSP in (11). The main results are
summarized in the following theorem and its corollary, whose
high-level proofs are presented in the appendix.

Theorem 1 For our proposed algorithm TMSP in (11), we
have

E∞[TMSP] ≥ eA. (15)

Moreover, its detection delay satisfies

Di(TMSP) ≤
A

I(φi, θi)
+ C0 logA+ C1(M − 1) (16)

as A→∞ for any i ∈ 1, · · · ,M . Here C0, C1 are constants
depending only on the distributions, not on A and M..

Corollary 1 Let A = log γ, then our proposed algorithm
TMSP(A) in (11) satisfies both the false alarm constraint in
(4) and the sampling control constraint in (2). Moreover, for
each i = 1, . . . ,M , its detection delay satisfies

0 ≤ Di

(
TMSP

)
−Dorc

i ≤ C0 log log γ + C2M (17)

where Dorc
i is the oracle detection delay achieved by the

classical CUSUM procedure for monitoring a change in distri-
bution of the i-th process subject to the false alarm constraint
in (4):

Dorc
i =

log γ

I(φi, θi)
+ C3 (18)

and the parameters C2, and C3 are constants depending only
on the distributions, not on γ and M.

It is useful to add some remarks. Note that relationship (17)
holds for every M and γ. On one hand, our proposed algorithm
TMSP has the same detection delay of the oracle or CUSUM
procedure up to O(log log γ) when M is fixed as γ →∞, or
when M = O(log log γ). On the other hand when M is large
but γ is moderately large, the additional term C0 log log γ +
C2M can be comparable to or even larger than Dorc

i , and thus
the performance of our proposed algorithm will be much worse
than the oracle or CUSUM procedure. This is not surprising
for high-dimensional setting, as the sampling control in (2) is
too restrictive for large M and we should not be able to detect
the change quickly if we only sample one out of M processes

TABLE I
Comparison of Detection Delay of Tnaive and TMSP

γ = 50000 M = 2 M = 10
µ Oracle Naive TMSP Naive TMSP

0.5 61.87 144.01 90.56 701.23 234.10
0.75 29.62 64.13 39.07 308.52 100.06
1.0 17.20 36.45 22.65 174.67 60.85
1.25 11.35 23.40 15.46 112.12 43.33
1.5 7.93 16.60 11.21 80.28 35.03

at each time instant. In other contexts, we can evaluate the
constants C0, C1 and C2 to see the effects of the dimension
M on the performance of our proposed algorithm, also see
Wang and Mei [18] for similar contexts. It remains an open
problem to develop a general asymptotic optimality theory for
high-dimensional streams under the sampling control.

IV. SIMULATION

In this section, we conduct Monte Carlo simulations to
demonstrate the performance properties of our proposed al-
gorithm TMSP in (11). In our simulation, we consider two
choices on the number M of processes: M = 2 or M = 10.
For each choice of M processes, we consider the mean shift in
normal distribution from N(0, 1) to N(µ, 1) with µ ≥ 0.5. Due
to the page constraints, here we only present the homogeneous
setting (i.e., fθi ≡ f and fφi ≡ g for all i = 1, · · · ,M ).

In each case, we set the false alarm constraint γ = 50, 000.
For our proposed algorithm TMSP(A) and the naive method
Tnaive(A) in (9), we first use the bisection method to find
suitable threshold A to attain the false alarm constraint, and
then simulate the worst-case detection delay under different
post-change scenarios where the change occurs to the M -th
process (as our algorithm start to sample at the first process).

Tables I report the detection delay of our proposed algorithm
TMSP and the naive method Tnaive in (9). In addition, we also
report the oracle detection delay of the CUSUM procedure in
(5). All numerical results are based on 50, 000 Monte Carlo
runs. From the tables, it is clear that our proposed algorithm
TMSP is much better than the naive method Tbase and can
reduce the detection delay by at least 25% when M = 2
and 50% when M = 10. In other words, as compared to the
naive periodic sampling, our proposed myopic sampling policy
can lead to a significantly improvement on the detection delay
performance.

Moreover, our results also shows that as the dimension M
increases from M = 2 to M = 10, the detection delays of both
our proposed algorithm TMSP and the naive method Tnaive in
(9) increase significantly. We conjecture that the oracle bound
of the CUSUM procedure is unattainable for high-dimensional
monitoring under the sampling control, but we are unable to
provide a rigorous proof.

APPENDIX

In this Appendix, we only provide a high-level sketch
of the proof for Theorem 1, as the proof of the corollary
follows directly from Theorem 1 and the optimality property



of the classical CUSUM procedure is in (5). Without lost of
generality, we assume the variance σ2 = 1.

The main idea in the proof is to present an equivalent
definition of our proposed algorithm TMSP by the sequential
probability ratio tests (SPRTs) and their extensions. For each
process i(i = 1, · · · ,M), we define sequential tests T i:

T i = inf

t > 0 :
t∑

j=1

log
fθ̂j,i(X

i
j)

fθi(X
i
j)
6∈ (0, A)

 (19)

Then our proposed algorithm TMSP can be written as the sum
of k independent sequential tests, where k is the first time the
sequential test being tested crosses the upper boundary A:

TMSP = T1 + · · ·+ Tk, (20)

Due to the periodic nature of TMSP, it is easy to verify that
Tl follows the same distribution with T i where i = (l − 1)
mod M + 1. The theoretical properties of TMSP can then be
analyzed by considering the corresponding sequential tests.

Due to the page limit, below we focus on the proof of
detection delay relationship (16). Without loss of generality,
we assume the change occurs to the M -th process at time
τ = 0, since our test needs to go through all other M − 1
processes before sampling the one that has changed. Hence,
it suffices to show that DM (TMSP) = EM0 [TMSP] satisfies
relationship (16).

Based on the periodic nature of our proposed algorithm, by
(20), we have

DM [TMSP(A)] = EM0

[
k∑
`=1

T`

]
=

∞∑
`=1

EM0 [T`]PM0 (k ≥ `)

= ΩM + ωMΩM + ω2
MΩM + · · ·

=
ΩM

1− ωM
,

where

ωM = βM

M−1∏
i=1

(1− αi)

ΩM = EM0 [T 1] + EM0 [T 2](1− α1) + · · ·+

+EM0 [T M ]
M−1∏
i=1

(1− αi)

where βM denotes the type-II error probability of the sequen-
tial test T M and αi denotes the type-I error probability of the
sequential test T i(i = 1, · · · ,M − 1). Since 0 ≤ αi, βi ≤ 1,
we have the following upper bound

DM (TMSP(A)) ≤
EM0 [T M ]

1− βM
+

1

1− βM

M−1∑
i=1

E∞[T i]. (21)

Since the M -th process is the only local process that is
affected by the change and the remaining M − 1 process that
are unaffected, we need to investigate two terms on the right-
hand sides of (21) separately. Let us first consider the easier

one, which is related to the unaffected M − 1 processes. A
key step is to introduce the following “ladder variables" for
i = 1, · · · ,M ,

τ i− = inf

t > 0 : Sit =
t∑

j=1

log
fθ̂j,i(X

i
j)

fθi(X
i
j)
≤ 0

 . (22)

Then the standard arguments on sequential tests shows that

1− βM ≥ PM0 (τM− =∞) > 0
E∞[T i] ≤ E∞[τ i−] < +∞,

which provide the upper bound on the detection delays of the
second term on the right-hand sides of (21).

It is slightly more difficult to investigate the first term on
the right-hand sides of (21), which is the detection delay
of T M for the M -th process: while its form is similar to
the classical SPRT, it updates the (post-change) parameter
recursively, and thus it cannot be written as the sum of i.i.d.
under the probability measure PM0 . Nevertheless, we can use
the SPRT to derive its properties by comparing the estimated
(post-change) parameter with the true post-change parameter.

To be more specific, for T M , by Wald’s equation, we have

EM0 [T M ] =
EM0 [

∑TM
t=1 (φM − θM )XM

t − (φ2M − θ2M )/2)]

I(φM , θM )

=
EM0 [SMTM ]

I(φM , θM )
+

EM0 [
∑TM
t=1 (φM − θ̂t,M )XM

t ]

I(φM , θM )

+
EM0 [

∑TM
t=1 (θ̂

2
t,M − φ2M )/2]

I(φM , θM )
= D1 +D2 +D3

where SMTM is the log-likelihood Sit in (19) with i = M and
t = T M .

It remains to investigate the terms D1, D2, D3 in the above
relationship. Since they are based on the sequential tests, a
tedious but standard overshoot analysis shows that

D1 ≤ (1− βM )(A+ C4)

I(φM , θM )
,

D2 +D3 ≤ (1− βM )C5 logA

I(φM , θM )

Combing the results above, it follows that

DM (TMSP(A)) ≤ A+ C4

I(φM , θM )
+

C5 logA

I(φM , θM )

+

∑M−1
i=1 E∞[τ i−]

PM0 (τM− =∞)

≤ A

I(φM , θM )
+ C0 logA+ C1(M − 1)

where C0 = C5

I(φM ,θM ) and C1 =
max

i=1,··· ,M−1
E∞[τ i−]

PM0 (τM− =∞)
+

C4

I(φM ,θM ) .
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