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ABSTRACT
Process monitoring of multivariate quality attributes is important in many indus-
trial applications, in which rich historical data are often available thanks to modern
sensing technologies. While multivariate statistical process control (SPC) has been
receiving increasing attention, existing methods are often inadequate as they are
sensitive to the parametric model assumptions of multivariate data. In this paper,
we propose a novel, nonparametric k-nearest neighbors empirical cumulative sum
(KNN-ECUSUM) control chart that is a machine-learning-based black-box control
chart for monitoring multivariate data by utilizing extensive historical data under
both in-control and out-of-control scenarios. Our proposed method utilizes the k-
nearest neighbors (KNN) algorithm for dimension reduction to transform multivari-
ate data into univariate data, and then applies the CUSUM procedure to monitor
the change on the empirical distribution of the transformed univariate data. Exten-
sive simulation studies and a real industrial example based on a disk monitoring
system demonstrate the robustness and effectiveness of our proposed method.

KEYWORDS
Multivariate statistical process control; KNN algorithm; machine learning;
categorical variable; CUSUM; empirical probability mass function

1. Introduction

Due to the rapid development of sensing technologies, modern industrial processes are
generating large amounts of real-time measurements taken by many different kinds of
sensors to reflect system status. For instance, in chemical factories, the boiler temper-
ature, air pressure and chemical action time are all recorded in real time during the
boiler heating process. For the purpose of quality control, it is important to take ad-
vantage of these real-time multivariate measurements and develop efficient statistical
methods that can detect undesired events as quickly as possible before the catastrophic
failure of the system.

The early detection of undesired events has been investigated in the subfield of
statistical process control (SPC), and the corresponding statistical methods are of-
ten referred to as control charts. In general, a control chart computes a real-valued
monitoring statistic at each time step, and raises an alarm whenever this monitoring
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statistic exceeds a pre-specified control limit. In the SPC framework, the performance
of a control chart is often measured by two kinds of average run lengths (ARLs): one
is in-control (IC) ARL, and the other is out-of-control (OC) ARL. Here the IC and
OC ARLs are defined as the average amount of time steps (or the average number of
observations) from the start of monitoring to the first alarm, respectively, when the
system is IC or OC. For a given IC ARL, a control chart with a smaller OC ARL will
be able to monitor processes more efficiently.

In the context of monitoring multivariate data, many control charts have been devel-
oped in the literature under certain assumptions on the data distributions, see Lowry
and Montgomery (1995), Lu et al. (1998) and Woodall and Montgomery (2014) for
excellent literature reviews. To be more specific, there are two families of multivariate
control charts. The first one is parametric, e.g., under the assumption that the data
are multivariate normally distributed. These include the multivariate cumulative sum
(MCUSUM, Woodall and Ncube 1985; Crosier 1988), the multivariate exponentially
weighted moving average (MEWMA, Lowry et al. 1992), the regression-adjusted con-
trol chart (Hawkins 1991) and charts based on variable selection (Zou and Qiu 2009;
Wang and Jiang 2009). The second family is nonparametric or model-free control
chart that often makes a less restrictive assumption on the data distribution, e.g., the
data distribution is unimodal or symmetric under the null, see Chakraborti, Van, and
Bakir (2001) and Qiu (2018) for reviews. A selective list of references include Sun and
Tsung (2003), Hwang, Runger, and Tuv (2007), Camci, Chinnam, and Ellis (2008),
Qiu (2008), Sukchotrat, Kim, and Tsung (2010), Ning and Tsung (2012), Zou, Wang,
and Tsung (2012), and Li et al. (2017). In particular, for simplicity and comparison
purpose, the multivariate sign exponentially weighted moving average (MSEWMA)
control chart proposed by Zou and Tsung (2011) will be chosen as the baseline method
in our paper.

In this paper, we develop a nonparametric or distribution-free control chart for mon-
itoring multivariate data. Our approach is different from the existing nonparametric
SPC methods in the sense that we adopt a machine-learning-type black-box approach
for monitoring. Instead of making any model assumptions, we assume that rich his-
torical in-control (IC) and out-of-control (OC) data are available. Such assumption on
data is reasonable in many modern processes thanks to the development of modern
sensing technology. A concrete motivating example of our paper is the hard disk drive
monitoring system (HDDMS), a computerized system that records various attributes
related to disk failure and provides early warnings of disk degradation. In such an
application, both IC and OC data are available in the historical dataset, and the chal-
lenge is how to take full advantage of these historical IC and OC data for effective
online monitoring. In the traditional SPC, or more generally, statistical, literature,
extensive data are often used to build multivariate models, which are then used for
monitoring. Here we propose to bypass the model of the original multivariate data,
and develop the control charts directly based on the historical data themselves through
machine-learning techniques.

To be more specific, our proposed method applies the k-nearest neighbors (KNN)
algorithm for dimension reduction to convert original multivariate data into one-
dimensional categorical random variables, as monitoring univariate data is well studied
in the SPC literature. For simplicity, here we use the CUSUM procedure to monitor
the transformed one-dimensional categorical variables based on the estimated empir-
ical probability mass function (p.m.f.) under both IC and OC states, although many
other control charts can also be combined with our proposed KNN-based dimension
reduction.

2



Our proposed monitoring scheme has the following advantages: (i) it is robust, data-
driven and thus can be easily adapted to monitor any multivariate or high-dimensional
data; (ii) it takes full advantage of historical IC and OC data and holds desirable
performance; (iii) it is statistically appealing since it is based on the empirical p.m.f.
of the derived one-dimensional categorical variable; (iv) it is easy to interpret if one
treats our key idea of KNN learning as dimension reduction. This opens a new research
direction when monitoring high-dimensional data in the SPC literature by adopting
modern machine learning techniques as a dimension reduction tool combined with
existing multivariate or univariate control charts.

The remainder of this paper is organized as follows. The problem of monitoring
multivariate data is stated in Section 2, and our proposed KNN-based control chart is
presented in Section 3. Extensive simulation studies are reported in Section 4, and the
case study involving the HDDMS data is presented in Section 5. Several concluding
remarks are made in Section 6, and some of the technical or mathematical details are
provided in the appendix.

2. Problem Description and Literature Review

Following the standard SPC literature, we monitor a sequence of p-dimensional random
vectors {x1,x2, ...,xi, ...} over time from some process. Initially the process is in the
IC state, and the cumulative distribution function (c.d.f.) of the xi is F (x; θ0) for some
IC parameter θ0. At some unknown time point τ, the process is OC in the sense that
the xis have another c.d.f. F (x; θ1) for some OC parameter θ1. In other words, the
distributions of multivariate data xi can be described by the following change-point
model:

xi ∼
{
F (x; θ0) for i = 1, . . . , τ
F (x; θ1) for i = τ + 1, . . .

(1)

Here we assume that the data xis are independent over time, but the p components
within a given data can be cross-correlated. That is, in terms of spatial-temporal data
analysis, we assume that data are correlated over the spatial domain, and independent
over the time domain. In practice, the temporal independence assumption might not
be as restrictive as one might think, since one can monitor independent residuals from
some time series model that de-correlates the temporal correlation.

When monitoring the multivariate data xi, our goal is to raise an alarm as soon as
possible after the process changes from the IC state to the OC state at time τ . This
can be formulated as testing the simple null hypothesis H0 : τ = ∞ (i.e., no change)
against the composite alternative hypothesis H1 : τ = 1, 2, · · · (i.e., a change occurs at
some finite time), but with the twist that we must test these hypotheses at each time
point until we feel we have enough evidence to reject the null hypothesis and declare
that a change has occurred. To be more specific, a control chart raises an OC alarm
at time point T based on the first T observations, and the expectation, E(T ) is often
referred as the IC or OC average run length (ARL), depending on whether the process
is in the IC or OC state. One would like to develop a control chart that minimizes the
OC ARL, Eoc(T ), subject to the following false alarm constraint under the IC state:

Eic(T ) ≥ γ. (2)
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where γ > 0 is a pre-specified constant. In other words, the control chart is required
to process at least γ observations on average before raising a false alarm when all
observations are IC.

This problem is well studied in cases when the distributions of xi under the IC
and OC states are fully specified, and one classical method is the CUSUM procedure
developed by Page (1954). To define the CUSUM procedure, denote by gic(·) and
goc(·) the probability density functions (p.d.f.s) of the xi under the IC and OC states,
respectively. Next, define the CUSUM statistic recursively over time t as

Wt = max{Wt−1 + log
goc(xt)

gic(xt)
, 0}, t = 1, 2, · · · , (3)

where W0 = 0. Then the CUSUM procedure raises an alarm at the first time point
t whenever the CUSUM statistic Wt ≥ L, where the pre-specified threshold L > 0
is chosen to satisfy the IC ARL constraint in (2). It is well known that the CUSUM
statistic Wt is actually the logarithm of the generalized likelihood ratio statistic of
all observations up to time point t, {x1, · · · ,xt}, and the CUSUM procedure enjoys
certain exactly optimal properties (Moustakides 1986). Unfortunately the CUSUM
procedure requires complete information of the IC and OC p.d.f.s, gic(·) and goc(·), and
thus it may not be feasible in practice when it is nontrivial to model the distributions
of multivariate data.

As mentioned in the introduction, nonparametric control charts have been devel-
oped in the SPC literature. For instance, Qiu and Hawkins (2003) proposed a non-
parametric CUSUM chart using the anti-ranks of observations. Boone and Chakraborti
(2012) proposed two multivariate Shewhart charts based on componentwise signs and
Wilcoxon signed-rank sums. Zou and Tsung (2011) and Zou, Wang, and Tsung (2012)
separately adapted the multivariate spatial sign and rank (cf., Oja 2010) to construct
multivariate nonparametric EWMA control chart. Holland and Hawkins (2014) pro-
posed a change-point detection chart based on spatial rank. Li et al. (2017) further
integrated the multivariate spatial rank with forward variable section for detecting
sparse mean shifts. More detailed literature reviews can be found in Qiu (2018).

For the purpose of illustration and comparison, we chose the baseline method as the
multivariate sign exponentially weighted moving average (MSEWMA) control chart
proposed by Zou and Tsung (2011). The MSEWMA chart is based on the multivariate
sign test. The observed p-dimensional multivariate vector xi is first transformed:

vi =
A0(xi − θ0)

||A0(xi − θ0)||
, (4)

where θ0 is the affine equivariant multivariate median proposed by Hettmansperger
and Randles (2002) and A0 is the associated transformation matrix. The two parame-
ters {θ0,A0} in vi are estimated from the IC dataset, and || · || denotes the Euclidean
norm. Next, it monitors the transformed vectors vi’s by the exponentially weighted
moving average (EWMA) control chart with the monitoring statistics

ωi = (1− λ)ωi−1 + λvi and Qi =
2− λ
λ

pω′iωi. (5)

Finally, an OC alarm is raised whenever Qi exceeds some pre-specified control limit.
Clearly, the MSEWMA chart, or in fact many other nonparametric control charts,

4



only utilize the historical IC dataset, and raise an OC alarm whenever the observed
data do not follow the IC patterns. By doing so, the benefit is to be able to detect
any general OC patterns. However, the disadvantage is also obvious: much statistical
efficiency will be lost when one is interested in detecting specific OC patterns that are
similar to the historical ones.

In this article, we do not make any parametric assumptions on the c.d.f.s or p.d.f.s
of the multivariate data xi under the IC or OC states. Instead we assume that two his-
torical datasets are available: one is an IC dataset, denoted by XIC = {xic1,xic2, ...},
and the other is an OC dataset denoted by XOC = {xoc1,xoc2, ...}. When monitoring
the online observation xi, we are interested in detecting those OC patterns that are
similar to the historical OC patterns. Our task is to utilize these historical IC and
OC datasets to build an efficient control chart that can effectively monitor the online
observation xi and detect OC patterns that are similar to those in the historical OC
dataset.

3. The Proposed KNN-ECUSUM Control Chart

Let us first provide a high-level description of our proposed k-nearest neighbors empir-
ical cumulative sum (KNN-ECUSUM) control chart which is designed for monitoring
the p-dimensional observations xi based on the historical IC and OC datasets XIC

and XOC . Our proposed KNN-ECUSUM control chart consists of the following three
steps:

Step 1: Use the KNN method to transform p-dimensional data x to one-dimensional
categorical data z(x), which is the proportion of the k nearest neighbors of x that are
IC. Here Xknn

IC and Xknn
OC are the respective subsets of historical IC and OC data for

training the KNN classifier.
Step 2: Estimate the empirical IC and OC p.m.f.s of the one-dimensional categor-

ical data z(x) by using the subsets of historical IC and OC data, Xemp
IC and Xemp

OC ,
respectively, where Xemp

IC = XIC −Xknn
IC and Xemp

OC = XOC −Xknn
OC , respectively.

Step 3: Apply the classical CUSUM procedure to monitor the one-dimensional data
z(xi), where z(xi) is computed for each new pieces of online observation xi as in Step
1, and the IC and OC p.m.f.s of z(xi) are estimated as in Step 2.

Below we will explain each step of our proposed KNN-ECUSUM control chart in
details and then provide the guideline for practical use. For the purpose of easy un-
derstanding, the remainder of this section is divided into four subsections. Section 3.1
presents the construction of the transformation z(x) based on the KNN algorithm, and
Section 3.2 discusses the estimation of the empirical p.m.f. of the transformed variable.
In Section 3.3, the classical CUSUM procedure is applied to the one-dimensional data
z(xi) for detecting changes. Section 3.4 gives a summary and practical guidance for
our proposed KNN-ECUSUM control chart.

3.1. Construction of one-dimensional data z(x)

In this subsection, we discuss the transformation of the p-dimensional data x to the
one-dimensional data z(x) by applying the KNN algorithm. In order to train the KNN
classifier, we randomly select some training data, Xknn

IC and Xknn
OC , from the provided

IC and OC historical datasets XIC and XOC . As a classification method, the KNN
algorithm is then applied to the datasets Xknn

IC and Xknn
OC to predict the label of any

p-dimensional data x based on its nearest k neighbors. Here we extend the binary
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classification output of the conventional KNN algorithm to k-category probability
outputs.

When using the KNN algorithm, a crucial task is how to define the distance between
two p-dimensional vectors xi and xj . In our simulations and case study, we adopt the
Mahalanobis distance (cf., Varmuza and Filzmoser 2010) defined by

dis(xi,xj) = [(xi − xj)
TC−1(xi − xj)]

1/2, (6)

where C is the p× p sample covariance matrix. The main benefit of using the Maha-
lanobis distance is that it takes into account the covariance structure and standardizes
different components of p-dimensional random vectors. Moreover, the Mahalanobis dis-
tance is equivalent to the Euclidean distance when different components are scaled to
become standardized and also independent of each other. We should also emphasize
that there are many other ways to define the distance dis(xi,xj) for the KNN algo-
rithms, e.g., by kernels or Pearson’s correlation coefficients, etc.

For any given p-dimensional vector x, let V (x, k) denote the k nearest points of
x in the training datasets Xknn

IC and Xknn
OC under the distance criterion dis(·, ·). Note

that the k points in the set V (x, k) may contain both IC and OC training samples.
Then the transformed variable z(x) is defined as the probability output of the KNN
algorithm:

z(x) =
# of points in the intersection V (x, k) ∩Xknn

IC

k
, (7)

i.e., z(x) is the proportion of IC samples in the k neighbors of x. Since the value
of the transformed variable z(x) can only be i/k for i = 0, 1, 2, · · · , k, it is a one-
dimensional categorical variable with k + 1 possible values. Therefore, the problem of
monitoring the multivariate observation x now becomes a problem of monitoring the
one-dimensional categorical variable z(x).

We acknowledge that intuitively it will lose information when using the KNN algo-
rithm to reduce p-dimensional data into one-dimensional data. However, we want to
emphasize that in the context of monitoring or SPC, most, if not all, control charts
raise alarms if some real-valued monitoring statistic is large, and such monitoring
statistic is one-dimensional based on the probability distributions or the likelihood
ratio test statistics of the multivariate data. In other words, we need to summarize
the p-dimensional data over time as a single one-dimensional random variable for the
evidence of changes. The traditional SPC approaches often first approximate the distri-
butions of p-dimensional variables and then compute the one-dimensional monitoring
statistics, see, empirical likelihood (Owen 2001) and kernel density estimation (Ter-
rell and Scott 1992). Here we propose to approximate the one-dimensional monitoring
statistics directly by the likelihood ratio statistics of the transformed one-dimensional
random variable z(x). Our simulation studies indicate that the loss information seems
to be marginal in the context of online monitoring.

3.2. Estimation of the empirical probability mass function

After using the KNN algorithm to convert the p-dimensional variable x to a one-
dimensional categorical variable z(x), we now face the problem of monitoring one-
dimensional categorical data. Existing methods for monitoring categorical data are
available from Marcucci (1985), Woodall (1997) and Montgomery (2009). However,
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these methods require counting the number of data points in each category, and are not
suitable for our problem where the categorical variable z(x) is calculated from a single
observation x. Here our proposed method applies the classical CUSUM procedure to
z(x), and for that purpose, we need to estimate the p.m.f. of z(x) under the IC and
OC states.

First, we briefly review how the empirical p.m.f. of a categorical variable Y is es-
timated. Assume that Y takes k + 1 possible values, say, t0 ≤ t1 ≤ . . . ≤ tk, and we
observe G i.i.d. random samples y1, y2, . . . , yG of Y . The empirical p.m.f. of Y is

f̂(tj) =
1

G

n∑
i=1

I(yi = tj) =
# of yi in j-th category

G
, j = 0, 1, . . . , k (8)

where I(·) denotes the indicator function. Next, let us illustrate how this empirical
p.m.f. can be adapted to our problem by applying the boostrap or random sampling
method to the IC and OC datasets. Taking the IC dataset as an example. Each time
a subset of m IC observations are randomly (and possibly repeatedly) sampled from
Xemp

IC . After this subset of m pieces of IC data are input into the KNN classifier, we
collect m transformed outputs z(x)s. This re-sampling and transformation procedure
is repeated B times, and we obtain a total of Bm categorical observations z(x)s.
As in Equation (8), the empirical p.m.f. of z(x) under the IC scenario is simply the
proportion of Bm observations that fall under each category, and can be calculated as

f̂ic(z) =

{
# of z(x)′s =z

Bm if z = j
k , j = 0, 1, . . . , k

0 otherwise
(9)

Note that this empirical IC p.m.f. satisfies
∑k

i=0 f̂ic(
i
k ) = 1, which is the fundamental

requirement for a probability mass function. Similarly, we can derive the empirical
OC p.m.f., f̂oc(z), of the categorical variable z(x) under the OC scenario by applying
the above procedure to the OC dataset Xemp

OC . Some issues on IC or OC samples for
calculating the empirical densities will be discussed in more detail later in Subsection
3.4.

3.3. Monitoring the transformed variables z(xi)

After data transformation and p.m.f. estimation, our proposed control chart is to apply
the classical CUSUM procedure to the transformed variables with the estimated IC
and OC p.m.f.s. Specifically, when monitoring the p-dimensional data xi in real time,
we first use the KNN algorithm in Step 1 to obtain the transformed variable z(xi). In
Step 2, the corresponding p.m.f.s of the transformed variable z(xi) can be estimated

as f̂ic(z) or f̂oc(z). Thus the problem of monitoring the p-dimensional data xi can be
simplified into the problem of monitoring the transformed one-dimensional variable
z(xi) with a possible p.m.f. change from f̂ic(z) to f̂oc(z).

At the high-level, our proposed KNN-ECUSUM control chart applies the classical
CUSUM control chart to the transformed one-dimensional variable z(xi). To be more
specific, our method defines the CUSUM statistic recursively as

Wn = max(Wn−1 +
f̂oc(z(xi))

f̂ic(z(xi))
, 0) (10)
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for n ≥ 1 with the initial value W0 = 0, and then raises an alarm whenever Wn

exceeds a pre-specified control limit L > 0. Recall that the CUSUM procedure is
exactly optimal when the p.d.f.s/p.m.f.s under the IC and OC scenarios are completely
specified. In our context, we utilize the historical IC and OC datasets to estimate the
p.m.f. of the transformed variable. When the OC patterns are similar to those in the
historical data, the empirical p.m.f. will be similar to the true p.m.f., and thus the
performance of our proposed KNN-ECUSUM control chart would be similar to that
of the optimal CUSUM procedure with the true density functions, which is also verified
in the simulation results in Section 4.

In summary, our proposed KNN-ECUSUM control chart can be summarized in Ta-
ble 1. The novelty of our proposed control chart lies in combining four well established
methods together: the KNN algorithm, the empirical probability mass function, boot-
strapping, and CUSUM, and the fundamental idea is to use the KNN algorithm as
a dimension reduction tool. Rather than directly estimating the distributions of the
raw p-dimensional variables, we monitor the transformed one-dimensional categorical
variables, whose distributions can be easily estimated from their empirical densities.

Finally, it is also useful to discuss the computational complexity of our proposed
KNN-ECUSUM control chart, which includes three steps. The first two steps of train-
ing the KNN classifier and estimating the p.m.f.s only need to be done once in the
off-line Phase I stage. The third step is the online Phase II stage and involves the
computational complexity of O((p2 + k)nknn) at each time step. To see this, for each
training data in KNN, we need to compute the Mahalanobis distance from the new ob-
servation to training set observations. Each Mahalanobis computation involves O(p2)
runtime, and so it requires O(p2nknn) runtime to compute all distances. Next, the KNN
algorithms selects k smallest distance, and involves O(nknnk)) runtime to loop though
all nknn distances. Moreover, it involve O(k) time to update the CUSUM statistics
Wt. Thus at each time step during the Phase II stage, the computational complexity
of our proposed KNN-ECUSUM control chart is O(p2nknn + knknn + k), which is the
same order as O((p2 + k)nknn).

3.4. Design issues of the KNN-ECUSUM chart

Our proposed KNN-ECUSUM control chart involves several important tuning param-
eters, which must be chosen carefully when applied in practice. Below we will discuss
how to choose these tuning parameters appropriately.

3.4.1. Selecting k in the KNN classifier

When building the KNN model, the number of neighbors, k, is an important tuning
parameter. Generally speaking, a small k may overfit the KNN training dataset and
decrease the prediction accuracy. For the categorical variable z(x), a small k will also
lead to imprecise output. On the other hand, a large k increases the computational
load and may not necessarily bring a significant increase in the classification rate for
prediction. Often people use cross-validation to achieve an appropriate k. Following
the empirical rule of thumb, k is often chosen to be of order

√
nknn, where nknn is the

number of observations in the training IC and OC datasets reserved for training the
KNN classifier. This is used as the starting point in some KNN software packages. Our
empirical results from simulation and real-data studies suggest that k = α ∗ √nknn
with α ∈ [0.5, 3] is a reasonable choice.
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Table 1. Procedures for implementing the KNN-ECUSUM control chart.

Algorithm 1: Our proposed KNN-ECUSUM control chart

Step 1 Goal: To Build the KNN classifier for data transformation.

Input: Training Samples Xknn
IC and Xknn

OC ; a given testing sample x.

Output: The categorical variable z(x).

Step 2 Goal: To calculate the empirical p.m.f. of the transformed categorical variable.

Input: Samples Xemp
IC and Xemp

OC .

Model: The KNN model z(x) built in Step 1.

Iterate: For the IC scenario, t = 1, 2, . . . B times.

1. Randomly select m IC samples from Xemp
IC .

2. The selected IC samples serve as input to z(x); collect the model outputs.

Output: For the IC scenario, the estimated IC p.m.f. of z(x), f̂ic(z).

Repeat: Using the same model, repeat the same iterative procedure for the

OC scenario and get the estimated OC p.m.f. of z(x), f̂oc(z).

Step 3 Goal: To monitor online multivariate observations.

Input: Online samples {x1,x2, . . .}; control limit L.

Charting Statistic: Wn = max(Wn−1 +
f̂oc(z(xi))

f̂ic(z(xi))
, 0), W0 = 0.

Output: If Wn > L, the control chart raises an OC alarm;

otherwise, the process is considered to be operating normally.
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3.4.2. Selecting the control limit L

When constructing the control chart, it is crucial to find an accurate control limit
L for the monitoring or charting statistics to satisfy the IC ARL constraint defined
in (2). In our proposed KNN-ECUSUM chart, we propose a re-sampling method to
find its value. For a given control limit L, we randomly select an observation from
the IC historical dataset XIC , and the CUSUM statistic W1 is calculated as in (10).
If the CUSUM statistic W1 < L, another observation will be randomly selected from
XIC and the CUSUM statistic W2 will be calculated. This procedure is repeated until
the CUSUM statistic WT ≥ L. This completes one Monte Carlo simulation, and the
number T of IC observations is recorded and is often called one realization of the run
length. Then, we repeat the above steps n0 times and obtain n0 realizations of the
run length, denoted by T1, · · · , Tn0

. The ARL of our proposed KNN-ECUSUM control

chart with the control limit L is then estimated as ˆARL(L) = (T1 + · · ·+Tn0
)/n0. The

control limit L is then adjusted through bisection search so that the obtained ˆARL(L)
is close to the preset ARL constraint γ. In this paper, n0 is chosen as 10,000.

3.4.3. Sample size considerations

The sample size is another important factor that can affect the performance of our
proposed KNN-ECUSUM control chart. There are two kinds of sample sizes in our
proposed KNN-ECUSUM chart: one for training the KNN algorithm, and the other for
estimating the p.m.f.s of the one-dimensional categorical variable. Both need enough
data for good performance, and ideally data are disjoint for these two steps.

In Step 1 of the KNN-ECUSUM chart, it is crucial to have enough samples for
training the KNN algorithm, since the quality of the transformed categorical variable
z(x) will affect the monitoring performance of the KNN-ECUSUM chart. The number
of samples for KNN algorithm is very dependent on the specific problem, e.g., the
dimension p of the data and the smoothness of underlying true model, see Chapter 2.5
of the classical statistical learning book by Hastie, Tibshirani and Friedman (2009).
Meanwhile, due to the need to reserve sufficient historical data for calculating empirical
densities, it is inappropriate for the KNN classifier to use too many training data.
Under the setting of our simulation studies in Section 4, we empirically found that
some good choices of the size of training data for the KNN algorithm are nknn ∈
[0.25, 0.75]N , where N is the total size of the historical dataset. For the case study
in Section 5, we choose nknn ≈ 0.4N . Of course, in other real-world applications, the
choice of nknn will likely depend on the applications and the availability of training
data.

In Step 2, more samples will lead to more precise estimates of the p.m.f.s of the
transformed categorical variable. We suggest making use of possibly all of the historical
data especially when the historical IC or OC dataset is not large enough. For large
historical datasets containing millions of observations, it is acceptable to use a subset
to estimate the p.m.f.s. It is important to note that the training data for building the
KNN classifier in Step 1 should not overlap with those for estimating the empirical
p.m.f.s.

In many fields such as machine learning, if one has a balanced dataset, then the
classification problem is often easy to solve, including our proposed KNN-ECUSUM
chart. However, we often face the unbalanced data in the field of SPC. For Phase I
analysis in SPC, we often have many IC samples, but generally have few OC samples.
In such a situation, to address the unbalanced issue, one possible solution is to apply
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oversampling (or the so-called bootstrapping method) that replicates samples from
the OC dataset in order to increase its cardinality.

3.4.4. When multiple OC patterns exist

So far, we have only considered the binary classification when constructing the KNN
classifier in Step 1, as it is assumed that the historical OC dataset exhibits only
one single OC pattern. However, sometimes multiple OC patterns may exist, and the
historical OC dataset may contain more than one OC cluster. In such a situation,
more efforts should be made to investigate different OC clusters.

It turns out that the proposed KNN-ECUSUM chart can be easily extended to
handle the case of multiple OC clusters. To this end, we need to divide the historical
OC dataset into several clusters. This clustering procedure might be available during
Phase I analysis, or can be done by standard unsupervised learning methods such as
the k-means clustering method, principal component analysis (PCA) and so on. Based
on our experience, while the proposed method can be extended to any number C of
OC clusters, a smaller number of clusters will generally lead to better performance in
monitoring changes. Thus a small number C ≤ 4 of OC clusters is suggested.

Now we briefly describe the extension of our proposed control chart. Denote the
historical IC data and the C OC clusters by Xic,X

1
oc . . . ,X

C
oc. As in Step 1 in Table

1, we also build a KNN classifier but now it is a multi-class KNN classifier based
on the subsets of these C + 1 training datasets. Next, we calculate the empirical
p.m.f.s, f̂ic(·), f̂1

oc(·), . . . , f̂Coc(·), using boostrap in Step 2. Notice that there are C + 1
probability densities to be calculated, rather than two densities in the case of one
single OC cluster. In Step 3, we construct the CUSUM statistic for each OC cluster

and obtain C CUSUM statistics with W1,n = max(W1,n−1 + f̂1
oc(z(xi))

f̂ic(z(xi))
, 0)), . . . ,WC,n =

max(WC,n−1 + f̂C
oc(z(xi))

f̂ic(z(xi))
, 0)). Then we define the monitoring statistics based on the

maximum of all the C CUSUM statistics, Wn = max(W1,n,W2,n, . . . ,WC,n), and raise
an OC alarm when Wn > L.

4. Simulation Studies

In this section, we conduct extensive simulation studies to demonstrate the efficiency
and robustness of the proposed KNN-ECUSUM chart. For the purpose of comparison,
three alternative control charts are also considered: (i) the nonparametric MSEWMA
chart in (5) proposed by Zou and Tsung (2011), (ii) the traditional parametric
MEWMA method (Hotelling’s T 2 type), and (iii) the classical parametric CUSUM
chart which is optimal when the underlying IC and OC distributions are known (cf.,
Qiu 2014).

To better present our simulation results, we split this section into three subsections.
In Section 4.1, the KNN-ECUSUM chart is compared with competitors when there is
only one OC cluster in the historical OC dataset. It is extended to the case of multiple
OC clusters in Section 4.2. Section 4.3 contains sample size analysis. Throughout the
simulation, the IC ARL is fixed at 600. The MATLAB code for implementing the
proposed chart is available from the authors upon request.
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4.1. When only one cluster exists in historical OC data

In this subsection we will investigate the case when only one cluster exists in the
historical OC data. Here we focus on detecting a change in the mean vector, and
consider three different generative models of the p-dimensional multivariate data xi
in order to evaluate the robustness of the control charts:

• the multivariate normal distribution N(0p×1,Σp×p).;
• the multivariate t distribution tζ(0p×1,Σp×p) with ζ degrees of freedom;
• the multivariate mixed distribution, rN(µ1,Σp×p) + (1 − r)N(µ2,Σp×p), i.e.,

a mixture of two multivariate normal distributions. In our simulation, we set
r = 0.5, and the p× 1 mean vector µ1 (µ2) is 3(−3) in the first component but
is 0 for all other components.

For all three generative models, the covariance matrix is chosen as Σp×p = (σij)p×p =

0.5|i−j|, and we consider the OC generative model with a mean shift δ in the first
component of the observations unless stated otherwise, where the shift magnitude δ
ranges from 0.2 to 2 with the step size of 0.2. In addition, we consider two choices of
the dimension p: p = 6 and p = 20. The tuning parameter λ in the MEWMA and
the MSEWMA charts is set to 0.2 for simplicity. We emphasize that our proposed
control chart does not use any information pertaining to the generative IC or OC
model, and will only use the historical data generated from the IC or OC model: the
KNN algorithm in Step 1 is based on 1000 pieces of IC and OC training data with the
number of nearest neighbors k = 30, and the p.m.f. estimation in Step 2 is based on
100, 000 pieces of IC and OC data with B = 1000 loops for bootstrap.

To gain deeper insight of our proposed control chart, Figure 1 plots the estimated
p.m.f.s of the transformed one-dimensional categorical data z(x) under the three gen-
erative models with the OC shift size δ equals 1. From the plots, it is clear that the
estimated IC p.m.f.s (f̂ic) are concentrated on the right of the figure as the KNN
output increases (except in some extreme situations), while the estimated OC p.m.f.s

(f̂oc) are concentrated on the left of the figure. This is consistent with our intuition
that the neighboring samples of an IC sample are likely from the IC distribution, and
vice versa. The significant differences in the estimated IC and OC p.m.f.s in Figures
1 demonstrate that the transformed one-dimensional categorical variable z(x) can be
used to detect changes in the original multivariate data x, and thus our proposed
KNN-ECUSUM control chart should be effective.

Tables 2-4 summarize the simulated ARL performance of the four control charts
under the three generative models. Table 2 presents the efficiency of our proposed
KNN-ECUSUM chart in the case of detecting mean shifts for the multivariate normal
distribution. First, subject to the same IC ARL value, the OC ARL values of our
proposed KNN-ECUSUM chart are only slightly larger than those of the CUSUM
chart, which is the optimal one under the normality assumption. Second, the KNN-
ECUSUM chart has much smaller OC ARL values as compared to the MEWMA and
MSEWMA charts for all mean shift magnitudes. The major reason is that the KNN-
ECUSUM chart uses the precious OC information in the historical dataset, which is
overlooked in the MEWMA and MSEWMA charts. Thus, it is not surprising that our
method can detect mean shift more efficiently than these two alternatives. Third, it is
interesting to see the effect of data dimension: as the data dimension increases from 6
to 20, both the MEWMA and MSEWMA charts have a much larger OC ARL when
the mean shift δ is small, e.g., δ ∈ [0.4, 0.8], whereas the performance of our proposed
KNN-ECUSUM chart does not change much. This demonstrates the effectiveness of
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Figure 1. Estimated empirical densities of KNN output for multivariate normal, t and mixed data in IC and
OC scenarios.
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Table 2. (OC) ARL performance comparison for multivariate normal data

Dimension Shift Size
KNN-ECUSUM MEWMA MSEWMA CUSUM

p δ

0 602(595) 600(601) 602(594) 599(597)

0.2 128(126) 318(314) 322(323) 122(120)

0.4 38.2(34.3) 101(95.3) 104(97.3) 35.5(31.7)

0.6 17.3(13.5) 36.7(30.8) 39.5(33.0) 15.1(11.6)

6 0.8 9.67(6.47) 18.0(12.5) 20.2(13.4) 8.67(5.72)

1 6.78(3.76) 11.0(6.48) 13.3(7.24) 5.87(3.30)

1.2 5.08(2.44) 7.84(3.83) 9.80(4.36) 4.43(2.15)

1.4 4.16(1.74) 6.08(2.63) 7.97(2.87) 3.58(1.60)

1.6 3.55(1.32) 4.97(2.00) 6.93(2.18) 3.00(1.21)

1.8 3.19(1.09) 4.25(1.56) 6.24(1.78) 2.62(0.98)

2 2.86(0.89) 3.69(2.66) 5.76(1.45) 2.31(0.80)

0 600(586) 599(606) 599(589) 601(589)

0.2 130(127) 410(408) 396(400) 118(114)

0.4 40.1(36.0) 171(167) 163(158) 33.1(29.6)

0.6 17.2(13.6) 62.9(57.5) 62.1(54.1) 14.2(11.0)

20 0.8 9.97(6.37) 28.6(22.2) 29.1(21,7) 7.91(5.18)

1 6.91(3.91) 15.9(10.3) 16.8(10.2) 5.41(2.98)

1.2 5.19(2.50) 10.6(5.58) 11.7(5.71) 4.10(1.96)

1.4 4.32(1.86) 7.93(3.54) 8.94(3.68) 3.31(1.44)

1.6 3.65(1.74) 6.26(2.47) 7.41(2.59) 2.77(1.08)

1.8 3.21(1.16) 5.25(1.94) 6.40(1.97) 2.41(0.88)

2 2.86(0.93) 4.57(1.57) 5.71(1.58) 2.17(0.76)

NOTE: Standard deviations are in parentheses
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Table 3. OC performance comparison for multivariate t data

Dimension Shift Size
KNN-ECUSUM MEWMA MSEWMA CUSUM

p δ

0 599(603) 600(606) 600(587) 600(603)

0.2 146(146) 578(568) 342(339) 135(132)

0.4 45.2(41.4) 479(480) 115(108) 41.3(36.7)

0.6 19.1(14.7) 348(350) 44.7(37.4) 17.7(13.7)

0.8 11.0(7.33) 228(228) 23.1(16.6) 10.0(6.63)

6 1 7.54(4.10) 133(128) 15.1(8.74) 6.89(3.75)

1.2 5.89(2.86) 73.3(65.4) 11.1(5.32) 5.31(2.54)

1.4 4.86(2.04) 40.0(32.3) 9.05(3.86) 4.43(1.90)

1.6 4.25(1.64) 23.7(16.0) 7.77(2.88) 3.85(1.48)

1.8 3.81(1.27) 15.5(8.80) 6.94(2.36) 3.42(1.22)

2 3.53(1.10) 11.6(5.55) 6.38(1.95) 3.19(1.04)

0 601(589) 599(603) 600(589) 599(597)

0.2 137(135) 595(602) 420(414) 129(126)

0.4 43.1(39.6) 564(578) 180(171) 35.5(32.7)

0.8 10.3(14.4) 492(479) 33.1(25.8) 8.48(5.60)

20 1 7.16(4.04) 430(348) 19.1(12.5) 5.91(3.29)

1.2 5.51(2.67) 346(348) 13.1(7.19) 4.54(2.25)

1.4 4.48(1.94) 282(281) 10.0(4.63) 3.70(1.69)

1.6 3.90(1.49) 211(205) 8.25(3.35) 3.21(1.38)

1.8 3.45(1.25) 149(144) 7.10(2.59) 2.89(1.17)

2 3.15(1.10) 99.9(91.0) 6.34(2.09) 2.63(1.01)

NOTE: Standard deviations are in parentheses
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Table 4. OC performance comparison for multivariate mixed data

Dimension Shift Size
KNN-ECUSUM MEWMA MSEWMA CUSUM

p δ

0 599(600) 600(597) 601(583) 600(594)

0.2 131(128) 598(598) 584(583) 124(120)

0.4 39.4(36.3) 609(615) 565(562) 35.3(32.2)

0.6 17.2(13.5) 591(573) 528(530) 15.0(11.6)

0.8 9.75(6.39) 600(593) 516(514) 8.52(5.50)

6 1 6.66(3.76) 597(605) 471(467) 5.85(3.28)

1.2 5.19(2.44) 595(591) 455(446) 4.42(2.14)

1.4 4.14(1.73) 596(604) 427(423) 3.58(1.57)

1.6 3.58(1.38) 599(591) 414(407) 3.04(1.20)

1.8 3.17(1.11) 603(593) 382(381) 2.65(0.95)

2 2.87(0.92) 605(605) 377(373) 2.37(0.76)

0 602(594) 599(602) 600(581) 600(590)

0.2 130(128) 609(605) 604(615) 122(122)

0.4 41.1(37.1) 591(596) 595(589) 33.5(29.5)

0.6 17.4(13.3) 612(617) 585(580) 14.0(11.2)

0.8 10.0(6.68) 588(582) 584(583) 7.97(5.09)

20 1 6.94(3.88) 593(586) 568(564) 5.41(3.00)

1.2 5.31(2.57) 608(607) 556(546) 4.06(1.92)

1.4 4.29(1.84) 593(596) 549(559) 3.32(1.41)

1.6 3.67(1.41) 608(600) 539(546) 2.80(1.10)

1.8 3.20(1.13) 594(601) 528(529) 2.46(0.86)

2 2.89(0.96) 598(605) 524(525) 2.23(0.70)

NOTE: Standard deviations are in parentheses
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our proposed KNN-ECUSUM chart under the multivariate normal distribution.
Table 3-4 report the robustness of the KNN-ECUSUM chart under different distri-

bution assumptions: Table 3 is for the multivariate t distribution, whereas Table 4 is
for multivariate mixed distribution. The superiority of our method is still maintained
in the sense that the KNN-ECUSUM chart still works much more effectively than the
MEWMA and MSEWMA charts. Note that both the MEWMA and MSEWMA charts
fail to detect the shift under the mixed distribution, partly because the mixed data is
not elliptically distributed, which is a fundamental requirement for the MEWMA and
MSEWMA charts. It is also interesting to compare the results in Tables 2 and 3: when
the true underlying distribution changes from multivariate normal to multivariate t,
the performance of the baseline MEWMA chart deteriorates significantly. Meanwhile,
the performance of our proposed KNN-ECUSUM charts does not change much, and
so does the MSEWMA. All these results illustrate that our proposed KNN-ECUSUM
control chart, as a nonparametric method, is indeed robust to the model distribution
assumption.

4.2. When multiple clusters exist in historical OC data

In this subsection, we conduct additional simulation studies to illustrate the effective-
ness of the proposed KNN-ECUSUM chart in cases when multiple OC clusters exist in
the historical OC dataset. Here we only report the results of multivariate normal and
multivariate t distributions for simplicity. The dimension ranges from p = 6 p = 20 to
p = 40, and the number of clusters is chosen as C = 2 or 3. The mean and covariance
matrix of the IC data are still 0p×1 and Σp×p), and for each OC cluster, the shift
magnitude is 1 but the shift occurs in various dimensions in different clusters. For
example, when the number of OC clusters C = 2 and data dimension p = 2, the mean
vectors of the two OC clusters are [1, 0] and [0, 1], respectively. The MEWMA and
MSEWMA charts are still considered for comparison. The other settings are similar
to those under one OC cluster in the previous section.

The simulation results are reported in Table 5. From this table, we can see that the
performance of our proposed KNN-ECUSUM chart is still desirable regardless of the
number C of OC clusters. In particular, while all charts have similar OC performance
under the multivariate normal distribution, our proposed KNN-ECUSUM chart gen-
erally has smaller OC ARL than the baseline MEWA and MSEWMA charts under the
multivariate t distribution. Moreover, while the performances of both the MEWMA
and MSEWMA charts are still affected by data dimension, our method is more robust
to the dimension. Combining the results in Sections 4.1-4.2, we conclude that our pro-
posed KNN-ECUSUM chart is a powerful tool for monitoring multivariate data, and
is suitable for practical use when it is non-trivial to model the data distributions.

4.3. Sample size analysis

When implementing the KNN-ECUSUM chart, a practical issue is the sample size.
As mentioned before, the sample size can affect the choice of the number k of neigh-
bors and the accuracy of the estimated density functions. Although the number of
required samples depends on multiple factors such as data dimension and the true
data distribution, it is still necessary to investigate how large a sample size is gener-
ally appropriate and how the estimated densities change as the sample size increases.
In this subsection, We perform simulation studies to demonstrate the effect of the
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Table 5. OC performance comparison for the case of multiple clusters

Dimenson # of Clusters Historical OC Mean Multivariate Normal Multivariate t

p C KNN-ECUSUM MEWMA MSEWMA KNN-ECUSUM MEWMA MSEWMA

[1,0,0,0,0,0] 12.7(7.68) 11.9(6.94) 13.2(7.09) 13.6(7.93) 136(130) 15.0(8.90)

6 2 [0,1,0,0,0,0] 9.89(5.57) 12.0(6.97) 13.4(7.19) 12.2(7.25) 132(124) 15.3(9.10)

[1,0,0,0,0,0] 12.6(7.31) 11.9(6.94) 13.2(7.09) 13.7(7.65) 136(130) 15.0(8.90)

6 2 [0,1.5,0,0,0,0] 4.43(2.23) 5.74(2.37) 7.47(2.55) 5.61(2.93) 30.5(22.8) 8.45(3.38)

[1,0,0,0,0,0] 19.9(13.4) 11.9(6.94) 13.2(7.09) 17.6(10.9) 136(130) 15.0(8.90)

6 3 [0,1,0,0,0,0] 14.5(8.76) 12.0(6.97) 13.4(7.19) 17.7(10.6) 132(124) 15.3(9.10)

[0,0,1,0,0,0] 16.4(10.5) 11.9(6.99) 13.5(7.32) 17.9(10.7) 133(127) 15.4(9.08)

1 in the 1st com 12.8(7.84) 15.9(10.3) 16.8(10.2) 10.7(6.30) 420(424) 19.1(12.3)

20 2 1 in the 2nd com 11.6(6.83) 16.0(10.3) 17.4(10.7) 12.7(7.70) 419(413) 19.7(13.1)

1 in the 1st com 11.3(6.66) 15.9(10.3) 16.8(10.2) 11.3(6.67) 420(424) 19.1(12.3)

20 2 1.5 in the 2nd com 4.88(2.66) 6.96(3.00) 8.17(3.11) 4.88(2.66) 248(243) 9.20(4.03)

1.5 in the 1st com 10.1(6.11) 8.79(4.07) 9.82(4.18) 10.1(6.11) 405(408) 11.1(5.42)

40 3 1.5 in the 2nd com 8.57(4.84) 8.73(4.00) 10.2(4.42) 8.57(4.84) 408(409) 11.1(5.47)

1.5 in the 3rd com 7.68(4.19) 8.77(4.02) 9.97(4.26) 7.68(4.19) 407(411) 11.2(5.44)

NOTE: Standard deviations are in parentheses

sample size.
As the KNN classifier delivers a probability estimator, let us first consider how to

achieve the “theoretical true” probability. According to the conditional probability
formulation, the true probability that sample x is of IC status can be written as

P(x) = P(x ∈ IC|x ∈ IC or OC) =
gic(x)

gic(x) + goc(x)
. (11)

Then the corresponding density function can be derived as

g(t) =
dP(P(x) ≤ t)

dt
(12)

and we call g(·) the true probability density.
In the simulation, both the IC and OC samples are assumed to be normally dis-

tributed with p = 6, µ0 = 0, µ1 = [1, 1, 1, 0, 0, 0], and the covariance matrix equals the
identity matrix. Following Equations (11) and (12), the true density can be obtained
after simple calculations (provided in the appendix) as

g(t) =
1√
π

exp(−1

6
(
3

2
− log

t

1− t
)2)(

1

1− t
+

1

t
). (13)

As we are interested in how the estimated densities approximate the true densities,
various sample sizes are considered and the results are shown in Figures 2 and 3. In
the plots, “num-train” and “num-test” denote the sample sizes for training the KNN
classifier and for estimating the densities, respectively. In Figure 2, we fix “num-train”
and discuss the effect of “num-test” and the choice of k, while in Figure 3, the effect
of these three factors are all discussed. From Figure 2, we can observe that fewer
test samples may lead to unstable density estimation, and the density curve becomes
smoother as the number of test samples increases. From Figure 3, we can observe that
the estimated density approximates the true one better with more training samples.
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Combining the results from all the plots, we suggest that at least 1,000 training samples
and 10,000 test samples are required for practical use.
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Figure 2. Empirical density approximates the true density: Effect of test sample size and the choice of k.

Another interesting finding from Figures 2 and 3 is the choice of k. Recall that we
suggested k = α ∗√nknn before. This general suggestion is validated by the results in
these two figures. We can observe that when the training sample size equals 1000, the
density curve with k = 50 is the closest one to the true curve. Also, as the sample size
increases to 4000, the estimated curves with k = 50 and k = 100 are quite similar.
Furthermore, when the training sample size is not large enough, it is inappropriate to
choose a large k, such as k = 500. Thus, the selection of k relies heavily on the training
sample size.

5. A Real Data Application

In this section, we use a real-world example from the HDDMS to demonstrate the
effectiveness of our proposed KNN-ECUSUM chart. The HDDMS records various at-
tributes and provides early warnings of disks failure. The provided datasets (the IC
and OC datasets) consist of the 14 attributes observed from 23010 IC disks and 270
OC disks that were constantly monitored once every hour for one week. Since the
values of some attributes are constant or barely change in some disks, we select their
average values to denote the working status (we also tried the full dataset in our exper-
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Figure 3. Empirical density approximates the true density: Effect of training sample size, test sample size

and the choice of k.

iment, and the results are similar). After the necessary data preprocessing, we delete
four useless attributes, which leads to a final dataset with p = 10 attributes. The 10
attributes are summarized in Table 6. To reveal the nature of unknown distribution
of the collected data, we pick three attributes and 200 random samples from the IC
dataset for demonstration. The 200 samples are plotted in Figure 4 (a)-(c), while their
normal Q-Q plots are shown in Figure 4 (d)-(f). From the plots, we can conclude
that the attributes do not follow the normal distribution, or any other commonly used
distributions. Thus, our method is suitable in this scenario.

In phase I analysis, although the IC and OC datasets are provided separately, we
still need to cluster the historical OC dataset to find out possible shift patterns. To this
end, the k-means clustering algorithm is applied in this study, in which the number
of clusters k is chosen to be 2 by using the well-known “elbow” method. As a result,
the 270 disks are divided into two groups that contains 185 and 85 disks respectively.
Since more than one OC pattern exists in the historical data, we apply the multi-cluster
strategy and build the KNN-ECUSUM chart in phase II monitoring.

After clustering the historical OC data, the KNN classifier can be constructed easily
following Step 1 in Table 1. The number of training samples in each cluster is selected
to be 50, and the number of nearest neighbors k equals 15. In Step 2, the empirical
densities can be computed immediately when the KNN classifier is provided. The
estimated p.m.f.s of the categorical variable are shown in Figure 5. As in the simulation
studies, Figure 5 also shows that the empirical density of the IC cluster is concentrated
on the right of the figure, whereas that of the OC clusters is concentrated on the left of
the figure. In particular, for the second OC cluster, its empirical density values are all
0 when the KNN output is larger than 2

15 , indicating that the shift size of this cluster
is quite large compared to that of the first OC cluster.

In Step 3, the KNN-ECUSUM chart can be implemented for online monitoring. We
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Table 6. The attributes used for the real-data analysis.

ID Attribute Name Description

1 Read Error Rate
The rate of hardware read errors that occurred

when reading data

2 Reallocated Sector Count
The count of the bad sectors that have been found

and remapped
3 Current Pending Sector Count The count of unstable sectors
4 Airflow Temperature The temperature of airflow
5 Spin-Up Time Average time from zero RPM to fully operational

6 Spin Retry Count
The count of the spin start attempts to reach the fully

operational speed
7 Seek Time Performance Average time of seek operations of the magnetic heads
8 Throughput Performance Overall read/write throughput performance

9 Available Reserved Space
Number of physical erase cycles completed as a percentage

of the maximum physical erase cycles designed
10 Soft Read Error Rate The number of uncorrectable software read errors

Table 7. OC performance comparison with the real data

Control Limit IC ARL OC Cluster 1 OC Cluster 2

KNN-ECUSUM 6.14 1000(1000) 4.21(1.67) 2.28(0.45)

MEWMA 285.7 1000(997) 22.0(21.5) 1.99(0.08)

MSEWMA 27.94 1000(983) 28.9(21.3) 4.26(0.66)

fix the IC ARL to 1000, and the control limit of our chart is found to be 6.14. We com-
pare our chart with the traditional MEWMA method and nonparametric MSEWMA
chart through a steady-state simulation, where 30 IC samples are selected before the
change point. The ARL values are obtained from 5,000 replicated simulations. The
results are shown in Table 7. From the table, we can see that in detecting the first OC
cluster, our method outperforms the competitors significantly. For the second OC clus-
ter, the performance levels of our method and the MEWMA chart are close, and they
both work slightly better than the MSEWMA chart. This demonstrates the advantage
of our proposed KNN-ECUSUM chart in this real dataset.

6. Conclusions and Future Work

In this paper, we propose a novel nonparametric charting scheme for monitoring mul-
tivariate data with unknown distribution by using the KNN learning algorithm. The
proposed KNN-ECUSUM control chart is derived by employing the empirical den-
sity function of the KNN output. It is implemented by making full use of historical
OC data, and transforming the multivariate data into a one-dimensional categori-
cal variable. Our method achieves satisfactory detection performance, and can also
be adapted to various multivariate distributions, which is statistically appealing and
easy to implement. Its usefulness has been demonstrated through extensive numerical
simulations and a real case study.

There are still some theoretical and practical issues needed to be studied further.
First, since our method is completely constructed from clustered data, Phase I analysis
is particularly important in our method. Although we have suggested the traditional
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Figure 4. (a)-(c): Plots of the three attributes of 200 pieces of randomly picked data; (d)-(f): the normal

Q-Q plots for the three attributes.

K-means clustering method, it is still essential to select a useful dataset that is able
to capture the major historical OC shifts before online monitoring. Second, it is useful
to provide more specific suggestions for determining a proper sample size, which is
crucial to the effectiveness of our proposed KNN-ECUSUM control chart. While we
have discussed the potential effects of sample size through simulation analysis, this may
not be adequate, and it is important to determine the dependence of the sample size
on the data distribution, the actual shifts and the number of OC clusters. Finally, in
many real-world applications, it will be important to investigate how to deal with both
spatial and temporal correlations in the context of online monitoring spatial-temporal
data, which will be one of the main research directions in the future. Note that our
proposed method focuses on the spatial correlation by utilizing the KNN algorithm
for dimension reduction to transform multi-attribute data into univariate data, and
then conduct online monitoring under the assumption of temporal independence. It
will be interesting to combine our proposed KNN-based method with the existing
univariate control charts designed for monitoring serially correlated data (cf., e.g., Qiu,
Li, and Li 2020; Li and Qiu 2020), so that we can effectively address both spatial and
temporal correlation. This is beyond the scope of this paper, and will be investigated
systematically in the future.
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Appendix A. Derivation of Equation (13)

By Equation (11), the true probability that a test sample x is in the IC status is given
by

P(x) = P(x ∈ IC|x ∈ IC or OC) =
gic(x)

gic(x) + goc(x)
.

As x = [x1, x2, x3, x4, x5, x6] is a IC sample, it follows a normal distribution (with
µ = [0, 0, 0, 0, 0, 0] and the covariance matrix equals to the identity matrix). Thus, the
c.d.f of P(x) is

P(P(x) ≤ t) =P(
gic(x)

gic(x) + goc(x)
≤ t)

=P(
exp(−0.5 ∗ ||x||2)

exp(−0.5 ∗ ||x||2) + exp(−0.5 ∗ ||x− µ1||2)
≤ t)

=P((||x||2 − ||x− µ1||2 ≥ 2 ∗ log
1− t
t

)

=P(

6∑
i=1

x2
i −

3∑
i=1

(xi − 1)2 −
6∑
j=4

x2
j ≥ 2 ∗ log

1− t
t

)

=P(2 ∗ (x1 + x2 + x3)− 3 ≥ 2 ∗ log
1− t
t

)

=P(x1 + x2 + x3 ≥
3

2
+ log

1− t
t

).

Since x1, x2 and x3 are normal i.i.d random variables, x1 + x2 + x3 is also a normal
variable with mean 0 and variance 3. Then the above equation becomes:

P(P(x ∈ IC) ≤ t) =P(
gic(x)

gic(x) + goc(x)
≤ t)

=P(x1 + x2 + x3 ≥
3

2
+ log

1− t
t

)

=P(Z ≥
√

3

2
+

1√
3

log
1− t
t

)

=1− Φ(

√
3

2
+

1√
3

log
1− t
t

),

where Φ(z) = P (Z ≤ z) is the cumulative distribution function of a standard normal
variable Z ∼ N(0, 1). Therefore, the true density for P(x) is:

g(t) =
dP(P(x ∈ IC) ≤ t)

dt

=
1√
6π

exp(−1

6
(
3

2
− log

t

1− t
)2)(

1

1− t
+

1

t
).
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