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ABSTRACT

The design of neural networks (NNs) is presented for treating large, linear model predictive control (MPC)
applications that are out of reach with available quadratic programming (QP) solvers. First, we introduce
a new feedforward network architecture that enables practitioners to obtain offset-free closed-loop per-
formance with NNs. Second, we discuss the data generation procedure to sample the state space relevant
to training the NNs based on anticipated online setpoint changes and plant disturbances. Third, we use
the input-to-state stability results available in the MPC literature and establish robustness properties of
NN controllers. Finally, we present illustrative simulation studies on process control examples. We ap-
ply the NN design approach and compare the performance with online QP based MPC on an industrial
crude distillation unit model with 252 states, 32 control inputs, and a control-sample horizon length of
140. Parallel computing is used for data generation and graphical processing units are used for network
training. Anticipated plant operational scenarios with setpoints and disturbances that may change dur-
ing operation must be sampled for NN training. After the offline design phase, NNs execute MPC three
to five orders of magnitude faster than an available QP solver with less than 1% loss in the closed-loop

performance.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is an online optimization based
feedback control technology. A dynamic model of the plant is used
to make forecasts of the plant measurements in response to the
actuator movements, and an optimization problem is solved in
real time to determine the optimal actuator move to be applied
to the plant. For linear plant models, the optimization problem is
a quadratic program (QP). The development of efficient QP algo-
rithms (Kouzoupis et al., 2018; Wright, 2019) allowed practitioners
to apply MPC in the process industries (Qin and Badgwell, 2003;
Lahiri, 2017).

An alternative strategy to real time optimization for the deploy-
ment of MPC is to characterize the MPC feedback law as a piece-
wise affine function defined on polyhedral partitions of the state
space, and use the feedback law online (Bemporad et al., 2002;
Seron et al., 2003). The real time computation in this approach is
reduced to a table look-up in the state space based on the cur-

* Corresponding author.
E-mail addresses: pratyushkumar@ucsb.edu (P. Kumar), jbraw@ucsb.edu (J.B.
Rawlings), swright@cs.wisc.edu (S.J. Wright).

https://doi.org/10.1016/j.compchemeng.2021.107291
0098-1354/© 2021 Elsevier Ltd. All rights reserved.

rent value of parameters in the QP such as the state estimate and
some steady-state targets that are computed for offset-free control.
The number of polyhedral partitions of the state space grows ex-
ponentially with model dimensions, however, which prohibits the
deployment of this strategy on large-scale systems.

The MPC feedback law can be approximated using paramet-
ric functions such as polynomials (Kvasnica et al., 2011), various
types of piecewise affine functions (Bemporad et al., 2011; Wen
et al,, 2009), and neural networks (NNs) (Cavagnari et al., 1999).
Among the function approximators, NNs that use the rectified lin-
ear unit (ReLU) as the activation function have gained attention
recently (Chen et al.,, 2018; Karg and Lucia, 2020; Lovelett et al.,
2020; Paulson and Mesbah, 2020) to approximate the MPC feed-
back law due to their ability to represent complex piecewise affine
functions (Montufar et al., 2014) and execute MPC faster in real
time than QP solvers. The proposed NN design approach in these
works is to generate training data for the NN by solving QPs offline
for a set of feasible states of the QP, use the collected data to train
a standard feedforward network, then use the trained NN as the
feedback controller online.

To make progress in the size of control applications achievable
with MPC, large problems in which QP solvers fail to deliver the
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control in the available sample time should be addressed. The scal-
ability of the NN approach to such problems with large model
dimensions and control horizon length in the QP has not been
demonstrated to date. Two issues arise in these problems: (i) In
a large dimensional state space, the entire set of feasible states
of the QP cannot be sampled densely for the NN training. This is-
sue is a form of the well-known curse of dimensionality. (ii) One
may sample the state space partially to avoid this problem, but the
time required for the data generation can still be impractical due
to the long time required to solve a QP for each sampled state.
We demonstrate in this article by case studies that the issue (ii)
can be resolved for many size of problems with parallel comput-
ing, and the issue (i) by sampling the state space for typical plant
operational scenarios. The following feature must be present in the
large-scale application of interest for the partial sampling scheme
proposed in this article to be applicable: For a particular operating
mode of the plant, the number of frequently changing setpoints
and large magnitude disturbances must be small enough such that
only a small fraction of the entire large dimensional state space
is visited during that operation mode. The MPC feedback law can
then be reliably approximated using NNs for the different modes
of plant operations, each driven by their respective set of setpoint
changes and disturbances.

From the above viewpoint, this article discusses the design
of NNs as an alternative to real time optimization in MPC, with
an emphasis on large applications that are challenging for QP
solvers. We focus on setpoint tracking MPC problems relevant to
the process industries. We present a new feedforward network ar-
chitecture to obtain offset-free closed-loop performance with the
NNs. Additionally, we use the input-to-state stability results avail-
able in the MPC literature, and establish conditions under which
NN controllers are robust to state estimation errors and process
disturbances. We present case studies on process control exam-
ples that demonstrate the scalability of the proposed NN design
approach.

The related work of Chen et al. (2019) demonstrates the scal-
ability of NNs to approximate the MPC feedback law on systems
with state dimensions up to 36, on the control problem of reg-
ulation to the origin. By contrast, our paper considers setpoint
tracking offset-free MPC problem and state dimensions up to 250.
Drgona et al. (2018) take a different approach for the scalability
of NN controllers, in which the dimensionality of the parameters
in the MPC QP is first reduced using principal component analy-
sis, and the NN controller is developed in a low dimensional state
space.

The rest of this article is organized as follows. In the next sec-
tion, we briefly review offset-free linear MPC. In Section 3, we dis-
cuss the NN controller design procedure. We present the robust-
ness property of NNs in Section 4. Section 5 presents simulation
studies on two large process control examples and some conclud-
ing thoughts appear in Section 6.

Notation. The symbols T and R are used to denote integers and
reals respectively. Subscripts denote restrictions (e.g., R.¢ for non-
negative reals and I,., for integers in the closed interval [a, b]).
The Euclidean norm is denoted by |-|. A function o : R.o — Rxp
is of class K if it is continuous, zero at zero, and strictly increas-
ing. This function is of class K if it is of class £ and unbounded
(a(s) »> 00 as s —> o). A function B : Ry x I, — Ryq is of class
KL if it is continuous, for each k € I.o, B(-, k) is of class K, and for
each s >0, f(s,-) is nonincreasing and satisfies lim;_, . 8(s, k) =
0. Given V : X - R.¢ and 7 > 0, define lev,V = {x e X | V(x) < t}.
Bold symbols, e.g., d denote sequences, d(k) denotes an element
of d at time k € .o, and d; denotes the collection of elements of
d for k € Ip;; 1. Define ||d;|| = max, , |d(k)|. For a given vector
a, lower and upper bounds (a, @), define the saturation function as
sat(a,a,a) ={aifa<a<aaifa<aaifa<a}.
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2. Linear model predictive control
2.1. Model

We consider a linear discrete time model augmented with an
integrating disturbance model (Pannocchia and Rawlings, 2003):

X" =Ax+Bu+Byd, dt=d, y=Cx+(Cyd, (1)

in which x € R" is the state, u € R™ is the control input, and d € R4
is the state of the disturbance model. The matrices A € R™", B ¢
R™M C e RP*" denote the actuator to measurement model; and
By e R™4, C; € RP*? s the disturbance model. The objective of the
disturbance model is to remove offset in the controlled plant mea-
surements at steady state operations and maintain the controlled
variables at their setpoints. We assume in the rest of this article
that a Kalman filter can be constructed to estimate the model state

(%) and disturbance (d) from measurements.
2.2. Target selector

Given the disturbance estimate, the input and controlled mea-
surement setpoints, we consider the following target selector QP:

1
g1£§|usp_us|}zzs (2)
subject to
I-A -B|[x]| [ Bid 3)
HC 0 ||us| ™ |ry—HCd|
u<ug <1, (4)

in which (xs, us) is the target steady-state pair, r = Hy are the con-
trolled measurements chosen as some subset or a linear combi-
nation of all the measurements, (u,u) are the actuator bounds,
and (usp, 1sp) are the input and controlled measurement setpoints.
The equality constraint rsp = H(Cx; +Cd(f) can be difficult to sat-
isfy exactly in real time depending on the controlled measurement
setpoint and disturbance estimate. In this case, the hard setpoint
equality constraint can be relaxed and moved to the stage cost,
such that the target selector computes a steady state to minimize
the offset in the controlled measurements. We assume for the sim-
ulation studies in this article that the input setpoint (usp) is fixed
at some chosen steady state and only the controlled measurement
setpoint (rsp) changes in real time.

2.3. Regulator
Based on the state estimate and target steady-state pair, the fol-

lowing QP is solved to determine the actuator move to be applied
to the plant:

R S 8 1.
W), 8) = 5 3 (IR + 3R ) + 5 ROV (5)
k=0
subject to
X — A%+ Bil, X(0)=2%—x,, (6)
u<il+us <1, (7)

in which % is the state estimate after the current measurement,
N is the control horizon length, and (X, i) are the state and con-
trol in deviation from the current steady-state targets (Xs,us).
The penalty matrix P is chosen as the optimal cost-to-go ma-
trix of the unconstrained infinite horizon linear quadratic prob-
lem. The decision variable in this QP is the control sequence @ =
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[G0),d(1),...,i(N—1)"], and the state sequence X is fully de-
termined by the model equality constraints (6). The first move
of the optimal solution is denoted as the MPC feedback law,
kn (R, x5, us) = @0(0; R, X5, Us) + Us, which is applied to the plant.
This feedback law is a function of the state estimate and target
steady-state pair. A rate-of-change penalty on the control can be
imposed in the QP objective by augmenting the dynamic model
with a surrogate state for the control as discussed in Rao and
Rawlings (1999). In this case, the control injected at the previous
timestep (u_;) is supplied to the QP, and the feedback law be-
comes a function of the previous control, in addition to the state
estimate and target steady-state pair.

Several algorithms have been proposed in the litera-
ture over the years to solve the above MPC regulator QP.
Kouzoupis et al. (2018) and Wright (2019) give recent reviews
on the development of convex optimization algorithms to solve
this linear MPC QP. For the simulation studies in this article, we
eliminate the state trajectory from the set of decision variables
and formulate a dense QP. The decision variable in the dense
QP is the future control trajectory i, and the QP solver CVXOPT
(Vandenberghe, 2010), which is tailored for dense problems is
used to generate data for NN training and for timing comparisons
with online QP based MPC. Any improvement in the QP formula-
tion and solution algorithm is advantageous for both the online
QP based MPC and NN approaches, as fast QP solvers reduce the
offline data generation time required for the design of NNs.

3. Neural network design

In the offset-free linear MPC algorithm discussed in the previ-
ous section, the target selector QP is usually small compared to
the regulator QP, which consumes most of the online computation
time. Therefore we focus on designing a NN that approximates the
MPC feedback law (ky(x, Xs, us)) for an operationally relevant set
of states and steady-state targets, such that the NN can be used
online as the feedback controller for the plant in place of solving
the MPC regulator QP.

3.1. Structured neural network

An intuitive approach is to build a feedforward NN that takes
the triple (x, xs, us) as its input and outputs a control that is close
to the optimal control. This strategy has been proposed in Karg and
Lucia, 2020 and Chen et al. (2018) for a single fixed steady state.
The approach has not been demonstrated to scale to the size of
model dimensions and the setpoint tracking offset-free MPC prob-
lem considered in this article. An issue with this strategy is that
the NN has no knowledge about the MPC feedback law, and can
require large amounts of training data in large state dimensions
to obtain a reasonable controller. At a minimum, the MPC feed-
back law is such that at the origin, the control action taken by the
MPC controller is zero. For the setpoint tracking MPC problem con-
sidered in this article, the NN control law must be such that at
steady-state operations, the NN maintains the plant at the desired
steady state such that the controlled measurements are at their
setpoints. This structure implies us = kyn(X = Xs, Xs, Us), in which
we use kyny(-) to denote the NN control law. To incorporate this
information in a NN, we introduce the following architecture:

I
=[x, X u, X, ox, u],

fizio1) = |:V(\)/l V(\)/ii|2il + [gz]

z; = g(fi(zi—1)), for i € Ty,
U=1us+ [Wh+17 —Wh+1]zh’ (8)
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in which g(a) = max(0, a), is the ReLU operation applied element-
wise on its vector input, z; is the output of each hidden layer of the
network, zj is the input to the network, h is the number of hidden
layers, and i € I;.,. The parameters to be optimized using training
data are (W;, b;) and W;, ., which are matrices of appropriate di-
mensions. At steady state, when x = xs in zg, (8) outputs us regard-
less of the choice of weights and the activation function, as the
output of all hidden layers (z;) have same subvector repeated in
the upper and lower half and the term [Wj,;, —Wj1 ]z, equals
zero. The NN structure (8) is equivalent to the difference in the
outputs of a standard feedforward NN with inputs (x, xs, us) and
(xs, Xs, Us) respectively, with us added to the final output. The soft-
ware tensorflow (Abadi et al., 2015) is used for NN training; the
structured architecture can be built with symbolic differentiation
tools available in tensorflow.

When a rate-of-change penalty on the control is included in the
regulator QP, the input to the structured NN is modified to:

/
=[x, u, x, ou, x,oou, x,o ],

in which u_; is the previous control applied to the plant and the
dimensions of the matrices (W;, b;) and W, are appropriately ad-
justed. Even after training, the control produced by the NN may
not satisfy the hard actuator constraints, so the saturation function
(sat(-,u,u)) is applied to the output of the NN.

3.2. Data generation

For one fixed steady state, the set of feasible states for the MPC
QP defined by (5)-(7) is the entire n-dimensional state space R™.
Additionally, the target steady state may change during plant op-
eration, depending on the setpoint and disturbance estimate. The
domain of the MPC control law (xy (X, Xs, us)) is therefore the state
space R" and the possible set of steady-state target pairs. Sampling
this entire domain of the MPC control law for NN training is dif-
ficult in large dimensions; we show in Section 5 that it is not re-
quired for practical applications.

A majority of large-scale petrochemical plants operate in a rela-
tively small number of operating regimes or scenarios. Each opera-
tional scenario is driven by a selected few controlled measurement
setpoints that depend on product demands and some large magni-
tude disturbances that may change frequently, while the setpoints
for other measurements remain constant for long periods of time.
The states and steady-state targets spanned in a closed-loop op-
eration per scenario is thereby considerably less than the entire
domain of the MPC control law. These characteristics of typical op-
eration of large chemical plants can be exploited, and we propose
the following data generation procedure to perform offline simu-
lations using the model to collect the operationally relevant set of
(X, X5, Us, ky(+)) for NN training.

1. Determine the anticipated range of controlled measurement
setpoint changes (rsp) to be made during the plant operational
scenario. We denote this range of setpoints as (Ip. Tsp).

2. Identify the set of physical disturbances (d) that may affect the
plant and their range of values (d, d). We use physical dis-
turbances in this article and assume that a disturbance model
identification is performed to obtain the matrices B; and C;.

3. Create pseudo random binary signals (PRBS) of rsp and d in
their respective range of values.

4, Initialize the model at some chosen steady state. Perform an of-
fline simulation with the generated PRBS signals by solving the
target selector and regulator QPs for the transient states and
steady-state targets encountered in the simulation.

During plant operation, it is expected that the NN will en-
counter states and steady-state target pairs not used in training.
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But similar values are expected, since an adequate model and ap-
propriate range of anticipated setpoints and plant disturbances are
used for the data generation. During the closed-loop operation, the
NN produces an interpolated actuator move that is applied to the
plant.

As we consider large MPC problem sizes in this article for
the NN controller, the data generation step can take impractical
amounts of time if performed serially, due to the long time (min-
utes) required to solve each QP. For these large problems, several
PRBS signals of the setpoints and disturbances are generated and
multiple simulations are performed in parallel over several cores in
a CPU and across multiple CPUs as well. The data generated from
all the simulations are collected and used for the NN training.

3.3. Training

The following mean squared error (MSE) is minimized to deter-
mine the weights for the NN controller:

Nir

J©) = 5 Z[KNN(ijxsﬁ Usj; 0) — kn(Xj, Xsj, Usj) ]2 (9)

j=1

in which 6 is the set of parameters, (W;, b;, Wy,,{) for i € I;.j,, sub-
script j is used to denote the training sample index, and N is the
number of training samples. The stochastic optimization algorithm
Adam (Kingma and Ba, 2014) is used for all the case studies in
this article. We do not consider any regularization penalty in the
training objective. The recent empirical and theoretical works in
the machine learning literature have shown that NNs with large
number of parameters have good interpolation capabilities (Belkin
et al., 2019; Zhang et al., 2017; Arora et al., 2019; Allen-Zhu et al.,
2019) without any form of explicit regularization. The generaliza-
tion abilities of NNs for the architectures considered in this article
is examined in the simulations presented in the Section 5.

4. Robustness of neural networks

We now present the robustness properties of NN controllers.
The optimal MPC controller designed for a nominal linear system
ignoring disturbances is known to be inherently robust to bounded
state estimation errors and disturbances (Heath and Wills, 2005;
Pannocchia et al, 2011). The approximation error of the MPC
feedback law by a NN can be viewed as an additional distur-
bance, and existing input-to-state stability results (Sontag and
Wang, 1995) can be used to establish the allowable approxima-
tion error in the NN for the NN controller to be robust to distur-
bances. Theorem 1 below states this allowable approximation error
and specifies the size of disturbances for which the NN controller
is robust. This result also holds for other approximate MPC con-
trollers, which use different parametric functions to approximate
the optimal control law, such as polynomials and other piecewise
affine functions.

The related work by Hertneck et al. (2018) examines the robust-
ness of nonlinear systems in feedback with approximate MPC con-
trollers. The MPC control law approximation error is treated as an
input disturbance, and a robust MPC formulation based on con-
straint tightening procedures is used to establish the allowable ap-
proximation error. The robustness of NN controllers trained with
samples of nominal MPC control laws in presence of process dis-
turbances and state estimation errors has not been established to
date in the literature.

The problem of steering the state of the linear system (1) to one
fixed steady state (xs, us) is considered. For the analysis in this sec-
tion, the state and control are transformed in deviation variables as
X:=Xx—Xs and u :=u — us, and we define the control problem as
regulation to the origin. The optimal MPC control law is denoted
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as ky(x), and the NN control law as kyy(x) = ky(x) +enyy(X), in
which eyy (%) is the approximation error of the optimal control law
by the network. Assume in the analysis that the target steady state
is such that the unconstrained linear quadratic regulator (LQR) sat-
isfies the actuator constraints in a small neighborhood near the
origin.

As reviewed in Mayne et al. (2000), the nominal stability of
MPC can be established using the optimal cost function (V,\‘,J(x))
of the QP as a Lyapunov function. The region of attraction of the
closed-loop system x™ = Ax + Bxy(x) when no hard terminal re-
gion constraint is included in the QP can be characterized as Ay =
levyg,r V,S (x) (Limon et al., 2006). The parameter 7 is the level set
parameter of the terminal region chosen as X; = levy x'Px, d > 0 is
a constant such that ¢(x, u) > d for all x e R? \Xf, and u <u-+ug <
u. The parameter 7 is chosen small enough such that the uncon-
strained LQR satisfies the actuator constraints for all x € X;. The
optimal cost function is continuous and satisfies c;|x|*> < V[f,’(x) <
2|x* and V9 (x+) —VO(x) < —c; |x|* for some c; = ¢; > 0.

Assume that a state estimate (X) is used by the NN to compute
the control. To analyze robustness, the following perturbed linear
system is considered:

T =AR+Biny(R) + Beyn(X) +w — Ae + et (10)

in which £ = x + e is the state estimate, w is a process disturbance,
and e, et are the state estimation errors at the current and next
timestep, respectively. We use ¢, (k; X) to denote a solution of the
perturbed system at time k starting from an initial state X; and
¢ (k;x) to denote a solution of the nominal system starting from
an initial state x when the state estimation errors and process dis-
turbances are zero.

Theorem 1. For all 0 < p < Nd + t, there exist constants 81, 8, 83 >
0, functions B(-) e KL and o, (), ow(-), an(-) € K, such that for
all disturbance sequences satisfying ||e, || < &1, ||w|| <&, and
‘eNN(ﬁ)’ <43, and for all X in the set S :=lev, V[\?(i), we have the

bound | g (k: D] = B(R|. k) + arelleg111) + ctw (| [Wi|]) + tn (Enn).
in which éyy = maxges|eNN()?)‘.

The proof of this theorem and the required input-to-state sta-
bility definitions are provided in Appendix A. In the nominal case,
the disturbance sequences e and w are zero, and the closed-loop
states have the bound |¢ (k; x)| < B(|x|, k) + an(€énn)- An additional
value of the NN training is to reduce the worst approximation er-
ror (éyy) in the state space of interest, thus reducing the bound on
the closed-loop states.

5. Simulation studies

In this section, two case studies are presented that demonstrate
the scalability of the proposed NN design approach. The closed-
loop performance of NNs and computational benefits over online
QP based MPC are analyzed in these case studies. After the offline
design of NNs, two types of validation simulations are performed:
(i) with setpoints and disturbances not present in the training data
but within the same range of values used to generate the train-
ing data, (ii) with extra setpoint signals assumed to be unknown
during the offline network design phase. Both these types of sim-
ulations shed light on the interpolation and extrapolation abilities
of the NNs, and are referred subsequently as simulations with ex-
pected and unexpected plant behaviors, respectively.

The validation simulations are performed directly with the
plant model for our case studies. For industrial deployment, the
NN training should be followed by an offline validation step of the
trained network to verify the quality of the NN controller prior to
online deployment. This validation can be performed by: a) quanti-
fying the MSE of the trained NN controller on test data generated
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Fig. 1. Transient closed-loop actuator trajectories of the CSTRs with flash separator example with the NN and optimal MPC controllers. The performance of the NN and

optimal MPC controllers are almost indistinguishable.

using the optimal MPC controller, b) examining closed-loop per-
formance metrics in simulations carried out with the linear model
used in MPC and the optimal MPC and NN controllers, similar to
the simulations performed in this section with the plant model.
Additional probabilistic validation techniques for NNs trained us-
ing robust MPC solutions for nonlinear models are proposed in
Karg et al. (2019) and Hertneck et al. (2018).

The closed-loop performance of the following alternative and
equivalently fast controllers as NNs are also compared in the val-
idation simulations: (a) steady state controller (SS): the solution
of the target selector is directly applied to the plant u = us; (b)
saturated linear quadratic regulator (satK): the unconstrained LQR
gain K is computed and used in the control law u = sat(K(x — xs) +
us, u, u); (c) short horizon controller (SH): an MPC problem with a
short control horizon is solved online; (d) Unstructured NN (NN-
UNS): a standard feedforward network is trained with the triple
(x, X5, us) as the input and then used as the feedback controller on-
line.

To gauge the performance of NNs in the validation simulations,
the offline computational effort required to build the NNs, and the
memory required for the deployment of NNs, the following metrics
are examined:

o Controller performance index
1¢ 2 2 2
A= 1 D (1%() = x5O + Ju(t) = us(®) g + [Au()[5):
t=1

% Performance loss = ]00(A,f,[ - AMPC)/AMPC;

o Average and worst-case speedups;

o Data generation and NN training times;

* Memory required to store the weights of the NNs.

Here, N: is the number of simulation time steps, and A,FV[
and A%ﬁ"c are the average stage costs obtained at the end of

the simulation period by the fast controllers and the MPC con-
troller. The data generation and online timing comparisons are per-
formed on a computing cluster that has several multi-core CPUs of
clock speed 2.4 GHz. The NN trainings are performed on a Tesla
V100-SXM2 GPU that has 32 GB memory. Code for the simula-
tion studies is available at: https://github.com/pratyushkumar211/
industrial_nnmpc_2021.

5.1. CSTRs with a flash separator

For the first example, the plant consists of two stirred tank
reactors in series with a flash separator, depicted in Fig. 3. In
both the CSTRs, a desired product B is produced with the re-
action A — B, and an undesired product C is produced with the
reaction B — C. The reactant A is the major component in the
feed streams supplied to the reactors. After the second CSTR,
the reaction mixture is sent to the non-adiabatic flash that sep-
arates the reactant A from the product B. The A rich vapor
phase is recycled back to the first CSTR. The plant is simu-
lated using the set of nonlinear ordinary differential equations
(ODEs) available in Venkat (2006), Appendix. The model has 12
states (Hr, Xar, Xgr» Tr, Hm, Xam. Xgm, Tm, Hp, Xap, Xgp, Ty), 6 control in-
puts (Fo, F, D, Qr, Qm, Qp), and 5 disturbances (Xaq, Xa1, Xgo, X1, To)-
The controlled measurements with setpoints are the heights and
temperatures of the three units, and we assume that all the states
are measured. The sample time for the measurements is chosen
as 10 seconds. The parameter values used to simulate the ODEs
for the plant, the actuator constraints, and the bounds of the con-
trolled measurements and disturbances used for the data genera-
tion and validation simulations are shown in Table 3, Appendix B.

A linear discrete time model with the chosen sample time is
obtained at the steady state shown in the Table 3. This model,
inputs and outputs are scaled for the MPC controller such that
the input constraints satisfy u—u =2. The tuning parameters
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Fig. 2. Transient closed-loop controlled measurement trajectories of the CSTRs with flash separator example with the NN and optimal MPC controllers. The performance of

the NN and optimal MPC controllers are almost indistinguishable.
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Fig. 3. Schematic of the CSTRs with a flash separator model.

and control horizon length for the regulator are chosen as Q =
103C’C, R=0.11, S=0.11, and N = 450. A total 1.5 x 10° samples
of (x,u_1,xs, us, ky(+)) is generated for NN training, parallelized in
100 separate offline simulations. The time consumed for this data
generation step was 4.2 hours. The setpoint of the height of the
second CSTR (Hp,) is assumed to be fixed during this data genera-
tion process, and is included as an additional setpoint in the vali-
dation simulations for the unexpected plant behavior case.

Three structured NN architectures are considered. Each NN has
three hidden layers with 448 (NN-3-448), 480 (NN-3-480), and
512 (NN-3-512) nodes in each hidden layer respectively. For val-
idation simulations, two sets of setpoint and disturbance signals
with 24 setpoint changes and 48 disturbance changes are gener-
ated for 4320 timesteps (12 hours), one set each for the expected
and unexpected plant behavior cases. The short horizon MPC con-

troller is constructed with a horizon length of N = 10, and the ar-
chitecture of the unstructured NN consists of three hidden layers
with 224 nodes in each hidden layer. An additional scaling of x
and x;s is performed for the NN training as x := 2X/(Xmax — Xmin)
and Xs := 2Xs/(Xmax — Xmin)» i0 Which xmax and x,;, are the max-
imum and minimum values of the state observed in the training
data. This scaling is also performed in real time when the NN is
used to compute the actuator move.

First, we study the amount of data required to obtain an ac-
curate NN controller is studied. To this aim, NNs with the three
chosen architectures are trained with incremental increases of 104
training samples, ranging from 4 x 104 to 1.5 x 10° samples. A
batch size of 1024 samples is used in Adam, and all the NNs are
trained for 2000 epochs. For all the NN trainings performed, 10%
of the training dataset is kept as a buffer dataset, which is mon-
itored during training, and the network weights are updated only
when the MSE decreases on this buffer dataset after every train-
ing epoch. The NNs after training are used in validation simula-
tions with the setpoint and disturbance signals generated for the
expected plant behavior case. The closed-loop performance is com-
pared with the optimal MPC controller and the % performance loss
obtained is plotted in Fig. 4 (top left) as a function of the num-
ber of training samples. All the trained NNs provide less than 1%
loss in this performance metric after training with about 9 x 10%
samples. The best % performance loss obtained by the NNs is sum-
marized in Table 1.

Second, we use the above trained NNs with the best perfor-
mance losses in validation simulations, with the setpoint and dis-
turbance signals generated for the unexpected plant behavior case.
The % performance losses obtained in these simulations are also
summarized in the Table 1, and the performance degrades from
less than 1% to 5-8%. This deterioration in the performance is due
to some unseen (x, U_1, Xs, Us) encountered in real-time by the NN
resulting from the setpoint changes of the height of the second
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Fig. 4. Simulation statistics for the CSTRs with a flash separator example. Data requirement to obtain accurate NN controllers (top left), online computation times of the NNs
and MPC controller (top right), and the controller performance index obtained with the NNs, SS, satK and MPC controllers (center bottom).The performance of the three NN

and optimal MPC controllers are indistinguishable.

Table 1
Summary of the simulation study for the CSTRs with a flash separator example.

% Performance
losses (Expected,

Neural network Number of Memory Training Unexpected plant Worst case
Controller architecture parameters footprint (MB) time (min) behaviors) Average speedup speedup
SS 85.18%, 106.39 %
satK 41.03%, 27.61 % 2.47 x 10° 3.07 x 10°
SH 1.61%, 2.46 % 3.75 x 10° 8.4 x 10!
NN-UNS [36, 224, 224, 224, 6] 1.10 x 10° 80.49%, 73.29 % 9.31 x 10* 4.99 x 10°
NN-3-448 [72, 448, 448, 448, 6] 1.10 x 10° 0.84 13.02 0.28 %, 5.57 % 5.26 x 10* 1.45 x 103
NN-3-480 [72, 480, 480, 480, 6] 1.26 x 10° 0.96 12.51 0.34 %, 7.58% 5.09 x 10* 1.53 x 104
NN-3-512 [72, 512, 512, 512, 6] 1.42 x 10° 1.08 12.77 0.16 %, 5.90 % 4.62 x 10* 1.58 x 104

CSTR, which was assumed to be fixed during the data generation.
These simulations illustrate that one must not expect the NNs to
extrapolate outside the training data. The practical implication of
this study is that all possible plant scenarios with the setpoints
and disturbances must be identified, prior to deployment of NNs,
and should be used to generate the training data.

Third, the transient closed-loop performance of the trained NNs
is examined for one particular validation simulation for the ex-
pected plant behavior case. Figs. 1 and 2 show the transient ac-
tuator and controlled measurements obtained with the NN-3-448
architecture, and optimal MPC controllers for a simulation period
of 2 hours. Fig. 4 (center bottom) shows the transient values of
the controller performance index obtained in this validation sim-
ulation with the three structured NNs, SS, satK and optimal MPC
controllers for the full simulation period of 12 hours. Closed-loop

performance obtained using NNs is almost the same as the optimal
MPC controller and the degradation in the performance is quanti-
fied with the % performance loss metric.

Fourth, the online computational benefits of NNs over the QP
based MPC is analyzed. Fig. 4 (top right) shows a histogram of on-
line computation times of the NNs and QP solver in one validation
simulation. The average and worst-case speedups obtained using
NNs are summarized in the Table 1. The QP solver takes about 8
to 13 seconds in this example and all the NNs compute the con-
trol in just 0.1 to 4 milliseconds, and are easily deployable in the
sample time of 10 seconds.

The % performance loss obtained using the four heuristic con-
trollers, their corresponding speedups, maximum time required to
train each NN, number of parameters in each NN, and the mem-
ory required to store the weights of the NNs is summarized in
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Fig. 5. Schematic of the industrial crude distillation unit model.

the Table 1. The memory requirement shows that NNs are deploy-
able on resource constrained hardware, which can be crucial for
industrial deployment at regulatory control layers. The 85% per-
formance loss reported for the unstructured NN corresponds to
training with 1.5 x 10° samples. Such performance is unacceptable
for an industrial application. The noticeable performance improve-
ment with the structured NNs is because the control law is exactly
the same as the optimal feedback law at steady-states, which sim-
plifies the optimal feedback law approximation problem since the

Computers and Chemical Engineering 150 (2021) 107291

training process only has to improve the NN control law for the
transient conditions.

5.2. Large-scale crude distillation unit

The scalability of the proposed NN design approach is next
demonstrated on an industrial crude distillation unit model
(Pannocchia et al., 2007) with 252 states, 32 controls, and 90 mea-
surements. The schematic of this model is shown in Fig. 5, which
is a typical crude unit found in petrochemical refineries. The plant
model is linear, and input and outputs are scaled for the MPC reg-
ulator as in the previous example. Only four measurements that
represent the quality of the crude side products have setpoints,
and five disturbances are used on the crude composition, fuel gas
quality, and steam header pressure. The sample time for the mea-
surements is 1 min. The tuning parameters and control horizon
length for the MPC regulator are chosen as Q = 2C'C, R =0.11, and
N = 140. A total 3.6 x 10> samples of (x, xs, us, kn(-)) are generated
for the NN training, parallelized over 149 offline simulations. The
time consumed for this data generation step was 27.8 hours.

Three structured NN architectures are considered for this ex-
ample. Each NN has three hidden layers, with 1664 (NN-3-1664),
1792 (NN-3-1792), and 1920 (NN-3-1920) nodes in each hidden
layer respectively. For the validation simulations, one set of set-
point and disturbance signals for the expected plant behavior case
is generated with 24 setpoint changes and 48 disturbance changes
for 2880 timesteps (2 days). The short horizon MPC controller is

6_
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’j NN-3-1792 > 100 Bl MPC
g —— NN-3-1920 g NN-3-1664
z g 75 BN NN-3-1792
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Fig. 6. Simulation statistics for the industrial crude distillation unit example. Data requirement to obtain accurate NN controllers (top left), online computation times of the
NNs and MPC controller (top right), and the controller performance index obtained with the NNs, satK and MPC controllers (center bottom). The performance of the three
NN and optimal MPC controllers are indistinguishable.
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Table 2
Summary of the simulation study for the industrial crude distillation unit example.
Number of Memory Training % Performance Worst case

Controller Neural network architecture parameters footprint (MB) time (min) loss Average speedup speedup
SS 120.59 %
satK 13.07 % 4.83 x 10° 1.51 x 10°
SH 1.56 % 6.66 x 10° 2.51 x 103
NN-3-1664 [1072, 1664, 1664, 1664, 32] 1.85 x 106 14.18 52.66 0.29 % 1.52 x 104 6.57 x 10°
NN-3-1792 [1072, 1792, 1792, 1792, 32] 2.11 x 10° 16.15 55.27 043 % 133 x 10* 5.25 x 103
NN-3-1920 [1072, 1920, 1920, 1920, 32] 2.39 x 10° 18.24 59.24 0.59 % 1.18 x 10* 4.48 x 10°

constructed with a horizon length of N = 3. The states and target
steady-states (x, x;) are scaled for the NN training as in the previ-
ous example.

Fig. 6 shows the statistics for the simulation study performed
for this example. The data requirement to obtain an accurate NN
controller is shown in the top left. The batch size in Adam was
chosen as 2048 samples, and all the NNs are trained for 1500
epochs. The size of the buffer dataset was chosen as 5% of the
training dataset. The transient controller performance index for
one validation simulation obtained with the three structured NN,
satK, and MPC controllers is shown in the center bottom. The top
right plot shows the histogram of online computation times of the
NNs and QP solver. Table 2 gives a summary of the maximum time
required to train the NNs, number of parameters in each NN, mem-
ory footprint of the NNs, and the % performance loss metric ob-
tained by the structured NNs, SS, satK, and SH controllers in the
validation simulations.

The offline data generation and training times for the NNs
shows that this large-scale example is tractable with the proposed
NN approach. This example is challenging, since on average the QP
solver CVXOPT requires 35 seconds, and 47 seconds in the worst-
case. By comparison, all the NNs execute MPC in about 2 to 7 mil-
liseconds. As observed from the plot of the transient controller
performance index, the performance degradation by the NNs rel-
ative to the optimal MPC controller is negligible. The sampling of
the state space with the setpoint and disturbance signals for one
particular operational scenario, combined with the offset-free NN
structure are the key properties that enable scalability in this ex-
ample.

6. Conclusion

Neural networks have been demonstrated to approximate the
MPC feedback law for treating large-scale, linear MPC applications
that may be out of reach with online QP solvers. The proposed
methods avoiding online optimization to date in the literature,
such as storing the entire MPC feedback law and sampling the
large dimensional state space for the NN training, are not tractable
for the problems considered in this article.

The key features for the scalability of the proposed approach
are the structure of the NN and data generation for only typical
plant operational scenarios. The NN design approach was demon-
strated to scale on an industrial crude distillation unit model
with state and control dimensions of 252 and 32 respectively, and
a control-sample horizon length of 140. After the offline design
phase, NNs execute MPC about three to five orders of magnitude
faster than an available QP solver with less than 1% performance
degradation in the closed-loop. The deployment decision of the
NNs must be based on the ability to reliably identify and sam-
ple the anticipated plant operational scenarios with setpoints and
large magnitude disturbances that may change for a reasonable du-
ration of operation. Parallel computing can be used for the offline
data generation step, if solving QPs for each sampled state starts to
take excessive amounts of time. After the training process, the NNs

are easily deployable on memory constrained hardware. We es-
tablished conditions under which the NN controllers are robust to
state estimation errors and process disturbances, providing some
theoretical support to practitioners interested in the deployment
of NNs.

The online QP based MPC was adopted by practitioners due to
its ability to systematically handle multivariable systems and pro-
cess constraints, and the reliability of QP solution algorithms. The
approach has guaranteed stability properties. The need for sam-
pling the plant operational scenarios and additional computing
hardware for training large applications are additional complexi-
ties that must be considered in the design of NN controllers. The
advantage of NNs is their speed of MPC controller execution and
convenience for deployment on memory constrained hardware. Fu-
ture research may be focused to establish conditions for guaran-
teed closed-loop stability with NN controllers, systematically han-
dling state constraints, approximating the target selector QP, and
extensions to large, nonlinear MPC applications.
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Appendix A. Proof of Theorem 1

We use the following definitions of robust positive invariance
of a set with respect to disturbances, input-to-state stability (ISS),
ISS-Lyapunov function, and the available result on the ISS property
of a system if it admits an ISS-Lyapunov function (Jiang and Wang,
2001; Rawlings et al., 2017, Appendix B).

Definition 1 (Robust positive invariance). A closed set X is robustly
positive invariant for the system x* = f(x,w), w e W if x € X im-
plies f(x,w) e X for all w e W.



P. Kumar, J.B. Rawlings and S.J. Wright

Definition 2 (Input-to-state stability (ISS)). W is a compact set
containing the origin and that X is a closed robustly positive in-
variant set for the system x* = f(x,w), w ¢ W. This system is ISS
in X if there exist functions B(-) e K£ and o (-) € K, such that
for all xeX and w(i) e W, iely_q1, |[¥kx,wp)| < B(x|, k) +
o (||wgl]), in which ¥ (k; x,w,) is the solution of the system at
time k, starting from an initial state x, and with the disturbance
sequence wj, affecting the system.

Definition 3 (ISS-Lyapunov function). A function V : X — R.g is an
ISS-Lyapunov function in X for the system x* = f(x,w), we W
if there exist functions a1 (-), o3(-),@3(-) € Koo and o (-) € K such
that for all x e X and w € W, we have

ar(|x]) <V (x) < aa(]x]).
V(fx,w)) -V(x) < —as(|x]) + o (|w]).

Proposition 1 (ISS-Lyapunov function implies ISS). W is a com-
pact set containing the origin and that X is a closed robustly posi-
tive invariant set for x* = f(x,w), we W. If f(.) is continuous and
there exists a continuous ISS-Lyapunov function in X for the system
xT = f(x,w), we W, then the system is ISS in X.

Additionally, we require the following two useful propositions
from Allan et al. (2017) and Rawlings and Ji (2012), to bound val-
ues of continuous functions and an inequality for K functions re-
spectively.

Proposition 2. Let C € D € R", C compact, D closed, and f : D — R"
continuous. Then there exists a o (-) € Ko, such that for all x € C and
y € D, we have that |f(x) — f(y)| < o (|x =Y.

Proposition 3. Let o (-) € K, the following holds for all a; € R.g, i€

H]:n~
o(ay+ay+--+ay) <o(nay) +o(nay) +- - +o (nay)

Proof of Theorem 1: We proceed in two steps. First, we show
that there exist constants &1, 85,83 > 0 such that the set S is ro-
bustly positive invariant. Then, we show that VIE} (%) is an ISS Lya-
punov function for the perturbed system (10) on this set S. Denote
Xt = AX + Bxky(R) as the nominal state evolution using the optimal
MPC controller, and d(k) = [eyy (X(k))'B’, w(k)’,e(k)’,e(k +1)'] as
the combination of all the disturbances at a given time k.

To show robust positive invariance of S, we establish that
if VI(®) < p, then VI(%*) < p. Since the optimal cost function
(VIS (%)) is continuous, using R" as the closed set (X* € R") and S
as the compact set (% € S), from Proposition 2 we have for some
01(-) € Koo that

VB@H) —VI@E)| = o1 (R - 7))
< o1(|Benw®)| + |w| + |Al[e] + [e*])

<o (|d] + |d]| + |A]ld] + |d]) := o2 (|d]) (11)

in which o5 (s) := o1 (JA|s + 3s), and the last inequality follows be-
cause |a| < |[a’, b’]", in which a and b are both vectors, and o5 (-) €
K. We partition S in outer and inner parts based on the value of
the optimal cost sz? (X), and bound the combination of disturbances
d in each part such that V,g &) <p.

Case 1: p/2 < Vﬁ()?) < p. Using the upper bound on the op-
timal cost, we have p/(2¢;) < })2|2 for all % in this part of S.
To analyze the worst-case disturbance, we have from the equa-
tion (11) that V(") < VQ(&*) + 02 (|d|). From nominal MPC cost
decrease, we obtain VQ(%%) <VI(®) — ¢ |)2|2 +05(|d]). Thus, if
o, (]d|) < pc1/(2cy), at all times in this outer part of S, we have
VI(H) < p.
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Case 2: V[f,’()?) < p/2. From Eq. (11) and nominal MPC cost de-
crease, we have for this part of S that V,E}()?Jf) < p/2 +0oy(|d]).
Thus, if 05 (|d|) < p/2, at all times in this inner part of S, we have
VI(xH) < p.

Therefore, if |d| <min{o; ! (pc1/(2¢2)). 05 1(p/2)} := Smax at
all times, then the set S is robustly positive invariant. Since ¢ < ¢y,
Smax = 02*1 (pc1/(2cy)). The constants 8; and §, are dmax/4 each,
and &3 is Smax/(4|B|). The optimal MPC cost function satisfies

VIR —V2®) = —a|&]* + 05(1d])

in the robustly positive invariant set S and the disturbance set
|d| < 8max. Since the optimal cost function also satisfies the upper
and lower bounds ¢;|x|* < VQ(x) < cy|x|*, from the Definition 3,
it satisfies the requirements of an ISS-Lyapunov function. Hence,
using the Proposition 1, the perturbed linear system (10) is ISS
(Definition 2), and there exist functions B(-) e K£ and o (-) € K,
such that ‘q&d(k; )2)| < ,B(|)2‘, k) + o (]|dg]|). Using Proposition 3 and
the definition of d(k), we have

|pa(k: )| < B(|R
<B(*
+0 (3|Bléwn) + 0 |Wil|) + 0 (6][e1]])

k) + o (IBleny + ||| + 2][ex1]])
k)

Therefore, the bound in the Theorem 1 is established with we(s) :=
0(6s), ow(s):=0(3s), on(s):=0(3|B|s), and «ae(-),aw("),
an(-) e K.

Appendix B. Parameters used in the CSTRs example

Table 3

Parameters used in the ODEs to simulate the plant in the CSTRs in series with a
flash separator example, actuator constraints, setpoint and disturbance bounds, and
the steady state used to obtain the linear model for the MPC controller.

Parameter Value Unit Parameter Value Unit
Parameters used to simulate the ODEs

oy 3.5 km 2.5 m?
op 1.1 ky 1.5 m?
oc 0.5 AH; 40 kJ/kg
0 50 kg/m3 AH, 50 kJ/kg
Gy 3 kj/kg-K  E/R 150 K

A 0.3 m? ks 4%x104 sec!
An 2 m? ks 1.8x10°6 sec!
Ap 4 m?2 Ty 313 K

ky 2.5 m?2

Actuator constraints (u, u)

F (1.5, 2.5) kg/sec Qr (500, 500) kw
F (0.5, 1.5) kg/sec Qn (500, 500) kw
D (29.5, 30.5) kg/sec Q, (500, 500) kW
Setpoint bounds (r,, Tsp)

H; (158.8, 168.8) m T (303, 323) K
Hp (169.2, 179.2) m T (310, 316) K

H, (2.2,4.2) m T, (303, 323) K
Disturbance bounds (d, d)

Xa0 (0.7, 0.85) Xp1 (0, 0.15)

Xpo (0, 0.15) To (305, 321) K

Xa1 (0.7, 0.85)

Steady state used for linearization (x;, us, ds)

H;, 163.8 m F 2 kg/sec
Xar 0.40 R 1 kg/sec
Xpr 0.54 D 30 kg/sec
T 313.1 K Qr 0 kW
Hum 1742 m Qnm 0 KW
Xam 0.37 Q 0 kW
XBm 0.58 Xa0 0.8

Tn 313.7 K XBo 0.1

H, 3.24 m Xa1 0.8

Xab 0.15 X1 0.1

Xgb 0.73 T 313 K

T, 313.7 K
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