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a b s t r a c t 

The design of neural networks (NNs) is presented for treating large, linear model predictive control (MPC) 

applications that are out of reach with available quadratic programming (QP) solvers. First, we introduce 

a new feedforward network architecture that enables practitioners to obtain offset-free closed-loop per- 

formance with NNs. Second, we discuss the data generation procedure to sample the state space relevant 

to training the NNs based on anticipated online setpoint changes and plant disturbances. Third, we use 

the input-to-state stability results available in the MPC literature and establish robustness properties of 

NN controllers. Finally, we present illustrative simulation studies on process control examples. We ap- 

ply the NN design approach and compare the performance with online QP based MPC on an industrial 

crude distillation unit model with 252 states, 32 control inputs, and a control-sample horizon length of 

140. Parallel computing is used for data generation and graphical processing units are used for network 

training. Anticipated plant operational scenarios with setpoints and disturbances that may change dur- 

ing operation must be sampled for NN training. After the offline design phase, NNs execute MPC three 

to five orders of magnitude faster than an available QP solver with less than 1% loss in the closed-loop 

performance. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

Model predictive control (MPC) is an online optimization based 

feedback control technology. A dynamic model of the plant is used 

to make forecasts of the plant measurements in response to the 

actuator movements, and an optimization problem is solved in 

real time to determine the optimal actuator move to be applied 

to the plant. For linear plant models, the optimization problem is 

a quadratic program (QP). The development of efficient QP algo- 

rithms ( Kouzoupis et al., 2018; Wright, 2019 ) allowed practitioners 

to apply MPC in the process industries ( Qin and Badgwell, 2003; 

Lahiri, 2017 ). 

An alternative strategy to real time optimization for the deploy- 

ment of MPC is to characterize the MPC feedback law as a piece- 

wise affine function defined on polyhedral partitions of the state 

space, and use the feedback law online ( Bemporad et al., 2002; 

Seron et al., 2003 ). The real time computation in this approach is 

reduced to a table look-up in the state space based on the cur- 
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rent value of parameters in the QP such as the state estimate and 

some steady-state targets that are computed for offset-free control. 

The number of polyhedral partitions of the state space grows ex- 

ponentially with model dimensions, however, which prohibits the 

deployment of this strategy on large-scale systems. 

The MPC feedback law can be approximated using paramet- 

ric functions such as polynomials ( Kvasnica et al., 2011 ), various 

types of piecewise affine functions ( Bemporad et al., 2011; Wen 

et al., 2009 ), and neural networks (NNs) ( Cavagnari et al., 1999 ). 

Among the function approximators, NNs that use the rectified lin- 

ear unit (ReLU) as the activation function have gained attention 

recently ( Chen et al., 2018; Karg and Lucia, 2020; Lovelett et al., 

2020; Paulson and Mesbah, 2020 ) to approximate the MPC feed- 

back law due to their ability to represent complex piecewise affine 

functions ( Montufar et al., 2014 ) and execute MPC faster in real 

time than QP solvers. The proposed NN design approach in these 

works is to generate training data for the NN by solving QPs offline 

for a set of feasible states of the QP, use the collected data to train 

a standard feedforward network, then use the trained NN as the 

feedback controller online. 

To make progress in the size of control applications achievable 

with MPC, large problems in which QP solvers fail to deliver the 
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control in the available sample time should be addressed. The scal- 

ability of the NN approach to such problems with large model 

dimensions and control horizon length in the QP has not been 

demonstrated to date. Two issues arise in these problems: (i) In 

a large dimensional state space, the entire set of feasible states 

of the QP cannot be sampled densely for the NN training. This is- 

sue is a form of the well-known curse of dimensionality. (ii) One 

may sample the state space partially to avoid this problem, but the 

time required for the data generation can still be impractical due 

to the long time required to solve a QP for each sampled state. 

We demonstrate in this article by case studies that the issue (ii) 

can be resolved for many size of problems with parallel comput- 

ing, and the issue (i) by sampling the state space for typical plant 

operational scenarios. The following feature must be present in the 

large-scale application of interest for the partial sampling scheme 

proposed in this article to be applicable: For a particular operating 

mode of the plant, the number of frequently changing setpoints 

and large magnitude disturbances must be small enough such that 

only a small fraction of the entire large dimensional state space 

is visited during that operation mode. The MPC feedback law can 

then be reliably approximated using NNs for the different modes 

of plant operations, each driven by their respective set of setpoint 

changes and disturbances. 

From the above viewpoint, this article discusses the design 

of NNs as an alternative to real time optimization in MPC, with 

an emphasis on large applications that are challenging for QP 

solvers. We focus on setpoint tracking MPC problems relevant to 

the process industries. We present a new feedforward network ar- 

chitecture to obtain offset-free closed-loop performance with the 

NNs. Additionally, we use the input-to-state stability results avail- 

able in the MPC literature, and establish conditions under which 

NN controllers are robust to state estimation errors and process 

disturbances. We present case studies on process control exam- 

ples that demonstrate the scalability of the proposed NN design 

approach. 

The related work of Chen et al. (2019) demonstrates the scal- 

ability of NNs to approximate the MPC feedback law on systems 

with state dimensions up to 36, on the control problem of reg- 

ulation to the origin. By contrast, our paper considers setpoint 

tracking offset-free MPC problem and state dimensions up to 250. 

Drgo ̌na et al. (2018) take a different approach for the scalability 

of NN controllers, in which the dimensionality of the parameters 

in the MPC QP is first reduced using principal component analy- 

sis, and the NN controller is developed in a low dimensional state 

space. 

The rest of this article is organized as follows. In the next sec- 

tion, we briefly review offset-free linear MPC. In Section 3 , we dis- 

cuss the NN controller design procedure. We present the robust- 

ness property of NNs in Section 4 . Section 5 presents simulation 

studies on two large process control examples and some conclud- 

ing thoughts appear in Section 6 . 

Notation. The symbols I and R are used to denote integers and 

reals respectively. Subscripts denote restrictions (e.g., R ≥0 for non- 

negative reals and I a : b for integers in the closed interval [ a, b] ). 

The Euclidean norm is denoted by | ·| . A function α : R ≥0 → R ≥0 

is of class K if it is continuous, zero at zero, and strictly increas- 

ing. This function is of class K ∞ if it is of class K and unbounded 

( α(s ) → ∞ as s → ∞ ). A function β : R ≥0 × I ≥0 → R ≥0 is of class 

KL if it is continuous, for each k ∈ I ≥0 , β(·, k ) is of class K, and for 

each s ≥ 0 , β(s, ·) is nonincreasing and satisfies lim k →∞ β(s, k ) = 

0 . Given V : X → R ≥0 and τ > 0 , define lev τV = { x ∈ X | V (x ) ≤ τ } . 
Bold symbols, e.g., d denote sequences, d(k ) denotes an element 

of d at time k ∈ I ≥0 , and d i denotes the collection of elements of 

d for k ∈ I 0: i −1 . Define | | d i | | = max k ∈ I 0: i −1 
| d(k ) | . For a given vector 

a, lower and upper bounds ( a , a ), define the saturation function as 

sat (a, a , a ) = { a if a ≤ a ≤ a ; a if a < a ; a if a < a } . 

2. Linear model predictive control 

2.1. Model 

We consider a linear discrete time model augmented with an 

integrating disturbance model ( Pannocchia and Rawlings, 2003 ): 

x + = Ax + Bu + B d d , d + = d , y = Cx + C d d, (1) 

in which x ∈ R n is the state, u ∈ R m is the control input, and d ∈ R d 

is the state of the disturbance model. The matrices A ∈ R n ×n , B ∈ 

R n ×m , C ∈ R p×n denote the actuator to measurement model; and 

B d ∈ R n ×d , C d ∈ R p×d is the disturbance model. The objective of the 

disturbance model is to remove offset in the controlled plant mea- 

surements at steady state operations and maintain the controlled 

variables at their setpoints. We assume in the rest of this article 

that a Kalman filter can be constructed to estimate the model state 

( ̂ x ) and disturbance ( ̂  d ) from measurements. 

2.2. Target selector 

Given the disturbance estimate, the input and controlled mea- 

surement setpoints, we consider the following target selector QP: 

min 
x s , u s 

1 

2 
| u sp − u s | 

2 
R s 

(2) 

subject to 
[

I − A −B 
HC 0 

][

x s 
u s 

]

= 

[

B d ˆ d 

r sp − HC d ˆ d 

]

, (3) 

u ≤ u s ≤ u , (4) 

in which ( x s , u s ) is the target steady-state pair, r = Hy are the con- 

trolled measurements chosen as some subset or a linear combi- 

nation of all the measurements, ( u , u ) are the actuator bounds, 

and ( u sp , r sp ) are the input and controlled measurement setpoints. 

The equality constraint r sp = H(Cx s + C d 
ˆ d ) can be difficult to sat- 

isfy exactly in real time depending on the controlled measurement 

setpoint and disturbance estimate. In this case, the hard setpoint 

equality constraint can be relaxed and moved to the stage cost, 

such that the target selector computes a steady state to minimize 

the offset in the controlled measurements. We assume for the sim- 

ulation studies in this article that the input setpoint ( u sp ) is fixed 

at some chosen steady state and only the controlled measurement 

setpoint ( r sp ) changes in real time. 

2.3. Regulator 

Based on the state estimate and target steady-state pair, the fol- 

lowing QP is solved to determine the actuator move to be applied 

to the plant: 

V N ( ̃  x (0) , ̃  u ) = 
1 

2 

N−1 
∑ 

k =0 

(

| ̃  x (k ) | 2 Q + | ̃  u (k ) | 2 R 

)

+ 
1 

2 
| ̃  x (N) | 2 P (5) 

subject to 

˜ x + = A ̃  x + B ̃  u , ˜ x (0) = ˆ x − x s , (6) 

u ≤ ˜ u + u s ≤ u , (7) 

in which ˆ x is the state estimate after the current measurement, 

N is the control horizon length, and ( ̃  x , ̃  u ) are the state and con- 

trol in deviation from the current steady-state targets ( x s , u s ). 

The penalty matrix P is chosen as the optimal cost-to-go ma- 

trix of the unconstrained infinite horizon linear quadratic prob- 

lem. The decision variable in this QP is the control sequence ˜ u = 

2 
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[ ̃  u (0) ′ , ̃  u (1) ′ , . . . , ̃  u (N − 1) ′ ] ′ , and the state sequence ˜ x is fully de- 

termined by the model equality constraints (6) . The first move 

of the optimal solution is denoted as the MPC feedback law, 

κN ( ̂  x , x s , u s ) = ˜ u 0 (0 ; ˆ x , x s , u s ) + u s , which is applied to the plant. 

This feedback law is a function of the state estimate and target 

steady-state pair. A rate-of-change penalty on the control can be 

imposed in the QP objective by augmenting the dynamic model 

with a surrogate state for the control as discussed in Rao and 

Rawlings (1999) . In this case, the control injected at the previous 

timestep ( u −1 ) is supplied to the QP, and the feedback law be- 

comes a function of the previous control, in addition to the state 

estimate and target steady-state pair. 

Several algorithms have been proposed in the litera- 

ture over the years to solve the above MPC regulator QP. 

Kouzoupis et al. (2018) and Wright (2019) give recent reviews 

on the development of convex optimization algorithms to solve 

this linear MPC QP. For the simulation studies in this article, we 

eliminate the state trajectory from the set of decision variables 

and formulate a dense QP. The decision variable in the dense 

QP is the future control trajectory ˜ u , and the QP solver CVXOPT 

( Vandenberghe, 2010 ), which is tailored for dense problems is 

used to generate data for NN training and for timing comparisons 

with online QP based MPC. Any improvement in the QP formula- 

tion and solution algorithm is advantageous for both the online 

QP based MPC and NN approaches, as fast QP solvers reduce the 

offline data generation time required for the design of NNs. 

3. Neural network design 

In the offset-free linear MPC algorithm discussed in the previ- 

ous section, the target selector QP is usually small compared to 

the regulator QP, which consumes most of the online computation 

time. Therefore we focus on designing a NN that approximates the 

MPC feedback law ( κN (x, x s , u s ) ) for an operationally relevant set 

of states and steady-state targets, such that the NN can be used 

online as the feedback controller for the plant in place of solving 

the MPC regulator QP. 

3.1. Structured neural network 

An intuitive approach is to build a feedforward NN that takes 

the triple ( x, x s , u s ) as its input and outputs a control that is close 

to the optimal control. This strategy has been proposed in Karg and 

Lucia, 2020 and Chen et al. (2018) for a single fixed steady state. 

The approach has not been demonstrated to scale to the size of 

model dimensions and the setpoint tracking offset-free MPC prob- 

lem considered in this article. An issue with this strategy is that 

the NN has no knowledge about the MPC feedback law, and can 

require large amounts of training data in large state dimensions 

to obtain a reasonable controller. At a minimum, the MPC feed- 

back law is such that at the origin, the control action taken by the 

MPC controller is zero. For the setpoint tracking MPC problem con- 

sidered in this article, the NN control law must be such that at 

steady-state operations, the NN maintains the plant at the desired 

steady state such that the controlled measurements are at their 

setpoints. This structure implies u s = κNN (x = x s , x s , u s ) , in which 

we use κNN (·) to denote the NN control law. To incorporate this 

information in a NN, we introduce the following architecture: 

z 0 = 
[

x ′ , x ′ s , u ′ s , x ′ s , x ′ s , u ′ s 
]′ 

, 

f i (z i −1 ) = 

[

W i 0 
0 W i 

]

z i −1 + 

[

b i 
b i 

]

, 

z i = g( f i (z i −1 )) , for i ∈ I 1: h , 

u = u s + 
[

W h +1 , −W h +1 

]

z h , (8) 

in which g(a ) = max (0 , a ) , is the ReLU operation applied element- 

wise on its vector input, z i is the output of each hidden layer of the 

network, z 0 is the input to the network, h is the number of hidden 

layers, and i ∈ I 1: h . The parameters to be optimized using training 

data are ( W i , b i ) and W h +1 , which are matrices of appropriate di- 

mensions. At steady state, when x = x s in z 0 , (8) outputs u s regard- 

less of the choice of weights and the activation function, as the 

output of all hidden layers ( z i ) have same subvector repeated in 

the upper and lower half and the term 
[

W h +1 , −W h +1 

]

z h equals 

zero. The NN structure (8) is equivalent to the difference in the 

outputs of a standard feedforward NN with inputs ( x, x s , u s ) and 

( x s , x s , u s ) respectively, with u s added to the final output. The soft- 

ware tensorflow ( Abadi et al., 2015 ) is used for NN training; the 

structured architecture can be built with symbolic differentiation 

tools available in tensorflow. 

When a rate-of-change penalty on the control is included in the 

regulator QP, the input to the structured NN is modified to: 

z 0 = 
[

x ′ , u ′ 
−1 , x ′ s , u ′ s , x ′ s , u ′ s , x ′ s , u ′ s 

]′ 
, 

in which u −1 is the previous control applied to the plant and the 

dimensions of the matrices ( W i , b i ) and W h +1 are appropriately ad- 

justed. Even after training, the control produced by the NN may 

not satisfy the hard actuator constraints, so the saturation function 

( sat (·, u , u ) ) is applied to the output of the NN. 

3.2. Data generation 

For one fixed steady state, the set of feasible states for the MPC 

QP defined by (5) –(7) is the entire n -dimensional state space R n . 

Additionally, the target steady state may change during plant op- 

eration, depending on the setpoint and disturbance estimate. The 

domain of the MPC control law ( κN (x, x s , u s ) ) is therefore the state 

space R n and the possible set of steady-state target pairs. Sampling 

this entire domain of the MPC control law for NN training is dif- 

ficult in large dimensions; we show in Section 5 that it is not re- 

quired for practical applications. 

A majority of large-scale petrochemical plants operate in a rela- 

tively small number of operating regimes or scenarios. Each opera- 

tional scenario is driven by a selected few controlled measurement 

setpoints that depend on product demands and some large magni- 

tude disturbances that may change frequently, while the setpoints 

for other measurements remain constant for long periods of time. 

The states and steady-state targets spanned in a closed-loop op- 

eration per scenario is thereby considerably less than the entire 

domain of the MPC control law. These characteristics of typical op- 

eration of large chemical plants can be exploited, and we propose 

the following data generation procedure to perform offline simu- 

lations using the model to collect the operationally relevant set of 

( x, x s , u s , κN (·) ) for NN training. 

1. Determine the anticipated range of controlled measurement 

setpoint changes ( r sp ) to be made during the plant operational 

scenario. We denote this range of setpoints as ( r sp , r sp ). 

2. Identify the set of physical disturbances ( d) that may affect the 

plant and their range of values ( d , d ). We use physical dis- 

turbances in this article and assume that a disturbance model 

identification is performed to obtain the matrices B d and C d . 

3. Create pseudo random binary signals (PRBS) of r sp and d in 

their respective range of values. 

4. Initialize the model at some chosen steady state. Perform an of- 

fline simulation with the generated PRBS signals by solving the 

target selector and regulator QPs for the transient states and 

steady-state targets encountered in the simulation. 

During plant operation, it is expected that the NN will en- 

counter states and steady-state target pairs not used in training. 

3 
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But similar values are expected, since an adequate model and ap- 

propriate range of anticipated setpoints and plant disturbances are 

used for the data generation. During the closed-loop operation, the 

NN produces an interpolated actuator move that is applied to the 

plant. 

As we consider large MPC problem sizes in this article for 

the NN controller, the data generation step can take impractical 

amounts of time if performed serially, due to the long time (min- 

utes) required to solve each QP. For these large problems, several 

PRBS signals of the setpoints and disturbances are generated and 

multiple simulations are performed in parallel over several cores in 

a CPU and across multiple CPUs as well. The data generated from 

all the simulations are collected and used for the NN training. 

3.3. Training 

The following mean squared error (MSE) is minimized to deter- 

mine the weights for the NN controller: 

J(θ ) = 
1 

2 

N tr 
∑ 

j=1 

[ κNN (x j , x s j , u s j ; θ ) − κN (x j , x s j , u s j )] 
2 (9) 

in which θ is the set of parameters, ( W i , b i , W h +1 ) for i ∈ I 1: h , sub- 

script j is used to denote the training sample index, and N tr is the 

number of training samples. The stochastic optimization algorithm 

Adam ( Kingma and Ba, 2014 ) is used for all the case studies in 

this article. We do not consider any regularization penalty in the 

training objective. The recent empirical and theoretical works in 

the machine learning literature have shown that NNs with large 

number of parameters have good interpolation capabilities ( Belkin 

et al., 2019; Zhang et al., 2017; Arora et al., 2019; Allen-Zhu et al., 

2019 ) without any form of explicit regularization. The generaliza- 

tion abilities of NNs for the architectures considered in this article 

is examined in the simulations presented in the Section 5 . 

4. Robustness of neural networks 

We now present the robustness properties of NN controllers. 

The optimal MPC controller designed for a nominal linear system 

ignoring disturbances is known to be inherently robust to bounded 

state estimation errors and disturbances ( Heath and Wills, 2005; 

Pannocchia et al., 2011 ). The approximation error of the MPC 

feedback law by a NN can be viewed as an additional distur- 

bance, and existing input-to-state stability results ( Sontag and 

Wang, 1995 ) can be used to establish the allowable approxima- 

tion error in the NN for the NN controller to be robust to distur- 

bances. Theorem 1 below states this allowable approximation error 

and specifies the size of disturbances for which the NN controller 

is robust. This result also holds for other approximate MPC con- 

trollers, which use different parametric functions to approximate 

the optimal control law, such as polynomials and other piecewise 

affine functions. 

The related work by Hertneck et al. (2018) examines the robust- 

ness of nonlinear systems in feedback with approximate MPC con- 

trollers. The MPC control law approximation error is treated as an 

input disturbance, and a robust MPC formulation based on con- 

straint tightening procedures is used to establish the allowable ap- 

proximation error. The robustness of NN controllers trained with 

samples of nominal MPC control laws in presence of process dis- 

turbances and state estimation errors has not been established to 

date in the literature. 

The problem of steering the state of the linear system (1) to one 

fixed steady state ( x s , u s ) is considered. For the analysis in this sec- 

tion, the state and control are transformed in deviation variables as 

x := x − x s and u := u − u s , and we define the control problem as 

regulation to the origin. The optimal MPC control law is denoted 

as κN (x ) , and the NN control law as κNN (x ) = κN (x ) + e NN (x ) , in 

which e NN (x ) is the approximation error of the optimal control law 

by the network. Assume in the analysis that the target steady state 

is such that the unconstrained linear quadratic regulator (LQR) sat- 

isfies the actuator constraints in a small neighborhood near the 

origin. 

As reviewed in Mayne et al. (20 0 0) , the nominal stability of 

MPC can be established using the optimal cost function ( V 0 
N (x ) ) 

of the QP as a Lyapunov function. The region of attraction of the 

closed-loop system x + = Ax + BκN (x ) when no hard terminal re- 

gion constraint is included in the QP can be characterized as X N = 

lev Nd+ τ V 0 
N (x ) ( Limon et al., 2006 ). The parameter τ is the level set 

parameter of the terminal region chosen as X f = lev τ x ′ P x, d > 0 is 

a constant such that ℓ (x, u ) ≥ d for all x ∈ R n \ X f , and u ≤ u + u s ≤

u . The parameter τ is chosen small enough such that the uncon- 

strained LQR satisfies the actuator constraints for all x ∈ X f . The 

optimal cost function is continuous and satisfies c 1 | x | 
2 

≤ V 0 
N (x ) ≤

c 2 | x | 
2 and V 0 

N (x 
+ ) −V 0 

N (x ) ≤ −c 1 | x | 
2 for some c 2 ≥ c 1 > 0 . 

Assume that a state estimate ( ̂  x ) is used by the NN to compute 

the control. To analyze robustness, the following perturbed linear 

system is considered: 

ˆ x + = A ̂  x + BκN ( ̂  x ) + Be NN ( ̂  x ) + w − Ae + e + , (10) 

in which ˆ x = x + e is the state estimate, w is a process disturbance, 

and e, e + are the state estimation errors at the current and next 

timestep, respectively. We use φd (k ; ˆ x ) to denote a solution of the 

perturbed system at time k starting from an initial state ˆ x ; and 

φ(k ; x ) to denote a solution of the nominal system starting from 

an initial state x when the state estimation errors and process dis- 

turbances are zero. 

Theorem 1. For all 0 < ρ ≤ Nd + τ, there exist constants δ1 , δ2 , δ3 > 

0 , functions β(·) ∈ KL and αe (·) , αw (·) , αn (·) ∈ K, such that for 

all disturbance sequences satisfying | | e k +1 | | ≤ δ1 , | | w k | | ≤ δ2 , and 
∣

∣e NN ( ̂  x ) 
∣

∣ ≤ δ3 , and for all ˆ x in the set S := lev ρ V 0 
N ( ̂  x ) , we have the 

bound 
∣

∣φd (k ; ˆ x ) 
∣

∣ ≤ β( 
∣

∣ ˆ x 
∣

∣, k ) + αe ( | | e k +1 | | ) + αw ( | | w k | | ) + αn ( ̄e NN ) , 

in which ē NN = max ̂ x ∈ S 
∣

∣e NN ( ̂  x ) 
∣

∣. 

The proof of this theorem and the required input-to-state sta- 

bility definitions are provided in Appendix A . In the nominal case, 

the disturbance sequences e and w are zero, and the closed-loop 

states have the bound | φ(k ; x ) | ≤ β( | x | , k ) + αn ( ̄e NN ) . An additional 

value of the NN training is to reduce the worst approximation er- 

ror ( ̄e NN ) in the state space of interest, thus reducing the bound on 

the closed-loop states. 

5. Simulation studies 

In this section, two case studies are presented that demonstrate 

the scalability of the proposed NN design approach. The closed- 

loop performance of NNs and computational benefits over online 

QP based MPC are analyzed in these case studies. After the offline 

design of NNs, two types of validation simulations are performed: 

(i) with setpoints and disturbances not present in the training data 

but within the same range of values used to generate the train- 

ing data, (ii) with extra setpoint signals assumed to be unknown 

during the offline network design phase. Both these types of sim- 

ulations shed light on the interpolation and extrapolation abilities 

of the NNs, and are referred subsequently as simulations with ex- 

pected and unexpected plant behaviors, respectively. 

The validation simulations are performed directly with the 

plant model for our case studies. For industrial deployment, the 

NN training should be followed by an offline validation step of the 

trained network to verify the quality of the NN controller prior to 

online deployment. This validation can be performed by: a) quanti- 

fying the MSE of the trained NN controller on test data generated 

4 
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Fig. 1. Transient closed-loop actuator trajectories of the CSTRs with flash separator example with the NN and optimal MPC controllers. The performance of the NN and 

optimal MPC controllers are almost indistinguishable. 

using the optimal MPC controller, b) examining closed-loop per- 

formance metrics in simulations carried out with the linear model 

used in MPC and the optimal MPC and NN controllers, similar to 

the simulations performed in this section with the plant model. 

Additional probabilistic validation techniques for NNs trained us- 

ing robust MPC solutions for nonlinear models are proposed in 

Karg et al. (2019) and Hertneck et al. (2018) . 

The closed-loop performance of the following alternative and 

equivalently fast controllers as NNs are also compared in the val- 

idation simulations: (a) steady state controller (SS): the solution 

of the target selector is directly applied to the plant u = u s ; (b) 

saturated linear quadratic regulator (satK): the unconstrained LQR 

gain K is computed and used in the control law u = sat (K(x − x s ) + 

u s , u , u ) ; (c) short horizon controller (SH): an MPC problem with a 

short control horizon is solved online; (d) Unstructured NN (NN- 

UNS): a standard feedforward network is trained with the triple 

( x, x s , u s ) as the input and then used as the feedback controller on- 

line. 

To gauge the performance of NNs in the validation simulations, 

the offline computational effort required to build the NNs, and the 

memory required for the deployment of NNs, the following metrics 

are examined: 

• Controller performance index 

�k = 
1 

k 

k 
∑ 

t=1 

(

| x (t) − x s (t) | 
2 
Q + | u (t) − u s (t) | 

2 
R + | �u (t) | 

2 
S 

)

;

• % Performance loss = 100(�F 
N t 

− �MPC 
N t 

) / �MPC 
N t 

; 

• Average and worst-case speedups; 
• Data generation and NN training times; 
• Memory required to store the weights of the NNs. 

Here, N t is the number of simulation time steps, and �F 
N t 

and �MPC 
N t 

are the average stage costs obtained at the end of 

the simulation period by the fast controllers and the MPC con- 

troller. The data generation and online timing comparisons are per- 

formed on a computing cluster that has several multi-core CPUs of 

clock speed 2.4 GHz. The NN trainings are performed on a Tesla 

V100-SXM2 GPU that has 32 GB memory. Code for the simula- 

tion studies is available at: https://github.com/pratyushkumar211/ 

industrial _ nnmpc _ 2021 . 

5.1. CSTRs with a flash separator 

For the first example, the plant consists of two stirred tank 

reactors in series with a flash separator, depicted in Fig. 3 . In 

both the CSTRs, a desired product B is produced with the re- 

action A → B, and an undesired product C is produced with the 

reaction B → C. The reactant A is the major component in the 

feed streams supplied to the reactors. After the second CSTR, 

the reaction mixture is sent to the non-adiabatic flash that sep- 

arates the reactant A from the product B . The A rich vapor 

phase is recycled back to the first CSTR. The plant is simu- 

lated using the set of nonlinear ordinary differential equations 

(ODEs) available in Venkat (2006) , Appendix. The model has 12 

states ( H r , x Ar , x Br , T r , H m , x Am , x Bm , T m , H b , x Ab , x Bb , T b ), 6 control in- 

puts ( F 0 , F 1 , D, Q r , Q m , Q b ), and 5 disturbances ( x A 0 , x A 1 , x B 0 , x B 1 , T 0 ). 

The controlled measurements with setpoints are the heights and 

temperatures of the three units, and we assume that all the states 

are measured. The sample time for the measurements is chosen 

as 10 seconds. The parameter values used to simulate the ODEs 

for the plant, the actuator constraints, and the bounds of the con- 

trolled measurements and disturbances used for the data genera- 

tion and validation simulations are shown in Table 3 , Appendix B . 

A linear discrete time model with the chosen sample time is 

obtained at the steady state shown in the Table 3 . This model, 

inputs and outputs are scaled for the MPC controller such that 

the input constraints satisfy u − u = 2 . The tuning parameters 
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Fig. 2. Transient closed-loop controlled measurement trajectories of the CSTRs with flash separator example with the NN and optimal MPC controllers. The performance of 

the NN and optimal MPC controllers are almost indistinguishable. 

Fig. 3. Schematic of the CSTRs with a flash separator model. 

and control horizon length for the regulator are chosen as Q = 

10 3 C ′ C, R = 0 . 1 I, S = 0 . 1 I, and N = 450 . A total 1 . 5 × 10 5 samples 

of ( x, u −1 , x s , u s , κN (·) ) is generated for NN training, parallelized in 

100 separate offline simulations. The time consumed for this data 

generation step was 4.2 hours. The setpoint of the height of the 

second CSTR ( H m ) is assumed to be fixed during this data genera- 

tion process, and is included as an additional setpoint in the vali- 

dation simulations for the unexpected plant behavior case. 

Three structured NN architectures are considered. Each NN has 

three hidden layers with 448 (NN-3-44 8), 4 80 (NN-3-4 80), and 

512 (NN-3-512) nodes in each hidden layer respectively. For val- 

idation simulations, two sets of setpoint and disturbance signals 

with 24 setpoint changes and 48 disturbance changes are gener- 

ated for 4320 timesteps (12 hours), one set each for the expected 

and unexpected plant behavior cases. The short horizon MPC con- 

troller is constructed with a horizon length of N = 10 , and the ar- 

chitecture of the unstructured NN consists of three hidden layers 

with 224 nodes in each hidden layer. An additional scaling of x 

and x s is performed for the NN training as x := 2 x/ (x max − x min ) 

and x s := 2 x s / (x max − x min ) , in which x max and x min are the max- 

imum and minimum values of the state observed in the training 

data. This scaling is also performed in real time when the NN is 

used to compute the actuator move. 

First, we study the amount of data required to obtain an ac- 

curate NN controller is studied. To this aim, NNs with the three 

chosen architectures are trained with incremental increases of 10 4 

training samples, ranging from 4 × 10 4 to 1 . 5 × 10 5 samples. A 

batch size of 1024 samples is used in Adam, and all the NNs are 

trained for 20 0 0 epochs. For all the NN trainings performed, 10 % 

of the training dataset is kept as a buffer dataset, which is mon- 

itored during training, and the network weights are updated only 

when the MSE decreases on this buffer dataset after every train- 

ing epoch. The NNs after training are used in validation simula- 

tions with the setpoint and disturbance signals generated for the 

expected plant behavior case. The closed-loop performance is com- 

pared with the optimal MPC controller and the % performance loss 

obtained is plotted in Fig. 4 (top left) as a function of the num- 

ber of training samples. All the trained NNs provide less than 1% 

loss in this performance metric after training with about 9 × 10 4 

samples. The best % performance loss obtained by the NNs is sum- 

marized in Table 1 . 

Second, we use the above trained NNs with the best perfor- 

mance losses in validation simulations, with the setpoint and dis- 

turbance signals generated for the unexpected plant behavior case. 

The % performance losses obtained in these simulations are also 

summarized in the Table 1 , and the performance degrades from 

less than 1% to 5–8%. This deterioration in the performance is due 

to some unseen ( x, u −1 , x s , u s ) encountered in real-time by the NN 

resulting from the setpoint changes of the height of the second 
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Fig. 4. Simulation statistics for the CSTRs with a flash separator example. Data requirement to obtain accurate NN controllers (top left), online computation times of the NNs 

and MPC controller (top right), and the controller performance index obtained with the NNs, SS, satK and MPC controllers (center bottom).The performance of the three NN 

and optimal MPC controllers are indistinguishable. 

Table 1 

Summary of the simulation study for the CSTRs with a flash separator example. 

Controller 

Neural network 

architecture 

Number of 

parameters 

Memory 

footprint (MB) 

Training 

time (min) 

% Performance 

losses (Expected, 

Unexpected plant 

behaviors) Average speedup 

Worst case 

speedup 

SS 85.18%, 106.39 % 

satK 41.03%, 27.61 % 2 . 47 × 10 5 3 . 07 × 10 5 

SH 1.61%, 2.46 % 3 . 75 × 10 3 8 . 4 × 10 1 

NN-UNS [36, 224, 224, 224, 6] 1 . 10 × 10 5 80.49%, 73.29 % 9 . 31 × 10 4 4 . 99 × 10 3 

NN-3-448 [72, 448, 448, 448, 6] 1 . 10 × 10 5 0.84 13.02 0.28 %, 5.57 % 5 . 26 × 10 4 1 . 45 × 10 3 

NN-3-480 [72, 480, 480, 480, 6] 1 . 26 × 10 5 0.96 12.51 0.34 %, 7.58% 5 . 09 × 10 4 1 . 53 × 10 4 

NN-3-512 [72, 512, 512, 512, 6] 1 . 42 × 10 5 1.08 12.77 0.16 %, 5.90 % 4 . 62 × 10 4 1 . 58 × 10 4 

CSTR, which was assumed to be fixed during the data generation. 

These simulations illustrate that one must not expect the NNs to 

extrapolate outside the training data. The practical implication of 

this study is that all possible plant scenarios with the setpoints 

and disturbances must be identified, prior to deployment of NNs, 

and should be used to generate the training data. 

Third, the transient closed-loop performance of the trained NNs 

is examined for one particular validation simulation for the ex- 

pected plant behavior case. Figs. 1 and 2 show the transient ac- 

tuator and controlled measurements obtained with the NN-3-448 

architecture, and optimal MPC controllers for a simulation period 

of 2 hours. Fig. 4 (center bottom) shows the transient values of 

the controller performance index obtained in this validation sim- 

ulation with the three structured NNs, SS, satK and optimal MPC 

controllers for the full simulation period of 12 hours. Closed-loop 

performance obtained using NNs is almost the same as the optimal 

MPC controller and the degradation in the performance is quanti- 

fied with the % performance loss metric. 

Fourth, the online computational benefits of NNs over the QP 

based MPC is analyzed. Fig. 4 (top right) shows a histogram of on- 

line computation times of the NNs and QP solver in one validation 

simulation. The average and worst-case speedups obtained using 

NNs are summarized in the Table 1 . The QP solver takes about 8 

to 13 seconds in this example and all the NNs compute the con- 

trol in just 0.1 to 4 milliseconds, and are easily deployable in the 

sample time of 10 seconds. 

The % performance loss obtained using the four heuristic con- 

trollers, their corresponding speedups, maximum time required to 

train each NN, number of parameters in each NN, and the mem- 

ory required to store the weights of the NNs is summarized in 
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Fig. 5. Schematic of the industrial crude distillation unit model. 

the Table 1 . The memory requirement shows that NNs are deploy- 

able on resource constrained hardware, which can be crucial for 

industrial deployment at regulatory control layers. The 85% per- 

formance loss reported for the unstructured NN corresponds to 

training with 1 . 5 × 10 5 samples. Such performance is unacceptable 

for an industrial application. The noticeable performance improve- 

ment with the structured NNs is because the control law is exactly 

the same as the optimal feedback law at steady-states, which sim- 

plifies the optimal feedback law approximation problem since the 

training process only has to improve the NN control law for the 

transient conditions. 

5.2. Large-scale crude distillation unit 

The scalability of the proposed NN design approach is next 

demonstrated on an industrial crude distillation unit model 

( Pannocchia et al., 2007 ) with 252 states, 32 controls, and 90 mea- 

surements. The schematic of this model is shown in Fig. 5 , which 

is a typical crude unit found in petrochemical refineries. The plant 

model is linear, and input and outputs are scaled for the MPC reg- 

ulator as in the previous example. Only four measurements that 

represent the quality of the crude side products have setpoints, 

and five disturbances are used on the crude composition, fuel gas 

quality, and steam header pressure. The sample time for the mea- 

surements is 1 min. The tuning parameters and control horizon 

length for the MPC regulator are chosen as Q = 2 C ′ C, R = 0 . 1 I, and 

N = 140 . A total 3 . 6 × 10 5 samples of ( x, x s , u s , κN (·) ) are generated 

for the NN training, parallelized over 149 offline simulations. The 

time consumed for this data generation step was 27.8 hours. 

Three structured NN architectures are considered for this ex- 

ample. Each NN has three hidden layers, with 1664 (NN-3-1664), 

1792 (NN-3-1792), and 1920 (NN-3-1920) nodes in each hidden 

layer respectively. For the validation simulations, one set of set- 

point and disturbance signals for the expected plant behavior case 

is generated with 24 setpoint changes and 48 disturbance changes 

for 2880 timesteps (2 days). The short horizon MPC controller is 

Fig. 6. Simulation statistics for the industrial crude distillation unit example. Data requirement to obtain accurate NN controllers (top left), online computation times of the 

NNs and MPC controller (top right), and the controller performance index obtained with the NNs, satK and MPC controllers (center bottom). The performance of the three 

NN and optimal MPC controllers are indistinguishable. 
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Table 2 

Summary of the simulation study for the industrial crude distillation unit example. 

Controller Neural network architecture 

Number of 

parameters 

Memory 

footprint (MB) 

Training 

time (min) 

% Performance 

loss Average speedup 

Worst case 

speedup 

SS 120.59 % 

satK 13.07 % 4 . 83 × 10 5 1 . 51 × 10 5 

SH 1.56 % 6 . 66 × 10 3 2 . 51 × 10 3 

NN-3-1664 [1072, 1664, 1664, 1664, 32] 1 . 85 × 10 6 14.18 52.66 0.29 % 1 . 52 × 10 4 6 . 57 × 10 3 

NN-3-1792 [1072, 1792, 1792, 1792, 32] 2 . 11 × 10 6 16.15 55.27 0.43 % 1 . 33 × 10 4 5 . 25 × 10 3 

NN-3-1920 [1072, 1920, 1920, 1920, 32] 2 . 39 × 10 6 18.24 59.24 0.59 % 1 . 18 × 10 4 4 . 48 × 10 3 

constructed with a horizon length of N = 3 . The states and target 

steady-states ( x, x s ) are scaled for the NN training as in the previ- 

ous example. 

Fig. 6 shows the statistics for the simulation study performed 

for this example. The data requirement to obtain an accurate NN 

controller is shown in the top left. The batch size in Adam was 

chosen as 2048 samples, and all the NNs are trained for 1500 

epochs. The size of the buffer dataset was chosen as 5 % of the 

training dataset. The transient controller performance index for 

one validation simulation obtained with the three structured NNs, 

satK, and MPC controllers is shown in the center bottom. The top 

right plot shows the histogram of online computation times of the 

NNs and QP solver. Table 2 gives a summary of the maximum time 

required to train the NNs, number of parameters in each NN, mem- 

ory footprint of the NNs, and the % performance loss metric ob- 

tained by the structured NNs, SS, satK, and SH controllers in the 

validation simulations. 

The offline data generation and training times for the NNs 

shows that this large-scale example is tractable with the proposed 

NN approach. This example is challenging, since on average the QP 

solver CVXOPT requires 35 seconds, and 47 seconds in the worst- 

case. By comparison, all the NNs execute MPC in about 2 to 7 mil- 

liseconds. As observed from the plot of the transient controller 

performance index, the performance degradation by the NNs rel- 

ative to the optimal MPC controller is negligible. The sampling of 

the state space with the setpoint and disturbance signals for one 

particular operational scenario, combined with the offset-free NN 

structure are the key properties that enable scalability in this ex- 

ample. 

6. Conclusion 

Neural networks have been demonstrated to approximate the 

MPC feedback law for treating large-scale, linear MPC applications 

that may be out of reach with online QP solvers. The proposed 

methods avoiding online optimization to date in the literature, 

such as storing the entire MPC feedback law and sampling the 

large dimensional state space for the NN training, are not tractable 

for the problems considered in this article. 

The key features for the scalability of the proposed approach 

are the structure of the NN and data generation for only typical 

plant operational scenarios. The NN design approach was demon- 

strated to scale on an industrial crude distillation unit model 

with state and control dimensions of 252 and 32 respectively, and 

a control-sample horizon length of 140. After the offline design 

phase, NNs execute MPC about three to five orders of magnitude 

faster than an available QP solver with less than 1 % performance 

degradation in the closed-loop. The deployment decision of the 

NNs must be based on the ability to reliably identify and sam- 

ple the anticipated plant operational scenarios with setpoints and 

large magnitude disturbances that may change for a reasonable du- 

ration of operation. Parallel computing can be used for the offline 

data generation step, if solving QPs for each sampled state starts to 

take excessive amounts of time. After the training process, the NNs 

are easily deployable on memory constrained hardware. We es- 

tablished conditions under which the NN controllers are robust to 

state estimation errors and process disturbances, providing some 

theoretical support to practitioners interested in the deployment 

of NNs. 

The online QP based MPC was adopted by practitioners due to 

its ability to systematically handle multivariable systems and pro- 

cess constraints, and the reliability of QP solution algorithms. The 

approach has guaranteed stability properties. The need for sam- 

pling the plant operational scenarios and additional computing 

hardware for training large applications are additional complexi- 

ties that must be considered in the design of NN controllers. The 

advantage of NNs is their speed of MPC controller execution and 

convenience for deployment on memory constrained hardware. Fu- 

ture research may be focused to establish conditions for guaran- 

teed closed-loop stability with NN controllers, systematically han- 

dling state constraints, approximating the target selector QP, and 

extensions to large, nonlinear MPC applications. 
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Appendix A. Proof of Theorem 1 

We use the following definitions of robust positive invariance 

of a set with respect to disturbances, input-to-state stability (ISS), 

ISS-Lyapunov function, and the available result on the ISS property 

of a system if it admits an ISS-Lyapunov function ( Jiang and Wang, 

2001; Rawlings et al., 2017 , Appendix B). 

Definition 1 (Robust positive invariance) . A closed set X is robustly 

positive invariant for the system x + = f (x, w ) , w ∈ W if x ∈ X im- 

plies f (x, w ) ∈ X for all w ∈ W . 
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Definition 2 (Input-to-state stability (ISS)) . W is a compact set 

containing the origin and that X is a closed robustly positive in- 

variant set for the system x + = f (x, w ) , w ∈ W . This system is ISS 

in X if there exist functions β(·) ∈ KL and σ (·) ∈ K, such that 

for all x ∈ X and w (i ) ∈ W , i ∈ I 0: k −1 , | ψ (k ; x, w k ) | ≤ β( | x | , k ) + 

σ ( | | w k | | ) , in which ψ (k ; x, w k ) is the solution of the system at 

time k, starting from an initial state x, and with the disturbance 

sequence w k affecting the system. 

Definition 3 (ISS-Lyapunov function) . A function V : X → R ≥0 is an 

ISS-Lyapunov function in X for the system x + = f (x, w ) , w ∈ W 

if there exist functions α1 (·) , α2 (·) , α3 (·) ∈ K ∞ and σ (·) ∈ K such 

that for all x ∈ X and w ∈ W , we have 

α1 ( | x | ) ≤V (x ) ≤ α2 ( | x | ) , 

V ( f (x, w )) −V (x ) ≤ −α3 ( | x | ) + σ ( | w | ) . 

Proposition 1 (ISS-Lyapunov function implies ISS) . W is a com- 

pact set containing the origin and that X is a closed robustly posi- 

tive invariant set for x + = f (x, w ) , w ∈ W . If f (·) is continuous and 

there exists a continuous ISS-Lyapunov function in X for the system 

x + = f (x, w ) , w ∈ W , then the system is ISS in X. 

Additionally, we require the following two useful propositions 

from Allan et al. (2017) and Rawlings and Ji (2012) , to bound val- 

ues of continuous functions and an inequality for K functions re- 

spectively. 

Proposition 2. Let C ⊆ D ⊆ R n , C compact, D closed, and f : D → R n 

continuous. Then there exists a σ (·) ∈ K ∞ , such that for all x ∈ C and 

y ∈ D, we have that | f (x ) − f (y ) | ≤ σ ( | x − y | ) . 

Proposition 3. Let σ (·) ∈ K, the following holds for all a i ∈ R ≥0 , i ∈ 

I 1: n : 

σ (a 1 + a 2 + · · + a n ) ≤ σ (na 1 ) + σ (na 2 ) + · · + σ (na n ) 

Proof of Theorem 1 : We proceed in two steps. First, we show 

that there exist constants δ1 , δ2 , δ3 > 0 such that the set S is ro- 

bustly positive invariant. Then, we show that V 0 
N ( ̂  x ) is an ISS Lya- 

punov function for the perturbed system (10) on this set S. Denote 

˜ x + = A ̂ x + BκN ( ̂  x ) as the nominal state evolution using the optimal 

MPC controller, and d(k ) = [ e NN ( ̂  x (k )) 
′ B ′ , w (k ) ′ , e (k ) ′ , e (k + 1) ′ ] ′ as 

the combination of all the disturbances at a given time k . 

To show robust positive invariance of S, we establish that 

if V 0 
N ( ̂  x ) ≤ ρ, then V 0 

N ( ̂  x 
+ ) ≤ ρ . Since the optimal cost function 

( V 0 
N ( ̂  x ) ) is continuous, using R n as the closed set ( ̂ x + ∈ R n ) and S

as the compact set ( ̃ x ∈ S), from Proposition 2 we have for some 

σ1 (·) ∈ K ∞ that 

∣

∣V 0 N ( ̂  x 
+ ) −V 0 N ( ̃  x 

+ ) 
∣

∣ ≤ σ1 ( 
∣

∣ ˆ x + − ˜ x + 
∣

∣) 

≤ σ1 ( 
∣

∣Be NN ( ̂  x ) 
∣

∣ + | w | + | A | | e | + 

∣

∣e + 
∣

∣) 

≤ σ1 ( | d | + | d | + | A | | d | + | d | ) := σ2 ( | d | ) (11) 

in which σ2 (s ) := σ1 ( | A | s + 3 s ) , and the last inequality follows be- 

cause | a | ≤
∣

∣[ a ′ , b ′ ] ′ 
∣

∣, in which a and b are both vectors, and σ2 (·) ∈ 

K ∞ . We partition S in outer and inner parts based on the value of 

the optimal cost V 0 
N ( ̂  x ) , and bound the combination of disturbances 

d in each part such that V 0 
N ( ̂  x 

+ ) ≤ ρ . 

Case 1: ρ/ 2 ≤ V 0 
N ( ̂  x ) ≤ ρ . Using the upper bound on the op- 

timal cost, we have ρ/ (2 c 2 ) ≤
∣

∣ ˆ x 
∣

∣

2 
for all ˆ x in this part of S. 

To analyze the worst-case disturbance, we have from the equa- 

tion (11) that V 0 
N ( ̂  x 

+ ) ≤ V 0 
N ( ̃  x 

+ ) + σ2 ( | d | ) . From nominal MPC cost 

decrease, we obtain V 0 
N ( ̂  x 

+ ) ≤ V 0 
N ( ̂  x ) − c 1 

∣

∣ ˆ x 
∣

∣

2 
+ σ2 ( | d | ) . Thus, if 

σ2 ( | d | ) ≤ ρc 1 / (2 c 2 ) , at all times in this outer part of S, we have 

V 0 
N ( ̂  x 

+ ) ≤ ρ . 

Case 2: V 0 
N ( ̂  x ) ≤ ρ/ 2 . From Eq. (11) and nominal MPC cost de- 

crease, we have for this part of S that V 0 
N ( ̂  x 

+ ) ≤ ρ/ 2 + σ2 ( | d | ) . 
Thus, if σ2 ( | d | ) ≤ ρ/ 2 , at all times in this inner part of S, we have 

V 0 
N ( ̂  x 

+ ) ≤ ρ . 

Therefore, if | d | ≤ min { σ−1 
2 (ρc 1 / (2 c 2 )) , σ

−1 
2 (ρ/ 2) } := δmax at 

all times, then the set S is robustly positive invariant. Since c 1 ≤ c 2 , 

δmax = σ−1 
2 (ρc 1 / (2 c 2 )) . The constants δ1 and δ2 are δmax / 4 each, 

and δ3 is δmax / (4 | B | ) . The optimal MPC cost function satisfies 

V 0 N ( ̂  x 
+ ) −V 0 N ( ̂  x ) ≤ −c 1 

∣

∣ ˆ x 
∣

∣

2 
+ σ2 ( | d | ) 

in the robustly positive invariant set S and the disturbance set 

| d | ≤ δmax . Since the optimal cost function also satisfies the upper 

and lower bounds c 1 | x | 
2 

≤ V 0 
N (x ) ≤ c 2 | x | 

2 
, from the Definition 3 , 

it satisfies the requirements of an ISS-Lyapunov function. Hence, 

using the Proposition 1 , the perturbed linear system (10) is ISS 

( Definition 2 ), and there exist functions β(·) ∈ KL and σ (·) ∈ K, 

such that 
∣

∣φd (k ; ˆ x ) 
∣

∣ ≤ β( 
∣

∣ ˆ x 
∣

∣, k ) + σ ( | | d k | | ) . Using Proposition 3 and 
the definition of d(k ) , we have 
∣

∣φd (k ; ˆ x ) 
∣

∣ ≤ β( 
∣

∣ ˆ x 
∣

∣, k ) + σ ( | B | ̄e NN + | | w k | | + 2 | | e k +1 | | ) 

≤ β( 
∣

∣ ˆ x 
∣

∣, k ) 

+ σ (3 | B | ̄e NN ) + σ (3 | | w k | | ) + σ (6 | | e k +1 | | ) 

Therefore, the bound in the Theorem 1 is established with αe (s ) := 

σ (6 s ) , αw (s ) := σ (3 s ) , αn (s ) := σ (3 | B | s ) , and αe (·) , αw (·) , 

αn (·) ∈ K. 

Appendix B. Parameters used in the CSTRs example 

Table 3 

Parameters used in the ODEs to simulate the plant in the CSTRs in series with a 

flash separator example, actuator constraints, setpoint and disturbance bounds, and 

the steady state used to obtain the linear model for the MPC controller. 

Parameter Value Unit Parameter Value Unit 

Parameters used to simulate the ODEs 

αA 3.5 k m 2.5 m 2 

αB 1.1 k b 1.5 m 2 

αC 0.5 �H 1 40 kJ/kg 

ρ 50 kg/m 3 �H 2 50 kJ/kg 

C p 3 kJ/kg-K E/R 150 K 

A r 0.3 m 2 k ⋆ 1 4 × 10 −4 sec −1 

A m 2 m 2 k ⋆ 2 1 . 8 × 10 −6 sec −1 

A b 4 m 2 T d 313 K 

k r 2.5 m 2 

Actuator constraints ( u , u ) 

F 0 (1.5, 2.5) kg/sec Q r (500, 500) kW 

F 1 (0.5, 1.5) kg/sec Q m (500, 500) kW 

D (29.5, 30.5) kg/sec Q b (500, 500) kW 

Setpoint bounds ( r sp , r sp ) 

H r (158.8, 168.8) m T r (303, 323) K 

H m (169.2, 179.2) m T m (310, 316) K 

H b (2.2, 4.2) m T b (303, 323) K 

Disturbance bounds ( d , d ) 

x A 0 (0.7, 0.85) x B 1 (0, 0.15) 

x B 0 (0, 0.15) T 0 (305, 321) K 

x A 1 (0.7, 0.85) 

Steady state used for linearization ( x s , u s , d s ) 

H r 163.8 m F 0 2 kg/sec 

x Ar 0.40 F 1 1 kg/sec 

x Br 0.54 D 30 kg/sec 

T r 313.1 K Q r 0 kW 

H m 174.2 m Q m 0 KW 

x Am 0.37 Q b 0 kW 

x Bm 0.58 x A 0 0.8 

T m 313.7 K x B 0 0.1 

H b 3.24 m x A 1 0.8 

x Ab 0.15 x B 1 0.1 

x Bb 0.73 T 0 313 K 

T b 313.7 K 
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