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A recent paradigm shift in the electron diffraction community has benefited from accessibility of large data sets
and ever more complex designs of convolutional neural networks (CNNs). However, this shift from conventional
feature engineering to analyzing high-level features extracted from CNN is often accompanied by a reduction in
accuracy and sensitivity. Particularly, CNN based crystal orientation indexing using electron backscatter
diffraction is sensitive to noise, reducing the overall accuracy. In this study, a new hybrid indexing approach has

been developed to integrate dictionary indexing (DI) with a trained CNN to achieve extraordinary speed and
robustness against noise simultaneously.

1. Introduction

Arguably, one of the most exciting moments during the history of
materials science is the realization that bulk crystalline materials are
composed of smaller, differently oriented crystals. Since the orientation
of each crystal determines how it will react differently to the same
external stimuli, constitutive laws accurately describing a macroscopic
property of material needs to incorporate the ensemble of crystallo-
graphic orientations [1]. Spatially resolved crystallographic information
to interpret and model material properties is often determined by
diffraction-based techniques such as high-energy X-ray diffraction mi-
croscopy (HEDM) [2-4] and electron backscatter diffraction (EBSD) [5].
Unlike electron diffraction, HEDM, carried out exclusively at beamlines,
provides a 3D structure information. Nevertheless, EBSD has become
increasingly popular because of its accessibility as part of a standard
university-level research laboratory with a scanning electron micro-
scope (SEM). It offers advantages in spatial/angular resolution (40 nm
[6]1/0.5° [7]) and fast sampling of crystallographic/microstructural in-
formation over a large area of interest.

Early development of EBSD can be attributed to multiple research
groups around the world [8-10]. Its modern popularity stem from the
development of CCD/CMOS imaging sensors and fully automated
computer-based data analytics [11,12]. More specifically, the imple-
mentation of computer vision technique i.e. Hough/Radon transform
[13] has replaced the tedious manual indexing. In the context of crys-
tallographic orientation determination, the conventional Hough-
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transform indexing (HI) approach transforms the spatial coordinates of
Kikuchi bands into Hough space (distance-angle space) and then cal-
culates at least three inter-planar angles to be compared with a lookup
table (LUT) [11,12]. Besides advanced hardware with high sensitivity,
the precision and accuracy of EBSD orientation measurement relies
strongly on the indexing method to extract the location of the Kikuchi
bands from electron backscatter diffraction patterns (EBSPs) [14,15]. Of
course, the accuracy of orientation measurement with EBSD also de-
pends on the accuracy of the geometric setup of the measurement e.g.
sample tilt, detector tilt, pattern center [16]. This dimensionality
reduction technique i.e. Kikuchi bands to points in the Hough space
inevitably results in loss of information. While HI is computationally
efficient, it is very dependent on the signal-to-noise ratio and almost
impossible to distinguish pseudosymmetries [17,18].

Instead of extracting specific diffraction features, the dictionary
indexing (DI) [19], or more recently the spherical indexing (SI) [20,21],
exploits the use of simulated dynamical electron diffraction patterns in
order to take the full diffraction pattern into consideration [22]. Sub-
sequently, a search algorithm can be efficiently built to traverse through
the similarity landscape between a dictionary of simulated patterns and
experimental patterns to obtain the correct Euler angle triplets. These
pattern matching methods are robust against noise and even sensitive to
the presence of subtle differences due to pseudosymmetries [18,20,23].
In some cases, researchers can even use pattern matching methods to
infer c/a ratio of martensite [24,25] and the full deformation tensor
[26]. For DI method, the size of the dictionary is enormous (on the order
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Fig. 1. Schematic of the EBSDDI-CNN architecture.

of 10° patterns per dictionary) in order to uniformly sample orientation
space in the cubochoric representation [27]. Its root cause of the
computational complexity is associated with the fact that each experi-
mental pattern needs to be compared with all the dictionary patterns (i.
e. an enumeration algorithm), making this process very computationally
demanding. Thus, an alternative method that improves the speed of DI is
needed while preserving its sensitivity to noise.

With exponential growth in computing power, the material charac-
terization community is also transitioning to be more data-driven due to
the advancement in data collection and integrating machine learning
algorithms to accelerate the data interpretation [28]. For instance, Holm
et al. [29] have trained a CNN instance segmentation system based on
Fast R-CNN [30] to identify gas atomized metal powders from SEM
micrographs, a task that was typically approached manually and sub-
jectively. Moreover, DeCost et al. [31] proposed another CNN model to
semantically segment complex microstructures (including grain
boundary carbide, spheroidized particle matrix and Widmanstatten
cementite) in ultra-high carbon steel. In the electron diffraction com-
munity, earliest application of machine learning technique in EBSD is
the use of artificial neural network to verify the detected bands in Radon
space [32]. More recently, CNNs with various output spaces have been
previously designed to classify phases [33], and space groups [34-36].
Determination of crystallographic orientation using machine learning
algorithms has also been explored by several search groups [37-39].

Due to the continuous nature of orientation space, crystallographic
orientation determination is essentially a regression problem and
therefore poses a challenge for CNN. Unlike a classic image classification
problem that uses normalized categorical values for a given number of
categories, the recent development by our group uses an end-to-end
CNN (EBSD-CNN) to determine the unit quaternion representing the

corresponding orientation [39]. However, two critical issues remain
unsolved in the EBSD-CNN model are: [1] the training of the model for a
regression problem is computationally demanding; [2] the effect of
noise on the orientation accuracy. In this study, we present a new hybrid
design strategy for CNN based model to determine crystallographic
orientation. The seamless integration of CNN and DI (EBSDDI-CNN)
allows the model to be trained with less effort and at the same time
achieve unparalleled speed, accuracy and sensitivity.

2. Methodology
2.1. EBSDDI-CNN design

As mentioned in the introduction, EBSDDI-CNN is a serialized
workflow with a classification CNN and a DI indexing framework as the
main components. A flowchart is shown in Fig. 1. First, a high energy
electron beam (20 kV) is used to probe a tilted crystalline sample sur-
face. Upon interaction, elastically and inelastically scattered electrons
emerge from the surface towards a detector equipped with a phosphor
screen and a CCD or CMOS based camera at the back. Collected raw
patterns are usually pre-processed to remove the background intensity
and optics distortion. For HI, detailed description of how to transform
orientation from the detector screen to Cartesian crystal frame is
described elsewhere [40]. In this study, an additional pattern pre-
processing module, also available as part of the open-source project
PyEMEBSDDI,' is used to remove artifacts and improve pattern quality
of experimental patterns [41].

! https://github.com/Darkhunter9/PyEMEBSDDI_wrapper
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As shown in Fig. 1, the design of CNN is based on Xception [42] from
Google with minor simplifications and customization. The entry flow
consists of two 2D convolutional layers and rectified linear units (ReLU)
as activation function. In the middle flow, the conventional convolu-
tional layers in the are replaced with depth-wise separable convolu-
tional layers to decrease the number of parameters, lowering the
computational complexity. Also, max-pooling units are added to reduce
the dimensionality and further reduces the computational cost. In the
exist flow, the extracted high-level features are fed into fully connected
layers after two more rounds of convolution.

In contrast to our previous EBSD-CNN approach, the CNN part in the
hybrid method is used to predict several sub-spaces in the entire
orientation space to which the pattern might belong. In this way, the
subsequent DI step no longer needs to traverse through the whole dic-
tionary. Thus, the CNN output corresponds to the probability of a
pattern belonging to a specific bin in the segmented orientation space. In
this study, we use a total of 361 orientation bins generated from the
EMsampleRFZ function [27,43] provided by the open-source EMsoft”
package. The loss function is switched from disorientation/misorienta-
tion used in the orientation space to the sparse categorical cross-entropy
[44]:

l 361 "
L= —— . :
361 ;yflog(y,) (@9)

where y; is the ground truth and y; is the prediction.

The link between the CNN and the DI algorithms is the dictionary
generator that customizes the exact number of sub-dictionaries for each
pattern to be categorized into based on the corresponding CNN predic-
tion. The resultant dictionary can be readily obtained by grouping dic-
tionary patterns in the first K number of bins with high probabilities
(Top_K). Next, these dictionary patterns are converted into normalized
column vectors. Using a similarity metric such as the normalized dot
product (NDP), every experimental pattern (normalized column vector)
can be compared against all dictionary patterns and ranked according to
the NDP values. Finally, the orientation of an experimental pattern is
obtained by the weighted average quaternions of top M matches (the top
M number of dictionary patterns ranked according to the NDP values)
[14].

Since the CNN part is realized using Python and Tensorflow, we have
developed Python wrappers for the DI module from EMsoft, originally
written in Fortran 90. Through C++ extensions in Python, the wrapper
routines provide great run-time efficiency as well as native support for
multi-GPU acceleration PyEMEBSDDI.

2.2. Data preparation and partitioned training

As the CNN aims to predict approximate orientation bins for a given
EBSD pattern, the first task is to discretize orientation space into an array
of sub-spaces (bins). The label of each bin is the orientation at the bin
center, in the form of a unit quaternion:

¢ = (I,1), 2)
where [; is the scalar part of the quaternion for bini € [1...Np] (Np is the
number of bins), and |; the vector part. The training data obtained from

EMsoft consists of pairs of simulated patterns and their unit orientation
quaternions s; (j € [1...N;] with N; the number of training patterns):

Sj = (0/‘7 Oj) 3

All patterns falling into a particular bin will share their label; thus,
the bin label i of each training pattern j is determined by finding the bin
whose label i shows a minimum disorientation angle with respect to the

2 https://github.com/EMsoft-org/EMsoft
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orientation of the training pattern (taking into account the rotational

point group symmetry with quaternion operators 7y, k € [1...N] with N

the order of the point group):

i = argmin @u; = argmin Zarccos[(ﬁ’kf,)-((@’,sj) } (€))
isk,le[1...N] iskJe[1...N]

The dot product in this relation is the standard dot product between
two quaternions, i.e., ;- s; = lj0; + 1;. 0;. As stated before, in this study we
use a total of N, = 361 bins. This is an adjustable parameter that bal-
ances the accuracy and acceleration effect of the CNN. In this case, it is
likely that the prediction of the label of an experimental pattern will be
incorrect. Nevertheless, the size of the sub-dictionary for each bin will be
smaller, leading to an improved acceleration.

Since the CNN is the only part of the algorithm that requires super-
vised learning and the DI algorithm is not involved in the data prepa-
ration, the subsequent indexing result of DI following CNN will always
be the same as that obtained by traversing the complete dictionary given
a correct prediction from the CNN.

2.3. Analysis of the trained system

The material used for training, validation and testing (simulated
patterns) in this study is pure Nickel (a=b=c=352.4pm,a=p=y =
90°) with a face-center cubic (FCC) crystal structure. To assess the
robustness against the noise of the hybrid indexing method, a specific
area of Inconel 600 nickel alloy was scanned multiple times using
various exposure times (from 0.17 ms to 8.03 ms) but constant total
exposure, resulting in a series of data sets with different noise levels
[45]. In this study, three metrics about the trained system are evaluated:

1. Hit rate of the CNN under different noise levels using different Top_K
values;

2. Indexing accuracy of the whole system compared with pure DI;

3. Indexing speed of the whole system compared with pure DI. The time
consumed by the CNN and DI parts are recorded separately.

Since CNN used in the framework is for classification, the hit rate can
be quantitatively assessed by metrics consisting of accuracy, precision,
recall and F1 score [46]:

TP + TN

A e e — 5

COUraCY = TP Y TN + FP + EN’ )
TP

Precision = —————

recision TP Ep (6)
TP

Recall = — 7

T PN 7

Fl — Score — 2 x Recall x Prec?s?on7 @)
Recall + Precision
where TP, TN, FP, FN are true positive, true negative, false positive and
false negative, respectively.
For problems with multiple classes, the metrics are computed for
each class in the dataset and then aggregated in a micro way:

Micro : B (ZTP,-, ZFPi,ZTN,»,ZFN,-> , 9

where i € [1...q] (g is the number of classes in the data set), and B is the
metric.

2.4. Analysis of the acceleration
The acceleration of the EBSDDI-CNN is related to two factors: 1) the

number Nj, of orientation bins used in the CNN part, and 2) the texture in
the EBSD data set. The first contributing factor is easy to explain: the
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Fig. 2. Training History of EBSDDI-CNN method including training accuracy (yellow), validation accuracy (light purple), training loss (red), and validation loss
(blue). The training of EBSDDI-CNN converges with a few epochs, much faster than EBSD-CNN. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

more bins are used in the CNN, the smaller the number of patterns per
bin to traverse during the DI step. The second contributing factor is, in
fact, a direct consequence of the first and the use of equal-volume
mapping in a uniform orientation sample.

An indispensable part of DI is the generation of an orientation dic-
tionary based on a uniform sampling of orientation space using a uni-
form and refinable grid. The sampling method is described in detail by
Rosca et al. [27]. We start from a uniform cubical grid inside a 3D cube
C € R3. This uniform grid with equal volume voxels is mapped onto a 3D
ball B® ¢ R® with an equal-volume mapping. Through an inverse
Lambert type equal-volume mapping, the orientations in B® can be

(b)

(d)

(001)

uniformly mapped onto the Northern hemisphere of the quaternion
hypersphere S° € R, which is itself isomorphic with SO(3). In the
presence of crystallographic symmetry, only a compact subset, i.e., the
fundamental zone, of the total SO(3) group is considered which contains
rotations that are unique under a particular rotational group.

Due to topological differences, a “uniform grid” only means that the
volume of the voxels during the mapping is preserved whereas the
angular distance or disorientations between nearest neighbors is not. As
shown by Singh et al. [43], the average disorientation of uniformly
sampled orientation is a function of semi-edge length. Additionally, this
means that the number of dictionary orientations grouped into the

(©)

(f)

0.00

Fig. 3. IPF maps on experimental EBSD patterns: (a) Pure DI, (b) EBSD-CNN, (c) EBSDDI-CNN, (d) Colour key for FCC Fundamental Zone, (e) Disorientation (°)
between pure DI and EBSD-CNN, and (f) Disorientation (°) between pure DI and EBSDDI-CNN. Grain boundaries are highlighted in red in (e) and (f). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Evaluation metrics of CNN with tunable Top_K value under different noise levels: (a) accuracy, (b) precision, (c) recall, and (d) F1-score.

orientation bins based on smallest disorientation values will differ
significantly from bin to bin, as shown later in the discussion section.
To approximate the number of dictionary patterns per bin for any
orientation, the method of spherical harmonics approximation is used to
translate these discrete values located on a sphere:
M
=22

m=0 I

HME

where r is the coordinate of a bin, m and | are the degree and order of
spherical harmonics Yy, ;, M is the cutoff value or the bandwidth to
which degree m is summed over, _?m)l is the Fourier coefficient, and s(r) is

the spherical function approximation of the bin’s values. More

T

so that

specifically, we seek Fourier-coefficients f = (fmvl, ...,fMM

the approximate spherical function minimizes the difference between
the exact bin values and the approximate bin values for a given mini-
mization strategy such as the least squares method:

min Z|Sr,, —s(r) 11

m€SO(3)

for bins ry; S(r,) is the exact number of patterns per bin, and s(ry,) is the
approximated number of patterns per bin evaluated from the spherical
function.
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Fig. 5. IPF of the nickel experimental dataset with tunable Top_K value under different noise levels. The colour key is the same as Fig. 4(d). With Top_K = 1, EBSDDI-
CNN has already shown a noise resistance comparable to HI. And as Top_K increases, the performance gets closer to DI

3. Results
3.1. Training of CNN

The training history of the CNN part is shown in Fig. 2. Compared
with the EBSD-CNN [39], the most significant difference is the faster
convergence. The validation accuracy (Top_K =1) reached 85% and
became stable after only 5 training epochs, while it took over 15 epochs
for the EBSD-CNN to show a competitive performance. This indicates the
possibility of realizing “few show learning” [47], which may funda-
mentally address the lack of versatility in a trained model and promote
its wide application in practical EBSD indexing on various materials.

To confirm that the training step is effective, a set of experimental
patterns with relatively good pattern quality were indexed individually
by pure DI, EBSD-CNN and EBSDDI-CNN. The IPF maps based on the
indexing results of three methods are shown in Fig. 3. It can be seen
qualitatively that with a good hit rate in the CNN part, the result of
hybrid indexing system maintains a high level of consistency with
respect to pure DI

Another obvious improvement of EBSDDI-CNN over EBSD-CNN is
the indexing accuracy of points on the grain boundaries. While all
training patterns are generated with an explicit orientation and a stress
free state, the situation on grain boundaries is much more complicated
because of the superposition of patterns from multiple grains with
diverse orientations and the potential introduction of strain [48-50].
Since such patterns require a more sophisticated simulation approach
and were thus not included in the training data set, it is no surprise that
EBSD-CNN performed poorly near grain boundaries. In EBSDDI-CNN on
the other hand, the performance near grain boundaries is improved due
to the high indexing robustness of DI and the subsequent orientation
refinement algorithm [51,52].

3.2. Prediction accuracy of CNN

Since DI, without any trainable parameters, has a closed form solu-
tion for any EBSP if given the dictionary, and a detailed error analysis of
its orientation prediction is already available [15], it is reasonable to
focus on the CNN part when evaluating the prediction accuracy of the
system.

Among all metrics mentioned in Section 2.3, accuracy (also known as
categorical accuracy) is the one that directly shows whether the right
sub-dictionary is chosen. In most image classification problems and
competitions (such as ILSVRC), to fully assess the potential of the model
and avoid being penalized for objects missed in the ground truth, usually
and accuracy of Top_5 choices is calculated in addition to the one with
highest probability. Compared to this algorithm, the introduction of a
tunable Top_K parameter here is more meaningful and practical, as all
sub-dictionaries with probabilities among the classifier’s top K guesses
will be passed to the DI algorithm.

Fig. 4a shows the accuracy with Top_K from 1 to 10 under 8 different
noise levels. While on patterns with relatively high quality, a low Top K
is enough to guarantee a good indexing accuracy, on noisy patterns,
increasing Top_K value can effectively make up for CNN’s sensitivity to
perturbations. Even on patterns where Kikuchi band features are hard to
identify, the CNN can still maintain an accuracy around 50%, using
predictions with a size less than 3% of all bins.

Precision defines the fraction of correct predictions, while recall in-
dicates the proportion of correctly indentified true positives. The F1-
score is the weighted average of precision and recall, taking both false
positives and false negatives into account; this handles the situation of
an uneven class distribution. Three metrics under different noise levels
and Top_K values are plotted separately in Fig. 4b—d. It is obvious that all
metrics are lowered under higher noise level. As each pattern belongs to
only one class, a higher Top_K value leads to predictions with a larger
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size, causing more “false positive” counts and lowering the precision.
The recall increases with Top_K but escalation is much more stable under
high noise level than lower ones which already have a good hit rate.
Balancing the precision and recall, the F1-score reveals that for patterns
with good quality we should always stick to a lower Top_K value, while
for noisy patterns, there is a certain optimal “sweet” spot. An automated
workflow to determine the point of optimal balance will be discussed in
the following section.

3.3. Robustness against noise

The last part of the indexing accuracy analysis is a visual check of the
inverse pole figure (IPF) output by the whole system, as presented in
Fig. 5. To highlight the effect of noise and Top_K 4 noise levels and Top_K
values are shown. At low level noise, a small Top_K value is sufficient to
obtain almost the same indexing result as obtained with DI, while
reducing the amount of computation by a large fraction. At a high noise
level, the robustness of the system is guaranteed by a combination of a
tunable Top K value and the intrinsic noise resistance of DI, which is
much better and more flexible than the end-to-end EBSD-CNN. As an
extreme case, the system can show a robustness against noise with the
same upper limit of DI, by setting Top_K equal to the number of sub-

(b)
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dictionaries.

Compared with EBSD-CNN, another interesting phenomenon is what
happens when the indexing fails. In EBSD-CNN, most noisy patterns that
cannot be indexed properly are labeled as “zero rotation” (i.e., the
identity quaternion [1,0,0,0]). This is because a high noise level makes
the pattern close to random input, which typically does not produce a
high activation in the convolutional layers. The reaction of EBSDDI-CNN
to excessively noisy patterns, on the other hand, is more similar to that of
DI, assigning a random orientation in the orientation space.

3.4. Indexing speed

In addition to the indexing accuracy, acceleration is also one of this
study’s original intentions. On the one hand we want to determine
whether or not the indexing speed is faster than that of standard DI, i.e.,
whether the time consumed by the CNN step is more than that recovered
by the resulting smaller dictionary. On the other hand, as described in
Section 3.2, the drop in precision with a larger Top_K value indicates the
increase in ratio between the computation amount and the improvement
on accuracy. Thus, the increase in execution time of a larger Top_K value
deserves further investigation.

The time spent on indexing the whole experimental data set with
different Top_K values is shown in Fig. 6. For pure DI, it takes just over
30 min to complete the indexing. Since the model structure, as well as
the output size, is independent of Top_K the execution time of the CNN
step is a constant 4.8 min, using the same GPU model. The acceleration
effect brought to DI part, however, is remarkable. At Top_K = 1, the DI
step takes 4.05 min to complete the indexing of all sub-dictionaries,
which is only 13.3% of the computation time of the pure DI algo-
rithm. Even at Top_K = 10, the percentage only rises up to 17.0%. It is
clear that the increase in computation time of the DI step is actually not
proportional to Top_K. The reason lies in the design of GPU for parallel
computation. With much more compute units (streaming multiprocessor
in Nvidia) than CPU, the performance bottleneck of the GPU is usually
the latency (instead of instruction bandwidth), meaning that if the
parallelism exposed is not sufficient, the actual performance of GPU will
be far from the maximum [53,54]. According to the predictions from the
CNN step, patterns are divided into groups and indexed using different
sub-dictionaries in the DI step. Limited experimental patterns in each
batch and candidates in the corresponding sub-dictionary means that
many threads remain idle. Thus, when a larger Top K value is used, the
increase of the number of patterns for each sub-dictionary does not
necessarily lead to a longer indexing time.

1300
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Fig. 7. Cubic Rodrigues fundamental zone for (a) orientation bins (n = 10) and (b) orientation dictionary (n = 100). (c) The number of unique orientations from the

dictionary in each orientation bin.
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Fig. 8. (a) Orientation dependent computational cost for n = 10; Ni experimental data (black dots) overlaid on top of (b) the approximation of (a) with spherical
harmonics (bandwidth = 33) and (c) the approximation of the computational cost for the entire orientation space with spherical harmonics (bandwidth = 1000); (d)
histograms of the computational cost for Ni data set evaluated from the spherical harmonics in (b: approximate) and (c: exact).

4. Discussion
4.1. Acceleration effect analysis

For a semi-edge length N of the cubochoric grid, the corresponding
total number of orientation in SO(3) is simply equal to the number of
uniformly sampled orientations in the cube 8N>. Taking into account the
symmetry of the cubic system, the fundamental zone contains approxi-
mately 8N3/24 orientations. This fundamental zone can be visualized in
Rodrigues space, as shown in Fig. 7, in which the direction is the rotation
axis and the distance from the origin is the tangent of half the rotation
angle. Fig. 7(c) shows how many dictionary patterns generated with N
= 100 will be grouped into each bin.

Since a stereographic projection only preserves angular distances,
orientations will not uniformly distribute on the pole figure as shown in
Fig. 8(a). The value for each orientation corresponds to the ratio be-
tween the number of dictionary patterns in each bin (N = 10), same as
data shown in Fig. 7(c), divided by the hypothetical case if dictionary
patterns were to uniformly distribute among 361 bins (923 patterns per
bin). Since the indexing speed of the DI step will scale inversely with
respect to the number of patterns in the bin, the red dots will require 1.5
times longer time to compute compared with the hypothetical case and
green dots only require half of the computational time. In other words,
the value of the dots correlates directly to the computational cost of the

DI step.

However, Fig. 8(a) only represents a discrete view of the acceleration
speed over the orientation space. To approximate discrete data on a
sphere, a series of spherical harmonics is used to approximate the values
in Fig. 8(a), which is illustrated in Fig. 8(b). Alternatively, the orienta-
tion space (using the entire dictionary) can be divided into sections
belonging to a particular bin and each section has the same value of
computational cost. With a higher bandwidth, the harmonic approxi-
mation of the computational cost over the entire orientation space is
shown in Fig. 8(c).

By evaluating the cost of an orientation from the spherical har-
monics, it is possible to statistically analyze the computational cost of a
particular EBSD data set for the DI step of the EBSDDI-CNN method as
shown in Fig. 8(d). The “approximate” histogram uses the N = 10 case
for the target function values to be represented by a spherical harmonic
and the “exact” method uses all the dictionary orientations (N = 100). A
higher bandwidth is necessary for the “exact” method to accurately
represent the sharp changes of cost values from one bin to another. For a
sample with randomly orientated grains or weak to medium texture, the
overall cost usually remains close to unity. However, a strong fibre
texture, for instance, close to the Euler angle triplets [0,0,0] would yield
a much faster computation due to the lower number of dictionary pat-
terns close to these bins.

More recently, other methods of uniform sampling have been
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Fig. 9. Workflow for the adaptive selection of Top_K. The Top K value is dynamically adjusted according to the confidence index returned by DI step.

proposed by Larsen & Schmidt [55] and Quey et al. [56], which might
provide a more uniform distribution of the sub-dictionary sizes. The
benefit of having a more uniform distribution is an easier prediction of
the acceleration, regardless of the texture present in the sample, but the
overall acceleration will still be comparable to that reported in the
present study.

4.2. Transfer learning and few-shot training

Currently, a major problem limiting CNN’s broad application in
practical EBSD indexing is the lack of versatility in a trained model. In
other words, a model trained on one material may not show good per-
formance on other materials with different symmetry groups and lattice
constants. Compared with EBSD-CNN, the number of training epochs
required to converge the EBSDDI-CNN has decreased by 60%; however,
this is still a fraction of the indexing cost of a single data set.

One approach to further accelerate the training process is to use
transfer learning and few-shot training. The former refers to deploying
weights from models trained on other data sets in the convolutional
portion, assuming the model can be improved from one domain by
transferring information from a related domain [57]. The latter is the
training followed by fine tuning of parameters which rapidly generalizes
to the new data set containing only limited samples with supervised
information [58]. This combination is originally intended for real-world
machine learning scenarios where training data is expensive or difficult
to collect. In our case, it is mainly used to shorten the training time,

without sacrificing much accuracy. The parameters can either be from
models pre-trained on EBSD patterns of other materials within the same
symmetry group, or, perhaps more challenging, from models pre-trained
on image data sets in unrelated fields, such as ImageNet [59] and
CIFAR100 [60].

4.3. Optimization of loss function

In this study, we used cross-entropy as the loss function, as it is one of
the most commonly used loss functions in image classification problems
and has been implemented in various machine learning libraries.
However, this assumes that different image classes are completely
irrelevant and can be mapped to a linear space, which is contrary to the
prior knowledge of EBSD. Since the “distance” between any two orien-
tations can be quantified through the disorientation, it is reasonable to
cast the penalty of a categorical prediction (the bin) based on its “dis-
tance” from the ground truth in orientation space.

Several difficulties arise in the selection of an appropriate loss
function:

1. An algorithm is needed to map disorientation between orientations
to “distance” between bins. If the labels of each bin (i.e., the orien-
tations at the center of each sub-dictionary) are used, the accuracy of
the loss function will be dependent on the sampling density;

2. Each of the rotational point groups has a unique set of symmetry
operations, making the expression of a general loss function



Z. Ding et al.

complex. In addition, although functions like reduce max are pro-
vided in TensorFlow and PyTorch, for rotational groups of high order
(e.g., 24 for point group 432), the comparison between all sym-
metrically equivalent orientations will remain a computationally
heavy task.

4.4. Adaptive selection of hyper-parameters

In Section 3.2, we have shown that under different noise levels there
is an optimal choice for Top_K as shown in the plot of metric F1-score. In
all experiments above, Top K is either manually set or looped over a
range to investigate its effect on the indexing performance. However, for
real experimental data sets, Top_K should be determined automatically
based on the pattern quality to avoid repeated indexing of a single scan.
The confidence index (CI) output by the DI step is the dot product be-
tween dictionary and experimental pattern, and it is a very good indi-
cator of pattern quality. Thus, with the feedback of DI, an adaptive
selection of Top_K can be realized. A schematic of this process is shown
in Fig. 9.

5. Conclusions

In this paper, a hybrid indexing framework EBSDDI-CNN has been
proposed for determining crystallographic orientation. It consists of a
convolutional neural network followed by dictionary indexing. The
computational acceleration of this approach relies on the CNN predic-
tion of probable sub-dictionaries from the entire orientation space.
Through a series of experiments on simulated and experimental data, it
has been shown that the hybrid approach reduces the computational
time by as much as 70% without sacrificing accuracy or robustness
against noise. Clearly, this new hybrid framework can greatly expand
the application scenarios of the traditional method such as DI to those
requiring higher accuracy and indexing speed. As future research
become more data-driven, the hybrid strategy of combining CNN and
traditional methods will assist researchers to develop faster and more
reliable machine learning approaches and explore the latent space of
information with ease.

Future studies to improve the current study will focus on realizing
transfer learning and few-shot training to further decrease the model
training cost, the optimization of the loss function to better quantify the
distance between sub-dictionaries, and an algorithm for the adaptive
selection of hyper-parameters.
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