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A B S T R A C T   

A recent paradigm shift in the electron diffraction community has benefited from accessibility of large data sets 
and ever more complex designs of convolutional neural networks (CNNs). However, this shift from conventional 
feature engineering to analyzing high-level features extracted from CNN is often accompanied by a reduction in 
accuracy and sensitivity. Particularly, CNN based crystal orientation indexing using electron backscatter 
diffraction is sensitive to noise, reducing the overall accuracy. In this study, a new hybrid indexing approach has 
been developed to integrate dictionary indexing (DI) with a trained CNN to achieve extraordinary speed and 
robustness against noise simultaneously.   

1. Introduction 

Arguably, one of the most exciting moments during the history of 
materials science is the realization that bulk crystalline materials are 
composed of smaller, differently oriented crystals. Since the orientation 
of each crystal determines how it will react differently to the same 
external stimuli, constitutive laws accurately describing a macroscopic 
property of material needs to incorporate the ensemble of crystallo-
graphic orientations [1]. Spatially resolved crystallographic information 
to interpret and model material properties is often determined by 
diffraction-based techniques such as high-energy X-ray diffraction mi-
croscopy (HEDM) [2–4] and electron backscatter diffraction (EBSD) [5]. 
Unlike electron diffraction, HEDM, carried out exclusively at beamlines, 
provides a 3D structure information. Nevertheless, EBSD has become 
increasingly popular because of its accessibility as part of a standard 
university-level research laboratory with a scanning electron micro-
scope (SEM). It offers advantages in spatial/angular resolution (40 nm 
[6]/0.5◦ [7]) and fast sampling of crystallographic/microstructural in-
formation over a large area of interest. 

Early development of EBSD can be attributed to multiple research 
groups around the world [8–10]. Its modern popularity stem from the 
development of CCD/CMOS imaging sensors and fully automated 
computer-based data analytics [11,12]. More specifically, the imple-
mentation of computer vision technique i.e. Hough/Radon transform 
[13] has replaced the tedious manual indexing. In the context of crys-
tallographic orientation determination, the conventional Hough- 

transform indexing (HI) approach transforms the spatial coordinates of 
Kikuchi bands into Hough space (distance-angle space) and then cal-
culates at least three inter-planar angles to be compared with a lookup 
table (LUT) [11,12]. Besides advanced hardware with high sensitivity, 
the precision and accuracy of EBSD orientation measurement relies 
strongly on the indexing method to extract the location of the Kikuchi 
bands from electron backscatter diffraction patterns (EBSPs) [14,15]. Of 
course, the accuracy of orientation measurement with EBSD also de-
pends on the accuracy of the geometric setup of the measurement e.g. 
sample tilt, detector tilt, pattern center [16]. This dimensionality 
reduction technique i.e. Kikuchi bands to points in the Hough space 
inevitably results in loss of information. While HI is computationally 
efficient, it is very dependent on the signal-to-noise ratio and almost 
impossible to distinguish pseudosymmetries [17,18]. 

Instead of extracting specific diffraction features, the dictionary 
indexing (DI) [19], or more recently the spherical indexing (SI) [20,21], 
exploits the use of simulated dynamical electron diffraction patterns in 
order to take the full diffraction pattern into consideration [22]. Sub-
sequently, a search algorithm can be efficiently built to traverse through 
the similarity landscape between a dictionary of simulated patterns and 
experimental patterns to obtain the correct Euler angle triplets. These 
pattern matching methods are robust against noise and even sensitive to 
the presence of subtle differences due to pseudosymmetries [18,20,23]. 
In some cases, researchers can even use pattern matching methods to 
infer c/a ratio of martensite [24,25] and the full deformation tensor 
[26]. For DI method, the size of the dictionary is enormous (on the order 
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of 105 patterns per dictionary) in order to uniformly sample orientation 
space in the cubochoric representation [27]. Its root cause of the 
computational complexity is associated with the fact that each experi-
mental pattern needs to be compared with all the dictionary patterns (i. 
e. an enumeration algorithm), making this process very computationally 
demanding. Thus, an alternative method that improves the speed of DI is 
needed while preserving its sensitivity to noise. 

With exponential growth in computing power, the material charac-
terization community is also transitioning to be more data-driven due to 
the advancement in data collection and integrating machine learning 
algorithms to accelerate the data interpretation [28]. For instance, Holm 
et al. [29] have trained a CNN instance segmentation system based on 
Fast R-CNN [30] to identify gas atomized metal powders from SEM 
micrographs, a task that was typically approached manually and sub-
jectively. Moreover, DeCost et al. [31] proposed another CNN model to 
semantically segment complex microstructures (including grain 
boundary carbide, spheroidized particle matrix and Widmanstätten 
cementite) in ultra-high carbon steel. In the electron diffraction com-
munity, earliest application of machine learning technique in EBSD is 
the use of artificial neural network to verify the detected bands in Radon 
space [32]. More recently, CNNs with various output spaces have been 
previously designed to classify phases [33], and space groups [34–36]. 
Determination of crystallographic orientation using machine learning 
algorithms has also been explored by several search groups [37–39]. 

Due to the continuous nature of orientation space, crystallographic 
orientation determination is essentially a regression problem and 
therefore poses a challenge for CNN. Unlike a classic image classification 
problem that uses normalized categorical values for a given number of 
categories, the recent development by our group uses an end-to-end 
CNN (EBSD-CNN) to determine the unit quaternion representing the 

corresponding orientation [39]. However, two critical issues remain 
unsolved in the EBSD-CNN model are: [1] the training of the model for a 
regression problem is computationally demanding; [2] the effect of 
noise on the orientation accuracy. In this study, we present a new hybrid 
design strategy for CNN based model to determine crystallographic 
orientation. The seamless integration of CNN and DI (EBSDDI-CNN) 
allows the model to be trained with less effort and at the same time 
achieve unparalleled speed, accuracy and sensitivity. 

2. Methodology 

2.1. EBSDDI-CNN design 

As mentioned in the introduction, EBSDDI-CNN is a serialized 
workflow with a classification CNN and a DI indexing framework as the 
main components. A flowchart is shown in Fig. 1. First, a high energy 
electron beam (20 kV) is used to probe a tilted crystalline sample sur-
face. Upon interaction, elastically and inelastically scattered electrons 
emerge from the surface towards a detector equipped with a phosphor 
screen and a CCD or CMOS based camera at the back. Collected raw 
patterns are usually pre-processed to remove the background intensity 
and optics distortion. For HI, detailed description of how to transform 
orientation from the detector screen to Cartesian crystal frame is 
described elsewhere [40]. In this study, an additional pattern pre- 
processing module, also available as part of the open-source project 
PyEMEBSDDI,1 is used to remove artifacts and improve pattern quality 
of experimental patterns [41]. 

Fig. 1. Schematic of the EBSDDI-CNN architecture.  

1 https://github.com/Darkhunter9/PyEMEBSDDI_wrapper 
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As shown in Fig. 1, the design of CNN is based on Xception [42] from 
Google with minor simplifications and customization. The entry flow 
consists of two 2D convolutional layers and rectified linear units (ReLU) 
as activation function. In the middle flow, the conventional convolu-
tional layers in the are replaced with depth-wise separable convolu-
tional layers to decrease the number of parameters, lowering the 
computational complexity. Also, max-pooling units are added to reduce 
the dimensionality and further reduces the computational cost. In the 
exist flow, the extracted high-level features are fed into fully connected 
layers after two more rounds of convolution. 

In contrast to our previous EBSD-CNN approach, the CNN part in the 
hybrid method is used to predict several sub-spaces in the entire 
orientation space to which the pattern might belong. In this way, the 
subsequent DI step no longer needs to traverse through the whole dic-
tionary. Thus, the CNN output corresponds to the probability of a 
pattern belonging to a specific bin in the segmented orientation space. In 
this study, we use a total of 361 orientation bins generated from the 
EMsampleRFZ function [27,43] provided by the open-source EMsoft2 

package. The loss function is switched from disorientation/misorienta-
tion used in the orientation space to the sparse categorical cross-entropy 
[44]: 

L = −
1

361

∑361

i=1

yilog

(
ŷi

)
, (1)  

where yi is the ground truth and ŷi is the prediction. 
The link between the CNN and the DI algorithms is the dictionary 

generator that customizes the exact number of sub-dictionaries for each 
pattern to be categorized into based on the corresponding CNN predic-
tion. The resultant dictionary can be readily obtained by grouping dic-
tionary patterns in the first K number of bins with high probabilities 
(Top_K). Next, these dictionary patterns are converted into normalized 
column vectors. Using a similarity metric such as the normalized dot 
product (NDP), every experimental pattern (normalized column vector) 
can be compared against all dictionary patterns and ranked according to 
the NDP values. Finally, the orientation of an experimental pattern is 
obtained by the weighted average quaternions of top M matches (the top 
M number of dictionary patterns ranked according to the NDP values) 
[14]. 

Since the CNN part is realized using Python and Tensorflow, we have 
developed Python wrappers for the DI module from EMsoft, originally 
written in Fortran 90. Through C++ extensions in Python, the wrapper 
routines provide great run-time efficiency as well as native support for 
multi-GPU acceleration PyEMEBSDDI. 

2.2. Data preparation and partitioned training 

As the CNN aims to predict approximate orientation bins for a given 
EBSD pattern, the first task is to discretize orientation space into an array 
of sub-spaces (bins). The label of each bin is the orientation at the bin 
center, in the form of a unit quaternion: 
ℓi = (li, li), (2)  

where li is the scalar part of the quaternion for bin i ∈ [1…Nb] (Nb is the 
number of bins), and li the vector part. The training data obtained from 
EMsoft consists of pairs of simulated patterns and their unit orientation 
quaternions sj (j ∈ [1…Nt] with Nt the number of training patterns): 
sj =

(
oj, oj

) (3) 
All patterns falling into a particular bin will share their label; thus, 

the bin label i of each training pattern j is determined by finding the bin 
whose label i shows a minimum disorientation angle with respect to the 

orientation of the training pattern (taking into account the rotational 
point group symmetry with quaternion operators O k, k ∈ [1…N] with N 
the order of the point group): 
i = argmin

i;k,l∈[1…N]

ωkl;ij ≡ argmin
i;k,l∈[1…N]

2arccos
[
(O kℓi)⋅

(
O lsj

) ] (4) 

The dot product in this relation is the standard dot product between 
two quaternions, i.e., ℓi ⋅ sj = lioj + li. oj. As stated before, in this study we 
use a total of Nb = 361 bins. This is an adjustable parameter that bal-
ances the accuracy and acceleration effect of the CNN. In this case, it is 
likely that the prediction of the label of an experimental pattern will be 
incorrect. Nevertheless, the size of the sub-dictionary for each bin will be 
smaller, leading to an improved acceleration. 

Since the CNN is the only part of the algorithm that requires super-
vised learning and the DI algorithm is not involved in the data prepa-
ration, the subsequent indexing result of DI following CNN will always 
be the same as that obtained by traversing the complete dictionary given 
a correct prediction from the CNN. 

2.3. Analysis of the trained system 

The material used for training, validation and testing (simulated 
patterns) in this study is pure Nickel (a = b = c = 352.4 pm, α = β = γ =

90◦) with a face-center cubic (FCC) crystal structure. To assess the 
robustness against the noise of the hybrid indexing method, a specific 
area of Inconel 600 nickel alloy was scanned multiple times using 
various exposure times (from 0.17 ms to 8.03 ms) but constant total 
exposure, resulting in a series of data sets with different noise levels 
[45]. In this study, three metrics about the trained system are evaluated:  

1. Hit rate of the CNN under different noise levels using different Top_K 
values;  

2. Indexing accuracy of the whole system compared with pure DI;  
3. Indexing speed of the whole system compared with pure DI. The time 

consumed by the CNN and DI parts are recorded separately. 

Since CNN used in the framework is for classification, the hit rate can 
be quantitatively assessed by metrics consisting of accuracy, precision, 
recall and F1 score [46]: 

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)  

Precision =
TP

TP + FP
, (6)  

Recall =
TP

TP + FN
, (7)  

F1− Score = 2×
Recall × Precision

Recall + Precision
, (8)  

where TP, TN, FP, FN are true positive, true negative, false positive and 
false negative, respectively. 

For problems with multiple classes, the metrics are computed for 
each class in the dataset and then aggregated in a micro way: 

Micro : B

(
∑

i

TPi,

∑

i

FPi,

∑

i

TNi,

∑

i

FNi

)
, (9)  

where i ∈ [1...q] (q is the number of classes in the data set), and B is the 
metric. 

2.4. Analysis of the acceleration 

The acceleration of the EBSDDI-CNN is related to two factors: 1) the 
number Nb of orientation bins used in the CNN part, and 2) the texture in 
the EBSD data set. The first contributing factor is easy to explain: the 2 https://github.com/EMsoft-org/EMsoft 
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more bins are used in the CNN, the smaller the number of patterns per 
bin to traverse during the DI step. The second contributing factor is, in 
fact, a direct consequence of the first and the use of equal-volume 
mapping in a uniform orientation sample. 

An indispensable part of DI is the generation of an orientation dic-
tionary based on a uniform sampling of orientation space using a uni-
form and refinable grid. The sampling method is described in detail by 
Roşca et al. [27]. We start from a uniform cubical grid inside a 3D cube 
ℂ ∈ ℝ3. This uniform grid with equal volume voxels is mapped onto a 3D 
ball B3 ∈ ℝ3 with an equal-volume mapping. Through an inverse 
Lambert type equal-volume mapping, the orientations in B3 can be 

uniformly mapped onto the Northern hemisphere of the quaternion 
hypersphere S3

+ ∈ ℝ4, which is itself isomorphic with SO(3). In the 
presence of crystallographic symmetry, only a compact subset, i.e., the 
fundamental zone, of the total SO(3) group is considered which contains 
rotations that are unique under a particular rotational group. 

Due to topological differences, a “uniform grid” only means that the 
volume of the voxels during the mapping is preserved whereas the 
angular distance or disorientations between nearest neighbors is not. As 
shown by Singh et al. [43], the average disorientation of uniformly 
sampled orientation is a function of semi-edge length. Additionally, this 
means that the number of dictionary orientations grouped into the 

Fig. 2. Training History of EBSDDI-CNN method including training accuracy (yellow), validation accuracy (light purple), training loss (red), and validation loss 
(blue). The training of EBSDDI-CNN converges with a few epochs, much faster than EBSD-CNN. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 3. IPF maps on experimental EBSD patterns: (a) Pure DI, (b) EBSD-CNN, (c) EBSDDI-CNN, (d) Colour key for FCC Fundamental Zone, (e) Disorientation (◦) 
between pure DI and EBSD-CNN, and (f) Disorientation (◦) between pure DI and EBSDDI-CNN. Grain boundaries are highlighted in red in (e) and (f). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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orientation bins based on smallest disorientation values will differ 
significantly from bin to bin, as shown later in the discussion section. 

To approximate the number of dictionary patterns per bin for any 
orientation, the method of spherical harmonics approximation is used to 
translate these discrete values located on a sphere: 

s(r) =
∑M

m=0

∑m

l=−m

f̂ m,lYm,l(r), (10)  

where r is the coordinate of a bin, m and l are the degree and order of 
spherical harmonics Ym, l, M is the cutoff value or the bandwidth to 
which degree m is summed over, ̂f m,l is the Fourier coefficient, and s(r) is 
the spherical function approximation of the bin’s values. More 

specifically, we seek Fourier-coefficients f̂ =

(
f̂ m,l,…, f̂ M,M

)T 
so that 

the approximate spherical function minimizes the difference between 
the exact bin values and the approximate bin values for a given mini-
mization strategy such as the least squares method: 

min
rn∈SO(3)

∑Nb

n=1

|S(rn) − s(rn)) |
2
, (11)  

for bins rn; S(rn) is the exact number of patterns per bin, and s(rn) is the 
approximated number of patterns per bin evaluated from the spherical 
function. 

Fig. 4. Evaluation metrics of CNN with tunable Top_K value under different noise levels: (a) accuracy, (b) precision, (c) recall, and (d) F1-score.  
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3. Results 

3.1. Training of CNN 

The training history of the CNN part is shown in Fig. 2. Compared 
with the EBSD-CNN [39], the most significant difference is the faster 
convergence. The validation accuracy (Top_K =1) reached 85% and 
became stable after only 5 training epochs, while it took over 15 epochs 
for the EBSD-CNN to show a competitive performance. This indicates the 
possibility of realizing “few show learning” [47], which may funda-
mentally address the lack of versatility in a trained model and promote 
its wide application in practical EBSD indexing on various materials. 

To confirm that the training step is effective, a set of experimental 
patterns with relatively good pattern quality were indexed individually 
by pure DI, EBSD-CNN and EBSDDI-CNN. The IPF maps based on the 
indexing results of three methods are shown in Fig. 3. It can be seen 
qualitatively that with a good hit rate in the CNN part, the result of 
hybrid indexing system maintains a high level of consistency with 
respect to pure DI. 

Another obvious improvement of EBSDDI-CNN over EBSD-CNN is 
the indexing accuracy of points on the grain boundaries. While all 
training patterns are generated with an explicit orientation and a stress 
free state, the situation on grain boundaries is much more complicated 
because of the superposition of patterns from multiple grains with 
diverse orientations and the potential introduction of strain [48–50]. 
Since such patterns require a more sophisticated simulation approach 
and were thus not included in the training data set, it is no surprise that 
EBSD-CNN performed poorly near grain boundaries. In EBSDDI-CNN on 
the other hand, the performance near grain boundaries is improved due 
to the high indexing robustness of DI and the subsequent orientation 
refinement algorithm [51,52]. 

3.2. Prediction accuracy of CNN 

Since DI, without any trainable parameters, has a closed form solu-
tion for any EBSP if given the dictionary, and a detailed error analysis of 
its orientation prediction is already available [15], it is reasonable to 
focus on the CNN part when evaluating the prediction accuracy of the 
system. 

Among all metrics mentioned in Section 2.3, accuracy (also known as 
categorical accuracy) is the one that directly shows whether the right 
sub-dictionary is chosen. In most image classification problems and 
competitions (such as ILSVRC), to fully assess the potential of the model 
and avoid being penalized for objects missed in the ground truth, usually 
and accuracy of Top_5 choices is calculated in addition to the one with 
highest probability. Compared to this algorithm, the introduction of a 
tunable Top_K parameter here is more meaningful and practical, as all 
sub-dictionaries with probabilities among the classifier’s top K guesses 
will be passed to the DI algorithm. 

Fig. 4a shows the accuracy with Top_K from 1 to 10 under 8 different 
noise levels. While on patterns with relatively high quality, a low Top_K 
is enough to guarantee a good indexing accuracy, on noisy patterns, 
increasing Top_K value can effectively make up for CNN’s sensitivity to 
perturbations. Even on patterns where Kikuchi band features are hard to 
identify, the CNN can still maintain an accuracy around 50%, using 
predictions with a size less than 3% of all bins. 

Precision defines the fraction of correct predictions, while recall in-
dicates the proportion of correctly indentified true positives. The F1- 
score is the weighted average of precision and recall, taking both false 
positives and false negatives into account; this handles the situation of 
an uneven class distribution. Three metrics under different noise levels 
and Top_K values are plotted separately in Fig. 4b–d. It is obvious that all 
metrics are lowered under higher noise level. As each pattern belongs to 
only one class, a higher Top_K value leads to predictions with a larger 

Fig. 5. IPF of the nickel experimental dataset with tunable Top_K value under different noise levels. The colour key is the same as Fig. 4(d). With Top_K = 1, EBSDDI- 
CNN has already shown a noise resistance comparable to HI. And as Top_K increases, the performance gets closer to DI. 
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size, causing more “false positive” counts and lowering the precision. 
The recall increases with Top_K but escalation is much more stable under 
high noise level than lower ones which already have a good hit rate. 
Balancing the precision and recall, the F1-score reveals that for patterns 
with good quality we should always stick to a lower Top_K value, while 
for noisy patterns, there is a certain optimal “sweet” spot. An automated 
workflow to determine the point of optimal balance will be discussed in 
the following section. 

3.3. Robustness against noise 

The last part of the indexing accuracy analysis is a visual check of the 
inverse pole figure (IPF) output by the whole system, as presented in 
Fig. 5. To highlight the effect of noise and Top_K 4 noise levels and Top_K 
values are shown. At low level noise, a small Top_K value is sufficient to 
obtain almost the same indexing result as obtained with DI, while 
reducing the amount of computation by a large fraction. At a high noise 
level, the robustness of the system is guaranteed by a combination of a 
tunable Top_K value and the intrinsic noise resistance of DI, which is 
much better and more flexible than the end-to-end EBSD-CNN. As an 
extreme case, the system can show a robustness against noise with the 
same upper limit of DI, by setting Top_K equal to the number of sub- 

dictionaries. 
Compared with EBSD-CNN, another interesting phenomenon is what 

happens when the indexing fails. In EBSD-CNN, most noisy patterns that 
cannot be indexed properly are labeled as “zero rotation” (i.e., the 
identity quaternion [1,0,0,0]). This is because a high noise level makes 
the pattern close to random input, which typically does not produce a 
high activation in the convolutional layers. The reaction of EBSDDI-CNN 
to excessively noisy patterns, on the other hand, is more similar to that of 
DI, assigning a random orientation in the orientation space. 

3.4. Indexing speed 

In addition to the indexing accuracy, acceleration is also one of this 
study’s original intentions. On the one hand we want to determine 
whether or not the indexing speed is faster than that of standard DI, i.e., 
whether the time consumed by the CNN step is more than that recovered 
by the resulting smaller dictionary. On the other hand, as described in 
Section 3.2, the drop in precision with a larger Top_K value indicates the 
increase in ratio between the computation amount and the improvement 
on accuracy. Thus, the increase in execution time of a larger Top_K value 
deserves further investigation. 

The time spent on indexing the whole experimental data set with 
different Top_K values is shown in Fig. 6. For pure DI, it takes just over 
30 min to complete the indexing. Since the model structure, as well as 
the output size, is independent of Top_K the execution time of the CNN 
step is a constant 4.8 min, using the same GPU model. The acceleration 
effect brought to DI part, however, is remarkable. At Top_K = 1, the DI 
step takes 4.05 min to complete the indexing of all sub-dictionaries, 
which is only 13.3% of the computation time of the pure DI algo-
rithm. Even at Top_K = 10, the percentage only rises up to 17.0%. It is 
clear that the increase in computation time of the DI step is actually not 
proportional to Top_K. The reason lies in the design of GPU for parallel 
computation. With much more compute units (streaming multiprocessor 
in Nvidia) than CPU, the performance bottleneck of the GPU is usually 
the latency (instead of instruction bandwidth), meaning that if the 
parallelism exposed is not sufficient, the actual performance of GPU will 
be far from the maximum [53,54]. According to the predictions from the 
CNN step, patterns are divided into groups and indexed using different 
sub-dictionaries in the DI step. Limited experimental patterns in each 
batch and candidates in the corresponding sub-dictionary means that 
many threads remain idle. Thus, when a larger Top_K value is used, the 
increase of the number of patterns for each sub-dictionary does not 
necessarily lead to a longer indexing time. 

Fig. 6. Indexing speed with Top_K from 1 to 10 for the CNN and DI parts in the 
EBSDDI-CNN model. Yellow bars represent time taken for the trained CNN 
model prediction of sub-dictionaries and blue bars represent the time taken by 
DI. Top_K = 361 is equivalent to the use of DI only. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 7. Cubic Rodrigues fundamental zone for (a) orientation bins (n = 10) and (b) orientation dictionary (n = 100). (c) The number of unique orientations from the 
dictionary in each orientation bin. 
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4. Discussion 

4.1. Acceleration effect analysis 

For a semi-edge length N of the cubochoric grid, the corresponding 
total number of orientation in SO(3) is simply equal to the number of 
uniformly sampled orientations in the cube 8N3. Taking into account the 
symmetry of the cubic system, the fundamental zone contains approxi-
mately 8N3/24 orientations. This fundamental zone can be visualized in 
Rodrigues space, as shown in Fig. 7, in which the direction is the rotation 
axis and the distance from the origin is the tangent of half the rotation 
angle. Fig. 7(c) shows how many dictionary patterns generated with N 
= 100 will be grouped into each bin. 

Since a stereographic projection only preserves angular distances, 
orientations will not uniformly distribute on the pole figure as shown in 
Fig. 8(a). The value for each orientation corresponds to the ratio be-
tween the number of dictionary patterns in each bin (N = 10), same as 
data shown in Fig. 7(c), divided by the hypothetical case if dictionary 
patterns were to uniformly distribute among 361 bins (923 patterns per 
bin). Since the indexing speed of the DI step will scale inversely with 
respect to the number of patterns in the bin, the red dots will require 1.5 
times longer time to compute compared with the hypothetical case and 
green dots only require half of the computational time. In other words, 
the value of the dots correlates directly to the computational cost of the 

DI step. 
However, Fig. 8(a) only represents a discrete view of the acceleration 

speed over the orientation space. To approximate discrete data on a 
sphere, a series of spherical harmonics is used to approximate the values 
in Fig. 8(a), which is illustrated in Fig. 8(b). Alternatively, the orienta-
tion space (using the entire dictionary) can be divided into sections 
belonging to a particular bin and each section has the same value of 
computational cost. With a higher bandwidth, the harmonic approxi-
mation of the computational cost over the entire orientation space is 
shown in Fig. 8(c). 

By evaluating the cost of an orientation from the spherical har-
monics, it is possible to statistically analyze the computational cost of a 
particular EBSD data set for the DI step of the EBSDDI-CNN method as 
shown in Fig. 8(d). The “approximate” histogram uses the N = 10 case 
for the target function values to be represented by a spherical harmonic 
and the “exact” method uses all the dictionary orientations (N = 100). A 
higher bandwidth is necessary for the “exact” method to accurately 
represent the sharp changes of cost values from one bin to another. For a 
sample with randomly orientated grains or weak to medium texture, the 
overall cost usually remains close to unity. However, a strong fibre 
texture, for instance, close to the Euler angle triplets [0,0,0] would yield 
a much faster computation due to the lower number of dictionary pat-
terns close to these bins. 

More recently, other methods of uniform sampling have been 

Fig. 8. (a) Orientation dependent computational cost for n = 10; Ni experimental data (black dots) overlaid on top of (b) the approximation of (a) with spherical 
harmonics (bandwidth = 33) and (c) the approximation of the computational cost for the entire orientation space with spherical harmonics (bandwidth = 1000); (d) 
histograms of the computational cost for Ni data set evaluated from the spherical harmonics in (b: approximate) and (c: exact). 
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proposed by Larsen & Schmidt [55] and Quey et al. [56], which might 
provide a more uniform distribution of the sub-dictionary sizes. The 
benefit of having a more uniform distribution is an easier prediction of 
the acceleration, regardless of the texture present in the sample, but the 
overall acceleration will still be comparable to that reported in the 
present study. 

4.2. Transfer learning and few-shot training 

Currently, a major problem limiting CNN’s broad application in 
practical EBSD indexing is the lack of versatility in a trained model. In 
other words, a model trained on one material may not show good per-
formance on other materials with different symmetry groups and lattice 
constants. Compared with EBSD-CNN, the number of training epochs 
required to converge the EBSDDI-CNN has decreased by 60%; however, 
this is still a fraction of the indexing cost of a single data set. 

One approach to further accelerate the training process is to use 
transfer learning and few-shot training. The former refers to deploying 
weights from models trained on other data sets in the convolutional 
portion, assuming the model can be improved from one domain by 
transferring information from a related domain [57]. The latter is the 
training followed by fine tuning of parameters which rapidly generalizes 
to the new data set containing only limited samples with supervised 
information [58]. This combination is originally intended for real-world 
machine learning scenarios where training data is expensive or difficult 
to collect. In our case, it is mainly used to shorten the training time, 

without sacrificing much accuracy. The parameters can either be from 
models pre-trained on EBSD patterns of other materials within the same 
symmetry group, or, perhaps more challenging, from models pre-trained 
on image data sets in unrelated fields, such as ImageNet [59] and 
CIFAR100 [60]. 

4.3. Optimization of loss function 

In this study, we used cross-entropy as the loss function, as it is one of 
the most commonly used loss functions in image classification problems 
and has been implemented in various machine learning libraries. 
However, this assumes that different image classes are completely 
irrelevant and can be mapped to a linear space, which is contrary to the 
prior knowledge of EBSD. Since the “distance” between any two orien-
tations can be quantified through the disorientation, it is reasonable to 
cast the penalty of a categorical prediction (the bin) based on its “dis-
tance” from the ground truth in orientation space. 

Several difficulties arise in the selection of an appropriate loss 
function:  

1. An algorithm is needed to map disorientation between orientations 
to “distance” between bins. If the labels of each bin (i.e., the orien-
tations at the center of each sub-dictionary) are used, the accuracy of 
the loss function will be dependent on the sampling density;  

2. Each of the rotational point groups has a unique set of symmetry 
operations, making the expression of a general loss function 

Fig. 9. Workflow for the adaptive selection of Top_K. The Top_K value is dynamically adjusted according to the confidence index returned by DI step.  

Z. Ding et al.                                                                                                                                                                                                                                     



Materials Characterization 178 (2021) 111213

10

complex. In addition, although functions like reduce_max are pro-
vided in TensorFlow and PyTorch, for rotational groups of high order 
(e.g., 24 for point group 432), the comparison between all sym-
metrically equivalent orientations will remain a computationally 
heavy task. 

4.4. Adaptive selection of hyper-parameters 

In Section 3.2, we have shown that under different noise levels there 
is an optimal choice for Top_K as shown in the plot of metric F1-score. In 
all experiments above, Top_K is either manually set or looped over a 
range to investigate its effect on the indexing performance. However, for 
real experimental data sets, Top_K should be determined automatically 
based on the pattern quality to avoid repeated indexing of a single scan. 
The confidence index (CI) output by the DI step is the dot product be-
tween dictionary and experimental pattern, and it is a very good indi-
cator of pattern quality. Thus, with the feedback of DI, an adaptive 
selection of Top_K can be realized. A schematic of this process is shown 
in Fig. 9. 

5. Conclusions 

In this paper, a hybrid indexing framework EBSDDI-CNN has been 
proposed for determining crystallographic orientation. It consists of a 
convolutional neural network followed by dictionary indexing. The 
computational acceleration of this approach relies on the CNN predic-
tion of probable sub-dictionaries from the entire orientation space. 
Through a series of experiments on simulated and experimental data, it 
has been shown that the hybrid approach reduces the computational 
time by as much as 70% without sacrificing accuracy or robustness 
against noise. Clearly, this new hybrid framework can greatly expand 
the application scenarios of the traditional method such as DI to those 
requiring higher accuracy and indexing speed. As future research 
become more data-driven, the hybrid strategy of combining CNN and 
traditional methods will assist researchers to develop faster and more 
reliable machine learning approaches and explore the latent space of 
information with ease. 

Future studies to improve the current study will focus on realizing 
transfer learning and few-shot training to further decrease the model 
training cost, the optimization of the loss function to better quantify the 
distance between sub-dictionaries, and an algorithm for the adaptive 
selection of hyper-parameters. 
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