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a b s t r a c t

The equations of motion of point vortices embedded in incompressible flow go back to Kirchhoff. They
are a paradigm of reduction of an infinite-dimensional dynamical system, namely the incompressible
Euler equation, to a finite-dimensional system, and have been called a ‘‘classical applied mathematical
playground’’. The equation of motion for a point vortex can be viewed as the statement that the
translational velocity of the point vortex is obtained by removing the leading-order singularity due to
the point vortex when computing its velocity. The approaches used to obtain this result are reviewed,
alongwith their history and limitations. A formulation that can be extended to study themotion of higher
singularities (e.g. dipoles) is then presented. Extensions to more complex physical situations are also
discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Vorticity has been a fundamental concept in fluid mechanics
since its introduction by Helmholtz in 1858 [1]. Helmholtz’s paper
was translated by Tait in 1867 [2], sparking a wave of work by the
Scottish school, including Kelvin and Thomson, and others, who for
a time sought a theory of ‘‘vortex atoms’’ to explain the structure
of matter.

Understanding elementary vortex structures has been a focus
of extensive research. Given the complexity of the problem,
simplified situations have been extensively considered. Two-
dimensional flows are a good approximation for flows that do
not vary much in the third dimension, or that are constrained
by effects such as stratification and rotation to move along near-
horizontal surfaces. The next obvious approximation is that of
using singular vorticity distributions: this holds the promise of
being able to replace partial differential equations by a system
of ordinary differential equations. Point vortices are the natural
candidate for constructing such a system. In many cases the scale
of the vortices is much smaller than the other scales in the system,
so replacing the vortices by elementary structureswith no intrinsic
scale is a natural modeling step.

Point vortices have been called a ‘‘classical applied mathemat-
ical playground’’ [3]. Applications include chaotic advection [4],
integrable systems [5–7], control of fluid flows [8,9], biological lo-
comotion and models of vortex shedding and wakes [10–15] as
well as geophysical applications [16,17]. Related problems arise in
superfluids [18] and in dislocation theory [19], but we limit our-
selves here to potential flow.
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A point vortex at zn = xn+iyn is taken to be the object described
by the complex potential

φn =
Γn

2π i
log(z − zn). (1)

The point vortex has circulationΓ and z = x+ iywhere x and y are
the usual Cartesian coordinates. The equation of motion, or Point
Vortex Equation (PVE), is simply

żn = w̃n. (2)

The tilde indicates the desingularized complex velocity at zn, i.e.
the limit as z → zn of

w̃n = lim
z→zn

[

w −
Γn

2π i

1

z − zn

]

, (3)

where w = dφ/dz is the full complex velocity field related to
the complex potential φ, which may include contributions from
other point vortices and from a smooth irrotational flow (e.g. due
to boundaries). Many older works discuss vortex filaments and
line vortices, which are less precisely defined concepts, but refer
to intense distributions of vorticity aligned along a centerline and
straight in the case of line vortices. Importantly, they have non-
zero cross-section, although this fact is often suppressed when
they are discussed.

An extension to PVE is the Brown–Michael equation (BME) that
has been proposed to govern the motion of a point vortex shed
from a sharp corner. In potential flow, the velocity field near a non-
reentrant corner is singular. This singularity can be related to the
conformal mapping of a plane in which the contour is smooth to
the physical plane. A vortex can be associatedwith each corner and
its circulation set so as to make the velocity at the edge finite. The
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resulting circulation varies in time, and one needs an equation for
the motion of the vortex. The result, as obtained by a number of
researchers in the 1950s (not just Brown and Michael), is not PVE
but rather BME.

One can ask how other singularities might move, for example
point sinks or sources, or dipoles. A more general equation, or
possibly set of equations, is needed, which we may call the point
singularity equation or PSE.

If one considers the PVE separately from its long history and
enormous popularity, one can ask how it is justified and what
it means. The answer to this question is not as obvious as it
may appear at first sight. To gain some insight into the nature
of the problem, we start in Section 2 with a historical review
of the justifications given for these equations (PVE, BME, PSE).
We consider in Section 3 an argument based on the conservation
of momentum that gives PVE and BME. However, as we show
in Section 4, problems arise when moving to PSE. In Section 5
we show how to resolve these problems. We give examples in
Section 6 and conclude in Section 7, in which we also discuss
possible extensions to more general situations. Appendices A and
B contain, respectively, a translation of Kirchhoff’s Lesson Twenty
in which PVE is first stated and a history of the derivation of BME.

2. Historical overview

We concentrate here strictly on how authors have justified or
derived PVE, BME and PSE. This review is biased in favor of the
English language literature, and, once we are past the first few
papers in the area, uses textbooks as indicators of the received
wisdom on the subject. A surprising feature is the number of
well-known textbooks that do not mention point vortices at all,
e.g. [20–24]. Four rough historical periods can be delineated. (An
extensive bibliography of vortex dynamics is given by Meleshko
and Aref [25].)

2.1. The pioneers: derivation (1858–1912)

Helmholtz’s original work on vorticity [1] does not explicitly
give the PVE. In fact there is no mention of point vortices at all.
The behavior of parallel vortex lines (straight vortex filaments)
is considered: ‘‘If there be two rectilinear vortex-filaments of
indefinitely small section in an unlimited fluid, each will cause
the other to move in a direction perpendicular to the line joining
them. Thus the length of this joining line will not be altered. They
will thus turn about their common centre of gravity at constant
distances from it’’.

The PVE is given explicitly in Kirchhoff’s 1876 Lecture notes
[26]. The relevant Lesson is translated in Appendix A and is es-
sentially Helmholtz’s words turned into equations. Kirchhoff treats
vortex filaments with infinitesimally small cross-section remain-
ing at finite distances from each other, but allows the cross-section
of the filaments to change.

In 1881, Routh [27] uses conformal mappings to obtain the
complex potential in domains for which the method of images
fails. He never actually writes down what is now called the
Routhian correction. Routh’s prescription for obtaining the PVE is
as follows: ‘‘the current function of P is obtained from that of Π
by subtracting (m/2) logµ’’, i.e. he removes the singularity of the
complex potential in the physical plane. Routh is the first to use the
tools of complex variable theory in the treatment of point vortices
(this question of who was the first is posed in [28]).

Thomson’s 1883 work A Treatise on the Motion of Vortex
Rings [29] is about vortex rings but first considers the stability of
a polygonal array of point vortices. He derives a result originally
due to William Thomson (Lord Kelvin), that an almost circular
column (i.e. a line vortex) has neutral modes (Section 39). He

concludes (Section 42) that if vortices are far enough apart, they do
not deform one another. (Since then, numerical calculations have
shown that if vortex patches are placed close enough together,
vortex merger ensues [30].) He then writes (Section 48) ‘‘The
stream function due to a single vortex of strength m at a point
whose distance from the vortex is ρ (is) −(m/π) log ρ’’. This is
implicitly the PVE. It is clear that Thomson is giving physical
credence to a singular point vortex velocity field because it has
already been shown that vortices far enough away from each
other remain circular to leading order. Basset’s 1888 A Treatise on
Hydrodynamics [31] restates this derivation.

In his 1893 book Théorie des tourbillons, Chap. 6, Section
65–68 [32], Poincaré treats point vortices. He takes narrow and
straight vortex tubes and states that their strengths do not change.
First he shows the center of vorticity of all the tubes stays fixed.
Then he shows that the center of vorticity of a single tube is fixed
(this is just the previous result actually). So, he says, to compute the
motion of a single tube, we ignore its own velocity and take only
that of the other tubes.

Zhukovskii treats point vortices in 1893 [33]. He writes down
the streamfunction as an integral of vorticity with the Green’s
function, and then argues that the vorticity is concentrated into a
small region. The vorticity can then be pulled out of the integral
and the resulting simple integral gives the PVEwhen one subtracts
out the leading-order singularity. This is an interesting approach,
related to the idea of the far-field behavior of a concentrated vortex
being essentially that of a point singularity, but it nevertheless
relies on the usual discarding of the singularity.

We therefore conclude that the derivations of PVE in this
pioneering era are based entirely on ignoring the contribution
of the self-induced velocity of the vortex. However, apart from
Routh, all the authors talk about infinitesimal line vortices. It
is clear that the authors are aware that the boundaries of the
cross-sections of these vortices can be deformed, but the fact
that the deformations take the form of neutral modes leads them
to disregard these deformations if the other line vortices are far
enough away.When Routhwrites down the complex potential, the
approach of removing the singularity directly from the potential
becomes natural. From this point on, point vortices are usually
viewed as singular structures rather than as having infinitesimal
cross-sections.

2.2. The classics: formalization (1912–1954)

A number of textbooks still in print today originally date from
the period 1912–1954 [34–36]. The complex variable formulation
of irrotational flow is mature at this point in time, but the
justification of the PVE has not changed since Helmholtz. The
following books all state that a single vortex is at rest and that
point vorticesmove due to the velocity field of other point vortices:
Villat’s 1930 Leçons sur la Théorie des Tourbillons [37], Lamb’s 1932
Hydrodynamics [34] (the first edition dates from 1878), Ewald,
Pöschl and Prandtl’s The physics of solids and fluids, with recent
developments [38], Rouse’s 1938 book Fluid mechanics for hydraulic
engineers [39] (a hydraulics textbook which might be expected to
have a practical bent), Sommerfeld’s Lectures on Physics (1950, vol.
2, IV.21.2) [35] and Milne-Thomson’s Theoretical Hydrodynamics
(first edition in 1938, making it a successor to Lamb, and final
edition in 1968) [36].

2.3. The golden age: expansion (1952–1984)

The post-Second World War era of increasing research in
aerodynamics and funding of fluid dynamics led, as part of
research into supersonic flow past delta wings, to BME. BME was
developed by Brown, Michael, Edwards, Cheng and Rott in the
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period 1952–1956 (for references see Appendix B). These authors
initially found equations describing steady vortex sheets shed off
delta wings, viewing the sheets as point vortices in cross-section,
and later consideredmoving vortices, such as those shed by shocks
passing over wedges. This development is rather interesting, but
not central to the topic of this historical review, which is why it
is outlined in Appendix B. However, treatments of the PVE in the
textbooks and monographs of the time such as [40] show no real
change from before, with one exception [41].

A notable outlier is arch-individualist Truesdell in his 1954 book
The Kinematics of Vorticity [42]. Vortex lines are mentioned, but
there are no dynamics and no point vortices. One might wonder
whether the omission of point vortices meant that Truesdell
viewed them as dynamical entities, i.e. entities for which forces
are important. It is more likely that they were excluded from
consideration by Truesdell’s emphasis on three dimensions, which
was noted in McVittie’s 1955 book review [43].

A number of important Russian books were translated during
this period. Kochin, Kibel’ and Roze’s book Theoretical Hydrome-
chanics, a 1964 English translation of the 1955 Russian original [44]
and Sedov’s 1971 (1968 in Russian) A course in continuummechan-
ics. Vol 3: Fluids, gases and the generation of thrust [45] both con-
sider point vortices. They use the traditional verbal argument: a
single vortex does not move, its self-induced velocity is ignored
when calculating its trajectory.

The first textbook to take a different approach is Friedrichs’
1966 Special Topics in Fluid Dynamics [41]. In it, he computes the
force exerted by the fluid on a vortex filament (point vortex) and
argues that if the vortex is free (as opposed to bound), this force
must vanish. The idea of the force acting on a vortex filament
was presumably inspired by the BME work mentioned above and
will recur in later books. It is also very common in the superfluid
literature.

2.4. The moderns: mathematics and dynamical systems (1984–
present)

There has been an explosion in the use of the PVE in recent
years, driven by applications and by its role as a prototype
dynamical system [46–48]. The development of vortex methods as
a tool in computational fluid dynamics has been another source of
interest in the dynamics of vortical structures. The starting date for
this era can be loosely set as 1984 when Marchioro and Pulvirenti
proved that systems of small vortex patches converge to vortex
dynamics [49]. Given the vast amount ofmodernmaterial, we limit
ourselves to textbooks or articles that explicitly discuss or derive
the PVE or generalizations.

As an aside, Krasny [50] uses a combined vortex sheet and
vortex-dipole sheet model for the numerical simulation of a wake.
The vortex-dipole distribution D evolves according to

Dt = −∇uT · D (4)

which is the evolution equation governing the gradient of vorticity.
This is a Lagrangian equation. It is not quite the same as PVE or PSE
because a vortex(-dipole) sheet is considered rather than a point
vortex(-dipole). The result (4) will be useful later.

Ting and Klein’s 1991 book Viscous Vortical Flows (updated in
2007with Knio) [51,52] presents work that goes back to the 1960s.
The three-dimensional case is the real motivation, but a matched
asymptotic expansion (MAE) calculation for the Rankine vortex in
a uniform stream is presented in their Section 2.1.1.2. The result is
the PVE equations in the far field (i.e. on scales far larger than the
vortex) and neutral modes on the edge of the vortex.

Saffman, in Section 2.3 of his 1992 textbook [53], gives a mo-
mentum flux argument and later presents ‘‘an alternative argu-
ment based on vortex force’’.

Most textbooks approach the PVE in the traditional way, i.e.
just by removing the self-induced velocity with no explanation.
Among these are Lighthill’s 1986 An informal introduction to
theoretical fluid mechanics [54], who emphasizes that point
vortices are ‘‘useful idealizations’’, Chorin and Marsden’s 1993 A
Mathematical Introduction to Fluid Mechanics [55], Chorin’s 1994
Vorticity and Turbulence [56] (which is interesting in that it
combines the smoothed kernel argument related to numerical
vortex methods with the Victorian argument about being able to
neglect the deformations of small patches) and Newton’s 2001
book The N-Vortex Problem—Analytical Techniques [57]. Meleshko
and Konstantinov’s 1993 book Dynamics of Vortex Structures [58]
says that Helmholtz’s law that vorticity is frozen into fluid lines
justifies the PVE.

Faber’s 1995 Fluid Dynamics for Physicists [59] contains a long
discussion of vortex filaments, unsurprisingly since they are so
important in superfluid helium. In an extensive discussion of
forces on vortex lines (Sections 4.11–4.14), vortex lines are viewed
as physical entities that exert forces on each other, which is
ultimately what makes the vortices move.

Majda and Bertozzi’s 2002 book Vorticity and Incompressible
Flow [60] is mathematical in flavor. The derivation of the PVE
in Section 7.3 is standard: ‘‘Ignoring the fact that the velocity of
a point vortex is infinite at its center, (. . . ) we find that a point
vortex induces nomotion at its center’’. They then refer to theMAE
approach of [51]. So do Wu, Ma and Zhou in their 2006 Vorticity
and Vortex Dynamics [61]. Alekseenko et al. in 2007 [62] give the
usual justification (Section 2.3.1) but also present a vortex force
justification (Section 2.3.1).

3. Conservation of momentum

The conservation of momentum approach is presented in
Saffman’s 1992book [53]. It provides amathematical formalization
of the physical arguments used in the original derivations.1

For a general contour C thatmoves anddeformswith a position-
dependent velocity uc , Newton’s second law for the fluid in the
region S enclosed by C is given by

d

dt

∫

S

ρu dS = −

∫

C

pn dl −

∫

C

ρu[(u − uc) · n] dl, (5)

where the left-hand side is the rate of change of the momentum
inside the contour C and the terms on the right-hand side are
respectively the force applied by the outside fluid on the contour
and the flux of momentum through C . Assuming that the flow is
irrotational and the density constant, one can write the complex
potential and velocity as F = φ+ iψ and w = u− iv respectively,
and obtain from Bernoulli’s equation

p = p0(t) −
1

2
ρ(Ft + F t + ww). (6)

Then (5) can be written as an equation for the rate of change of
M =

∫

S
ρw dS, namely

Ṁ = −
iρ

2

∫

C

(

Ft + F t

)

dz

+
iρ

2

∫

C

w(w − wc) dz −
iρ

2
wc

∫

C

w dz. (7)

1 Graham [63] carries out a similar procedure in reverse for BME, computing the
force on a solid from the form of the complex potential at infinity, using BME to
obtain the result. However his argument cannot really be reversed to obtain BME
from Newton’s Second Law. In particular only one contour is used, which cannot
lead to separate equations for each vortex.
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Now shrink the contour down to a circle centered at the vortex
position with radius ϵ. The complex potential and velocity can be
decomposed as

F =
Γn

2π i
log(z − zn) + F̃n(z), (8)

w =
Γn

2π i(z − zn)
+ w̃n(z) (9)

with F̃n and w̃n single-valued and analytic on and inside C except
at the vortex position zn. As ϵ → 0, the velocity of the contour
becomes uniform with wc = żn. Using these results, the integrals
in (7) can be evaluated and we obtain

Ṁ = iρΓn(żn − w̃n). (10)

Near the vortex, the flow is purely azimuthal, so the linearmomen-
tum goes to zero. More precisely,

M ∼ −ρ

∫ ϵ

0

∫ 2π

0

Γneiθ

2π ir
r dr dθ → 0. (11)

Hence Ṁ = 0 (Saffman implicitly uses this result) and we obtain
PVE. We have satisfied Newton’s Second law in an integral sense
for the fluid around the vortex.

This argument does not actually require the flow outside the
vortex to be irrotational. The non-singular term retained from the
rest of the velocity field is constant, which is always an irrotational
flow whatever the nature of the O(ϵ) terms. Similarly the pressure
could be obtained by integrating the leading-order (differential)
momentum equation, which would be equivalent to the local form
of the irrotational Bernoulli equation. Hence the irrotational form
can be viewed as a convenient way to carry out the calculation.
The same process applied to angular momentum carries through
for PVE.

In the case of BME, unsteady vortices at zn are shed from sharp
corners at zn,0 with the circulations being set instantaneously to
remove the singularities in the potential at the corners. There is
then a branch cut in the complex potential between zn,0 and zn. The
contour C is now taken to enclose the vortex and the branch cut,
stopping at the corner. Using

∫

C
Re[−i log(z−zn)] dz → −2π(zn−

zn,0), the limiting procedure leads to

Ṁ → iρ[Γn(żn − w̃n) + Γ̇n(zn − zn,0)]. (12)

This gives the BME:

żn + (zn − zn,0)
Γ̇n

Γn

= w̃n. (13)

(A full derivation may be found in [13].) There is then an unbal-
anced torque when angular momentum is considered, and angular
momentum is not conserved for BME.

The fact that the BME model cannot at the same time conserve
linear and angularmomenta in an integral sense around the vortex
and branch cut should come as no surprise. Introducing a point
vortex in the flow provides three degrees of freedom for the
system: two for vortex position and one for circulation. For BME
the regularity condition fixes circulation, while conservation of
momentum gives two equations for the components of position.
Angular momentum is not in general conserved unless Γ̇ = 0.

The fact that Γ̇ does not enter PVE does not mean that Γ is
constant. This requires a separate argument (for BME Γ̇ is given
by considerations of regularity). For irrotational flow outside the
vortex, integrating the vorticity equation over a small domain
around the vortex leads necessarily to the result thatΓ is constant.
Body forces will not affect BME or PVE provided that they are not
as singular as r−2 near the vortex.

4. General singularities

One can naturally ask how other singular potentials would
evolve, analogously to vortices. The first such attempt goes back

to Fridman and Polubarinova in 1928 [64]. Two classes of further
singular potential have been investigated in detail: points sinks
and sources, and dipoles. Point sinks or sources correspond to
taking imaginary Γ ; vortex-sinks or twisters have complex Γ
[65–67]. The equation of motion in all cases was just obtained by
using complex Γ in PVE, with no justification being advanced for
this choice.

Newton [68] considers dipoles. By considering two point vor-
tices that come closer together, he argues that the dipole strength
will align itself with the flow, and writes down an ad hoc equation
governing this alignment process. He writes down PVE for the po-
sition of the dipole.

In terms of general approaches to this problem, Fridman and
Polubarinova use a different argument to find PSE. They compute
what they call the linear and angular momenta of the fluid lying in
an annulus l1 < r < l2 centered around the singularity andmoving
with a complex velocity expressed as the Laurent series

w =
∞

∑

n=−∞

anz
n. (14)

The point vortex has a−1 purely imaginary. They argue that the
linear and angular momentum are a0 and Im a−1/(l

2
1 + l22)

respectively. They then ignore the latter term and argue that the
point vortex moves with velocity a0, which is just w̃ as for PVE.

Saffman and Meiron [69] discuss generalizations of point
vortices to three-dimensional ‘‘vortons’’ and conclude that the
concept does not work. Their approach, which they claim works
for point vortices, is based on weak solutions to the vorticity
equation. Subsequent works [70,71] argue that this approach
relies implicitly on a certain special definition of regularization,
essentially a choice of order of integration. Chefranov [72] argues
that there is actually no problem for vortex dipoles both in two and
three dimensions (there can be no point vortex equivalent in three
dimensions because of the solenoidal nature of the vorticity field).
His method discards the singularity in the energy and obtains the
dynamical equations from the usual Hamiltonian equation. This
method should alsowork for point vortices. It is, however, a formal
procedure. Similar equations [73,74] are produced for a dipoles,
quadrupolar vortices and point vortices.

The PSE has been derived recently [75,76] bywriting the vortic-
ity field as a series of delta functions, substituting into the vorticity
equation, and equating degrees of singularity. This requires multi-
plying a delta function by another function that is singular where
the argument of the delta function vanishes. This is not defined
for standard distributions. This gives the form of the equations for
point vortices and for dipoles, but does not really justify the pro-
cedure (cf. the comments of [49] for point vortices). For higher
singularities, the resulting evolution equations are claimed to be
inconsistent.

It is tempting to try the momentum conservation argument of
Section 3 to obtain PSE. This fails for a number of expected and
unexpected reasons. For a twister, write F = Cn/(2π) log(z−zn)+

F̃n(z). The appropriate version of (12) is

Ṁ → −
ρ

2
Cnżn +

ρ

2
[−2w̃n + żn]Cn. (15)

For real Cn (source or sink), we find w̃n = 0, which is not an
evolution equation.

For a dipole, with

w =
Dn

2π

1

(z − zn)2
+ w̃n + w̃′

n(z − zn) + · · · , (16)

the same approach gives

0 = −
ρ

2
Ḋn − ρDnw̃′

n. (17)
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This is an equation for the dipole strength, not for the position
of the dipole. The factor of 2 is inconsistent with the known
equation for the evolution of the vorticity gradient (4) [50,75]. This
is because the surface integral M has been interpreted in a certain
sense by carrying out the azimuthal integral first to give 0, but it
is an improper integral and this interpretation leads to the wrong
answer.

5. Generalized momentum argument

We can deal with the problems raised in the preceding para-
graph by using a generalized argument. We no longer write down
Newton’s Second Law in integral form. Instead we multiply the
Euler equation written in terms of u − uc by a test function T and
carry out the same procedure. In vectorial form, this gives

d

dt

∫

S

ρT (u − uc) dS =

∫

S

(

ρ
DT

Dt
(u − uc) − ρT u̇c + p∇T

)

dS

−

∫

C

Tpn dl −

∫

C

ρT (u − uc)[(u − uc) · n] dl. (18)

In complex formandusing Bernoulli’s equationwhere appropriate,
this becomes
d

dt

∫

S

ρT (w − wc) dS = −
iρ

2

∫

C

T (Ft + F t) dz

+

∫

S

(ρ

2
[wTz + wTz](w − wc) − ρT ẇc + 2pTz

)

dS

+
iρ

2

∫

C

T (w − wc)2 dz −
iρ

2

∫

C

T (wwc + wwc − |wc |
2) dz.

(19)

For the monopole, we set T = 1 and find the usual PVE
whatever the argument of Cn. Integrating the vorticity equation
around the singularity gives Im Ċn = 0, so conservation of
circulation is a consequence of the underlying dynamics. This is
not the case for the sink/source strength which can be specified
arbitrarily. This freedom does not seem to have been exploited
previously.

For the dipole, we take T = 1 and T = (z − zn) successively.
The Tz and ẇc terms on the right-hand side are zero and tend
to zero respectively. The Tz term on the right-hand side is an
improper integral. If the azimuthal integration is carried out first,
it vanishes. For T = (z − zn), the left-hand side is a proper integral
that tends to zero. Then we recover żn = w̃n. For T = 1, the
left-hand side integral is also improper. We know from (17) that
ignoring it leads to an inconsistent result. As discussed in [53], fluid
momentum is not defined in an infinite region since the integral
is only conditionally convergent. The hydrodynamic impulse of a
fluid is, however, well defined. We are faced here with a similar
problem. We use Eq. (3.11.31) of [53],

∫

S
w̄ dS = Dn, over a small

rather than a large circle (this is possible since the singularity in our
small circle is the same). Then the left-hand side of (19) becomes
1
2ρḊn and we obtain the expected equation for Dn, without the
factor of 2 present in (17). The resulting PSE for the dipole is

żn = w̃n, Ḋn + Dnw̃
′
n = 0. (20)

We define general singularities by the local behavior

w =
An

2π
(z − zn)

−l−1 + w̃n(z) + w̃′
n(z)(z − zn) + · · · . (21)

Evaluating all moments for higher singularities will lead to an
inconsistent set of equations [75]. If, as for BME, we take the view
that these equations are nevertheless useful since they satisfy a
subset of the moment integrals, we can proceed as follows. Taking
T = (z − zn)

l leads to the usual result for żn. To find Ȧn, we take
T = (z − zn)

l−1. The same issue as for the dipole arises, and we can

deal with the integrals in the same fashion. The only difference is
a factor of l−1 in F . We find

żn = w̃n, Ȧn +
2l

l + 1
Anw̃

′
n = 0. (22)

We see that the singularity strength evolves in time according
to a very similar equation for all singularities. The irrotational
approach used above for PVE works even when the point vortex
is embedded in a rotational flow. For higher singularities, this is
no longer likely to be true, because it is in terms like w̃′ that the
effects of background vorticity appear. This procedure gives awell-
definedpair of equations. For hybrid singularities, i.e. ones inwhich
there ismore than one singular term in the potential, this approach
will lead to PSE for the dominant singularity, but will not give
evolution equations for the weaker ones.

The obtained PSE is different from the equations previous
found: the singularity strengths of [64] do not evolve in time, the
equation for the singularity strength of [68] is different, and in [75]
it is claimed that only the dipole system is consistent. We do not
expect to be able to satisfy all moments: we use 4 moments to
obtain 2 complex equations.

6. Example

As a short example, we calculate the motion of a dipole with
strength D = Dr + iDi and position z = x + iy in the upper half-
plane. We place an image dipole with strength D and position z
to satisfy the no-normal flow condition along the x-axis. It can be
shown that Dr is constant in time, while the other unknowns obey
the system

ẋ = −
Dr

8πy2
, ẏ = −

Di

8πy2
, Ḋi = −

D2
r + D2

i

8πy3
. (23)

If Dr = 0, the dipole moves vertically, either away from the
wall if Di(0) < 0 or toward the wall if Di(0) > 0 (the sign of Di

may look backward but the image dipole has opposite Di and the
physical dipole is moving in its field). The dipole’s position is given
by

y =

√

y20 −
Di(0)t

4πy(0)
, (24)

so the dipole reaches the wall at time t = 4πy(0)3/Di(0) with
infinite velocity.

If Dr ≠ 0, the trajectory of the dipole is given by

y =
|Dr |y0

√

D2
r + Di(0)2

cosh

{

cosh−1

√

D2
r + Di(0)2

|Dr |

+

√

D2
r + Di(0)2

Dry0
(x − x0)

}

. (25)

For large times, the dipolemoves away from thewall with decreas-
ing velocity.

7. Conclusion and future work

We have shown how to derive the PVE, BME and PSE using
generalized momentum arguments. The Euler equation is satisfied
pointwise everywhere outside the singularity, and moments of it
are satisfied in an integral sense around a contour arbitrarily close
to the moving singularity. The singularity moves with the flow,
but its strength evolves for dipoles and higher singularities. The
evolution equation for the strength requires certain choices in reg-
ularizing singular integrals. For the dipole we are guided by pre-
vious results. It is disappointing that two different regularizations
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are needed, and the general PSE result should possibly be viewed
with some suspicion. It does not satisfy all moments of the Euler
equation (this is also true for BME). To a certain extent, the utility
of such singularities as dynamical entities lies in howwell and how
simply they describe interesting physical phenomena. Mathemat-
ically they provide a new class of dynamical systems that may be
of some intrinsic interest. The physical underpinning for the treat-
ment of the singular integrals in PSE would benefit from further
explanation.

A historical overview of the PVE shows that the earliest workers
knew that line vortices with circular cross-sections supported
neutral modes. Hence parallel line vortices that were sufficiently
far from each other could be treated as dynamical objects,
neglecting their internal core structure. The later complex variable
formalism removed the singularity, but did not address the
internal structure of the vortices. The conservation of momentum
argument that appears with BME provides a justification for
treating higher singularities.

The matched asymptotic expansion approach [51] can be
viewed as a mathematical reformulation of the original argument.
However it does not appear to work in general for higher
singularities. This can be seen for the dipole. If it is taken to be a
structure of size l made up of a positive vortex with circulation
Γ next to a negative circulation, its intrinsic propagation velocity
will scale as Γ l−1. The dipole strength scales like Γ l. If this
is held constant as l shrinks, the propagation velocity becomes
unbounded. A point vortex has no intrinsic tendency to move (as
is pointed out repeatedly in textbooks) so in the MAE analysis it
moves with the background flow

Additional physical effects have been added to point vortices,
including the influence of viscosity [77,78] and mass, using ‘‘mass
vortices’’ (with infinite density) [79,80]. Any effect that can be
described simply as an extra term in the incompressible Euler
equation falls into the current framework. Any body force that is
not singular does not modify PSE. Hence ad hoc approaches such
as the beta-plane point vortices [81] (with no associated vorticity
field) are inconsistent with momentum conservation.

The effect of compressibility is particularly interesting. Point
vortices in a compressible flow have an obvious problem: close to
the center of the vortex, the velocity becomes supersonic. Barsony-
Nagy et al. [82] constructed steady point vortex like solutions
with hollow internal structure for small Mach number using the
Imai–Lamla version of the Rayleigh–Janzen expansion. A number
of considerations lead to a standard problem in complex variable
theory, one of these being that the force on the vortex (obtained
by the appropriate generalization of Blasius theorem) vanish. This
leads to the obvious equation of the corresponding generalization
to the unsteady case. It is not clear that the internal structure that is
used is appropriate, andmorework is required on the compressible
case.
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Appendix A. Extract from Kirchhoff’s Lesson Twenty

Kirchhoff’s remarkable 1876 work Lectures on Mathematical
Physics [26] does not appear ever to have been translated into
English. We hence provide our translation of the relevant section,
using the original notation (italics in the original) and formatting.

(Vortex filaments. Straight and parallel vortex filaments.
Motion of several such threads of infinitely small cross-section.
Straight filaments that fill a cylinder of elliptical cross-section.
Circular vortex filaments with a common axis. Motion of a
vortex ring and of two vortex rings of infinitely small cross-
section.)
Section 1. (. . . )
Section 2. (. . . )
Section 3. We now want to apply the results of the previous
paragraphs to the case of a single filament or a number of vortex
filaments of infinitely small cross-section.We assume next that
only one filament exists and set
∫

ζ df = m; (A.1)

hence we take m to be finite; ζ must hence be infinitely large.
We do not set ζ to be finite in what follows, but ζ must not
change its sign; the center of gravity of the vortex filament then
always lies inside or infinitely close to its cross-section. For all
points that lie at a finite distance from the vortex filament, the
equations, according to (K11),2 are

u =
dW

dy
, v = −

dW

dx
,

W = −
1

π
m log ρ, (A.2)

where the origin of ρ is any point of the cross-section of the
filament. Infinitely close and inside the filament, W , u, v are
in general infinitely large and their values depend on its cross-
section and the values that ζ takes for the individual particles;
according to the results of the end of Section 2, we have for
the center of gravity of the vortex filament u = v = 0. To
this extent we can say that the vortex filament stays in place,
although in general its cross-section changes and its center
of gravity occupies different locations in the fluid at different
times; each fluid element at a finite distance from the filament
describes a circle with uniform velocity

m

πρ
. (A.3)

Now let there be other such vortex filaments, as previously
we had considered only one; let m1,m2, . . . be the values
of the integrals given by m in (A.1) for these filaments; let
x1, y1, x2, y2, . . . be the coordinates of their centers of gravity
at time t , and let ρ1, ρ2, . . . be the distances of the centers from
the point (x, y); then for all the points that lie at a finite distance
from the vortex filaments,

u =
dW

dy
, v = −

dW

dx
,

W = −
1

π

∑

mi log ρi, (A.4)

where the sum is to be carried out over the index. The centers
of gravity of the vortices move; the parts of the velocity u and v
at the center of a vortex from that vortex vanish however; it is
hence assumed, when we refer to u1 and v1 at the center of the
filament with index 1, that two vortices are always at a finite
distance from each other,

u1 =
dW1

dy1
, v = −

dW1

dx1
,

W1 = −
1

π

∑

(m2 log ρ12 + m3 log ρ13 + · · ·), (A.5)

2 Derived in Section 2 of the lesson.
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Table B.1
Timeline of the development of BME. Publication and submission or presentation
dates are from the articles (JAS: Journal of the Aeronautical Sciences, later Journal
of the Aerospace Sciences). Question marks correspond to unavailable information.

Date Author Submitted Reference

1952 Legendre 6/23/1952 [85]
6/1953 Adams 3/23/1953 [86]
2/1954 Edwards 11/10/1953 [87]
? Cheng Tech. Rep. ? ?
3/1954 Cheng JAS forum 12/1/1953 [88]
10/1954 BM JAS 1/1954 [89]
5/5/1955 BM Tech. Rep. ? [90]
4/1955 Cheng JAS 6/11/1954 [91]
5/1956 Rott 1/1/1956 [92]

where ρ12, ρ22, . . . are the distances of the center of gravity of
filament 1 to the centers of filaments 2, 3, . . . The equations
which can be formed in this fashion can be written

m1
dx1
dt

=
dP

dy1
, m2

dx2
dt

=
dP

dy2
,

m1
dy1
dt

= −
dP

dx1
, m2

dy2
dt

= −
dP

dx2
,

P = −
1

π

∑

m1m2 log ρ12 (A.6)

where the sum is to be taken over all combinations of two
different indices.

(. . . ).

Appendix B. The history of the Brown–Michael equation

The 1950s saw active research on the lift acting on delta wings.
A remarkable series of papers deriving BME appeared in rapid
succession, initially considering two-dimensional sections going
down the delta wing and studying two-dimensional dynamics in
each section. The chronology is presented in Table B.1. There is
also a review of vortex sheet roll-up from delta wings by Legendre
dating from 1966 [83] and a mention in a report on EUROMECH
meeting 471 by Riley from 1974 [84].

After the work of Legendre in 1952 and Adams in 1953 [85,86],
Edwards in 1954 [87] was the first to derive what is essentially
BME from vorticity considerations for the delta-wing case. This
approach should work in the general two-dimensional case. He
uses circulation theorems taking into account the vorticity being
fed into the vortex by the cut. Cheng in the 1954 JAS forum
piece [88] ‘‘Remarks on Nonlinear Lift and Vortex Separation’’ is
the first to consider time dependence. The Cheng Technical Report
cannot be found now.

Brown and Michael’s 1954 JAS article ‘‘Effect of Leading-Edge
Separation on the Lift of a Delta Wing’’ [89] is in fact a precursor
to their widely cited technical report [90] and considers the steady
problem for the delta-wing problem.

Cheng’s 1955 JAS paper ‘‘Aerodynamics of a Rectangular Plate
with Vortex Separation in Supersonic Flow’’ [91] attacks the
steady delta-wing problem. It includes extensive discussion of
BME, including the following: ‘‘Since the exact boundary condition
requires continuity of the pressure across the free vortex sheet,
the equivalent condition in the simplified model shall then be the
vanishing of the total force on the vortex system,which is in reality
the fulfillment of the exact boundary condition by the mean value.
(. . . ) In order to render the vortex system dynamically free, this force
shall be balanced by the one acting on the vortex core at r = ϵ,
which is essentially a ‘‘Joukowski Force’’. (. . . )’’.

In 1956, Rott, while talking about vortex sheet shedding,
discusses the ‘single vortex’ approximation [92]. He attributes the
force balance argument to the Brown andMichael technical report

and to Edwards (1954). He quotes Cheng (albeit with the wrong
year: 1955 rather than 1954) as saying this equation can be applied
to any flowwith vortex generation, evenwithout similarity. This is
really the origin of the BME.

After Rott’s paper, the equation is used and called the BME, both
for the delta-wing and two-dimensional situations. Typical uses
are to model steady vortex sheets, in which the vortex sheets are
represented by point vortices but a BM vortex is used to model the
end of the vortex sheet [93,94]. A modified approach suggested by
Howe [95] has not been adopted elsewhere.
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