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Abstract
We propose a general framework for solving the group synchronization problem,
where we focus on the setting of adversarial or uniform corruption and sufficiently
small noise. Specifically, we apply a novel message passing procedure that uses cycle
consistency information in order to estimate the corruption levels of group ratios
and consequently solve the synchronization problem in our setting. We first explain
why the group cycle consistency information is essential for effectively solving group
synchronization problems. We then establish exact recovery and linear convergence
guarantees for the proposed message passing procedure under a deterministic setting
with adversarial corruption. These guarantees hold as long as the ratio of corrupted
cycles per edge is bounded by a reasonable constant. We also establish the stability
of the proposed procedure to sub-Gaussian noise. We further establish exact recovery
with high probability under a common uniform corruption model.
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1 Introduction

The problem of synchronization arises in important data-related tasks, such as struc-
ture from motion (SfM), simultaneous localization and mapping (SLAM), cryo-EM,
community detection and sensor network localization. The underlying setting of the
problem includes objects with associated states, where examples of states are loca-
tions, rotations and binary labels. The main problem is estimating the states of objects
from the relative state measurements between pairs of objects. One example is rotation
synchronization, which aims to recover rotations of objects from the relative rotations
between pairs of objects. The problem is simple when one has the correct measure-
ments of all relative states. However, in practice the measurements of some relative
states can be erroneous or missing. Themain goal of this paper is to establish a theoret-
ically guaranteed solution for general compact group synchronization that can tolerate
large amounts of measurement error.

Wemathematically formulate the general problem in Sect. 1.1 and discuss common
special cases of this problem in Sect. 1.2. Section 1.3 briefly mentions the computa-
tional difficulties in solving this problem and the disadvantages of the common convex
relaxation approach. Section 1.4 nontechnically describes our method, and Sect. 1.5
highlights its contributions. At last, Sect. 1.6 provides a roadmap for the rest of the
paper.

1.1 Problem Formulation

The most common mathematical setting of synchronization is group synchronization,
which asks to recover group elements from their noisy group ratios. It assumes a group
G, a subset of this group {g∗

i }ni=1 and a graph G([n], E) with n vertices indexed by
[n] = {1, . . . , n}. The group ratio between g∗

i and g∗
j is defined as g∗

i j = g∗
i g

∗−1
j .

We use the star superscript to emphasize original elements of G, since the actual
measurements can be corrupted or noisy. We remark that since g∗

j i = g∗
i j

−1, our
setting of an undirected graph, G([n], E), is fine.

We say that a ratio g∗
i j is corrupted when it is replaced by g̃i j ∈ G \ {g∗

i j }, either
deterministically or probabilistically.Wepartition E into the sets of uncorrupted (good)
and corrupted (bad) edges, which we denote by Eg and Eb, respectively.

We denote the group identity by eG . We assume a metric dG on G, which is bi-
invariant. This means that for any g1, g2, g3 ∈ G,

dG(g1, g2) = dG(g3g1, g3g2) = dG(g1g3, g2g3).

We further assume that G is bounded with respect to dG , and we thus restrict our theory
to compact groups. We appropriately scale dG so that the diameter of G is at most 1.

Additional noise can be applied to the group ratios associated with edges in Eg .
For i j ∈ Eg , the noise model replaces g∗

i j with g
∗
i j g

ε
i j , where g

ε
i j is a G-valued random

variable such that dG(gε
i j , eG) is sub-Gaussian. We denote the corrupted and noisy

group ratios by {gi j }i j∈E and summarize their form as follows:
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gi j =
{
g∗
i j g

ε
i j , i j ∈ Eg;

g̃i j , i j ∈ Eb.
(1)

We refer to the case where gε
i j = eG for all i j ∈ E as the noiseless case. We view (1)

as an adversarial corruption model since the corrupted group ratios and the corrupted
edges in Eb can be arbitrarily chosen; however, our theory introduces some restrictions
on both of them.

The problem of group synchronization asks to recover the original group elements
{g∗

i }i∈[n] given the graph G([n], E) and corrupted and noisy group ratios {gi j }i j∈E .
One can only recover, or approximate, the original group elements {g∗

i }i∈[n] up to a
right group action. Indeed, for any g0 ∈ G, g∗

i j can also bewritten as g
∗
i g0(g

∗
j g0)

−1 and
thus {g∗

i g0}i∈[n] is also a solution. It is natural to assume that G([n], Eg) is connected,
since in this case the arbitrary right multiplication is the only degree of freedom of the
solution.

In the noiseless case, one aims to exactly recover the original group elements under
certain conditions on the corruption and the graph. In the noisy case, one aims to nearly
recover the original group elements with recovery error depending on the distribution
of dG(gε

i j , eG).
At last, we remark that for similar models where the measurement gi j may not be

in G but in an embedding space, one can first project gi j onto G and then apply our
proposed method. Any theory developed for our model can extend for the latter one
by projecting onto G.

1.2 Examples of Group Synchronization

We review the three common instances of group synchronization.

1.2.1 Z2 Synchronization

This is the simplest and most widely known problem of group synchronization. The
underlying group, Z2, is commonly represented in this setting by {−1, 1} with direct
multiplication. A natural motivation for this problem is binary graph clustering, where
onewishes to recover the labels in {−1, 1} of two different clusters of graph nodes from
corrupted measurements of signed interactions between pairs of nodes connected by
edges. Namely, the signed interaction of two nodes is 1 if they are in the same cluster
and -1 if they are in a different cluster. Note that without any erroneous measurement,
the signed interaction is obtained by multiplying the corresponding labels and thus it
corresponds to the group ratio g∗

i j = g∗
i g

∗−1
j . Also note that clusters are determined

up to a choice of labels, that is, up to multiplication by an element of Z2. The Z2
synchronization problem is directly related to the Max-Cut problem [45] and to a
special setting of community detection [1,12]. It was also applied to solve a specific
problem in sensor network localization [13].
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1.2.2 Permutation Synchronization

The underlying group of this problem is the symmetric group, that is, the discrete
group of permutations, SN . This synchronization problem was proposed in computer
vision in order to find globally consistent image matches from relative matches [35].
More specifically, one has a set of images and N feature points that are common to
all images, such as distinguished corners of objects that appear in all images (they
correspond to a set of N points in the 3D scene). These feature points, often referred
to as keypoints, are arbitrarily labeled in each image. For any pair of images, one is
given possibly corrupted versions of the relative permutations between their keypoints.
One then needs to consistently label all keypoints in the given images. That is, one
needs to find absolute permutations of the labels of keypoints of each image into the
fixed labels of the N 3D scene points.

1.2.3 Rotation Synchronization

The problemof rotation synchronization, or equivalently, SO(3) synchronization, asks
to recover absolute rotations from corrupted relative rotations up to a global rotation.
Its special case of angular synchronization, or SO(2) synchronization, asks to recover
the locations of points on a circle (up to an arbitrary rotation) given corrupted relative
angles between pairs of points. More generally, one may consider SO(d) synchro-
nization for any d ≥ 2. Rotation synchronization is widely used in 3D imaging and
computer vision tasks. In particular, [43] applies rotation synchronization for solv-
ing absolute rotations of molecules and [3,8,19,21,30,34,45] synchronize the relative
rotations of cameras to obtain the global camera rotations in the problem of structure
from motion.

1.3 On the Complexity of the Problem and its Common Approach

Many groups, such as Z2, SN and SO(d), are nonconvex, and their synchroniza-
tion problems are usually NP-hard [6,17,35]. Thus, many classic methods of group
synchronization instead solve a relaxed semidefinite programming (SDP) problem
(see review of previous methods and guarantees in Section 2). However, relaxation
techniques may change the original problem and may thus not recover the original
group elements when the group ratios are severely corrupted. Furthermore, the SDP
formulations and analysis are specialized to the different groups.Moreover, their com-
putational time can still be slow in practice.

1.4 Short and Nontechnical Description of OurWork and Guarantees

The goal of this work is to formulate a universal and flexible framework that can
address different groups in a similar way. It exploits cycle consistency, which is a
common property shared by any group. That is, let L = {i1i2, i2i3 . . . imi1} be any
cycle of length m1 and define g∗

L = g∗
i1i2

g∗
i2i3

· · · g∗
imi1

, then the cycle consistency

1 Recall that a cycle in a graph is a closed trail whose first and last vertices are the only repeated vertices.
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constraint is

g∗
L = eG . (2)

That is, the multiplication of the original group ratios along a cycle yields the group
identity. In practice, one may only compute the following approximation for g∗

L :

gL = gi1i2gi2i3 · · · gimi1 , (3)

where for faster computation we prefer using only 3-cycles, so that gL = gi j g jk gki .
One basic idea is that the distances between gL and eG for cycles L containing

edge i j , whichwe refer to as cycle inconsistencies, provide information on the distance
between g∗

i j and gi j , which we refer to as the corruption level of edge i j . Our proposed
cycle-edge message passing (CEMP) algorithm thus estimates these corruption levels
using the cycle inconsistencies by alternatingly updating messages between cycles
and edges. The edges with high corruption levels can then be confidently removed.

In theory, the latter cleaning (or removal) procedure can be used for recovering the
original group elements in the noiseless case and for nearly recovering them in the
case of sufficiently small noise. In fact, we obtain the strongest theoretical guarantees
for general group synchronization with adversarial corruption.

In practice, Sect. 4.2.8 suggests methods of using the estimated corruption levels
for solving the group synchronization problem in general scenarios.

The basic idea of this work was first sketched for the different problem of cam-
era location estimation in a conference paper [38] (we explain this problem later in
Sect. 2.1). In addition to formulating this idea to the general group synchronization
problem as well as carefully explaining it in the context of message passing, we
present nontrivial theoretical guarantees, unlike the very basic and limited ones in
[38]. Most importantly, we establish exact and fast recovery of the underlying group
elements.

1.5 Contribution of ThisWork

The following are the main contributions of this work:
New insight into group synchronization:Wemathematically establish the relevance
of cycle consistency information to the group synchronization problem (see Sect. 3).
Unified framework via message passing: CEMP applies to any compact group. This
is due to the careful incorporation of cycle consistency, which is a general property
of groups. As later explained in Sect. 4.3, our algorithm is different from all previous
message passing approaches and, in particular, does not require assumptions on the
underlying joint distributions.
Strongest theory for adversarial Corruption:We claim that CEMP is the first algo-
rithm that is guaranteed to exactly recover group elements fromadversarially corrupted
group ratios under reasonable assumptions (see Sect. 5.2). Previous guarantees for
group synchronization assume very special generative models and often asymptotic
scenarios and special groups. We are only aware of somewhat similar guarantees in
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[20,23,28], but for the different problem of camera location estimation. We claim that
our theory is stronger since it only requires a constant uniform upper bound on the
local corruption levels, whereas a similar upper bound in [20,28] depends on n and
the sparsity of the graph. Moreover, our argument is much simpler than [20,28] and
we also need not assume the restrictive Erdős–Rényi model for generating the graph.
While [20,28] suggest a constructive solution and we only estimate the corruption
levels, the guarantees of [20,28] only hold for the noiseless case, and in this case,
correct estimation of corruption by our method is equivalent with correct solution of
the group elements.
Stability to noise: We establish results for approximate recovery of CEMP in the
presence of both adversarial corruption and noise (see Sects. 5.3 and 5.4). For sub-
Gaussian noise, we only require that the distribution of dG(gi j , g∗

i j ) is independent and
sub-Gaussian, unlike previous specific noise distribution assumptions of gi j [35,36].
For the case where dG(gi j , g∗

i j ) is bounded for i j ∈ Eg , we state a deterministic
perturbation result.
Recovery under uniform corruption: When the edges in G([n], E) are generated
by the Erdős–Rényi model and the corrupted group ratios are i.i.d. sampled from the
Haar measure on G, we can guarantee with high-probability exact recovery and fast
convergence by CEMP for any fixed corruption probability, 0 ≤ q < 1, and any edge
connection probability, 0 < p ≤ 1, as long as the sample size is sufficiently large. Our
analysis is not restricted anymore by a sufficiently small uniform upper bound on the
local corruption levels. Using these results, we derive sample complexity bounds for
CEMP with respect to common groups. We point at a gap between these bounds and
the information-theoretic ones as well as ones for other algorithms. Nevertheless, to
the best of our knowledge, there are no other results for continuous groups that hold
for any q < 1.

1.6 Organization of the Paper

Section 2 gives an overview of previous relevant works. Section 3 mathematically
establishes the relevance of cycle-based information to the solution of group synchro-
nization. Section 4 describes our proposed method, CEMP, and carefully interprets
it as a message passing algorithm. Section 5 establishes exact recovery and fast con-
vergence for CEMP under the adversarial corruption model and shows the stability
of CEMP under bounded and sub-Gaussian noise. Section 6 establishes guarantees
under a special random corruption model. Section 7 demonstrates the numerical per-
formance of CEMP using artificial datasets generated according to either adversarial
or uniform corruption models. Section 8 concludes this work, while discussing pos-
sible extensions of it. Appendix contains various proofs and technical details, where
the central ideas of the proofs are in the main text.
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2 RelatedWorks

This section reviews existing algorithms and guarantees for group synchronization and
also reviews methods that share similarity with the proposed approach. Section 2.1
overviews previous works that utilize energy minimization and formulates a general
framework for these works. Section 2.2 reviews previous methods for inferring cor-
ruption in special group synchronization problems by the use of cycle-consistency
information. Section 2.3 reviews message passing algorithms and their applications
to group synchronization.

2.1 EnergyMinimization

Most works on group synchronization require minimizing an energy function.We first
describe a general energyminimization framework for group synchronization and then
review relevant previous works. This framework uses a metric dG defined on G and
a function ρ from R

|E |
+ to R+. We remark that R+ denotes the set of nonnegative

numbers and | · | denotes the cardinality of a set. The general framework aims to solve

min
gi∈G

ρ

((
dG(gi j , gi g

−1
j )
)
i j∈E

)
. (4)

Natural examples of ρ include the sum of pth powers of elements, where p > 0, the
number of nonzero elements, and the maximal element.

The elements of Z2, Sm and SO(d) (that is, the most common groups that arise
in synchronization problems) can be represented by orthogonal matrices with sizes
N = 1, m and d, respectively. For these groups, it is common to identify each gi ,
i ∈ [n], with its representingmatrix, choose dG as the Frobenius norm of the difference
of two group elements (that is, their representing matrices), ρ(·) = ‖·‖ν

ν , where ν = 2
or ν = 1, and consider the following minimization problem

min
gi∈G
∑
i j∈E

‖gi g−1
j − gi j‖ν

F . (5)

The best choice of ν depends on G, the underlying noise and the corruption model.
For Lie groups, ν = 2 is optimal under Gaussian noise, and ν = 1 is more robust
to outliers (i.e., robust to significantly corrupted group ratios). For some examples of
discrete groups, such as Z2 and SN , ν = 2 is information-theoretically optimal for
both Gaussian noise and uniform corruption.

For ν = 2, one can form an equivalent formulation of (5). It uses the block matrix
Y ∈ R

nN×nN , where Y i j = gi j if i j ∈ E and Y i j = 0N×N , otherwise. Its solution
is a block matrix X ∈ R

nN×nN , whose [i, j]-th block, i, j ∈ [n], is denoted by X i j .
It needs to satisfy X i j = gi gTj , where {gi }i∈[n] is the solution of (5), or equivalently,

X = xxT , where x = (gi )i∈[n] ∈ R
nN×N . In order to obtain this, X needs to be

positive semi-definite of rank N and its blocks need to represent elements of G, where
the diagonal ones need to be the identity matrices. For SO(2), it is more convenient to
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represent gi and gi j by elements ofU (1), the unit circle in C, and thus replace R2n×2

andR2n×2n withCn×1 andCn×n . Using these components, the equivalent formulation
can be written as

max
X∈RnN×nN

Tr(XTY)

subject to {X i j }ni, j=1 ⊂ G
X i i = IN×N , i = 1, . . . , n
X � 0
rank (X) = N .

(6)

The above formulation is commonly relaxed by removing its two nonconvex con-
straints: rank(X) = N and {X i j }ni, j=1 ⊂ G. The solution X̂ of this relaxed formulation
can be found by an SDP solver. One then commonly computes its top N eigenvectors
and stacks them as columns to obtain the n × 1 vector of N × N blocks, x̃ (note that
x̃ x̃T is the best rank-N approximation of X̂ in Frobenius norm). Next, one projects
each of the N blocks of x̃ (of size N × N ) onto G. This whole procedure, which we
refer to in short as SDP, is typically slow to implement [41]. A faster commonmethod,
whichwe refer to as Spectral, applies a similar procedure while ignoring all constraints
in (6). In this case, the highly relaxed solution of (6) is X̂ := Y and one only needs to
find its top N eigenvectors and project their blocks on the group elements [41].

Formulation (6) and its SDP relaxation first appeared in the celebrated work of
Goemans andWilliamson [18] on the max-cut problem. Their work can be viewed as a
formulation for solvingZ2 synchronization.Amit Singer [41] proposed the generalized
formulation and its relaxed solutions for group synchronization, in particular, for
angular synchronization.

The exact recovery forZ2 synchronization is studied in [2,5] by assuming an Erdős-
Rényi graph, where each edge is independently corrupted with probability q < 1/2.
Abbe et al. [2] specified an information-theoretic lower bound on the average degree
of the graph in terms of q. Bandeira [5] established asymptotic exact recovery for SDP
for Z2 synchronization w.h.p. (with high probability) under the above information-
theoretic regime. Montanari and Sen [32] studied the detection of good edges, instead
of their recovery, under i.i.d. additive Gaussian noise.

Asymptotic exact recovery for convex relaxation methods of permutation synchro-
nization appears in [10,35]. In [35], noise is added to the relative permutations in
SN . The permutations are represented by N × N matrices, and the elements of the
additive N × N noise matrix are i.i.d. N (0, η2). In this setting, exact recovery can
be guaranteed when η2 < (n/N )/(1 + 4(n/N )−1) as nN → ∞. An SDP relaxation,
different from (6), is proposed in [10,22]. It is shown in [22] that for fixed N and
probability of corruption less than 0.5, their method exactly recovers the underlying
permutations w.h.p. as n → ∞.We remark that [22] assumes element-wise corruption
of permutation matrices which is different from ours. An improved theoretical result
is given by Chen et al. [10], which matches the information-theoretic bound.

Rotation synchronization has been extensively studied [3,8,19,21,30,45]. In order
to deal with corruption, it is most common to use �1 energy minimization [8,21,
45]. For example, Wang and Singer formulated a robust SO(d) synchronization, for
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any d ≥ 2, as the solution of (5) with ν = 1 and G = SO(d). Inspired by the
analysis of [27,48], they established asymptotic and probabilistic exact recovery by the
solution of their minimization problem under the following very special probabilistic
model: The graph is complete or even Erdős-Rényi, the corruption model for edges is
Bernoulli with corruption probability less than a critical probability pc that depends on
d, and the corrupted rotations are i.i.d. sampled from the Haar distribution on SO(d).
They proposed an alternating direction augmented Lagrangian method for practically
solving their formulation, but their analysis only applies to the pure minimizer.

A somewhat similar problem togroup synchronization is camera location estimation
[20,33,34,38]. It uses the noncompact group R

3 with vector addition, and its input
includes possibly corrupted measurements of {Tg∗

i j }i j∈E , where T (g∗
i j ) = g∗

i j/‖g∗
i j‖

and ‖ ·‖ denotes the Euclidean norm. The application of T distorts the group structure
and may result in loss of information.

For this problem, other forms of energy minimization have been proposed, which
often differ from the framework in (5). The first exact recovery result for a specific
energy minimization algorithm was established by Hand, Lee and Voroniski [20]. The
significance of this work is in the weak assumptions of the corruption model, whereas
in the previously mentioned works on exact recovery [2,5,12,22,35,45], the corrupted
group ratios followed very specific probability distributions. More specifically, the
main model in [20] assumed an Erdős-Rényi graph G([n], E) with parameter p for
connecting edges and an arbitrary corrupted set of edges Eb, whose corruption is
quantified by the maximal degree of G([n], Eb) divided by n, which is denoted by
εb. The transformed group ratios, T (gi j ), are T (g∗

i j ) for i j ∈ Eg and are arbitrarily

chosen in S2, the unit sphere, for i j ∈ Eb. They established exact recovery under
this model with εb = O(p5/ log3 n). A similar exact recovery theory for another
energy minimization algorithm, namely the least unsquared deviations (LUD) [33],
was established by Lerman, Shi and Zhang [28], but with the stronger corruption
bound, εb = O(p7/3/ log9/2 n).

Huang et al. [23] solved an �1 formulation for 1D translation synchronization,where
G = R with regular addition. They proposed a special version of IRLS and provided
a deterministic exact recovery guarantee that depends on εb and a quantity that uses
the graph Laplacian.

2.2 SynchronizationMethods Based on Cycle Consistency

Previous methods that use the cycle consistency constraint in (2) only focus on syn-
chronizing camera rotations. Additional methods use a different cycle consistency
constraint to synchronize camera locations. Assuming that G lies in a metric space
with a metric dG(· , ·), the corruption level in a cycle L can be indicated by the cycle
inconsistency measure dG(gL , eG), where gL was defined in (3). There exist few
works that exploit such information to identify and remove the corrupted edges. A
likelihood-based method [47] was proposed to classify the corrupted and uncorrupted
edges (relative camera motion) from observations dG(gL , eG) of many sampled L’s.
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This work has no theoretical guarantees. It seeks to solve the following problem:

max
xi j∈{0,1}

∏
L

Pr
({xi j }i j∈L |dG(gL , eG)

)
. (7)

The variables {xi j }i j∈E provide the assignment of edge i j in the sense that xi j =
1{i j∈Eg}, where 1 denotes the indicator function. One of the proposed solutions in
[47] is a linear programming relaxation of (7). The other proposed solution of (7)
uses belief propagation. It is completely different from the message passing approach
proposed in this work.

Shen et al. [37] find a cleaner subset of edges by searching for consistent cycles.
In particular, if a cycle L of length m satisfies dG(gL , e) < ε/

√
m, then all the edges

in the cycle are treated as uncorrupted. However, this approach lacks any theoretical
guarantees and may fail in various cases. For example, the case where edges are
maliciously corrupted and some cycles with corrupted edges satisfy dG(gL , e) <

ε/
√
m.

An iterative reweighting strategy, referred to as IR-AAB, was proposed in [38] to
identify corrupted pairwise directions when estimating camera locations. Experiments
on synthetic data showed that IR-AAB was able to detect exactly the set of corrupted
pairwise directions that were uniformly distributed on S2 with low or medium cor-
ruption rate. However, this strategy was only restricted to camera location estimation
and no exact recovery guarantees were provided for the reweighting algorithm. We
remark that our current work is a generalization of [38] to compact group synchro-
nization problems. We also provide a message-passing interpretation for the ideas of
[38] and stronger mathematical guarantees in our context, but we do not address here
the camera location estimation problem.

2.3 Message Passing Algorithms

Message passing algorithms are efficient methods for statistical inference on graphical
models. The most famous message passing algorithm is belief propagation (BP) [46].
It is an efficient algorithm for solving marginal distribution or maximizing the joint
probability density of a set of random variables that are defined on a Bayesian network.
The joint density and the corresponding Bayesian network can be uniquely described
by a factor graph that encodes the dependencies of factors on the random variables.
In particular, each factor is considered as a function of a small subset of random
variables and the joint density is assumed as the product of these factors. The BP
algorithm passes messages between the random variables and factors in the factor
graph. When the factor graph is a tree, BP is equivalent to dynamic programming and
can converge in finite iterations. However, when the factor graph contains loops, BP
has no guarantee of convergence and accuracy. The BP algorithm is applied in [47]
to solve the maximal likelihood problem (7). However, since the factor graph defined
in [47] contains many loops, there are no convergence and accuracy guarantees of the
solution.
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Another famous class of message passing algorithms is approximate message pass-
ing (AMP) [14,36]. AMP can be viewed as a modified version of BP, and it is also
used to compute marginal distribution and maximal likelihood. The main advantage
of AMP over BP is that it enjoys asymptotic convergence guarantees even on loopy
factor graphs. AMP was first proposed by Donoho, Maleki and Montanari [14] to
solve the compressed sensing problem. They formulated the convex program for this
problem as a maximal likelihood estimation problem and then solved it by AMP. Perry
et al. [36] apply AMP to group synchronization over any compact group. However,
they have no corruption and only assume additive i.i.d. Gaussian noise model, where
they seek an asymptotic solution that is statistically optimal.

Another message passing algorithm [12] was proposed for Z2 synchronization. It
assigns probabilities of correct labeling to each node and each edge. These probabilities
are iteratively passed and updated between nodes and edges until convergence. There
are several drawbacks of this method. First of all, it cannot be generalized to other
group synchronization problems. Second, its performance is worse than SDP under
high corruption [12]. At last, no theoretical guarantee of exact recovery is established.
We remark that this method is completely different from the method proposed here.

3 Cycle Consistency is Essential for Group Synchronization

In this section, we establish a fundamental relationship between cycle consistency
and group synchronization, while assuming the noiseless case. We recall that dG is a
bi-invariant metric on G and that the diameter of G is 1, that is, dG(· , ·) ≤ 1.

Although the ultimate goal of this paper is to estimate group elements {g∗
i }i∈[n]

from group ratios {gi j }i j∈E , we primarily focus on a variant of such a task. That is,
estimating the corruption level

s∗
i j = dG(gi j , g

∗
i j ), i j ∈ E, (8)

from the cycle-inconsistency measure

dL = dG(gL , eG), L ∈ C, (9)

whereC is a set of cycles that are either randomly sampled or deterministically selected.
We remark that in our setting, exact estimation of {s∗

i j }i j∈E is equivalent to exact
recovery of {g∗

i }i∈[n]. Proposition 1, which is proved in Appendix 1, clarifies this
point. In Sect. 4.2.8, we discuss how to practically use {s∗

i j }i j∈E to infer {g∗
i }i∈[n] in

more general settings.

Proposition 1 Assume data generated by the noiseless adversarial corruption model,
where G([n], Eg) is connected. Then, the following problems are equivalent

1. Exact recovery of Eg;
2. Exact estimation of {s∗

i j }i j∈E;
3. Exact recovery of {g∗

i }i∈[n].
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We first remark that, in practice, shorter cycles are preferable due to faster imple-
mentation and less uncertainties [47], and thus, when establishing the theory for CEMP
in Sects. 5 and 6, we let C be the set of 3-cycles, C3. However, we currently leave the
general notation as our work extends to the more general case.

We further remark that for corruption estimation, only the set of real numbers
{dL}L∈C is needed, which is simpler than the set of given group ratios {gi j }i j∈E . This
may enhance the underlying statistical inference.

We next explain why cycle-consistency information is essential for solving the
problems of corruption estimation and group synchronization. Section 3.1 shows that
under a certain condition the set of cycle-inconsistency measures, {dL}L∈C , provides
sufficient information for recovering corruption levels. Section 3.2 shows that cycle
consistency is closely related to group synchronization and plays a central role in
its solution. It further explains that many previous works implicitly exploit cycle
consistency information.

3.1 Exact Recovery Relies on a Good-Cycle Condition

In general, it is not obvious that the set {dL}L∈C contains sufficient information for
recovering {s∗

i j }i j∈E . Indeed, the former set generally contains less information than
the original input of our problem, {gi j }i j∈E . Nevertheless, Proposition 2 implies that
if every edge is contained in a good cycle (see formal definition below), then {dL}L∈C
actually contains the set {s∗

i j }i j∈E .
Definition 1 (Good-Cycle Condition)G([n], E), Eg and C satisfy the good-cycle con-
dition if for each i j ∈ E , there exists at least one cycle L ∈ C containing i j such that
L \ {i j} ⊆ Eg .

Proposition 2 Assume data generated by the noiseless adversarial corruption model,
satisfying the good-cycle condition. Then, s∗

i j = dL ∀i j ∈ E, L ∈ C such that i j ∈ L
and L \ {i j} ⊆ Eg.

Proof Fix i j ∈ E and let L = {i j, jk1, k1k2, k2k3, . . . , kmi} � i j be a good cycle,
i.e., L \ {i j} ⊆ Eg . Applying the definitions of dL and then gL , next right multiplying
with g∗

i j while using the bi-invariance of dG , then applying (2) and at last using the
definition of s∗

i j , yield

dL = dG(gL , eG) = dG(gi j g
∗
jk1 · · · g∗

kmi , eG)

= dG(gi j g
∗
jk1 · · · g∗

kmi g
∗
i j , g

∗
i j ) = dG(gi j , g

∗
i j ) = s∗

i j .

��
We formulate a stronger quantitative version of Proposition 2, which we frequently

use in establishing our exact recovery theory. We prove it in Appendix 2.

Lemma 1 For all i j ∈ E and any cycle L containing i j in G([n], E),

|dL − s∗
i j | ≤

∑
ab∈L\{i j}

s∗
ab.
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3.2 A Natural Mapping of Group Elements onto Cycle-Consistent Ratios

Another reason for exploiting the cycle consistency constraint (2) is its crucial con-
nection to group synchronization. Before stating the relationship clearly, we define
the following notation.

Denote by (gi )i∈[n] ∈ Gn and (gi j )i j∈E ∈ G|E | the elements of the product spaces
Gn and G|E |, respectively. We say that (gi )i∈[n] and (g′

i )i∈[n] are equivalent, which we
denote by (gi )i∈[n] ∼ (g′

i )i∈[n], if there exists g0 ∈ G such that gi = g′
i g0 for all i ∈ [n].

This relationship induces an equivalence class [(gi )i∈[n]] for each (gi )i∈[n] ∈ Gn . In
other words, each [(gi )i∈[n]] is an element of the quotient space Gn/∼. We define the
set of cycle-consistent (gi j )i j∈E with respect to C by

GC = {(gi j )i j∈E ∈ G|E | : gL = eG,∀L ∈ C}.

The following proposition demonstrates a bijection between the group elements
and cycle-consistent group ratios. Its proof is included in Appendix 3.

Proposition 3 Assume that G([n], E) is connected and any i j ∈ E is contained in at
least one cycle in C. Then, h : Gn/∼ → GC defined by h([(gi )i∈[n]]) = (gi g

−1
j )i j∈E

is a bijection.

Remark 1 The function f is an isomorphism, that is,

h([(gi )i∈[n]] · [(g′
i )i∈[n]]) = (gi g

−1
j )i j∈E · (g′

i g
′−1
j )i j∈E ,

if and only if G is Abelian. Indeed, if G is Abelian, the above equation is obvious. If
the above equation holds ∀(gi )i∈[n], (g′

i )i∈[n] ∈ Gn , then gi g′
i g

′−1
j g−1

j = gi g
−1
j g′

i g
′−1
j

∀(gi )i∈[n], (g′
i )i∈[n] ∈ Gn . Letting gi = g′

j = eG yields that g′
i g

−1
j = g−1

j g′
i ∀g′

i , g j ∈
G, and thus, G is Abelian.

Remark 2 The condition on C of Proposition 3 holds under the good-cycle condition.

This proposition signifies that previous works on group synchronization implicitly
enforce cycle consistency information. Indeed, consider the formulation in (4) that
searches for (gi )i∈[n] ∈ Gn (more precisely, [(gi )i∈[n]] ∈ Gn/∼) that minimize a
function of {dG(gi j , gi g

−1
j )}i j∈E . In view of the explicit expression for the bijection

f in Proposition 3, this is equivalent to finding the closest cycle-consistent group
ratios (g′

i j )i j∈E ∈ GC to the given group ratios (gi j )i j∈E . However, direct solutions of
(4) are hard and proposed algorithms often relax the original minimization problem
and thus their relationship with cycle-consistent group ratios may not be clear. A
special case that may further demonstrate the implicit use of cycle-consistency in
group synchronization is when using ρ(·) = ‖ · ‖0 (that is, ρ is the number of nonzero
elements) in (4). We note that this formulation asks to minimize among gi ∈ G the
number of nonzero elements in (dG(gi j , gi g

−1
j ))i j∈E . By Proposition 3, it is equivalent

to minimizing among (g′
i j )i j∈E ∈ GC the number of elements in {i j ∈ E : gi j �= g′

i j },
or similarly, maximizing the number of elements in {i j ∈ E : gi j = g′

i j }. Thus,
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Fig. 1 An illustration of the cycle-edge graph. Cycle node L and edge node i j are connected if i j ∈ L in
the original graph G([n], E)

the problem can be formulated as finding the maximal E ′ ⊆ E such that {gi j }i j∈E ′ is
cycle-consistent. If themaximal set is Eg , whichmakes the problemwell-defined, then
in view of Proposition 1, its recovery is equivalent with exact recovery of {s∗

i j }i j∈E .

4 Cycle-EdgeMessage Passing (CEMP)

We describe CEMP and explain the underlying statistical model that motivates the
algorithm. Section 4.1 defines the cycle-edge graph (CEG) that will be used to describe
the message passing procedure. Section 4.2 describes CEMP and discusses at length
its interpretation and some of its properties. Section 4.3 compares CEMP with BP,
AMP and IRLS.

4.1 Cycle-Edge Graph

We define the notion of a cycle-edge graph (CEG), which is analogous to the factor
graph in belief propagation.We also demonstrate it in Fig. 1.Given the graphG([n], E)

and a set of cycles C, the corresponding cycle-edge graph GCE (VCE , ECE ) is formed
in the following way.

1. The set of vertices in GCE is VCE = C ∪ E . All L ∈ C are called cycle nodes, and
all i j ∈ E are called edge nodes.

2. GCE is a bipartite graph, where the set of edges in GCE is all the pairs (i j, L) such
that i j ∈ L in the original graph G([n], E).

For each cycle node L in GCE , the set of its neighboring edge nodes in GCE is
NL = {i j ∈ E : i j ∈ L}. We can also describe it as the set of edges contained in
L in the original graph G([n], E). We remark that we may treat edges and cycles as
elements of either GCE or G([n], E) depending on the context. For each edge node
i j in GCE , the set of its neighboring cycle nodes in GCE is Ni j = {L ∈ C : i j ∈ L}.
Equivalently, it is the set of cycles containing i j in the original graph G([n], E).
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Fig. 2 Illustration of CEMP with 3-cycles. The good and bad edges are, respectively, marked as green
and red. For the edge i j and any 3-cycle L = {i j, jk, ki}, CEMP computes wi j,L (t), an estimate for
the probability that L is good given estimates of the corruption levels for edges ik and i j , sik (t) and
s jk (t). Note that {wi j,L (t)}L∈Ni j (normalized so that its sum is 1) is a discrete distribution on the set of
cycle inconsistencies, {di j ,L }L∈Ni j . This distribution aims to emphasize good cycles L with respect to the
edge i j . For example, for the good cycle w.r.t. i j , L2 = {i, j, k2}, both f (sik2 (t), βt ) and f (s jk2 (t), βt )
are expected to be relatively high (since the edges ik2 and jk2 are good); thus, the weight wi j,L2 (t) =
f (sik2 (t), βt )· f (s jk2 (t), βt ) is relatively high. On the other hand, f (sik2 (t), βt ) is expected to be relatively
low (since ik2 is bad) and thus the weight wi j ,L2 (t) is relatively low. At last, an estimate of si j (t + 1) is
obtained by a weighted average that uses the weights {wi j ,L (t)}L∈Ni j

4.2 Description of CEMP

Given relative measurements (gi j )i j∈E with respect to a graph G([n], E), the CEMP
algorithm tries to estimate the corruption levels s∗

i j , i j ∈ E , defined in (8) by using
the inconsistency measures dL , L ∈ C, defined in (9). It does it iteratively, where we
denote by si j (t) the estimate of s∗

i j at iteration t . Algorithm 1 sketches CEMP, and
Fig. 2 illustrates its main idea. We note that Algorithm 1 has the following stages:
1) generation of CEG (which is described in Sect. 4.1); 2) computation of the cycle
inconsistency measures (see (11)); 3) corruption-level initialization for message pass-
ing (see (12)); 4) message passing from edges to cycles (see (13)); and 5) message
passing from cycles to edges (see (14)).

The above first three steps of the algorithms are straightforward. In order to explain
the last two steps, we introduce some notation in Sect. 4.2.1. Section 4.2.2 explains the
fourth step of CEMP, and for this purpose, it introduces a statistical model. We empha-
size that this model and its follow-up extensions are only used for clearer interpretation
of CEMP, but are not used in our theoretical guarantees. Section 4.2.3 explains the
fifth step of CEMP using this model with additional two assumptions. Section 4.2.4
summarizes the basic insights about CEMP in a simple diagram. Section 4.2.5 inter-
prets the use of two specific reweighting functions in view of the statistical model
(while extending it). Section 4.2.6 explains why the exponential reweighting function
is preferable in practice. Section 4.2.7 clarifies the computational complexity ofCEMP.
Section 4.2.8 explains how to post-process CEMP in order to recover the underlying
group elements (and not just the corruption levels) in general settings.

We remark that we separate the fourth and fifth steps of CEMP for clarity of pre-
sentation; however, one may combine them using a single loop that computes for each
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Algorithm 1 Cycle-Edge Message Passing (CEMP)
Require: graph G([n], E), relative measurements (gi j )i j∈E , choice of metric dG , the set of sam-

pled/selected cycles C (default: C = C3), total time step T , increasing parameters {βt }Tt=0 (theoretical
choices are discussed in Sects. 5 and 6), reweighting function

f (x; βt ) = 1{x≤ 1
βt

} or f (x; βt ) = e−βt x (10)

Steps:
Generate CEG from G([n], E) and C
for i j ∈ E and L ∈ Ni j do

dL = dG (gL , eG ) (11)

end for
for i j ∈ E do

si j (0) = 1

|Ni j |
∑

L∈Ni j
dL (12)

end for
for t = 0 : T do

for i j ∈ E and L ∈ Ni j do

wi j,L (t) = 1

Zi j (t)

∏
ab∈NL \{i j}

f (sab(t); βt ), Zi j (t) =
∑

L∈Ni j

∏
ab∈NL\{i j}

f (sab(t); βt ) (13)

end for
for i j ∈ E do

si j (t + 1) =
∑

L∈Ni j
wi j,L (t)dL (14)

end for
end for
Output:

(
si j (T )

)
i j∈E

i j ∈ E

si j (t + 1) =

∑
L∈Ni j

∏
ab∈NL\{i j}

f (sab(t);βt ) · dL
∑

L∈Ni j

∏
ab∈NL\{i j}

f (sab(t);βt )
. (15)

For C = C3, the update rule (15) can be further simplified (see (36) and (37)).
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4.2.1 Notation

Let Di j = {dL : L ∈ Ni j } denote the set of inconsistencies levels with respect to i j ,
Gi j = {L ∈ Ni j : NL \ {i j} ⊆ Eg} denote the set of “good cycles” with respect to i j
and C Ii j = {L ∈ Ni j : dL = s∗

i j } denote the set of cycles with correct information of
corruption with respect to i j .

4.2.2 Message Passing from Edges to Cycles and a Statistical Model

Here, we explain the fourth step of the algorithm, which estimates wi j,L(t) accord-
ing to (13). We remark that Zi j (t) is the normalization factor assuring that∑

L∈Ni j
wi j,L(t) = 1.

In order to better interpret our procedure, we propose a statistical model.We assume
that {s∗

i j }i j∈E and {si j (t)}i j∈E are both i.i.d. random variables and that for any i j ∈ E ,
s∗
i j is independent of skl(t) for kl �= i j ∈ E . We further assume that

Pr(s∗
ab = 0|sab(t) = x) = f (x;βt ). (16)

Unlike commonmessage passingmodels,we do not need to specify other probabilities,
such as joint densities. In view of these assumptions, (13) can be formally rewritten
as

wi j,L(t) = 1

Zi j (t)

∏
ab∈NL\{i j}

Pr
(
s∗
ab = 0 | sab(t)

) = 1

Zi j (t)

∏
ab∈NL\{i j}

f (sab(t);βt ).

(17)

We note that the choices for f (x;βt ) in (10) lead to the following update rules:

Rule A : wi j,L(t) = 1

Zi j (t)
1{

max
ab∈NL \{i j} sab(t)≤

1
βt

} (18)

Rule B : wi j,L(t) = 1

Zi j (t)
exp

⎛
⎝−βt

∑
ab∈NL\{i j}

sab(t)

⎞
⎠ . (19)

We refer to CEMP with rules A and B as CEMP-A and CEMP-B, respectively.
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Given this statistical model, in particular, using the i.i.d. property of s∗
i j and si j (t),

the update rule (17) can be rewritten as

wi j,L(t) = 1

Zi j (t)
Pr
((
s∗
ab

)
ab∈NL\{i j} = 0

∣∣∣ (sab(t))ab∈NL\{i j}
)

= 1

Zi j (t)
Pr
(
NL \ {i j} ⊆ Eg

∣∣∣ (sab(t))ab∈NL\{i j}
)

= 1

Zi j (t)
Pr
(
L ∈ Gi j

∣∣∣ (sab(t))ab∈NL\{i j}
)

. (20)

Finally, we use the above new interpretation of the weights to demonstrate a natural
fixed point of the update rules (14) and (20). Theory of convergence to this fixed point
is presented later in Sect. 5. We first note that (14) implies the following ideal weights
for good approximation:

w∗
i j,L = 1

|Gi j |1{L∈Gi j } for i j ∈ E and L ∈ Ni j . (21)

Indeed,

∑
L∈Ni j

w∗
i j,LdL = 1

|Gi j |
∑
L∈Ni j

1{L∈Gi j }dL = 1

|Gi j |
∑
L∈Gi j

dL = 1

|Gi j |
∑
L∈Gi j

s∗
i j = s∗

i j ,

(22)

where the equality before last uses Proposition 2. We further note that

w∗
i j,L = 1

Z∗
i j
Pr
(
L ∈ Gi j

∣∣∣ (s∗
ab

)
ab∈NL\{i j}

)
. (23)

This equation follows from the fact that the events L ∈ Gi j and s∗
ab = 0 ∀ab ∈

NL \ {i j} coincide, and thus, (21) and (23) are equivalent, where the normalization
factor Z∗

i j equals |Gi j |. Therefore, in view of (14) and (22) as well as (20) and (23),
((s∗

i j )i j∈E , (w∗
i j,L)i j∈E,L∈Ni j ) is a fixed point of the system of the update rules (14)

and (20).

4.2.3 Message Passing from Cycles to Edges and Two Additional Assumptions

Here, we explain the fifth step of the algorithm, which estimates, at iteration t , s∗
i j

according to (14). We further assume the good-cycle condition and that Gi j = C Ii j .
We remark that thefirst assumption implies thatGi j ⊆ C Ii j according toProposition 2,
but it does not imply that Gi j ⊇ C Ii j . The first assumption, which we can state as
Gi j �= ∅, also implies that C Ii j �= ∅, or equivalently,

s∗
i j ∈ Di j , i j ∈ E .
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This equation suggests an estimation procedure of {s∗
i j }i j∈E . One may greedily search

for s∗
i j among all elements of Di j , but this is a hard combinatorial problem. Instead,

(14) relaxes this problem and searches over the convex hull of Di j , using a weighted
average.

We further interpret (14) in view of the above statistical model. Applying the
assumption Gi j = C Ii j , we rewrite (20) as

wi j,L(t) = 1

Zi j (t)
Pr
(
s∗
i j = dL

∣∣∣ (sab(t))ab∈NL\{i j}
)

. (24)

The update rule (14) can thus be interpreted as an iterative voting procedure for esti-
mating s∗

i j , where cycle L ∈ Ni j estimates s∗
i j at iteration t by dL with confidence

wi j,L(t − 1) that s∗
i j = dL . If L /∈ Gi j , then its inconsistency measure dL is contami-

nated by corrupted edges in L , and we expect its weight to decrease with the amount
of corruption. This is demonstrated in the update rules of (18) and (19), where any
corrupted edge ab in a cycle L ∈ Ni j , whose corruption is measured by the size of
sab(t), would decrease the weight wi j,L(t).

We can also express (14) in terms of the following probability mass function
μi j (x; t) on Di j :

μi j (x; t) =
∑

L∈Ni j ,dL=x

wi j,L(t) for any x ∈ Di j .

This probabilitymass function can be regarded as the estimated posteriormass function
of s∗

i j given the estimated corruption levels (sab(t))ab∈E\{i j}. The update rule (14) can
then be reformulated as follows:

si j (t) = Eμi j (x;t−1)s
∗
i j =

∑
x∈Di j

μi j (x; t − 1) · x . (25)

4.2.4 Summarizing Diagram for the Message Passing Procedure

We further clarify the message passing procedure by the following simple diagram in
Fig. 3. The right-hand side (RHS) of the diagram expresses two main distributions.
The first one is for edge i j being uncorrupted, and the second one is that cycle L ∈ Ni j

provides the correct information for edge i j . We use the term “Message Passing" since
CEMP iteratively updates these two probabilistic distributions by using each other in
turn. The update of the second distribution by the first one is more direct. The opposite
update requires the estimation of corruption levels.

4.2.5 Refined Statistical Model for the Specific Reweighting Functions

The two choices of f (x;βt ) in (10) correspond to a more refined probabilistic model
on s∗

i j and si j (t), which can also apply to other choices of reweighting functions.
In addition to the above assumptions, this model assumes that the edges in E are
independently corrupted with probability q.
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Fig. 3 Diagram for explaining CEMP

We denote by Fg(x; t) and Fb(x; t) the probability distributions of si j (t) condi-
tioned on the events s∗

i j = 0 and s∗
i j �= 0, respectively. We further denote by pg(x; t)

and pb(x; t), the respective probability density functions of Fg(x; t) and Fb(x; t) and
define r(x; t) = pb(x; t)/pg(x; t). By Bayes’ rule and the above assumptions, for
any i j ∈ E

f (si j (t);βt ) = Pr(s∗
i j = 0|si j (t)) = (1 − q) · pg

(
si j (t); t

)
(1 − q) · pg

(
si j (t); t

)+ q · pb
(
si j (t); t

)
=
(
1 + q

1 − q
· r (si j (t); t)

)−1

. (26)

One can note that the update rule A in (18) corresponds to (17) with (26) and

r(x; t) ∝ 1{x≤1}
1{x≤ 1

βt
}

=
{
1, 0 ≤ x < 1

βt
;

∞, 1
βt

≤ x ≤ 1.
(27)

Due to the normalization factor and the fact that each cycle has the same length, the
update rule A is invariant to the scale of r(x; t), and we thus used the proportionality
symbol. Note that there are infinitely many Fg(x; t) and Fb(x; t) that result in such
r(x; t). One simple example is uniform Fg(x; t) and Fb(x; t) on [0, 1/βt ] and [0, 1],
respectively.

One can also note that the update rule B approximately corresponds to (17) with
(26) and

r(x; t) = αeβt x for sufficiently large α and x ∈ [0, 1]. (28)

Indeed, by plugging (28) in (26) we obtain that for α′ = αq/(1 − q)

f (si j (t);βt ) = (1 + α′eβt x )−1 ≈ e−βt x/α′. (29)

Since the update rule B is invariant to scale (for the same reason explained above for
the update rule A), α can be chosen arbitrarily large to yield a good approximation in
(29) with sufficiently large α′. One may obtain (28) by choosing Fg(x; t) and Fb(x; t)
as exponential distributions restricted to [0, 1], or normal distributions restricted to
[0, 1] with the same variance but different means.
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As explained later in Sect. 5, βt needs to approach infinity in the noiseless case.
We note that this implies that r(x; t) (in either (27) or (28)) is infinite at x ∈ (0, 1]
and finite at x = 0. Therefore, in this case, Fg(x; t) → δ0. This makes sense since
s∗
i j = 0 when i j ∈ Eg .

Remark 3 Neither rule A nor rule B makes explicit assumptions on the distributions
of si j (t) and s∗

i j , and thus, there are infinitely many choices of Fg(x; t) and Fb(x; t),
which we find flexible.

4.2.6 The Practical Advantage of the Exponential Reweighting Function

In principle, one may choose any nonincreasing reweighting functions f (x;β) such
that

lim
β→0

f (x;β) = 1 and lim
β→+∞ f (x;β) = 1 − sign(x) for all x ∈ [0, 1]. (30)

In practice, we advocate using f (x;β) = exp(−βx) of CEMP-B due to its nice
property of shift invariance, which we formulate next and prove in Appendix 4.

Proposition 4 Assume that C consists of cycles with equal length l. For any fixed
i j ∈ E and s ∈ R, the estimated corruption levels {si j (t)}i j∈E and {si j (t) + s}i j∈E
result in the same cycle weights {wi j,L(t)}i j∈E,L∈Ni j in CEMP-B.

We demonstrate the advantage of the above shift invariance property with a simple
example: Assume that an edge i j is only contained in two cycles L1 = {i j, ik1, jk1}
and L2 = {i j, ik2, jk2}. Using the notation si j,L1(t) := sik1(t) + s jk1(t) and
si j,L2(t) := sik2(t) + s jk2(t), we obtain that

wi j,L1(t)/wi j,L2(t) = exp(−βt (si j,L1(t) − si j,L2(t)))

and since wi j,L1(t) + wi j,L2(t) = 1, wi j,L1(t) and wi j,L2(t) are determined by
si j,L1(t) − si j,L2(t). Therefore, the choice of βt for CEMP-B only depends on the
“corruption variation” for edge i j , si j,L1(t) − si j,L2(t). It is completely independent
of the average scale of the corruption levels, which is proportional in this case to
si j,L1(t) + si j,L2(t). On the contrary, CEMP-A heavily depends on the average scale
of the corruption levels. Indeed, the general expression in CEMP-A is

wi j,L(t) =
1{maxab∈NL \{i j} sab(t)≤ 1

βt
}∑

L ′∈Ni j
1{maxab∈NL′ \{i j} sab(t)≤ 1

βt
}
.

Redefining si j,L1(t) := max{sik1(t), s jk1(t)} and si j,L2(t) := max{sik2(t), s jk2(t)},
we obtain that

wi j,L1(t)/wi j,L2(t) = 1{si j,L1 (t)≤ 1
βt

}/1{si j,L2 (t)≤ 1
βt

}.

123



Foundations of Computational Mathematics

The choice of βt depends on both values of si j,L1(t) and si j,L2(t) and not on any
meaningful variation. One can see that in more general cases, the correct choice of
βt for CEMP-A can be rather restrictive and will depend on different local corruption
levels of edges.

4.2.7 On the Computational Complexity of CEMP

We note that for each L ∈ C, CEMP needs to compute dL and thus the complexity
at each iteration is of order O(

∑
L∈C |L|). In the case of C = C3, which we advocate

later, this complexity is of order O(|C3|) and thus O(n3) for sufficiently dense graphs.
In practice, one can implement a faster version of CEMP by only selecting a fixed
number of 3-cycles per edge which reduces the complexity per iteration to O(|E |),
which is O(n2) for sufficiently dense graphs. Nevertheless, we have not discussed
the full guarantees for this procedure. In order to obtain the overall complexity, and
not the complexity per iteration, one needs to guarantee sufficiently fast convergence.
Our later theoretical statements guarantee linear convergence of CEMP under various
conditions and consequently guarantee that the overall complexity is practically of the
same order of the complexity per iteration.We note that the upper bound O(n3) for the
complexity of CEMP with C = C3 is lower than the complexity of SDP for common
group synchronization problems. We thus refer to our method as fast. In general, for
CEMP with C = Cl , the complexity is O(lnl).

We exemplify two different scenarios where the complexity of CEMP can be lower
than the bounds stated above.
An example of lower complexity due to graph sparsity: We assume the special
case, where the underlying graph G([n], E) is generated by the Erdős–Rényi model
G(n, p) and the group is G = SO(d). We estimate the complexity of CEMP with
C = C3. Note that the number of edges concentrates at n2 p. Each edge is contained in
about np2 3-cycles. Thus, the number of dL ’s concentrates at n3 p3. The computational
complexity of each dL is d3. Therefore, the computational complexity of initializing
CEMP is about n3 p3d3. In each iteration of the reweighting stage and for each i j ∈ E ,
one only needs to compute wi j,L for each 3-cycle L ∈ Ni j and average over these 3-
cycles and thus the complexity is n3 p3.We assume, e.g., the noiseless adversarial case,
where the convergence is linear. Thus, the total complexity of CEMP is O((npd)3).
The complexity of Spectral is of order O(n2d3), so the complexity of CEMP is lower
than that of Spectral when p = O(n−1/3). Observe that the upper bound p = n−1/3

is higher than the phase transition threshold for the existence of 3-cycles (which is
p = n−1/2); thus, this fast regime of CEMP (with C = C3) is nontrivial.
An example of low complexity with high-order cycles: In [40], a lower complexity
of CEMP with C = Cl , l > 3, is obtained for the following special case: G = SN with
dG(g1, g2) = ‖g1 − g2‖2F/(2N ) (recall that ‖ · ‖F denotes the Frobenius norm, and
we associate g1 and g2 with their matrix representations). In this case, it is possible to
compute the weights {wi j }i j∈E by calculating powers of the graph connection weight
matrix [44]. Consequently, the complexity of CEMP is reduced to O(ln3). It seems
that this example is rather special, and we find it difficult to generalize its ideas.
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4.2.8 Post-processing: Estimation of the Group Elements

After running CEMP for T iterations, one obtains the estimated corruption levels
si j (T ), i j ∈ E . As a byproduct of CEMP, one also obtains

pi j := f (si j (T );βT ), for i j ∈ E,

which we interpreted in (16) as the estimated probability that i j ∈ Eg given the value
of si j (T ). Alternatively, one may normalize pi j as follows:

p̃i j = f (si j (T );βT )∑
j∈[n]:i j∈E f (si j (T );βT )

, for i j ∈ E,

so that
∑

j∈[n]:i j∈E p̃i j = 1. Using either of these values (si j (T ), pi j (T ) or p̃i j (T )

for all i j ∈ E), we describe different possible strategies for estimating the underlying
group elements {g∗

i }ni=1 in more general settings than that of our proposed theory. As
we explain below, we find our second proposed method (CEMP+GCW) as the most
appropriate one in the context of the current paper. Nevertheless, there are settings
where other methods will be preferable.
Application of the minimum spanning tree (CEMP+MST): One can assign the
weight si j (T ) for each edge i j ∈ E and find the minimum spanning tree (MST) of the
weighted graph. The resulting spanning tree minimizes the average of the estimated
corruption levels. Next, one can fix g1 = eG and estimate the rest of the group elements
by subsequently multiplying group ratios (using the formula gi = gi j g j ) along the
spanning tree. We refer to this procedure as CEMP+MST. Alternatively, one can
assign edge weights {pi j (T )}i j∈E and find the maximum spanning tree, which aims
to maximize the expected number of good edges. These methods can work well when
there is a connected inlier graph with little noise, but will generally not performwell in
noisy situations. Indeed, when the good edges are noisy, estimation errors will rapidly
accumulate with the subsequent applications of the formula gi = gi j g j and the final
estimates are expected to be erroneous.
ACEMP-weighted spectral method (CEMP+GCW):Using { p̃i j (T )}i j∈E obtained
by CEMP, one may try to approximately solve the following weighted least squares
problem:

{ĝi }i∈[n] = argmin{gi }i∈[n]⊂G
∑
i j∈E

p̃i j d
2
G
(
gi j , gi g

−1
j

)
(31)

and use this solution as an estimate of {g∗
i }ni=1. Note that sinceG is typically not convex,

the solution of this problem is often hard.WhenG is a subgroup of the orthogonal group
O(N ), an argument of [4] for the sameoptimization problemwithG = SE(3) suggests
the following relaxed spectral solution to (31). First, build a matrix Y p whose [i, j]-th
block is p̃i j gi j for i j ∈ E , and 0 otherwise. Next, compute the top N eigenvectors of
Y p to form the block vector x̂, and finally, project the i-th block of x̂ onto G to obtain
the estimate of g∗

i for i ∈ [n]. Note that Y p is exactly the graph connection weight
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(GCW) matrix in vector diffusion maps [44], given the edge weights p̃i j . Thus, we
refer to this method as CEMP+GCW. We note that the performance of CEMP+GCW
is mainly determined by the accuracy of estimating the corruption levels. Indeed, if
the corruption levels {si j (T )}i j∈E are sufficiently accurate, then the weights { p̃i j }i j∈E
are sufficiently accurate and (31) is close to a direct least squares solver for the inlier
graph. Since the focus of this paper is accurate estimation of {s∗

i j }i j∈E , we mainly test
CEMP+GCW as a direct CEMP-based group synchronization solver (see Sect. 7).
Iterative application of CEMP and weighted least squares (MPLS): In highly
corrupted and noisy datasets, iterative application of CEMP and the weighted least
squares solver in (31) may result in a satisfying solution. After the submission of this
paper, the authors proposed a special procedure like this, which they called message
passing least squares (MPLS) [39].
Combining CEMP with any another solver: CEMP can be used as an effective
cleaning procedure for removing some bad edges (with estimated corruption levels
above a chosen threshold). One can then apply any group synchronization solver using
the cleaned graph. Indeed, existing solvers often cannot deal with high and moderate
levels of corruption and should benefit from initial application of CEMP. Such a
strategy was tested with the AAB algorithm [38], which motivated the development
of CEMP.

4.3 Comparison of CEMPwith BP, AMP and IRLS

CEMP is different from BP [46] in the following ways. First of all, unlike BP that
needs to explicitly define the joint density and the statistical model a-priori, CEMP
does not use an explicit objective function, but only makes weak assumptions on the
corruption model. Second, CEMP is guaranteed (under a certain level of corruption)
to handle factor graphs that contain loops. Third, CEMP utilizes the auxiliary variable
si j (t) that connects the two binary distributions on the RHS of the diagram in Fig. 3.
Thus, unlike (7) of BP that only distinguishes the two events: i j ∈ Eg and i j ∈ Eb,
CEMP also tries to approximate the exact value of corruption levels s∗

i j for all i j ∈ E ,
which can help in inferring corrupted edges.

In practice, AMP [36] directly solves group elements, but with limited theoretical
guarantees for group synchronization. CEMP has two main advantages over AMP
when assuming the theoretical setting of this paper. First of all, AMP for group syn-
chronization [36] assumes additive Gaussian noise without additional corruption and
thus it is not robust to outliers. In contrast, we guarantee the robustness of CEMP to
both adversarial and uniform corruption. We further establish the stability of CEMP to
sufficiently small bounded and sub-Gaussian noise. Second of all, the heuristic argu-
ment for deriving AMP for group synchronization (see Section 6 of [36]) provides
asymptotic convergence theory, whereas CEMP has convergence guarantees under
certain deterministic conditions for finite sample with attractive convergence rate.

Another related line of work is IRLS that is commonly used to solve �1 minimiza-
tion problems. At each iteration, it utilizes the residual of a weighted least squares
solution to quantify the corruption level at each edge. New weights, which are typi-
cally inversely proportional to this residual, are assigned for an updated weighted least
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squares problem, and the process continues till convergence. The IRLS reweighting
strategy is rather aggressive, and in the case of high corruption levels, it may wrongly
assign extremely high weights to corrupted edges and consequently it can get stuck at
local minima. When the group is discrete, some residuals of corrupted edges can be 0
and the corresponding weights can be extremely large. Furthermore, in this case the
residuals and the edge weights lie in a discrete space and therefore IRLS can easily get
stuck at local minima. For general groups, the �1 formulation that IRLS aims to solve
is statistically optimal to a very special heavy-tailed distribution and is not optimal,
for example, to the corruption model proposed in [45]. Instead of assigning weights to
edges, CEMP assigns weights to cycles and uses the weighted cycles to infer the cor-
ruption levels of edges. It starts with a conservative reweighting strategy with βt small
and gradually makes it more aggressive by increasing βt . This reweighting strategy is
crucial for guaranteeing the convergence of CEMP. CEMP is also advantageous when
the groups are discrete because it estimates conditional expectations whose values lie
in a continuous space. This makes CEMP less likely to get stuck in a local minima.

5 Theory for Adversarial Corruption

We show that when the ratio between the size of Gi j (defined in Sect. 4.2.1) and the
size of Ni j (defined in Sect. 4.1) is uniformly above a certain threshold and {βt }Tt=0 is
increasing and chosen in a certain way, for all i j ∈ E , the estimated corruption level
si j (t) linearly converges to s∗

i j , and the convergence is uniform over all i j ∈ E . The
theory is similar for both update rules A and B. Note that the uniform lower bound
on the above ratio is a geometric restriction on the set Eb. This is the only restriction
we consider in this section; indeed, we follow the adversarial setting, where the group
ratios gi j for i j ∈ Eb can be arbitrarily chosen, either deterministically or randomly.
We mention in Sect. 1.5 that the only other guarantees for such adversarial corruption
but for a different problem are in [20,28] and that we found them weaker.

The rest of the section is organized as follows. Section 5.1 presents preliminary
notation and background. Section 5.2 establishes the linear convergence of CEMP to
the ground-truth corruption level under adversarial corruption. Section 5.3 establishes
the stability of CEMP to bounded noise, and Sect. 5.4 extends these results to sub-
Gaussian noise.

5.1 Preliminaries

For clarity of our presentation, we assume that C = C3 and thus simplify some of
the above notation and claims. Note that L ∈ C3 contains three edges and three
vertices. Therefore, given i, j ∈ [n] and L ∈ Ni j , we index L by the vertex k,
which is not i or j . We thus replace the notation dL with di j,k . We also note that
the sets Ni j and Gi j can be expressed as follows: Ni j = {k ∈ [n] : ik, jk ∈ E}
and Gi j = {k ∈ Ni j : ik, jk ∈ Eg}. We observe that if A is the adjacency matrix
of G([n], E) (with 1 if i j ∈ E and 0 otherwise), then by the definitions of matrix
multiplication and Ni j , A2(i, j) = |Ni j |. Similarly, if Ag is the adjacency matrix
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of G([n], Eg), then A2
g(i, j) = |Gi j |. We define the corrupted cycles containing the

edge i j as Bi j = Ni j \ Gi j , so that |Bi j | = A2(i, j) − A2
g(i, j). We also define

εi j (t) = |si j (t) − s∗
i j |, ε(t) = maxi j∈E |si j (t) − s∗

i j |,

λi j = |Bi j |/|Ni j | and λ = max
i j∈E λi j . (32)

An upper bound for the parameter λ quantifies our adversarial corruption model.
Let us clarify more carefully the “adversarial corruption” model and the parameter λ,
while repeating some previous information. This model assumes a graph G([n], E)

whose nodes represent group elements and whose edges are assigned group ratios
satisfying (1), where E = Eb ∪ Eg and Eb ∩ Eg = ∅. When gε

i j = eG for all i j ∈ Eg

(where gε
i j appear in (1)), we refer to this model as noiseless, and otherwise, we refer

to it as noisy. For the noisy case, we will specify assumptions on the distribution of
dG(gε

i j , eG) for all i j ∈ Eg , or equivalently (since dG is bi-invariant) the distribution
of s∗

i j for all i j ∈ Eg .
In view of the above observations, we note that the parameter λ, whose upper bound

quantifies some properties of this model, can be directly expressed using the adjacency
matrices A and Ag as follows:

λ = max
i j∈E

(
1 − A2

g(i, j)

A2(i, j)

)
. (33)

Thus, an upper boundm on λ is the same as a lower bound 1−m on mini j∈E A2
g(i, j)

/A2(i, j). This lower bound is equivalent to a lower bound on the ratio between the size
of Gi j and the size of Ni j . We note that this bound implies basic properties mentioned
earlier. First of all, it implies that Gi j is nonempty for all i j ∈ E and it thus implies
that the good-cycle condition holds. This in turn implies that G([n], Eg) is connected
(since if i j ∈ E and k ∈ Gi j , then ik, k j ∈ Eg).

Our proofs frequently use Lemma 1, which can be stated in our special case of
C = C3 as

|di j,k − s∗
i j | ≤ s∗

ik + s∗
jk for all i j ∈ E and k ∈ Ni j . (34)

We recall that dG(· , ·) ≤ 1 and thus

For all i, j ∈ E and k ∈ Ni j , 0 ≤ s∗
i j ≤ 1 and 0 ≤ di j,k ≤ 1. (35)

Since C = C3, the update rule (15) can be further simplified as follows. For CEMP-
A,

si j (t + 1) =

∑
k∈Ni j

1{sik (t) ,s jk (t)≤1/βt}di j,k∑
k∈Ni j

1{sik (t) ,s jk (t)≤1/βt}
, (36)
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and for CEMP-B,

si j (t + 1) =

∑
k∈Ni j

e−βt(sik (t)+s jk(t))di j,k

∑
k∈Ni j

e−βt(sik (t)+s jk(t))
. (37)

The initial corruption estimate at i j ∈ E in (12) for both versions of CEMP is

si j (0) = 1

|Ni j |
∑
k∈Ni j

di j,k . (38)

5.2 Deterministic Exact Recovery

The following two theorems establish linear convergence of CEMP-A and CEMP-
B, assuming adversarial corruption and exponentially increasing βt . The proofs are
straightforward.

Theorem 1 Assume data generated by the noiseless adversarial corruptionmodel with
parameter λ < 1/4. Assume further that the parameters {βt }t≥0 of CEMP-A satisfy:
1 < β0 ≤ 1/λ and for all t ≥ 1 βt+1 = rβt for some 1 < r < 1/(4λ). Then, the
estimates {si j (t)}t≥0

i j∈E of {s∗
i j }i j∈E computed by CEMP-A satisfy

max
i j∈E |si j (t) − s∗

i j | ≤ 1

β0r t
for all t ≥ 0. (39)

Proof The proof uses the following estimate, which applies first (36) and then (34):

εi j (t + 1) = |si j (t + 1) − s∗
i j | ≤

∑
k∈Ni j

1{sik (t),s jk(t)≤ 1
βt

}|di j,k − s∗
i j |∑

k∈Ni j

1{sik (t),s jk (t)≤ 1
βt

}

≤

∑
k∈Ni j

1{sik (t),s jk(t)≤ 1
βt

}(s∗
ik + s∗

jk)∑
k∈Ni j

1{sik (t),s jk (t)≤ 1
βt

}
. (40)

Using the notation Ai j (t) := {k ∈ Ni j : sik(t), s jk(t) ≤ 1/βt } and the fact that
s∗
ik + s∗

jk = 0 for i j ∈ Gi j , we can rewrite the estimate in (40) as follows:

εi j (t + 1) ≤

∑
k∈Bi j

1{sik (t),s jk(t)≤ 1
βt

}(s
∗
ik + s∗

jk)

|Ai j (t)| . (41)

123



Foundations of Computational Mathematics

The rest of the proof uses simple induction. For t = 0, (39) is verified as follows:

εi j (0) = |si j (0) − s∗
i j | ≤

∑
k∈Ni j

|di j,k − s∗
i j |

|Ni j |

=

∑
k∈Bi j

|di j,k − s∗
i j |

|Ni j | ≤ |Bi j |
|Ni j | ≤ λ ≤ 1

β0
, (42)

where the first inequality uses (38), the second equality follows from the fact that
di j,k = s∗

i j for k ∈ Gi j , the second inequality follows from (35) (which implies that
|di j,k−s∗

i j | ≤ 1) and the last two inequalities use the assumptions of the theorem.Next,
we assume that 1/βt ≥ ε(t) for an arbitrary t > 0 and show that 1/βt+1 ≥ ε(t + 1).
We note that the induction assumption implies that

1

βt
≥ ε(t) ≥ max

i j∈Eg
εi j (t) = max

i j∈Eg
si j (t), (43)

and consequently, for i j ∈ E Gi j ⊆ Ai j (t). Combining this observation with Gi j ∩
Bi j = ∅ yields

Ai j (t) ∪ (Bi j \ Ai j (t)
) = Ni j . (44)

We further note that

if si j (t) ≤ 1

βt
, then s∗

i j ≤ si j (t) + ε(t) ≤ si j (t) + 1

βt
≤ 2

βt
. (45)

Combining (41) and (45) and then applying basic properties of the different sets, in
particular, (44) and the fact that Bi j \Ai j (t) is disjointwith both Ai j (t) and Bi j∩Ai j (t),
yield

εi j (t + 1) ≤

∑
k∈Bi j

1{sik (t),s jk(t)≤ 1
βt

}
4
βt

|Ai j (t)| = 4

βt

|Bi j ∩ Ai j (t)|
|Ai j (t)|

≤ 4

βt

|Bi j ∩ Ai j (t) ∪ (Bi j \ Ai j (t)
) |

|Ai j (t) ∪ (Bi j \ Ai j (t)
) | = 4

|Bi j |
|Ni j |

1

βt
. (46)

By taking the maximum of the left-hand side (LHS) and RHS of (46) over i j ∈ E and
using the assumptions λ < 1/4 and 4λβt+1 < βt , we obtain that

ε(t + 1) ≤ 4λ
1

βt
<

1

βt+1
.

��
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Theorem 2 Assume data generated by the noiseless adversarial corruptionmodel with
parameter λ < 1/5. Assume further that the parameters {βt }t≥0 of CEMP-B satisfy:
β0 ≤ 1/(4λ) and for all t ≥ 1 βt+1 = rβt for some 1 < r < (1 − λ)/(4λ). Then, the
estimates {si j (t)}t≥0

i j∈E of {s∗
i j }i j∈E computed by CEMP-B satisfy

max
i j∈E |si j (t) − s∗

i j | ≤ 1

4β0r t
for all t ≥ 0.

Proof Combining (34) and (37) yields

εi j (t + 1) = |si j (t + 1) − s∗
i j | ≤

∑
k∈Bi j

e−βt(sik (t)+s jk(t))
(
s∗
ik + s∗

jk

)
∑

k∈Ni j

e−βt(sik (t)+s jk(t))
. (47)

Applying (47), the definition of εi j (t) and the facts that Gi j ⊆ Ni j and s∗
ik + s∗

jk = 0
for k ∈ Gi j , we obtain that

εi j (t + 1) ≤

∑
k∈Bi j

e
−βt

(
s∗ik+s∗jk−εik(t)−ε jk(t)

) (
s∗
ik + s∗

jk

)
∑

k∈Gi j

e−βt(εik(t)+ε jk(t))

≤ 1

|Gi j |
∑
k∈Bi j

e2βt(εik(t)+ε jk(t))e
−βt

(
s∗ik+s∗jk

) (
s∗
ik + s∗

jk

)
. (48)

The proof follows by induction. For t = 0, (42) implies that λ ≥ ε(0) and thus
1/(4β0) ≥ λ ≥ ε(0). Next, we assume that 1/(4βt ) ≥ ε(t) and show that 1/(4βt+1) ≥
ε(t + 1). We do this by simplifying and weakening (48) as follows. We first bound
each term in the sum on the RHS of (48) by applying the inequality xe−ax ≤ 1/(ea)

for x ≥ 0 and a > 0. We let x = s∗
ik + s∗

jk and a = βt and thus each term is
bounded by 1/(ea). We then use the induction assumption (ε(t) ≤ 1/(4βt )) to bound
the exponential term in the numerator on the RHS of (48) by e. We therefore conclude
that

εi j (t + 1) ≤ |Bi j |
|Gi j | · 1

βt
. (49)

By applying the assumption λ < 1/5 and maximizing over i j ∈ E both the LHS and
RHS of (49), we conclude the desired induction as follows:

ε(t + 1) ≤ λ

1 − λ
· 1

βt
<

1

4βt
<

1

4βt+1
. (50)

��
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5.3 Stability to Bounded Noise

We assume the noisy adversarial corruption model in (1) and an upper bound on λ. We
further assume that there exists δ > 0, such that for all i j ∈ Eg , s∗

i j ≡ dG(gε
i j , eG) ≤ δ.

This is a general setting of perturbation without probabilistic assumptions. Under
these assumptions, we show that CEMP can approximately recover the underlying
corruption levels, up to an error of order δ. The proofs of the two theorems below are
similar to the proofs of the theorems in Sect. 5.2 and are thus included in Appendices 5
and 6.

Theorem 3 Assume data generated by adversarial corruption with bounded noise,
where the model parameters satisfy λ < 1/4 and δ > 0. Assume further that the
parameters {βt }t≥0 of CEMP-A satisfy: 1/β0 > max{(3 − 4λ)δ/(1 − 4λ) , λ + 3δ}
and 4λ/βt + (3−4λ)δ ≤ 1/βt+1 < 1/βt . Then, the estimates {si j (t)}t≥0

i j∈E of {s∗
i j }i j∈E

computed by CEMP-A satisfy

max
i j∈E |si j (t) − s∗

i j | ≤ 1

βt
− δ for all t ≥ 0. (51)

Moreover, ε := lim
t→∞ βt (1 − 4λ)/((3 − 4λ)δ) satisfies 0 < ε ≤ 1 and the following

asymptotic bound holds

lim
t→∞max

i j∈E |si j (t) − s∗
i j | ≤

(
3 − 4λ

ε(1 − 4λ)
− 1

)
δ. (52)

Theorem 4 Assume data generated by adversarial corruption with independent
bounded noise, where the model parameters satisfy λ < 1/5 and δ > 0. Assume
further that the parameters {βt }t≥0 of CEMP-B satisfy: 1/(4β0) > max{(5(1 − λ)δ)

/(2(1 − 5λ)) , λ + 5δ/2} and 10δ + 4λ/((1 − λ)βt ) ≤ 1/βt+1 < 1/βt . Then the
estimates {si j (t)}t≥0

i j∈E of {s∗
i j }i j∈E computed by CEMP-B satisfy

max
i j∈E |si j (t) − s∗

i j | ≤ 1

4βt
− 1

2
δ for all t ≥ 0. (53)

Moreover, ε := lim
t→∞ βt (1 − 5λ)/(10(1 − λ)δ) satisfies 0 < ε ≤ 1 and the following

asymptotic bound holds

lim
t→∞max

i j∈E |si j (t) − s∗
i j | ≤

(
5

2ε
· 1 − λ

1 − 5λ
− 1

2

)
δ. (54)

Remark 4 By knowing δ, one can tune the parameters to obtain ε = 1. Indeed, one can
check that by taking 1/βt+1 = 4λ/βt+(3−4λ)δ inTheorem3, 1/βt linearly converges
to (3−4λ)δ/(1−4λ) (with rate 4λ). Similarly, by taking1/βt+1 = 10δ+4λ/((1−λ)βt )

in Theorem 4, 1/βt linearly converges to 10(1−λ)δ/(1− 5λ) (with rate 4λ/(1−λ)).
These choices clearly result in ε = 1.
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Remark 5 The RHSs of (52) and (54) imply that CEMP approximately recovers the
corruption levels with error O(δ). Since this bound is only meaningful with values
at most 1, δ can be at most 1/2 (this bound is obtained when ε = 1 and λ = 0).
Furthermore, when λ increases or ε decreases, the bound on δ decreases. The bound
on δ limits the applicability of the theorem, especially for discrete groups. For example,
in Z2 synchronization, s∗

i j ∈ {0, 1} and thus the above theorem is inapplicable. For
SN synchronization, the gap between nearby values of s∗

i j decreases with N , so the
theorem is less restrictive as N increases. In order to address noisy situations forZ2 and
SN with small N , one can assume instead an additive Gaussian noise model [31,35].
When the noise is sufficiently small and the graph is generated from the Erdős–Rényi
model with sufficiently large probability of connection, projection of the noisy group
ratios onto Z2 or SN results in a subset of uncorrupted group ratios whose proportion
is sufficiently large (see, e.g., [35]), so that Theorems 1 or 2 can be applied to the
projected elements.

5.4 Extension to Sub-Gaussian Noise

Here, we directly extend the bounded noise stability of CEMP to sub-Gaussian
noise. We assume noisy adversarial corruption satisfying (1). We further assume
that {s∗

i j }i j∈Eg are independent and for i j ∈ Eg , s∗
i j ∼ sub(μ, σ 2), namely, s∗

i j

is sub-Gaussian with mean μ and variance σ 2. More precisely, s∗
i j = σ Xi j where

Pr(Xi j − μ > x) < exp(−x2/2) and Pr(Xi j ≥ 0) = 1. The proof of Theorem 5 is
included in Appendix 7.

Theorem 5 Assume data generated by the adversarial corruption model with inde-
pendent sub-Gaussian noise having mean μ and variance σ 2. For any x > 0,

if one replaces λ and δ in Theorems 3 and 4 with λ + 2e− x2
2 and σμ + σ x,

respectively, then the conclusions of these theorems hold with probability at least
1 − |E | exp(− 1

3e
−x2/2 mini j∈E |Ni j |(1 − λ)).

Remark 6 The above probability is sufficiently large when x is sufficiently small
and when mini j∈E |Ni j | is sufficiently large. We note that mini j∈E |Ni j | > mini j∈E
|Gi j | > 0, where the last inequality follows from the good-cycle condition. We expect
mini j∈E |Ni j | to depend on the size of the graph, n, and its density. To demonstrate
this claim, we note that if G([n], E) is Erdős-Rényi with probability of connection p,
then mini j∈E |Ni j | ≈ np2.

Theorem 5 tolerates less corruption than Theorems 3 and 4. This is due to the fact
that, unlike bounded noise, sub-Gaussian noise significantly extorts the group ratios.
Nevertheless, we show next that in the case of a graph generated by the Erdős–Rényi
model, the sub-Gaussian model may still tolerate a similar level of corruption as that
in Theorems 3 and 4 by sacrificing the tolerance to noise.

Corollary 1 Assume that G([n], E) is generated by the Erdős-Rényi model with prob-
ability of connection p. If s∗

i j ∼ sub(μ, σ 2) for i j ∈ Eg, then for any α > 6 and n

123



Foundations of Computational Mathematics

sufficiently large, Theorems 3 and 4, with λ and δ replaced by

λn = λ + 12α

1 − λ

log(np2)

np2
and δn = σμ + 2σ

√
log

(1 − λ)np2

6α log(np2)
,

respectively, hold with probability at least 1 − O(n−α/3+2).

Note that this corollary is obtainedby setting exp(−x2/2) = 6α log(np2)/((1−λ)np2)
in Theorem 5 and noting that in this casemini j∈E |Ni j | ≥ np2/2with high probability.
We note that σ needs to decay with n, in order to have bounded δn . In particular, if
σ � 1/

√
log n and p is fixed, δn = O(1).

6 Exact Recovery Under Uniform Corruption

This section establishes exact recovery guarantees for CEMP under the uniform cor-
ruption model. Its main challenge is dealing with large values of λ, unlike the strong
restriction on λ in Theorems 1 and 2.

Section 6.1 describes the uniform corruption model. Section 6.2 reviews exact
recovery guarantees of otherworks under thismodel and the best information-theoretic
asymptotic guarantees possible. Section 6.3 states the main results on the convergence
of both CEMP-A and CEMP-B. Section 6.4 clarifies the sample complexity bounds
implied by these theorems. Since these bounds are not sharp, Sect. 6.5 explains how a
simpler estimator that uses the cycle inconsistencies obtains sharper bounds. Section
6.6 includes the proofs of all theorems. Section 6.7 exemplifies the technical quantities
of the main theorems for specific groups of interest.

6.1 Description of the Uniform CorruptionModel

We follow the uniform corruption model (UCM) of [45] and apply it for any compact
group. It has three parameters: n ∈ N, 0 < p ≤ 1 and 0 ≤ q < 1, and we thus refer
to it as UCM(n, p, q).

UCM(n, p, q) assumes a graph G([n], E) generated by the Erdös–Rényi model
G(n, p), where p is the connection probability among edges. It further assumes an
arbitrary set of group elements {g∗

i }ni=1. Each group ratio is generated by the following
model, where g̃i j is independently drawn from the Haar measure on G (denoted by
Haar(G)):

gi j =
{
g∗
i j , w.p. 1 − q;
g̃i j , w.p. q.

We note that the set of corrupted edges Eb is thus generated in two steps. First,
a set of candidates of corrupted edges, which we denote by Ẽb, is independently
drawn from E with probability q. Next, Eb is independently drawn from Ẽb with
probability 1− p0, where p0 = Pr(uG = eG) for an arbitrarily chosen uG ∼ Haar(G).
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It follows from the invariance property of the Haar measure that for any i j ∈ E , p0 =
Pr(uG = g∗

i j ). Therefore, the probability that gi j is uncorrupted, Pr(i j ∈ Eg|i j ∈ E)

is q∗ = 1 − q + qp0. We further denote qmin = min(q2∗ , 1 − q2∗), qg = 1 − q and
zG = E(dG(uG, eG)), where uG ∼ Haar(G). For Lie groups, such as SO(d), p0 = 0,
q∗ = pg , Pr(i j ∈ Eb|i j ∈ E) = q and Eb = Ẽb.

6.2 Information-theoretic and Previous Results of Exact Recovery for UCM

We note that when 0 ≤ q < 1 and 0 < p ≤ 1, the asymptotic recovery problem for
UCM is well posed since Pr(di j,k = 0|i j ∈ Eg) is greater than Pr(di j,k = 0|i j ∈ Eb)

and thus good and bad edges are distinguishable. Furthermore, when q = 1 or p = 0
the exact recovery problem is clearly ill posed. It is thus desirable to consider the
full range of parameters, 0 ≤ q < 1 and 0 < p ≤ 1, when studying the asymptotic
exact recovery problem of a specific algorithm assuming UCM. It is also interesting
to check the asymptotic dependence of the sample complexity (the smallest sample
size needed for exact recovery) on q and p when p → 0 and q → 1.

For the special groups of interest in applications, Z2, SN , SO(2) and SO(3), it was
shown in [2,5], [10,11], [41] and [11], respectively, that exact recovery is information-
theoretically possible under UCM whenever

n/ log n = 
(p−1q−2
g ), (55)

where, for simplicity, for SN we omitted the dependence on N (which is a factor of
1/N ). That is, ignoring logarithmic terms (and the dependence on N for SN ), the
sample complexity is 
(p−1q−2

g ).
There are not many results of this kind for actual algorithms. Bandeira [5] and

Cucuringu [12] showed that SDP and Spectral, respectively, for Z2 synchronization
achieve the information-theoretic bound in (55). Chen and Candès [9] established a
similar result for Spectral and the projected power method when G = ZN . Another
similar result was established by [10] for a variant of SDP when G = SN . After the
submission of this work, [29] extended the latter result for Spectral.

WhenG is a Lie group, methods that relax (5) with ν = 2, such as Spectral and SDP,
cannot exactly recover the group elements under UCM.Wang and Singer [45] showed
that the global minimizer of the SDP relaxation of (5) with ν = 1 and G = SO(d)

achieves asymptotic exact recovery under UCMwhen q ≡ Pr(i j ∈ Eb|i j ∈ E) < pc,
where pc depends on d (e.g., pc ≤ 0.54 and pc = O(d−1)). Due to their limited range
of q, they cannot estimate the sample complexity when q → 1. As far as we know,
[45] is the only previous work that provides exact recovery guarantees (under UCM)
for synchronization on Lie groups.

6.3 Main Results

Section 6.3.1 establishes exact recovery guarantees under UCM, which are most
meaningful when q∗ is sufficiently small. Section 6.3.2 sharpens the above theory
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by considering the complementary region of q∗ (q∗ ≥ qc for some qc > 0). The
proofs of all theorems are in Sect. 6.6.

6.3.1 Main Results when q∗ is Sufficiently Small

The two exact recovery theorems below use different quantities: zG , Pmax(x) and
V (x). We define these quantities before each theorem and later exemplify them for
common groups in Sect. 6.7. For simplicity of their already complicated proofs, we
use concentration inequalities that are sharper when q∗ is sufficiently small. Therefore,
the resulting estimates for the simpler case where q∗ is large are not satisfying and are
corrected in the next section.

The condition of the first theorem uses the cdf (cumulative density function) of the
random variable max{s∗

ik, s
∗
jk}, where i j ∈ E and k ∈ Bi j are arbitrarily fixed. We

denote this cdf by Pmax and note that due to the model assumptions it is independent
of i , j and k.

Theorem 6 Let 0 < r < 1, 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N and assume data generated
by UCM(n, p, q). If the parameters {βt }t≥0 of CEMP-A satisfy

0 <
1

β0
− (1 − q2g)zG ≤ q2g

4β1
, Pmax

(
2

β1

)
<

r

32

q2∗
1 − q2∗

and
1

βt+1
= r

1

βt
(56)

for t ≥ 1, then with probability at least

1 − n2 p e
−

(
( 1

β0
−(1−q2g )zG)2 p2n

)
− n2 pe−
(qmin p2n)

the estimates {si j (t)}t≥1
i j∈E of {s∗

i j }i j∈E computed by CEMP-A satisfy

max
i j∈E |si j (t) − s∗

i j | <
1

β1
r t−1 for all t ≥ 1.

The second theorem uses the following notation. Let Y denote the random variable
s∗
ik + s∗

jk for any arbitrarily fixed i j ∈ E and k ∈ Bi j . We note that due to the model
assumptions, Y is independent of i , j and k. Let P denote the cdf of Y and Q denote the
corresponding quantile function, that is, the inverse of P . Denote fτ (x) = e−τ x+1τ x ,
where τ ≥ 0 and define V ∗(x) : [0,∞) → R by V ∗(x) = supτ>x Var( fτ (Y )), where
Var( fτ (Y )) is the variance of fτ (Y ) for any fixed τ . Since V ∗(x) might be hard to
compute, our theorem below is formulated with any function V , which dominates V ∗,
that is, V (x) ≥ V ∗(x) for all x ≥ 0.

Theorem 7 Let 0 < r < 1, 0 ≤ q < 1, 0 < p ≤ 1,

n

log n
= 


(
1 − q2∗
p2q4∗r2

)
, (57)
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andassumedata generated byUCM(n, p, q). Assume further that either s∗
i j for i j ∈ Eb

is supported on [a,∞), where a ≥ 1/(np2(1 − q2∗)), or Q is differentiable and
Q′(x)/Q(x) � 1/x for x < P(1). If the parameters {βt }t≥0 for CEMP-B satisfy

0 <
1

β0
≤ q2gq

2∗
16(1 − q2∗)

1

β1
, V (β1) <

r

32
· q2∗
1 − q2∗

and
1

βt+1
= r

1

βt
(58)

for t ≥ 1, then with probability at least

1 − n2 p e−

(
p2n/β2

0

)
− n2 p e−


(
V (β1)(1−q2∗ )p2n

)
− n2 pe−
(qmin p2n), (59)

the estimates {si j (t)}t≥1
i j∈E of {s∗

i j }i j∈E computed by CEMP-B satisfy

max
i j∈E |si j (t) − s∗

i j | <
1

4β1
r t−1 for all t ≥ 1. (60)

We note that Theorem 6 requires that

n

log n
= 


(
1

p2
· max

(
1

q2∗
,

(
1

β0
− (1 − q2g)zG

)−2
))

(61)

in order to have a sufficiently large probability. Similarly, Theorem 7 requires the
following lower bound on the sample size:

n

log n
= 


(
1

p2
· max

(
1

q2∗
, β2

0 ,
1

(1 − q2∗) V (β1)
,
1 − q2∗
p2q4∗r2

))
. (62)

We will use these estimates in Sect. 6.4 to bound the sample complexity.

6.3.2 Main Results when q∗ is Sufficiently Large

We tighten the estimates established in Sect. 6.3.1 by considering two different regimes
of q∗ divided by a fixed value qc. For CEMP-A, we let qc be any number in (

√
3/2, 1).

ForCEMP-B,we letqc be anynumber in (2/
√
5, 1).We restrict the results ofTheorems

6 and 7 to the case q∗ < qc and formulate below the following two simpler theorems
for the case q∗ ≥ qc.

Theorem 8 Let 0 < r < 1, 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N and assume data generated
byUCM(n, p, q). Let qc be any number∈ (

√
3/2, 1) and�q = q2c /2−3/8 ∈ (0, 1/8).

For any q∗ ≥ qc, if the parameters {βt }t≥0 of CEMP-A satisfy

1

4
− �q ≤ 1

β0
≤ 1 and

1

βt+1
= r

1

βt
for t ≥ 0 and 1 − 4�q < r < 1, (63)
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then with probability at least

1 − n2 p e
−

(
np2�2

q

)
(64)

the estimates {si j (t)}t≥1
i j∈E of {s∗

i j }i j∈E computed by CEMP-A satisfy

max
i j∈E |si j (t) − s∗

i j | <
1

β1
r t−1 for all t ≥ 1.

Theorem 9 Let 0 < r < 1, 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N and assume data generated
by UCM(n, p, q). Let qc be any number ∈ (2/

√
5, 1) and �q = q2c /2 − 2/5 ∈

(0, 1/10). For any q∗ ≥ qc, if the parameters {βt }t≥0 of CEMP-B satisfy

1

5
− �q ≤ 1

β0
and

1

βt+1
= r

1

βt
for t ≥ 0 and

4 − 20�q

4 + 5�q
< r < 1, (65)

then with probability at least

1 − n2 p e
−

(
np2�2

q

)

the estimates {si j (t)}t≥1
i j∈E of {s∗

i j }i j∈E computed by CEMP-B satisfy

max
i j∈E |si j (t) − s∗

i j | <
1

β1
r t−1 for all t ≥ 1.

Theorems 6 and 7 for the regime q∗ < qc seem to express different conditions
on {βt }t≥0 than those in Theorems 8 and 9 for the regime q∗ ≥ qc. However, after
carefully clarifying the corresponding conditions in Theorems 6 and 7 for specific
groups of interests (see Sect. 6.7), one can formulate conditions that apply to both
regimes. Consequently, one can formulate unified theorems (with the same conditions
for any choice of q∗) for special groups of interest.

6.4 Sample Complexity Estimates

Theorems 6 and 7 imply upper bounds for the sample complexity of CEMP. However,
these bounds depend on various quantities that are estimated in Sect. 6.7 for the
groups Z2, SN , SO(2) and SO(3), which are common in applications. Table 1 first
summarizes the estimates of these quantities (only upper bounds of Pmax(x) and
V (x) are needed, but for completeness we also include the additional quantity zG).
It then lists the consequent upper bounds of the sample complexities of CEMP-A
and CEMP-B, which we denote by SC-A and SC-B, respectively. At last, it lists the
information-theoretic sample complexity bounds (discussed in Sect. 6.2), which we
denote by SC-IT.
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The derivation of the sample complexity bounds, SC-A and SC-B, requires an
asymptotic lower bound of β1 and an asymptotic upper bound of 1/β0 − (1 − q2g)zG
(or equivalently, a lower bound of β0). Then, one needs to use these asymptotic bounds
together with (61) or (62) to estimate SC-A or SC-B, respectively. We demonstrate
the estimation of SC-A for G = SO(2). Here, we assume two bounds: β1 = 
(q−2∗ )

and 1/β0 − (1 − q2g)zG ≤ O(q4∗). We first note from Table 1 that Pmax(x) = O(x)
and consequently the first bound implies the required middle equation of (56). The
combination of both bounds with the fact that in this case qg = q∗ and the obvious
assumption β0 > 0 yields the first equation of (56). Incorporating both bounds into
(61), we obtain that a sufficient sample size n for exact recovery w.h.p. by CEMP-
A satisfies n/ log(n) = 
(p−2q−8∗ ); thus, the minimal sample for exact recovery
w.h.p. by CEMP-A is of order O(p−2q−8∗ ).

We remark that these asymptotic bounds were based on estimates for the regime
q∗ < qc, but we can extend them for any q∗ and p → 0. Indeed, when q∗ ≥ qc,
(64) of Theorem 8 and the equivalent equation of Theorem 9 imply that the minimum
sample required for CEMP is of order 
(1/p2). Clearly, this estimate coincides with
all estimates in Table 1 when q∗ ≥ qc.

Our upper bounds for the sample complexity are far from the information-theoretic
ones. Numerical experiments in Sect. 7 may indicate a lower sample complexity of
CEMP than these bounds, but still possibly higher than the information theoretic ones.
We expect that one may eventually obtain the optimal dependence in qg for a CEMP-
like algorithm; however, CEMP with 3-cycles is unable to improve the dependence
on p from 
(1/p2) to 
(1/p). The issue is that when C = C3, the expected number
of good cycles per edge is np2q2g , so that n = 
(1/(p2q2g)). Indeed, the expected
number of 3-cycles per edge is np2 and the expected fraction of good cycles is q2g .
The use of higher-order cycles should improve the dependence on p, but may harm
the dependence on qg .

Despite the sample complexity gap, we are unaware of other estimates that hold
for q∗ → 0 (recall that q∗ → 0 only for continuous groups). The current best result
for SO(d) synchronization appears in [45]. It only guarantees exact recovery for the
global optimizer (not for an algorithm) for sufficiently large q∗ (e.g., q∗ > 0.5 for
d = 3 and q∗ > 1 − O(d−1) for large d).

6.5 A Simple Estimator with the Optimal Order of qg for Continuous Groups

We present a very simple and naive estimator for the corruption levels that uses cycle
inconsistencies and achieves the optimal order of qg for continuous groups.We denote
by modeDi j the mode of Di j = {di j,k}k∈Ni j . The proposed simple estimates {ŝi j }i j∈E
are

ŝi j = modeDi j for i j ∈ E . (66)

Their following theoretical guarantee is proved in Appendix 8.

Proposition 5 Let 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N such that n/ log n ≥ c/(p2q2g)
for some absolute constant c ≥ 10. If G is a continuous group and the underlying
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dataset is generated by UCM(n, p, q), then (66) yields exact estimates of {s∗
i j }i j∈E

with probability at least 1 − n−2/15.

We remark that although the naive estimator of (66) achieves tighter sample com-
plexity bounds than CEMP in the very special setting of UCM, it suffers from the
following limitations that makes it impractical to more general scenarios. First of all,
in real applications, all edges are somewhat noisy, so that all the elements in each fixed
Di j are different and finding a unique mode is impossible. Second, the mode statistic
is very sensitive to adversarial outliers. In particular, one can maliciously choose the
outliers to form peaks in the histogram of each Di j that are different than s∗

i j .
We currently cannot prove a similar guarantee for CEMP, but the phase transition

plots of Sect. 7.5 seem to support a similar behavior. Nevertheless, the goal of pre-
senting this estimator was to show that it is possible to obtain sharp estimates in qg by
using cycle inconsistencies.

6.6 Proofs of Theorems 6-9

Section 6.6.1 formulates some preliminary results that are used in the main proofs.
Section 6.6.2 proves Theorem 6, Sect. 6.6.3 proves Theorem 7 and Sect. 6.6.4 proves
Theorems 8 and 9.

6.6.1 Preliminary Results

We present some results on the concentration of λ and good initialization. The proofs
of all results are in Appendix 9.

We formulate a concentration property of the ratio of corrupted cycles, λi j , where
i j ∈ E (see (32)), and the maximal ratio λ.

Proposition 6 Let 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N and assume data generated by
UCM(n, p, q). For any 0 < η < 1,

Pr(|λi j − (1 − q2∗)| > ηqmin) < 2 exp

(
−η2

3
qmin|Ni j |

)
for any fixed i j ∈ E

(67)

and

Pr(|λ − (1 − q2∗)| > ηqmin) < 2|E | exp
(

−η2

3
qmin min

i j∈E |Ni j |
)

. (68)

Proposition 6 is not useful when q∗ ≈ 1, since then |Ni j | needs to be rather large,
and this is counter-intuitivewhen there is hardly any corruption. On the other hand, this
proposition is useful when q∗ is sufficiently small. In this case, if |Ni j | is sufficiently
large, then λi j concentrates around 1 − q2∗ . In particular, with high probability λ can
be sufficiently high. The regime of sufficiently high λ is interesting and challenging,
especially as Theorems 1 and 2 do not apply then.

The next concentration result is useful when q∗ is sufficiently large.
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Fig. 4 Roadmap for the proof of Theorem 6

Proposition 7 Let 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N and assume data generated by
UCM(n, p, q). For any x ∈ (0, 1], q2∗ > 1 − x and i j ∈ E,

Pr(λi j > x) < exp

(
−1

3

(
1 − 1 − x

q2∗

)2
q2∗ |Ni j |

)
.

Next, we show that the initialization suggested in (38) is good under the uniform
corruption model. We first claim that it is good on average, while using the notation
zG of Sect. 6.1.

Proposition 8 Let 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N and assume data generated by
UCM(n, p, q). For any i j ∈ E, si j (0) is a scaled and shifted version of s∗

i j as follows

E(si j (0)) = q2gs
∗
i j + (1 − q2g)zG . (69)

At last, we formulate the concentration of si j (0) around its expectation. It follows
from direct application of Hoeffding’s inequality, while using the fact that 0 ≤ di j,k ≤
1 are i.i.d.

Proposition 9 Let 0 ≤ q < 1, 0 < p ≤ 1, n ∈ N and assume data generated by
UCM(n, p, q). Then,

Pr
(∣∣si j (0) − E(si j (0))

∣∣ > γ
)

< 2e−2γ 2|Ni j |.

6.6.2 Proof of Theorem 6

This proof is more involved than previous ones. Figure 4 thus provides a simple
roadmap for following it.

The proof frequently uses the notation

Ai j (x; t) = {k ∈ Ni j : sik(t), s jk(t) ≤ x}

and

A∗
i j (x) = {k ∈ Ni j : s∗

ik, s
∗
jk ≤ x}.
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It relies on the following two lemmas.

Lemma 2 If 1/β0 ≥ (1 − q2g)zG + maxi j∈E
∣∣si j (0) − Esi j (0)

∣∣, then

ε(1) ≤ 4
1
β0

− (1 − q2g)zG
q2g

. (70)

Proof We use the following upper bound on εi j (1), which is obtained by plugging
t = 0 into (40)

εi j (1) ≤

∑
k∈Ni j

1{sik (0),s jk (0)≤ 1
β0

}(s∗
ik + s∗

jk)∑
k∈Ni j

1{sik (0),s jk (0)≤ 1
β0

}
. (71)

Denote γi j = |si j (0) − E(si j (0))| for i j ∈ E and γ = maxi j∈E γi j , so that the
condition of the lemma can be written more simply as 1/β0 ≥ (1 − q2g)zG + γ .
We use (69) to write si j (0) = q2gs

∗
i j + (1 − q2g)zG + γi j and thus conclude that

si j (0) ≥ q2gs
∗
i j + (1 − q2g)zG − γ . Consequently, if si j (0) < 1

β0
for i j ∈ E , then

s∗
i j < (1/β0 − (1 − q2g)zG) + γ )/q2g . The combination of the latter observation with
(71) results in

εi j (1) < 2
1
β0

+ γ − (1 − q2g)zG
q2g

.

Applying the assumption 1/β0 ≥ (1− q2g)zG + γ into the above equation, while also
maximizing the LHS of this equation over i j ∈ E , results in (70). ��

Lemma 3 Assume that |A∗
i j (2/β1) \ Gi j |/|Bi j | ≤ (1 − λ)r/(4λ) for all i j ∈ E,

1
β1

> ε(1) and βt = rβt+1 for all t ≥ 1. Then, the estimates {si j (t)}t≥1
i j∈E computed

by CEMP-A satisfy

max
i j∈E |si j (t) − s∗

i j | <
1

β1
r t−1 for all t ≥ 1. (72)

Proof We prove (72), equivalently, ε(t) < 1/βt for all t ≥ 1, by induction. We note
that ε(1) < 1/β1 is an assumption of the lemma.We next show that ε(t+1) < 1/βt+1
if ε(t) < 1/βt .Wenote that applying (43) and then applying (45) result in the following
two inclusions

Gi j ⊆ Ai j

(
1

βt
; t
)

⊆ A∗
i j

(
2

βt

)
for i j ∈ E and t ≥ 1. (73)
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Applying first (40), then (73) and at last the definition of λ, we obtain that for any
given i j ∈ E

εi j (t + 1) ≤

∑
k∈Bi j

1{sik (t),s jk (t)≤ 1
βt

}(s∗
ik + s∗

jk)∑
k∈Ni j

1{sik (t),s jk (t)≤ 1
βt

}

≤ 4
1

βt

|A∗
i j (

2
βt

) \ Gi j |
|Gi j | ≤ 4

1

βt

|A∗
i j (

2
βt

) \ Gi j |
|Bi j |

λ

1 − λ
.

Combining the above equation with the assumption |A∗
i j (2/β1) \ Gi j |/|Bi j | ≤ (1 −

λ)r/(4λ) yields

εi j (t + 1) ≤ 4
1

βt

|A∗
i j (

2
βt

) \ Gi j |
|Bi j |

λ

1 − λ
≤ r

1

βt
= 1

βt+1
.

Maximizing over i j ∈ E the LHS of the above equation concludes the induction and
the lemma. ��
To conclude the theorem, it is sufficient to show that under its setting, the first two
assumptions of Lemma 3 hold w.h.p.

We first verify w.h.p. the condition maxi j∈E |A∗
i j (2/β1) \ Gi j |/|Bi j | ≤ (1 −

λ)r/(4λ). We note that for each fixed i j ∈ E , {1{k∈A∗
i j (2/β1)\Gi j }}k∈Bi j is a set of

i.i.d. Bernoulli random variables with mean Pmax(2/β1). We recall the following one-
sided Chernoff bound for independent Bernoulli random variables {Xl}nl=1 withmeans
{pl}nl=1, p̄ =∑n

l=1 pl/n, and any η > 1:

Pr

(
1

n

n∑
l=1

Xl > (1 + η) p̄

)
< e− η

3 p̄n . (74)

Applying (74) with the random variables {1{k∈A∗
i j (2/β1)\Gi j }}k∈Bi j whose means are

Pmax(2/β1) and with η = (1 − λ)r/(4λPmax(2/β1)) − 1, and then assuming that
Pmax(2/β1) < (1 − λ)r/(8λ) result in

Pr

( |A∗
i j (

2
β1

) \ Gi j |
|Bi j | >

1 − λ

4λ
r

)
< e

− 1
3

(
1−λ
4λ r−Pmax(

2
β1

)
)
|Bi j |

< e− 1−λ
24λ r |Bi j |. (75)

We next show that the above assumption, Pmax(2/β1) < (1 − λ)r/(8λ), holds
w.h.p. and thus verify w.h.p. the desired condition. We recall that Pmax(2/β1) <

rq2∗/(32(1 − q2∗)) (see (56)). Furthermore, by Proposition 6,

Pr

(
1

4

q2∗
1 − q2∗

<
1 − λ

λ
< 4

q2∗
1 − q2∗

)
≥ 1 − 2|E | exp(−
(qmin|Ni j |)). (76)
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The latter two observations result in the needed bound on Pmax(2/β1) w.h.p. More
generally, these observations and (75) with a union bound over i j ∈ E implyw.h.p. the
desired condition as follows:

Pr

(
max
i j∈E

|A∗
i j (

2
β1

) \ Gi j |
|Bi j | ≤ 1 − λ

4λ
r

)

≥ 1 − |E |e−


(
q2∗

(1−q2∗ )
r min
i j∈E |Bi j |

)
− |E |e−
(qmin min

i j∈E |Ni j |)
. (77)

To guarantee w.h.p. the other condition, 1/β1 > ε(1), we note that if the condition
of Lemma 2 holds, then an application of the conclusion of this Lemma and another
application of the first equation in (56) imply the desired condition, that is,

ε(1) ≤ 4
1
β0

− (1 − q2g)zG
q2g

≤ 1

β1
if

1

β0
≥ (1 − q2g)zG + max

i j∈E
∣∣si j (0) − Esi j (0)

∣∣ .
(78)

In order to verify w.h.p. the condition of Lemma 2, we apply Proposition 9 with
γ = 1/β0 − (1 − q2g)zG (note that γ > 0 by the first inequality of (56)) and a union
bound over i j ∈ E to obtain that

Pr

(
max
i j∈E
∣∣si j (0) − Esi j (0)

∣∣ < 1

β0
− (1 − q2g)zG

)

≥ 1 − |E |e−


(
qmin min

i j∈E |Ni j |
)

− |E | e−


((
1
β0

−(1−q2g )zG
)2

min
i j∈E |Ni j |

)
. (79)

We recall the followingChernoff bound for i.i.d.Bernoulli randomvariables {Xl }ml=1
with means μ and any 0 < η < 1:

Pr

(∣∣∣∣∣ 1m
m∑
l=1

Xl − μ

∣∣∣∣∣ > ημ

)
< 2e− η2

3 μm . (80)

We note that by applying (80) three different times with the following random vari-
ables: {1{i j∈E}}i, j∈[n], where μ = p, m = n2; {1{k∈Ni j }}k∈[n], where μ = p2, m = n
(for each fixed i j ∈ E); and {1{k∈Bi j }}k∈[n], where μ = p2(1 − q2∗), m = n
(for each fixed i j ∈ E), and then a union bound, we obtain that with probabil-
ity at least 1 − exp(−
(n2 p)) − n2 p exp(−
(np2)) − n2 p exp(−
(np2qmin)), or
equivalently, 1 − n2 p exp(−
(np2qmin)), the following events hold: |E | � n2 p,
mini j∈E |Ni j | � np2 and mini j∈E |Bi j | � np2(1 − q2∗) . We conclude the proof by
combining this observation, (77)-(79) and Lemma 3.
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Fig. 5 Roadmap for the proof of Theorem 7

6.6.3 Proof of Theorem 7

This proof is similar to that of Theorem 7, but it is more difficult since it requires
additional tools from empirical risk minimization (see Lemma 6). Figure 5 provides
a roadmap for following the proof.

The proof of the theorem relies on the following three lemmas.

Lemma 4 If 1/(4β0) ≥ maxi j∈E
∣∣si j (0) − Esi j (0)

∣∣, then
ε(1) ≤ λ

1 − λ

1

q2gβ0
.

Lemma 5 Assume that 1/(4β1) > ε(1), βt = rβt+1 for t ≥ 1, and

max
i j∈E

1

|Bi j |
∑
k∈Bi j

e
−βt

(
s∗ik+s∗jk

) (
s∗
ik + s∗

jk

)
<

1

Mβt
for all t ≥ 1, (81)

where M = 4eλ/((1 − λ)r). Then, the estimates {si j (t)}t≥1
i j∈E computed by CEMP-B

satisfy

max
i j∈E |si j (t) − s∗

i j | <
1

β1
r t−1 for all t ≥ 1. (82)

The last lemma uses the notation F = { fτ (x) : τ > β}, where we recall that
fτ (x) = e−τ x+1τ x .

Lemma 6 If either s∗
i j for i j ∈ Eb is supported on [a,∞) and a ≥ 1/|Bi j | or Q is

differentiable and Q′(x)/Q(x) � 1/x for x < P(1), then there exists an absolute
constant c such that

Pr

⎛
⎝ sup

fτ ∈F(β)

1

|Bi j |
∑

k∈|Bi j |
fτ (s

∗
ik + s∗

jk) > V (β) + c

√
log |Bi j |

|Bi j |

⎞
⎠ < e− 1

3mV (β). (83)

The proofs of Lemmas 4 and 5 are similar to the ones of Lemmas 2 and 3. For
completeness, we include them in Appendices 10 and 11, respectively. The proof of
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Lemma 6 requires tools from empirical risk minimization, and we thus provide it later
in Appendix 12.

According to Lemma 5, the theorem follows by guaranteeing w.h.p. the following
two conditions of this lemma: (81) and 1/4β1 > ε(1). We note that (81) is guar-
anteed w.p. at least 1 − exp(−
(V (β1)|Bi j |)) by applying Lemma 6 with β1 such
that V (β1) < e/2M and |Bi j | sufficiently large such that

√
log |Bi j |/|Bi j | < e/2cM .

The combination of the middle inequality of (58) and (76) implies that V (β1) <

e/(2M) = (1 − λ)r/(8λ) with the same probability as in (76). We note that (76)
implies that if |Bi j |/ log |Bi j | �

(
(1 − q2∗)/(q2∗r)

)2
, then with the probability speci-

fied in (76),
√
log |Bi j |/|Bi j | < e/2cM holds.We recall that |Bi j | � np2(1−q2∗)with

probability 1 − exp(
(np2qmin)). Combining this observation with (57) concludes
w.h.p. the desired bound, that is, |Bi j |/ log |Bi j | �

(
(1 − q2∗)/(q2∗r)

)2
. In summary,

(81) holds with probability at least 1 − exp(−
(V (β1)|Bi j |)) − exp(
(np2qmin)).
Next, we verify w.h.p. the other condition of Lemma 5, namely 1/(4β1) > ε(1). If

the assumption of Lemma 4 holds, then application of the conclusion of this lemma
and following up with a combination of the first equation in (58) and (76) yield (with
the probability specified in (76))

ε(1) ≤ λ

1 − λ

1

q2gβ0
<

1

4β1
if

1

4β0
≥ max

i j∈E
∣∣si j (0) − Esi j (0)

∣∣ .

In order to verify w.h.p. the assumption of Lemma 4, we apply Proposition 9 with
γ = 1/(4β0) (note that γ > 0 by the first inequality of (58)) together with a union
bound over i j ∈ E to obtain that

Pr

(
max
i j∈E
∣∣si j (0) − Esi j (0)

∣∣ < 1

4β0

)

≥ 1 − |E |e−


(
qmin min

i j∈E |Ni j |
)

− |E | e−


(
1

β20
min
i j∈E |Ni j |

)
.

These arguments and our earlier observation that |E | � n2 p, mini j∈E |Bi j | � np2(1−
q2∗) and mini j∈E |Ni j | � np2 w.p. 1 − n2 p exp(−
(np2qmin)) conclude the proof.

6.6.4 Proof of Theorems 8 and 9

We prove Theorem 8, whereas the proof of Theorem 9 is identical. Note that (63)
describes the same conditions of Theorem 1 with λ replaced by 1/4 − �q . Thus, it
suffices to prove that λ ≤ 1/4−�q with the probability specified in (64). This implies
the conclusion of Theorem 1with the latter probability, or equivalently, the conclusion
of Theorem 8. Applying Proposition 7 with x = 1/4− �q and q∗ = 
(1) (q∗ ≥ qc),
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and then the fact that �q = 1
4 − �q − (1− q2c ) ≤ 1

4 − �q − (1− q2∗), we obtain that

Pr

(
λi j >

1

4
− �q

)
< exp

(
−


((
(1/4 − �q) − (1 − q2∗)

)2 |Ni j |
))

≤ exp
(
−

(
�2

q |Ni j |
))

for any i j ∈ E . (84)

We note that application of Chernoff bound in (80) twice, first with the random
variables {1{i j∈E}}i, j∈[n], where μ = p, m = n2, then with {1{k∈Ni j }}k∈[n], where
μ = p2, m = n (for each fixed i j ∈ E), and then a union bound, yields that
with probability at least 1 − exp(−
(n2 p)) − n2 p exp(−
(np2)), or equivalently,
1 − n2 p exp(−
(np2)), the following events hold: |E | � n2 p and mini j∈E |Ni j | �
np2. Combining this observation, (84) and a union bound over i j ∈ E results in the
desired probability bound of (64) for the event λ ≤ 1/4 − �q .

6.7 Clarification of Quantities Used in Theorems 6 and 7

Theorems 6 and 7 use the quantities Pmax(x), zG , V (x) and Q(x). In this section, we
provide explicit expressions for these quantities for common group synchronization
problems. We also verify that the special condition of Theorem 7 holds in these cases.
This special condition is that either s∗

i j for i j ∈ Eb is supported on [a,∞), where

a ≥ 1/(np2(1 − q2∗)), or Q is differentiable and Q′(x)/Q(x) � 1/x for x < P(1).
When using the first part of this condition, Q is not needed andwewill thus not specify
it in this case. We recall that Y denotes the random variable s∗

ik +s∗
jk for any arbitrarily

fixed i j ∈ E and k ∈ Bi j .

6.7.1 Z2 Synchronization

In this problem, G = Z2, which is commonly represented by {−1, 1} with ordinary
multiplication. It is common to use the bi-invariant metric dG(g1, g2) = |g1 − g2|/2
and thusdi j,k = |gi j g jkgki−1|/2 ∈ {0, 1}. TheHaarmeasure onZ2 is theRademacher
distribution.

Wenote that zG = 1/2 and Pmax(x) = 1{x=1} (since for k ∈ Bi j ,max{s∗
ik, s

∗
jk}= 1).

We next show that V (x) = 6e−x . Indeed, Y = 1, 2 w.p. p1 = 2q∗(1 − q∗)/(1 − q2∗)

and p2 = (1 − q∗)2/(1 − q2∗), respectively, and thus

sup
τ>x

Var( fτ (Y )) ≤ e2 sup
τ>x

E(e−2τY τ 2Y 2) = e2 sup
τ>x

(p1e
−2τ τ 2 + 4p2e

−4τ τ 2)

≤ 1{0<x<1} +
(
e2(p1e

−2x x2 + 4p2e
−4x x2)

)
1{x>1}

≤ 1{0<x<1} + e2 max
(
e−2x x2, 4e−4x x2

)
1{x>1} < 6e−x .

Since s∗
i j for i j ∈ Eb is supported on {1}, the special condition of Theorem 7 holds

when n = 
(1/(p2(1 − q2∗))). This latter asymptotic bound is necessary so that the
third term in (59) is less than 1.
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6.7.2 Permutation Synchronization

In this problem, G = SN , whose elements are commonly represented by permu-
tation matrices in R

N×N . A common bi-invariant metric on SN is dG(P1, P2) =
1−Tr(P1P

−1
2 )/N and thus di j,k = 1−Tr(P i j P jk Pki )/N . The cdf of max{s∗

ik, s
∗
jk},

Pmax(x), can be complicated, but one can find a more concise formula for an upper
bound for it, which is sufficient for verifying the middle inequality in (56). Indeed, the
cdf of s∗

i j for i j ∈ Ẽb, gives an upper bound of Pmax(x). For N ∈ N, 1 ≤ m ≤ N and

i j ∈ Ẽb fixed, s∗
i j = dG(PHaar, IN×N ) for PHaar ∼ Haar(SN ). Moreover, s∗

i j = m/N
is equivalent to having exactly m elements displaced (and N − m fixed) by PHaar.
Therefore, using the notation [x] for the nearest integer to x , for 1 ≤ m ≤ N ,

Pmax

(m
N

)
≤

m∑
l=0

Pr

(
s∗
i j = l

N

∣∣∣i j ∈ Ẽb

)
= 1

N ! +
m∑
l=1

1

N !
(
N

l

)[
l!
e

]
.

Since zG = E(s∗
i j ) for i j ∈ Ẽb, the exact formula for computing zG is

zG =
N∑

m=1

m

N !
(
N

m

)[
m!
e

]
.

We claim that V (x) can be chosen as

V (x) = 1{x≤N } + 1{x>N }
e2

N 2 e
−2x/N x2. (85)

Indeed, if qm denotes the probability density function (pdf) of Y and xm = m/N , then

sup
τ>x

Var( fτ (Y )) ≤ e2 sup
τ>x

2N∑
m=1

e−2τ xm τ 2x2mqm

≤ e2 sup
τ>x

∑
xm≤ 1

x

e−2τ xm τ 2x2mqm + e2 sup
τ>x

∑
xm> 1

x

e−2τ xm τ 2x2mqm

≤
∑
xm≤ 1

x

qm + e2
∑
xm> 1

x

e−2xxm x2x2mqm, (86)

where the last inequality follows from the facts that e2e−2τ xm τ 2x2m ≤ 1 for any xm
and τ and e−2τ xτ 2x2 achieves global maximum at x = 1/τ . To conclude, (85) we
note that for x > 1/x1 = N (so xm > 1/x for all m ≥ 1), the right term on the RHS
of (86) is bounded by e2e−2x1x x21 x

2 = e2e−2x/N x2/N 2.
Since s∗

i j for i j ∈ Eb is supported on {m/N }Nm=1, the special condition of Theorem

7 holds when n = 
(N/(p2(1 − q2∗))). As mentioned above, the requirement n =

(1/(p2(1 − q2∗))) is necessary so that the third term in (59) is less than 1. The
additional dependence on N is specific for this application and makes sense.
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6.7.3 Angular Synchronization

In this problem, G = SO(2), which is commonly associated with the unit circle,
S1, in the complex plane with complex multiplication. A common bi-invariant metric
is dG(θ1, θ2) = |(θ1 − θ2) mod (−π, π ]|/π and thus di j,k = |(θi j + θ jk + θki )

mod (−π, π ]|/π . The Haar measure is the uniform measure on S1 and thus s∗
i j for

i j ∈ Eb is uniformly distributed on [0, 1].
Wefirst compute Pmax(x) and zG .Wenote that if either ik or jk ∈ Eb, but not both in

Eb, then the cdf ofmax(s∗
ik, s

∗
jk) is x . Also, if ik, jk ∈ Eb, then the cdf ofmax(s∗

ik, s
∗
jk)

is x2. Thus, for k ∈ Bi j , Pmax(x) = p1x + p2x2, where p1 = 2q∗(1 − q∗)/(1 − q2∗)

and p2 = (1 − q∗)2/(1 − q2∗). Furthermore, zG = 1/2. We also note that a simple
upper bound for Pmax(x) is x .

The pdf of Y is p(t) = p11{t≤1} + p2(t1{t<1} + (2 − t)1{t≥1}). We note that V (x)
can be chosen as the following bound on V ∗(x)

sup
τ>x

Var( fτ (Y )) ≤ e2 sup
τ>x

E(e−2τ Xτ 2t2) < e2 sup
τ>x

∫ ∞

0
e−2τ tτ 2t2(p1 + p2t) dt

=p1
e2

4x
+ p2

3e2

8x2
≤ e2 max

{
1

4x
,

3

8x2

}
.

At last, we verify that the special condition of Theorem 7 holds. By integrating
the above pdf, the cdf of Y is P(t) = p1t1{t≤1} + p2(t2/21{t<1} + (p1 + 1 − (t −
2)2/2)1{t≥1}). We note that Q′(x) = 1/p(Q(x)) and thus for x < P(1), Q′(x) =
1/(p1 + p2Q(x)). Therefore, for x < P(1)

Q′(x)
Q(x)

= 1

p1Q(x) + p2Q2(x)
≤ 1

x
,

where the last inequality follows from the observation p1t + p2t2 > P(t) for t ≤ 1.

6.7.4 Rotation Synchronization

In rotation synchronization G = SO(3) and a common metric is dG(R1, R2) =
1/(

√
2π) · ‖ log(R1RT

2 )‖F , which is bi-invariant [25]. Therefore, di j,k = 1/(
√
2π) ·

‖ log(Ri j R jk Rki )‖F . We remark that ‖ log(R)‖/√2 is the absolute value of rotation
angle, theta, around the eigenspace of R with eigenvalue 1. The Haar measure on
SO(3) is described, e.g., in [45].

The distribution of s∗
i j is exactly the distribution of |θ | (described above) for the

corresponding group ratio. It is shown in [45] that θ is supported on [−π, π ] with
density (1 − cos θ)/(2π). Thus, the pdf of s∗

i j is 1 − cos(πx) for x ∈ [0, 1]. We note
that if either ik ∈ Eb or jk ∈ Eb (but not both), then the cdf of max(s∗

ik, s
∗
jk) is∫ x

0 1 − cos(π t)dt = x − sin(πx)/π . Furthermore, if ik, jk ∈ Eb, then the cdf of
max(s∗

ik, s
∗
jk) is (x − sin(πx)/π)2. Thus, for k ∈ Bi j and p1 and p2 as specified in
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Sect. 6.7.3,

Pmax(x) = p1(x − sin(πx)/π) + p2(x − sin(πx)/π)2 ≤ x − sin(πx)/π.

Furthermore,

zG =
∫ 1

0
(1 − cos(π t))t dt = 1

2
+ 2

π2 .

We next specify V(x). Clearly,

sup
τ>x

Var( fτ (Y )) ≤ e2 sup
τ>x

E(e−2τY τ 2Y 2) = e2 sup
τ>x

∫ 2

0
e−2τ tτ 2t2 p(t) dt,

where p(t) is the pdf of Y . It can be easily shown that

p(t) = p1(1 − cos(πx))1{t≤1} + p2(1{t≤1} pA(t) + 1{t>1} pB(t)),

where pA(t) = t−3 sin(π t)/(2π)+cos(π t)t/2 and pB(t) = 2−t−5 sin(π t)/(2π)+
cos(π t)(2 − t)/2. One can verify that p(t) ≤ p1π2t2/2 + p2π4t5/120. Thus, V (x)
can be chosen as the final RHS of the following equation

sup
τ>x

Var( fτ (Y )) ≤ p1
e2π2

2
sup
τ>x

∫ ∞

0
e−2τ tτ 2t3 dt + p2

e2π4

120
sup
τ>x

∫ ∞

0
e−2τ tτ 2t7 dt =

p1
e2π2

2
sup
τ>x

3

8τ 2
+ p2

e2π4

120
sup
τ>x

315

16τ 6
= p1

3e2π2

16x2
+ p2

21e2π4

128x6
< max

{
14

x2
,
120

x6

}
.

At last, we verify the special condition of Theorem 7. We first note that by
the fact that p(1) = 0.5, the pdf p(t) satisfies p12t2 + p2t5/2 ≤ p(t) ≤
p1π2t2/2 + p2π4t5/120 for t ≤ 1. Thus, for t ≤ 1 , the cdf P(t) satisfies
p12t3/3 + p2t6/12 ≤ P(t) ≤ p1π2t3/6 + p2π4t6/720. As a result, if x < P(1),
then Q′(x) = 1/p(Q(x)) ≤ 1/(p12Q2(x) + p2Q5(x)/2). Consequently,

Q′(x)
Q(x)

≤ 1

p12Q3(x) + p2
1
2Q

6(x)
≤ 1

x
,

where the last inequality follows from P(t) ≤ p1π2t3/6 + p2π4t6/720 ≤ p12t3 +
p2t6/2 for t ≤ 1.

7 Numerical Experiments

We demonstrate the numerical performance of CEMP-B and validate the proposed
theory. For comparison, we also test some well-known baseline approaches for group
synchronization. We consider the following two representatives of discrete and con-
tinuous groups: Z2 and SO(2).
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Section 7.1 summarizes various implementation details of CEMP-B and the base-
line algorithms we compare with. Section 7.2 numerically verifies our theoretical
implications for the choice of {βt }Tt=1 and our convergence estimates for CEMP-B in
the setting of adversarial corruption. Sections 7.3 and 7.4 test the recovery of CEMP
and other baseline algorithms under adversarial corruption without and with noise.
Finally, Sect. 7.5 demonstrates phase transition plots of different approaches under
uniform corruption.

7.1 Details of Implementation and Comparison

Our choices of dG forZ2 and SO(2) are specified in Sects. 6.7.1 and 6.7.3, respectively.
We represent the elements of SO(2) by the set of angles modulo 2π , or equivalently,
by elements of the unit complex circle U (1).

All implemented codes are available in the following supplementary GitHub page:
https://github.com/yunpeng-shi/CEMP. All experiments were performed on a com-
puter with a 3.8 GHz 8-core i7-10700K CPU and 48 GBmemory. For CEMP, we only
implemented CEMP-B, since it is our recommended practical approach. We used the
following natural choice of default parameters for CEMP (i.e., CEMP-B) throughout
all experiments: βt = 1.2t for 0 ≤ t ≤ 20. We justify this choice in Sect. 7.2. Other
choices of parameters are only tested in Sect. 7.2. We implemented the slower version
of CEMP, with C = C3 (instead of using a subset of C3 with a fixed number of 3-cycles
per edge), since it is fully justified by our theory.

In Sects. 7.3 and 7.4, we compare CEMP+GCW with Spectral [12,41] and SDP
[5,41] for solving Z2 and SO(2) synchronization. Our codes for Spectral and SDP
follow their description after (6). The specific implementations are rather easy. Indeed,
recalling the notation Y of (6), for kl ∈ E : Y kl ∈ {1,−1} for G = Z2 and Y kl =
eiθkl ∈ U (1) for G = SO(2). For SDP, we use a default MATLAB-based CVX-SDP
solver.

For G = SO(2), we also compare with an IRLS algorithm that aims to solve (4)
with ρ(·) = ‖ · ‖1. It first initializes the group elements using Spectral [41] and then
iteratively solves a relaxation of the following weighted least squares formulation

{ĝi (t)}i∈[n] = argmin{gi }i∈[n]⊂G
∑
i j∈E

w̃i j (t)d
2
G
(
gi j , gi g

−1
j

)
, (87)

where w̃i j (t) = wi j (t)∑
j∈Ni wi j (t)

, and the new weight is updated by

wi j (t + 1) = 1

dG
(
gi j , ĝi (t)ĝ

−1
j (t)

)
+ 10−4

;

the additional regularization term 10−4 aims to avoid a zero denominator.More specif-
ically, the relaxed solution of (87) is practically found by the weighted spectral method
described after (31), where p̃i j in (31) is replaced by w̃i j (t). The weights wi j (t) are
equally initialized, and IRLS is run for maximally 100 iterations, where it is termi-
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nated whenever the mean of the distances dG(ĝi (t)ĝ
−1
j (t), ĝi (t + 1)ĝ−1

j (t + 1)) over
all i j ∈ E is less than 0.001. We remark that this approach is the �1 minimization
version of [4] for SO(2). Since IRLS is not designed for discrete optimization, we do
not apply it to Z2 synchronization.

In the special noiseless setting of Sect. 7.6, we also test CEMP+MST. Our code
for CEMP+MST follows the description in Sect. 4.2.6, where the MST is found by
Prim’s algorithm.

Since we can only recover the group elements up to a global right group action, we
use the following error metric that overcomes this issue:

errorG = 1

|E |
∑
i j∈E

dG(ĝi ĝ
−1
j , g∗

i g
∗−1
j ). (88)

We use (88) to measure the performance of CEMP+GCW, Spectral, SDP and IRLS.
We note that we cannot use (88) to measure the performance of CEMP, as it does not
directly solve group elements. Thus, we evaluate CEMP by

errorS = 1

|E |
∑
i j∈E

∣∣∣s∗
i j − si j (T )

∣∣∣ . (89)

7.2 Numerical Implications of the Theoretical Estimates for the Adversarial Case

Theorem 2 suggests that in the noiseless adversarial setting, β0 should be sufficiently
small and βt should exponentially increase to infinity with a sufficiently small rate
r . Theorem 4 suggests that in the adversarial setting with noise level δ, β0 should be
sufficiently small andβt should start increasing almost exponentiallywith a small rate r
and then slow down and converge to a large number proportional to 1/δ. Nevertheless,
one cannot test the algorithm with arbitrarily large t due to numerical instabilities;
furthermore, the noise level δ is unknown. Therefore, in practice, we use a simpler
strategy: We start with a sufficiently small β0 and then exponentially increase it with
a sufficiently small rate r > 1, so βt = rβt−1, and stop when βt exceeds a large
number βmax. Our default values are β0 = 1, βmax = 40 and r = 1.2. This choice
leads to T = 20, and we thus expressed it earlier in Sect. 7.1 as βt = 1.2t for
0 ≤ t ≤ 20. Note that if βT ≈ 40, then any si j (T ) = 1 is assigned a negligible
weight ≈ exp(−40) ≈ 10−17. Therefore, enlarging the number of iterations cannot
help much and it can worsen the accuracy by accumulating errors. We remark that in
some noisy scenarios lower T may be preferable and we demonstrate below an issue
like this when using the “log max” error.

We will check whether the above choices for {βt }Tt=1 work sufficiently well under
basic corruption models for CEMP-B. We also test two choices that contradict our
theory: 1) β0 = 1 and βmax = 5 (βmax is too small). 2) β0 = 30 and βmax = 40 (β0 is
too large).

We fix the group SO(2) and generateG([n], E) by the Erdős–RényimodelG(n, p)
with n = 200 and p = 0.5. The ground-truth elements of SO(2), {θ∗

i }ni=1, are i.i.d.∼
Haar(SO(2)) ∈ (−π, π ]. We assume an additive noise for the uncorrupted group
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ratios with noise level σin . For this purpose, we i.i.d. sample {εi j }i j∈E from either a
standard Gaussian or a uniform distribution on [−√

3,
√
3] (in both cases the variance

of εi j is 1). We also generate adversarially corrupted elements, {θadv
i }ni=1, that are

i.i.d.∼ Haar(SO(2)). For each i j ∈ E , the observed group ratio is independently
corrupted with probability q as follows:

θi j =
{

θ∗
i − θ∗

j + σinεi j mod (−π, π ], w.p. 1 − q;
θadv
i − θadv

j mod (−π, π ], w.p. q.

This setting was adversarially created so that the corrupted group ratios are cycle-
consistent. Clearly, the information-theoretic threshold on q is 0.5. That is, exact
recovery is impossible if and only if q ≥ 0.5. We thus fix q = 0.45 in our first
demonstration so that our setting (especially with noise) is sufficiently challenging.

We consider three noise regimes: σin = 0, σin = 0.05 and σin = 0.2 (the last two
cases include both Gaussian and uniform noise). We test the three different choices
of β0 and βmax described above (one implied by our theory and two contradicting it)
with fixed T = 20.

Figure 6presents scatter plots for the estimated corruption level, si j (T ), as a function
of the ground-truth one, s∗

i j , for all i j ∈ E . The last column corresponds to application
of our recommendedparameters and the other two columns correspond to other choices
of parameters that violate our theory. The rows correspond to different noise levels and
noise distributions. Ideally, in the case of exact recovery, the points in the scatter plot
should lie exactly on the line y = x . However, we note that in the noisy case (σin > 0),
the exact estimation of s∗

i j is impossible. The red lines form a tight region around the
main line containing all points; their equations are y = x +ε+ and y = x −ε−, where
ε+ = maxi j∈E (si j (T )− s∗

i j ) and ε− = maxi j∈E (s∗
i j − si j (T )). The blue lines indicate

variation by 0.6 · σin from the main line (these are the lines y = x ± 0.6 · σin). We
chose the constant 0.6 since in the third column, these lines are close to the red ones.

One can see that CEMP-B with the recommended {βt }Tt=1 achieves exact recovery
in the noiseless case. It approximately estimates the corruption levels in the presence
of noise, and its maximal error is roughly proportional to the noise level. In contrast,
when β0 and βmax are both small, the algorithm fails to recover the true noise level even
when σin = 0. Indeed, with a small βt , bad cycles are assigned weights sufficiently far
from 0 and this results in inaccurate estimates of s∗

i j . When β0 and βmax are both large,
the algorithm becomes unstable in the presence of noise. When the noise level is low
(σin = 0.05), the performance is fine when the distribution is uniform; however, when
the distribution is Gaussian, there are already some wrong estimates with large errors.
When the noise level is 0.2, the self-consistent bad edges are wrongly recognized as
inliers and assigned corruption levels 0.

Figure 7 demonstrates the convergence rate of CEMP and verifies the claimed
theory. It uses the above adversarial corruptionmodelwithGaussian noise and the same
three noise levels (demonstrated in the three columns), but it tests bothq = 0.2 andq =
0.45 (demonstrated in the two rows). Each subplot shows three metrics of estimation:
“logmax", “logmean" and “logmedian", which correspond to log10(maxi j∈E |si j (t)−
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Fig. 6 Scatter plot of the estimated corruption levels v.s. the ground truth

s∗
i j |), log10( 1

|E |
∑

i j∈E |si j (t) − s∗
i j |) and log10(median({|si j (t) − s∗

i j | : i j ∈ E})),
respectively.

In the noiseless case, the three log errors decrease linearly with respect to t ; indeed,
Theorem 2 guarantees linear convergence of CEMP in this case. When σin > 0,
the log errors first demonstrate linear decay (with a smaller rate than above), but
the convergence then slows down and seems to approach a constant value in most
subfigures; this is consistent with Theorem 4. When q = 0.45 and σin = 0.2, the
log max error increases at the end. We believe that the source of the problem in this
example is that βmax is slightly larger than what the theory recommends in this setting
of high noise. In all plots, the mean errors are close to the median errors, and they
are about only 1/5 of the maximal errors (a difference of about 0.7 is noticed for the
log errors and 100.7 ≈ 5). This indicates that on average CEMP performs much better
than its worst case (in terms of edges).
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Fig. 7 Demonstration of the rate of convergence of CEMP

At last, we remark that for the data generated for Figs. 6 and 7, the maximal
ratio of corrupted cycles, λ, exceeds the bound 1/5 of Theorem 4. Indeed, given the
underlying model one may note that λ concentrates around 1 − (1 − q)2, which is
approximately 0.7 and 0.35 when q = 0.45 and q = 0.2, respectively. Nevertheless,
CEMP still achieves exact recovery in these cases. Note though that the upper bound on
λ, even if tight, is only a sufficient condition for good performance. Furthermore, the
adversarial corruption model of this section is very special (with strong assumptions
on the generation of E , Eb, the ground-truth ratios and the corrupted ratios), whereas
the theory was formulated for the worst-case scenario.

7.3 Exact Recovery under Adversarial Corruption

We consider a more malicious adversarial corruption model than that of Sect. 7.2. Let
G([n], E) be generated by an Erdős–Rényi modelG(n, p)with n = 200 and p = 0.5.
We independently draw nc graph nodes without replacement. Every time we draw a
node, we randomly assign 75% of its neighboring edges to the set Ẽb of selected edges
for corruption. It is possible that an edge is assigned twice to Ẽb (when both of its
nodes are selected), but Ẽb is not a multiset. Note that unlike the previous example of
Sect. 7.2, the elements of Ẽb are not independently chosen. We denote Ẽg := E \ Ẽb.

For G = SO(2), {θ∗
i }ni=1 and {θadv

i }ni=1 are i.i.d. Unif(−π, π ] and the observed
group ratios are generated as follows:

θi j =
{

θ∗
i − θ∗

j mod (−π, π ], i j ∈ Ẽg;
θadv
i − θadv

j mod (−π, π ], i j ∈ Ẽb.
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Fig. 8 Demonstration of the estimation error under adversarial corruption without noise

For G = Z2, {z∗i }ni=1 and {zadv
i }ni=1 are i.i.d. Unif{−1, 1} and the observed group ratios

are generated as follows:

zi j =
{
z∗i z∗j , i j ∈ Ẽg;
zadv
i zadv

j , i j ∈ Ẽb.

Recall that Eb is the set of actually corrupted edges. For G = SO(2), Eb = Ẽb;
however, for G = Z2, Eb �= Ẽb. Indeed, with probability 0.5, z∗i z∗j = zadv

i zadv
j . That

is, only 50% of the selected edges in Ẽb are expected to be corrupted.
We note that in the case where G = SO(2) and |Eg| ≤ |Eb|, the exact recovery of

{θ∗
i }i∈[n] becomes ill-posed, as Eg is no longer the largest cycle-consistent subgraph

and {θadv
i }i∈[n] should have been labeled as the ground truth. We remark that this is

not an issue for G = Z2, since at most 50% of edges in Ẽb belong to Eb, and thus
|Eb| ≤ |E |/2. Therefore, for SO(2), we need to control nc so that |Eb| < |E |/2 ≈
n2 p/4. We argue that nc/n needs to be less than or equal to 0.53. Indeed, since we
subsequently corrupt 75% of the neighboring edges of the nc selected nodes, the
probability that i j ∈ Eb is corrupted twice is 0.6 (we omit the simple calculation).
Namely, about 0.6|Eb| edges are corrupted twice and 0.4|Eb| edges are only corrupted
once, and thus about 1.6|Eb| corruptions result in |Eb| corrupted edges. Note that the
total number of corruptions is 0.75np · nc for SO(2), and thus, we require that

1

1.6
· 3
4
np · nc ≤ n2 p

4
�⇒ nc

n
≤ 1.6

3
≈ 0.53.

Figure 8 plots errorS for CEMP and errorG for the other algorithms as a function of
the fraction of corrupted nodes, nc/n. Each plotted value is an average of the estimation
error over ten trials; it is accompanied with an error bar, which corresponds to 10%
and 90% percentiles of the estimation errors in the ten trials. The figure only considers
nc/n ≤ 0.9 for Z2 and nc/n ≤ 0.5 for SO(2) as all algorithms performed poorly
beyond these regimes.

We note that CEMP+GCW outperforms Spectral and SDP for both G = Z2 and
G = SO(2). One interesting phenomenon is that although CEMP and CEMP+GCW
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use two different errormetrics, their errors seem to nicely align. This is strong evidence
that the advantage of CEMP+GCW over Spectral is largely due to CEMP. We observe
near exact recovery of CEMP+GCW when nc/n ≤ 0.4. In contrast, the errors of
Spectral and SDP clearly deviate from 0 when nc/n > 0.2, where SDP performs
slightly worse.

In angular synchronization, CEMP+GCW is somewhat comparable to IRLS. It
performs better than IRLS when nc/n = 0.4, and worse when nc/n = 0.5. We
remark that unlike IRLS that solves a weighted least squares problem in each iteration,
CEMP+GCW only solves a single weighted least squares problem.

7.4 Stability to Noise under Adversarial Corruption

We use the same corruption model as in Sect. 7.3, while adding noise to both good
and bad edges. We only consider G = SO(2). We do not consider the noisy model of
Z2 since the addition of noise to a group ratio zi j ∈ Z2 with a follow-up of projection
onto Z2 results in either zi j or −zi j and this is equivalent to corrupting zi j with a
certain probability.

Let σin and σout be the noise level of inlier and outlier edges, respectively. The
observed group ratio θi j is generated by

θi j =
{

θ∗
i − θ∗

j + σinεi j mod (−π, π ], i j ∈ Eg;
θadv
i − θadv

j + σoutεi j mod (−π, π ], i j ∈ Eb,

where θ∗
i , θ

adv
i are i.i.d. Unif(−π, π ] and the noise variable ε is i.i.d. N (0, 1).

Figure 9 plots errorS of CEMP and errorG of the other algorithms as a function of
the fraction of corrupted nodes. As in Fig. 8, each plotted value is an average of the
estimation error over 10 trials and is accompanied with an error bar corresponding
to 10% and 90% percentiles. Four different scenarios are demonstrated in the four
different rows of this figure.

Its first row corresponds to a very malicious case where σin > σout = 0. In this
case, the bad edges in Eb are cycle-consistent (since σout = 0) and the good edges
in Eg are only approximately cycle-consistent (due to noise). As explained in Sect.
7.3, when σin = σout = 0 the information-theoretic bound of nc/n is 0.53. However,
when σin > σout = 0 the information-theoretic bound is expected to be smaller. Since
we do not know this theoretical bound, we first focus on two simpler regions. The first
is when nc/n ≤ 0.3, so Eg is much larger than Eb. In this case, CEMP and IRLS
mainly select the edges in Eg for the inlier graph, and CEMP+GCW is comparable
to IRLS and outperforms Spectral and SDP. The second region is when nc/n = 0.7
(the same result was noted when nc/n ≥ 0.7). Here, both CEMP and IRLS recognize
Eb as the edges of the inlier graph and completely ignore Eg; consequently, they
exactly recover {θadv

i }ni=1, which results in estimation error of 0.5 (indeed, note that
EdG(θ∗

i − θ∗
j , θ

adv
i − θadv

j ) = 0.5). However, Spectral and SDP cannot recover either

{θ∗
i }ni=1 or {θadv

i }ni=1 in this regime. In the middle region between these two regions,
CEMP seems to weigh the cycle-consistency of Eb more than IRLS. On the other
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Fig. 9 Demonstration of the estimation error under adversarial corruption with Gaussian noise

hand, IRLS seems to mainly weigh the relative sizes of Eg and Eb. In particular, the
transition of IRLS frommainly using Eg to mainly using Eb for the inlier graph occurs
around the previously mentioned value of nc/n = 0.53 for the noiseless case, whereas
CEMP transitions earlier. It seems that Spectral has a similar late transition as IRLS
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and SDP has an earlier transition than IRLS, but it is hard to locate it due to the poor
performance of SDP.

The second row of Fig. 9 corresponds to a less adversarial case where σout > σin =
0. Thus, good edges are exactly cycle-consistent (σin = 0), and the bad edges in Eb are
only approximately cycle-consistent. The information-theoretic bound of nc/n should
be above 0.53 in this case. Indeed, CEMP+GCW is able to almost exactly recover the
ground truth when nc/n = 0.5. Its estimation error is smaller than 0.1 even when
nc/n = 0.7, and all other algorithms perform poorly in this regime.

The third row of Fig. 9 corresponds to the case where inlier and outlier edges
have the same level of noise. Similarly to the results of Sect. 7.3, CEMP+GCW is
comparable to IRLS and performs better than other methods. Its performance starts to
degrade when nc/n approaches the information-theoretic bound of the noiseless case,
0.53.

In the last row of Fig. 9, both good and bad edges are noisy, and bad edges have
higher noise levels. This case is somewhat similar to the one in the second row of the
figure. CEMP+GCW performs better than all other methods, especially in the high
corruption regime where nc/n > 0.5.

7.5 Phase Transition under Uniform Corruption

We demonstrate phase transition plots of the different algorithms under the uniform
corruption model. For Z2, the group ratios are generated by

zi j =
{
z∗i z∗j , w.p. 1 − q;
zui j , w.p. q,

where z∗i , z
u
i j are i.i.d. Unif{1,−1}. For G = SO(2), the observed group ratios θi j ,

i j ∈ E , are generated by

θi j =
{

θ∗
i − θ∗

j mod (−π, π ], w.p. 1 − q;
θui j , w.p. q,

where θ∗
i , θ

u
i j are i.i.d. Unif(−π, π ].

Figures 10 and11 show the phase transition plots forZ2 and SO(2) synchronization,
respectively. They include plots for the averaged errorS (for CEMP) and averaged
errorG (for the other algorithms) over ten different random runs for various values of
p, q and n (p appears on the y-axis, q on the x-axis and n varies with subfigures). The
darker the color the smaller the error. The red and blue curves correspond to possible
phase transition thresholds, which we explain below.

For Z2, recall that [2] establishes the information-theoretic bound in (55) and that
[5] and [12] show that it also holds for SDP and Spectral, respectively. Using this
bound, while ignoring its log factor and trying to fit its unknown constant to the phase
transition plots for Spectral andSDP,we set the red line as p = 12/(n(1−q)2). Clearly,
this is not the exact theoretical lower bound. For SO(2), recall that the information
theoretic bound is the same as the above one for Z2 [11]. We cannot fit a curve to
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Fig. 10 Phase transition plots for Z2 synchronization

Spectral and SDP since they do not exactly recover the group ratios. Instead, we try
to fit a phase transition curve to IRLS (even though there is no theory for this). We fit
the red curve defined by p = 10/(n(1 − q)2).

We note that the red curves (which were determined by the above-mentioned algo-
rithms) do not alignwell with the phase transition plots of CEMPwhen p is sufficiently
small (that is, when the underlying graph is sparse). Indeed, Sect. 6.4 explains the lim-
itation of CEMP (and any method based on 3-cycle consistency) when p is small.
On the other hand, the sample complexity of CEMP might be tight as a function of
qg = 1 − q, as opposed to our current theoretical estimate (see discussion in Sect.
6.4). If this assumption is correct, then the red curve can align well with the phase
transition when p is not very small as may seem from the figures. For small p, we
followed the (necessary) dependence on p of our estimates in Sect. 6.4 and further
experimented with different powers of (1−q) and consequently fit the following blue
curves: p = 3/

√
n(1 − q) and p = 1.8/

√
n(1 − q) for CEMP and CEMP+GCW,

respectively. We used the same curves for both Z2 and SO(2) synchronization.
It is evident from Fig. 10 that the phase transition plots of Spectral and SDP align

well with the red curve. For CEMP and CEMP+GCW, the exact recovery region (dark
area) seems to approximately lie in the area enclosed by the red and blue curves. The
blue curve of CEMP+GCW is slightly closer to the x-axis than that of CEMP. This
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Fig. 11 Phase transition plots for SO(2) synchronization

suggests that combining CEMPwith GCW can partially help with dealing with sparse
graphs.

In Fig. 11, Spectral and SDP do not seem to exactly recover group elements in the
presence of any corruption, and thus a phase transition region is not noticed for them.
The phase transition plots of IRLS align well with the red curve. The exact recov-
ery regions of both CEMP and CEMP+GCW seem to approximately lie in the area
enclosed by the red and blue curves. Again, CEMP+GCW seems to slightly improve
the required bound (its blue curve is lower). Nevertheless, more careful research
is needed to determine in theory the correct phase transition curves of CEMP and
CEMP+GCW.

7.6 Testing the Speed of the Algorithms

We compare the speed of the algorithms under different parameters. We assume
the uniform corruption model for SO(d) without noise and with q = 0.2. We test
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Table 2 Runtime (in seconds) and accuracy for G = SO(2) and np = 50

n 100 300 1000
Algorithms runtime NRMSE runtime NRMSE runtime NRMSE

CEMP 0.08 NAp 0.19 NAp 0.48 NAp

CEMP+MST 0.1 0 0.22 0 0.69 0

CEMP+GCW 0.09 2 × 10−4 0.2 2 × 10−4 0.56 3 × 10−3

Spectral 0.004 4 × 10−2 0.007 4 × 10−2 0.05 4 × 10−2

SDP 0.48 4 × 10−2 5.41 4 × 10−2 NA NA

IRLS 0.038 2 × 10−4 0.12 2 × 10−4 0.45 2 × 10−4

Boldface denotes the best (lowest) results in each column (for accuracy or time)

Table 3 Runtime (in seconds) and accuracy for G = SO(10) and np = 50

n 100 300 1000
Algorithms runtime NRMSE runtime NRMSE runtime NRMSE

CEMP 0.39 NAp 0.49 NAp 0.88 NAp

CEMP+MST 0.41 0 0.53 0 1.2 0

CEMP+GCW 0.41 2 × 10−8 0.75 2 × 10−8 5.45 2 × 10−8

Spectral 0.011 4 × 10−2 0.13 4 × 10−2 1.63 4 × 10−2

SDP 25.52 4 × 10−2 NA NA NA NA

IRLS 0.09 2 × 10−5 0.69 1 × 10−5 7.08 1 × 10−5

Boldface denotes the best (lowest) results in each column (for accuracy or time)

the values n = 100, 300, 1000, with p = 50/n and dimensions d = 2, 10, 50.
To be consistent with the underlying metric of other algorithms and with different
choices of dimensions d, we use the following scaled version of the Frobenius metric:
dG(g1, g2) = ‖g1 − g2‖F/(2

√
d) ∈ [0, 1]. We test the same algorithms of Sect. 7.5

and also CEMP+MST (it can be applied here since there is no noise, though in general
we do not recommend it).

Tables 2–4 report the runtimes of different algorithms,where each table corresponds
to a different value of d. In order to account for a possible tradeoff between runtime
and accuracy, they also report the normalized root mean squared error (NRMSE):

NRMSE =
√√√√ 1

4d|E |
∑
i j∈E

‖ĝi ĝ−1
j − g∗

i g
∗−1
j ‖2F .

These tables use “NAp" (not applicable) when NRMSE is not defined (for CEMP) and
“NA" (not available) when the memory usage exceeds the 48 GB limit. They report
“0" NRMSE error whenever the error is smaller than 10−15.

We note that SDP and Spectral have the lowest accuracy since they minimize a
least squares objective function, which is not robust to outliers. SDP is the slowest
algorithm in all experiments, and we could not implement it on our computer (whose
specifications are detailed in Sect. 7.1) when n ≥ 1000 or d ≥ 50. Spectral seems to
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Table 4 Runtime (in seconds) and accuracy for G = SO(50) and np = 50

n 100 300 1000
Algorithms runtime NRMSE runtime NRMSE runtime NRMSE

CEMP 21.06 NAp 24.74 NAp 23.18 NAp

CEMP+MST 21.08 0 24.78 0 23.43 0

CEMP+GCW 25.68 1 × 10−8 66.26 7 × 10−9 584.62 2 × 10−8

Spectral 1.32 4 × 10−2 12.06 4 × 10−2 147.09 4 × 10−2

SDP NA NA NA NA NA NA

IRLS 7.17 2 × 10−5 59.05 2 × 10−5 NA NA

Boldface denotes the best (lowest) results in each column (for accuracy or time)

be the fastest method when either d or n are sufficiently small. However, for n = 1000,
CEMP and CEMP+MST are faster than Spectral when d = 10 and d = 50; in the
latter case, they aremore than six times faster. The recovery error of IRLS is small in all
experiments. However, it is the second slowest algorithm. It also doubles the memory
usage of Spectral since it needs to store both the original Y in (6) and the weighted Y
in each iteration. Due to this issue, IRLS exceeds the memory limit when n = 1000
and d = 50. We note that in most of the experiments for d = 10, 50, CEMP+GCW
achieves NRMSE three orders of magnitude lower than that of IRLS. We also note
that CEMP+MST is completely accurate in all experiments and it is the fastest method
when d ≥ 10 and n = 1000. Since we fix np = 50 and since the complexity of CEMP
is of order O((npd)3), the runtime of CEMP does not change much in each table,
whereas the runtimes of the other algorithms clearly increases with n. We observe
that the runtime of the MST post-processing is almost negligible in comparison with
CEMP. Indeed, the time complexity of building the MST is pn2 log n and that of
computing gi = gi j g j along the spanning tree is O(nd3).

8 Conclusion

We proposed a novel message passing framework for robustly solving group syn-
chronization problems with any compact group under adversarial corruption and
sufficiently small noise. We established a deterministic exact recovery theory for
finite sample size with weak assumptions on the adversarial corruption (the ratio
of corrupted cycles per edge needs to be bounded by a reasonable constant). Previous
works on group synchronization assumed very special generative models. Some of
them only considered asymptotic recovery and they were often restricted to special
groups. Somewhat similar guarantees exist for the different problem of camera loca-
tion estimation, but we already mentioned their weaknesses in view of our guarantees.
We also established the stability of CEMP to bounded and sub-Gaussian noise. We
further guaranteed exact recovery under a previous uniform corruption model, while
considering the full range of model parameters.

There are different theoretical directions that may help in improving this work.
First of all, the theory for adversarial corruption assumes a uniform bound on the
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corruption ratio per edge, whereas in practice one should allow a small fraction of
edges to be contained in many corrupted cycles. We believe that it is possible to
address the latter setting with CEMP by adaptively choosing βt for different edges.
This way, instead of the current �∞ bound on the convergence, one can establish an �1
or �2 convergence bound. Nevertheless, the mathematical ideas behind guaranteeing
an adaptive reweighting strategy are highly complicated and hard to verify. Instead,
we prefer to clearly explain our theory with a simpler procedure.

Another future direction is to extend the theory to other classes of reweighting
functions, in addition to the indicator and exponential functions. In particular, one
may further consider finding an optimal sequence of reweighting functions under
certain statistical models. This direction will be useful once an adaptive reweighting
strategy is developed. On the other hand, when βt is the same for all edges, then Sect.
4.2.6 advocates for the exponential reweighting function.

We emphasized the validity of the exact recovery guarantees under UCM for any
q < 1 and for various groups. However, as we clarified in Sect. 6.4, the sample
complexity bound implied by our estimates does not match the information-theoretic
one. It will be interesting to see if a more careful analysis of a CEMP-type method
can fill the gap. We believe that this might be doable for the dependence of the sample
complexity on qg , but not on p (see our discussion in Sect. 6.4 and our numerical
results in Sect. 7.5). We expect that the use of higher-order cycles will improve the
dependence on p but worsen the dependence on qg .

The framework of CEMP can be relevant to other settings that exploit cycle consis-
tency information, but with some limitations. First of all, in the case of noncompact
groups, one can scale the given group elements. In particular, if both {gi }ni=1 and
{g∗

i }ni=1 lie in a ball of fixed radius, then by appropriate scaling, one can assume that
s∗
i j ≤ 1 for all i j ∈ E . The theory thus extends to noncompact groups with finite
corruption models and bounded noise. If the distribution of the corruption or noise has
infinite support, then our theory is invalid when the sample size approaches infinity,
though it is still valid for a finite sample size.

We also claim that CEMP can be extended to the problem of camera location
estimation. Since the scale information of group ratios is missing, one should define
alternative notions of cycle consistency, inconsistency measure and corruption level,
such as the ones we proposed in [38]. In fact, using such notions, the AAB algo-
rithm of the conference paper [38] is CEMP-B with sik(t) + s jk(t) replaced by
max{sik(t), s jk(t)}. We remark that there is no significant difference between these
two comparable choices. We can develop a similar, though weaker, theory for exact
recovery by CEMP (or AAB) for camera location estimation. In order to keep the
current work focused, we exclude this extension. The main obstacle in establishing
this theory is that the metric is no longer bi-invariant and thus di j,k may not equal to
s∗
i j , even for uncorrupted cycles.
A different notion of cycle consistency is also used in a histogram-based method

for the identification of common lines in cryo-EM imaging [42]. We believe that the
reweighting procedure in CEMP can be incorporated in [42] to reduce the rate of false
positives.

We claim that cycle consistency is also essential within each cluster of vector
diffusion maps (VDM) [44], which aims to solve a different problem of clustering
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graph nodes, for example, clustering cryo-EM imageswith different viewing directions
[16,44]. Indeed, in VDM, powers of the connection adjacency matrix give rise to
“higher-order connection affinities” between nodes i and j obtained by the squared
norm of a weighted sum of the products of group ratios gLi j along paths Li j from i
to j (see, e.g., demonstration in Figure 4(a) in [15]). For i and j in the same cluster,
cycle consistency implies that each product of group ratios gLi j is approximately gi j
(or exactly gi j if there is no corruption). Consequently, for each i j ∈ E , the sum of
gLi j over Li j with fixed length (depending on the power used) is approximately a
large number times gi j and thus has a large norm, that is, the higher-order connection
affinity is large. On the other hand, if i and j belong to different clusters, then the
different gLi j ’s may possibly cancel or decrease the effect of each other (due to the
different properties of the clusters). Consequently, the higher-order connection affinity
is typically small. We note that these affinities are somewhat similar to our weighted
average of cycle inconsistencies,

∑
L wLdG(gL , eG). However, unlike our reweighting

strategy, VDM weighs cycles in a single step using Gaussian kernels (see (3) and (4)
in [16]). We believe that a suitable reweighting strategy can be applied to VDM to
improve its classification accuracy. After the submission of this work, [40] showed
that for the permutation group with a very special metric, CEMP is equivalent to an
iterative application of the graph connection weight (GCW) matrix, which is used in
VDM in a different way (see also Sect. 4.2.7). Unfortunately, we find it unlikely to
extend the ideas of [40] to other groups and metrics.

A relevant question is the possibility of extending all results to higher-order cycles
and the usefulness of such an extension. We believe that such an extension is not dif-
ficult. As mentioned above, we expect higher-order cycles to help with sparse graphs,
but possibly degrade the ability to handle very high corruption and also significantly
enlarge the computational complexity. We did not find it necessary to explore this,
since datasets of structure from motion seem to have enough 3-cycles per edge to
guarantee that CEMP can reliably estimate the corruption levels of most edges. In this
case, the combination of CEMPwith other methods can improve results for edges that
may not have enough 3-cycles (see, e.g., [38,39]).

Finally, we mention that while the theory is very general and seems to apply well
to the common compact groups Z2, SN and SO(d), specific considerations need to
be addressed for special groups and special instances. For example, the problem of
recovering orientations of jigsaw puzzles [24] can be solved by Z4 synchronization,
where its ideal graph is a two-dimensional lattice. In this setting, each edge is contained
in atmost two cycles of length atmost 4. Thus effective inference of corruption requires
cycles with length greater than 4.
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Appendix

Proof of Proposition 1

1 → 3: One can find the minimum spanning tree of the connected graph G([n], Eg),
arbitrarily assign an element g1 at the root of the tree, and inductively assign the
value g j to a node whose parent was assigned the value gi as follows: g j = g∗

j i gi
(i j ∈ Eg and thus g∗

i j is known). This results in correct recovery of {g∗
i }ni=1 up to right

multiplication by the arbitrarily assigned element g1.
3 → 2: Given {gi j }i j∈E and the known {g∗

i }i∈[n] one can immediately compute g∗
i j =

g∗
i g

∗
j
−1 and s∗

i j = dG(gi j , g∗
i j ) for i j ∈ E .

2→ 1: Eg is exactly recovered by finding edges such that s∗
i j = 0.

Proof of Lemma 1

Without loss of generality fix L = {12, 23, 34, . . . , n1}. By the bi-invariance of dG
and the triangle inequality

|dL − s∗
12| =

∣∣∣dG (g12g23 · · · gn1 , eG
)− dG

(
g12g

∗−1
12 , eG

)∣∣∣
≤ dG

(
g12g23 · · · gn1 , g12g

∗−1
12

)
= dG

(
g∗
12g23 · · · gn1 , eG

)
. (90)

Note that for all 1 ≤ i ≤ n − 1, the bi-invariance of dG implies that

s∗i i+1 = dG(gi i+1, g
∗
i i+1) = dG

(
g∗
12 · · · g∗

i−1 i gi i+1 · · · gn1 , g∗
12 · · · g∗

i i+1gi+1 i+2 · · · gn1
)
.(91)

Application of (2) and then several applications of the triangle inequality and (91)
yield

dG
(
g∗
12g23 · · · gn1 , eG

) = dG
(
g∗
12g23 · · · gn1 , g∗

12g
∗
23 · · · g∗

n1

)
≤ dG

(
g∗
12g23 · · · gn1 , g∗

12g
∗
23g34 · · · gn1

)+ dG
(
g∗
12g

∗
23g34 · · · gn1 , g∗

12g
∗
23 · · · g∗

n1

)
≤

n∑
i=2

dG
(
g∗
12 · · · g∗

i−1 i gi i+1 · · · gn1 , g∗
12 · · · g∗

i i+1gi+1 i+2 · · · gn1
)

=
n∑

i=2

s∗
i i+1 =

∑
i j∈L\{12}

s∗
i j . (92)

We conclude the proof by combining (90) and (92).
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Proof of Proposition 3

For any i j ∈ E , let Li j denote a path between nodes i and j . We claim that h is
invertible and its inverse is h−1((gi j )i j∈E ) = [(gLik gk)i∈[n]], where k ∈ [n] (due to
the equivalence relationship, this definition is independent of the choice of k). Using
the definitions of h−1 and then h, basic group properties and the cycle consistency
constraints for cycles in C,

hh−1((gi j )i j∈E ) = h([(gLik gk)i∈[n]]) =
(gLik gk(gL jk gk)

−1)i j∈E = (gLik g
−1
L jk

)i j∈E = (gi j )i j∈E .

For i j ∈ E , define ĝi j = gi g
−1
j and note that (ĝi j )i j∈E is cycle-consistent for any cycle

in G([n], E). Thus, ĝLik = ĝik = gi g
−1
k . Using this observation and the definitions

of h and h−1

h−1h([(gi )i∈[n]]) = h−1((ĝi j )i j∈E ) = [(ĝLik gk)i∈[n]] = [(gi )i∈[n]].

The combination of the above two equations concludes the proof.

Proof of Proposition 4

For each i j ∈ E and L ∈ Ni j , the cycle weight computed from the shifted corruption
levels {si j (t) + s}i j∈E is

wi j,L(t) = exp(−βt
∑

ab∈NL\{i j}(sab(t) + s))∑
L ′∈Ni j

exp(−βt
∑

ab∈NL′ \{i j}(sab(t) + s))

= exp(−βt
∑

ab∈NL\{i j} sab(t)) exp(−βt ls)∑
L ′∈Ni j

exp(−βt
∑

ab∈NL′ \{i j} sab(t)) exp(−βt ls)

= exp(−βt
∑

ab∈NL\{i j} sab(t))∑
L ′∈Ni j

exp(−βt
∑

ab∈NL′ \{i j} sab(t))
,

which equals the original cycle weight.

Proof of Theorem 3

We prove the theorem by induction. For t = 0, we note that a similar argument to (42)
implies that
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εi j (0) ≤

∑
k∈Ni j

|di j,k − s∗
i j |

|Ni j | =

∑
k∈Gi j

|di j,k − s∗
i j | + ∑

k∈Bi j
|di j,k − s∗

i j |

|Ni j |

≤

∑
k∈Gi j

|s∗
ik + s∗

jk | + |Bi j |

|Ni j | ≤ |Gi j |
|Ni j | · 2δ + |Bi j |

|Ni j | ≤ λ + 2δ ≤ 1

β0
− δ. (93)

Next,we assume that ε(t)+δ < 1
βt
for an arbitrary t > 0 and show that ε(t+1)+δ <

1
βt+1

. We use similar notation and arguments as in the proof of Theorem 1. We note

that 1
βt

≥ ε(t) + δ ≥ maxi j∈Eg εi j (t) + δ = maxi j∈Eg si j (t) and thus for any i j ∈ E ,

Gi j ⊆ Ai j (t). We also note that si j (t) ≤ 1
βt

implies that s∗
i j ≤ si j (t) + ε(t) ≤

si j (t) + 1
βt

− δ ≤ 2 1
βt

− δ. We use these observations in an argument analogous to
(46), which we describe in short as follows:

εi j (t + 1) ≤

∑
k∈Gi j

1{sik (t),s jk (t)≤ 1
βt

}2δ + ∑
k∈Bi j

1{sik (t),s jk(t)≤ 1
βt

}(4
1
βt

− 2δ)

|Ai j (t)|
≤ |Gi j |

|Ni j |2δ + |Bi j |
|Ni j | (4

1

βt
− 2δ). (94)

Maximizing over i j ∈ E the LHS andRHS of (94) and using the assumptions λ < 1/4
and 4λ 1

βt
+ (3 − 4λ)δ < 1

βt+1
< 1

βt
, we conclude (51) as follows:

ε(t + 1) + δ ≤ 2(1 − λ)δ + 2λ(2
1

βt
− δ) + δ = 4λ

1

βt
+ (3 − 4λ)δ <

1

βt+1
.

At last, since 1
βt+1

> 4λ 1
βt

+ (3 − 4λ)δ and β0 < 1−4λ
(3−4λ)δ

, βt < 1−4λ
(3−4λ)δ

for all
t ≥ 0. The latter inequality and the fact that {βt }t≥0 is increasing imply that ε is well
defined (that is, limt→∞ βt exists) and 0 < ε ≤ 1. Taking the limit of (51) when
t → ∞ yields (52).

Proof of Theorem 4

We prove the theorem by induction. For t = 0, (93) implies that ε(0) ≤ λ + 2δ and
thus 1

4β0
> λ+ 5

2δ ≥ ε(0)+ 1
2δ. Next, we assume that ε(t)+ 1

2δ < 1
4βt

and show that

ε(t + 1) + 1
2δ < 1

4βt+1
.

By a similar proof to (47) and (48), while using the current model assumption
maxi j∈Eg s

∗
i j < δ, we obtain that

ε(t + 1)i j ≤ 2δ +

∑
k∈Bi j

e
−βt

(
s∗ik+s∗jk

) (
s∗
ik + s∗

jk

)
eβt(εik(t)+ε jk(t))

∑
k∈Gi j

e−βt(2δ+εik(t)+ε jk(t))
.
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The same arguments of proving (49) and (50) yield the estimate

ε(t + 1) ≤ 2δ + λ

1 − λ

1

eβt
eβt (2δ+4ε(t)).

We conclude (53) by applying the assumptions ε(t) + 1
2δ ≤ 1

4βt
and 5

2δ + λ
1−λ

1
βt

<
1

4βt+1
< 1

4βt
to the above equation as follows:

ε(t + 1) + 1

2
δ ≤ 5

2
δ + λ

1 − λ

1

eβt
eβt (2δ+4ε(t)) ≤ 5

2
δ + λ

1 − λ

1

βt
<

1

4βt+1
.

Establishing 0 < ε ≤ 1 and (54) is the same as in the proof of Theorem 3 in Sect.
5.

Proof of Theorem 5

For the fixed x > 0, we define

Gx
i j :=

{
k ∈ Gi j : max{s∗

ik, s
∗
jk} < σμ + σ x

}
and λx = max

i j∈E

(
1 − |Gx

i j |/|Ni j |
)

.

Since s∗
i j ∼ sub(μ, σ 2), for any k ∈ Gi j and i j ∈ E

Pr(k /∈ Gx
i j ) < exp(−x2/2).

We note that the random variable Xk = 1{k /∈Gx
i j } is a Bernoulli random variable with

mean pk < exp(−x2/2). Using the above notation, p̄ = 1/|Gi j | ·∑k∈Gi j
pk <

exp(−x2/2). We define c = exp(−x2/2)/ p̄ > 1. The application of the one-sided
Chernoff bound in (74) to the independent Bernoulli random variables {Xk}k∈Gi j with
η = 2c − 1 > 1 results in

Pr

(
1 − |Gx

i j |
|Gi j | > 2e− x2

2

)
= Pr

⎛
⎝ 1

|Gi j |
|Gi j |∑
k=1

Xk > 2c p̄

⎞
⎠ < e− 1

3 η p̄|Gi j |.

Since (1 + η) p̄ = 2 exp(−x2/2) and η > 1, we obtain that η p̄ > (1 + η) p̄/2 =
exp(−x2/2), and consequently,

Pr

(
1 − |Gx

i j |
|Gi j | > 2e− x2

2

)
< e− 1

3 e
− x2

2 |Gi j |. (95)
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Application of a union bound over i j ∈ E to (95) yields

Pr

(
1 − min

i j∈E
|Gx

i j |
|Gi j | > 2e− x2

2

)
< |E |e− 1

3 e
− x2

2 min
i j∈E |Gi j |

< |E |e− 1
3 e

− x2
2 min

i j∈E |Ni j |(1−λ)

.

(96)

We note that

λx = 1 − min
i j∈E

|Gx
i j |

|Ni j | = 1 − min
i j∈E

|Gi j |
|Ni j |

|Gx
i j |

|Gi j | ≤ 1 − (1 − λ) min
i j∈E

|Gx
i j |

|Gi j | . (97)

The combination of (96) and (97) results in

Pr

(
λx < 1 − (1 − λ)

(
1 − 2e− x2

2

))
> 1 − |E |e− 1

3 e
− x2

2 min
i j∈E |Ni j |(1−λ)

.

Applying the inequality 1 − (1 − λ)(1 − 2e− x2
2 ) < λ + 2e− x2

2 for 0 < λ < 1/4 to
the above equation yields

Pr

(
λx < λ + 2e− x2

2

)
> 1 − |E |e− 1

3 e
− x2

2 min
i j∈E |Ni j |(1−λ)

. (98)

That is, with the probability indicated on the RHS of (98), for any i j ∈ E , there is a
subset of Ni j whose proportion is at least 1− λ − 2 exp(−x2/2) and for any element
indexed by k in this subset, both s∗

ik and s
∗
jk are bounded above by σμ + σ x . We thus

conclude the proof by applying Theorems 3 and 4, while replacing their parameters δ

and λ with the current parameters σμ + σ x and λ + 2 exp(−x2/2), respectively.

Proof of Proposition 5

We note that under UCM, ŝi j = s∗
i j with probability 1 if and only if |Gi j | ≥ 2. Indeed,

|Gi j | ≥ 2 if and only if there are at least two elements in Di j equal to s∗
i j . Furthermore,

for k ∈ Bi j , the values of di j,k are distinct from each other with probability 1, due
to the smooth density of the Haar measure over the continuous group. Thus, with
probability 1, s∗

i j is the mode of Di j , or equivalently, ŝi j = s∗
i j .

In order to conclude the proof, we show that the condition |Gi j | ≥ 2 holds for all
i j ∈ E with sufficiently high probability. We note that Xk := 1{k∈Gi j } for k ∈ [n] are
i.i.d. Bernoulli random variables with mean μ = p2q2g . By applying Chernoff bound
in (80) to Xk , we obtain that

Pr(|Gi j | ≥ 2) = Pr

⎛
⎝1

n

∑
k∈[n]

Xk ≥ 2

np2q2g
μ

⎞
⎠ > 1 − e

− 1
3

(
1− 2

np2q2g

)2
p2q2gn

. (99)
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If n/ log n ≥ 10/(p2q2g), then 2/(np
2q2g) < 1/5 for n > 2 and thus (99) implies that

Pr(|Gi j | ≥ 2) > 1 − e− 16
75 p

2q2gn .

By taking a union bound over i j ∈ E and applying the assumption n/ log n ≥
c/(p2q2g) for c ≥ 10, we obtain that

Pr(min
i j∈E |Gi j | ≥ 2) > 1 − n2e− 16

75 p
2q2gn ≥ 1 − n2e− 16c

75 log n

=1 − n2−
16c
75 ≥ 1 − n− 2

15 .

and consequently with the same probability ŝi j = s∗
i j for all i j ∈ E .

Proofs of the Preliminary Results of Sect. 6.6.1

Proof of Proposition 6

We first assume the case where
√
2/2 < q∗ < 1, or equivalently, qmin = 1 − q2∗ . For

any fixed i j ∈ E , we define the random variables Xk = 1{k∈Bi j }, k ∈ Ni j . We note
that they are i.i.d. Bernoulli with mean qmin = 1 − q2∗ . We further note that λi j is the
average of Xk over all k ∈ Ni j . Thus, direct application of Chernoff bound in (80)
implies (67) in this case.

Next, we assume the case where q∗ ≤ √
2/2, or equivalently, qmin = q2∗ . For any

i j ∈ E , define the random variables Yk = 1{k∈Gi j }, k ∈ Ni j . We note that they are
i.i.d. Bernoulli with mean q2∗ . By applying Chernoff bound (see (80)) with {Yk}k∈Ni j ,
we obtain (67) in this case and thus in general.

At last, applying a union bound over i j ∈ E to (67) yields (68).

Proof of Proposition 7

The idea of the proof is similar to that of Proposition 6. We first note that for any fixed
i j ∈ E : themean of 1{k∈Gi j } for k ∈ Ni j equals q2∗ ; Pr(λi j > x) = Pr(1−λi j < 1−x);
and 1 − λi j is the average over k ∈ Ni j of the Bernoulli random variables 1{k∈Gi j }.
The proposition is concluded by applying a one-sided version of Chernoff bound in
(80) with {1{k∈Gi j }}k∈Ni j (for each fixed i j ∈ E), η = 1 − (1 − x)/q2∗ , μ = q2∗ and
m = |Ni j |.

Proof of Proposition 8

We consider three disjoint cases of k’s in the sum of (38). Since E(si j (0)) = E(di j,k),
we compute in each case the contribution of that case to the expectation of di j,k given
that case.

The first case is when k ∈ Gi j , so di j,k = s∗
i j , and thus the corresponding elements

in (38) equal s∗
i j . This case occurs w.p. q

2
g .
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The second case is when k ∈ Bi j and either ik or jk (but not both) is corrupted,
and it occurs with probability 2qg(1 − qg). Without loss of generality, we assume
that ik ∈ Eg and jk ∈ Eb. Using the bi-invariance of dG , we obtain that in this
case, di j,k = dG(gi j g jkg∗

ki , eG) = dG(g∗
ki gi j g jk, eG). For any given g∗

ki and gi j ,
g∗
ki gi j g jk ∼ Haar(G), due to the fact that g jk ∼ Haar(G) and the definition of Haar

measure. Thus, in this case E(di j,k |ik ∈ Eg, jk ∈ Eb) = zG .

The last case is when k ∈ Bi j and both ik and jk are corrupted. This case occurs
with probability (1 − qg)2. We claim that since g jk , gki ∼ Haar(G) and g jk and gki
are independent, g jkgki ∼ Haar(G). Indeed, for any g ∈ G, gg jk ∼ Haar(G), and
furthermore, gki is independent of both g jk and gg jk . Thus, g jkgki and gg jkgki are
identically distributed for any g ∈ G and thus g jkgki ∼ Haar(G). Consequently, for
fixed gi j , gi j g jkgki ∼ Haar(G) and thus

E(di j,k |ik ∈ Eb, jk ∈ Eb) = E(dG(gi j g jkgki , eG)|ik ∈ Eb, jk ∈ Eb) = zG .

Combining all the three cases, we conclude (69).

Proof of Lemma 4

Denote γi j = |si j (0) − E(si j (0))| for i j ∈ E and γ = maxi j∈E γi j , so that the
condition of the lemma can be written more simply as 1/(4β0) ≥ γ . By rewriting
si j (0) as q2gs

∗
i j + (1 − q2g)zG + γi j and applying (40) with t = 0,

εi j (1) ≤

∑
k∈Bi j

e
−β0

(
q2g s

∗
ik+γik+q2g s

∗
jk+γ jk

) (
s∗
ik + s∗

jk

)
∑

k∈Gi j

e
−β0

(
q2g s

∗
ik+γik+q2g s

∗
jk+γ jk

) .

By first applying the obvious facts: |γik |, |γ jk | ≤ γ and s∗
ik = s∗

jk = 0 for k ∈ Gi j ,
then applying the assumption 1/(4β0) ≥ γ , and at last the inequality xe−ax ≤ 1/(ea)

for x , a > 0 with x = s∗
ik + s∗

jk and a = β0q2g , we obtain that

εi j (1) ≤

∑
k∈Bi j

e
−β0q2g

(
s∗ik+s∗jk

) (
s∗
ik + s∗

jk

)
e4β0γ

|Gi j |

≤
e
∑

k∈Bi j
e
−β0q2g

(
s∗ik+s∗jk

) (
s∗
ik + s∗

jk

)
|Gi j | ≤ |Bi j |

|Gi j |
1

q2gβ0
.

The lemma is concluded by maximizing over i j ∈ E both the LHS and RHS of the
above inequality.
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Proof of Lemma 5

We prove (82), or equivalently, ε(t) < 1/(4βt ) for all t ≥ 1, by induction. We
note that ε(1) < (1/4β1) is an assumption of the lemma. We next show that ε(t +
1) < 1/(4βt+1) if ε(t) < 1/(4βt ). By combining (48) and the induction assumption
ε(t) < 1/(4βt ) and then using the definition of λ,

εi j (t + 1) ≤
e
∑

k∈Bi j
e
−βt

(
s∗ik+s∗jk

) (
s∗
ik + s∗

jk

)
|Gi j | ≤ e

λ

1 − λ

1

|Bi j |
∑
k∈Bi j

e
−βt

(
s∗ik+s∗jk

) (
s∗
ik + s∗

jk

)
.

Combining (81) with the above equation, then applying the definition of M , and at
last using βt+1 = βt/r ,

ε(t + 1) < e
λ

1 − λ

1

Mβt
= r

4βt
= 1

4βt+1
.

Proof of Lemma 6

We arbitrarily fix i j ∈ E and β > 0. We denote m = |Bi j | and assume that k =
1, . . . ,m index the elements of Bi j . We use the i.i.d. random variables Xk = s∗

ik + s∗
jk ,

k = 1, . . . ,m, with cdf denoted (as earlier) by P . LetP andPm denote the functionals
that provide the expectation with respect to the probability and empirical measures of
{Xk}mk=1, respectively. That is, P f = ∫ f (x)dP(x) and Pm f = 1

m

∑m
k=1 f (Xk). For

any functionalY : F(β) → R, let ‖Y‖F(β) = sup f ∈F(β) |Y( f )|. Given this notation,
we can rewrite (83) that we need to prove as follows:

Pr

(
‖Pm − P‖F(β) > V (β) + c

√
logm

m

)
< e− 1

3mV (β). (100)

The above formulation is similar to the following uniform version of Bennett’s
inequality in our setting (see Theorem 2.3 of [7]): For any t > 0

Pr(‖Pm − P‖F(β) > E‖Pm − P‖F(β) + t) < e−mvh( t
v ), (101)

whereh(x) = (x+1) log(x+1)−x andv = V (β)+2E‖Pm−P‖F(β) (V is the sameas
ours).We remark that (101) holds under the condition that sup fτ ∈F(β) ‖ fτ −P fτ‖∞ ≤
1. This condition holds in our setting since 0 ≤ fτ (x) ≤ 1 for any τ ≥ 0 and x ≥ 0.

In order to conclude (100) from (101), we formulate the following lemma that
provides an upper bound for E‖Pm − P‖F(β) in (101). We prove it in Sect. 1.
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Lemma 7 Assume the setting of Theorem 7. There exists an absolute constant c1 such
that for all β,m > 0

E‖Pm − P‖F(β) ≤ c1

√
logm

m
. (102)

By letting t = V (β) + 2c1
√
logm/m in (101) and c = 3c1 in (100) and applying

Lemma 7, we conclude that the event of (100) contains the event of (101). It thus
remains to show that the probability bound in (100) controls the one in (101). This
follows from the facts that t/v > 1 (which follows by direct application of Lemma 7)
and h(x) > x/3 when x ≥ 1 (which is a direct calculus exercise).

Proof of Lemma 7

In order to upper bound E‖Pm −P‖F(β), we use tools from empirical risk minimiza-
tion. Define Rm( f ) = 1

m

∑m
k=1 εk fτ (Xk), where εk are i.i.d. Rademacher random

variables. We first note that E‖Pm − P‖F(β) can be controlled by the Rademacher
complexity of F(β), which is defined as E‖Rm‖F(β). Specifically, Theorems 2.1 and
3.11 of [26] state that there exists an absolute constant c2 such that

E‖Pm − P‖F(β) ≤ 2E‖Rm‖F(β) ≤ c2√
m
E

∫ 2σm

0

√
log N (F(β); �2(Pm); ε)dε,

(103)

where σ 2
m = sup fτ ∈F(β) Pm f 2 and N (F(β); �2(Pn); ε) is the covering number of

F(β) using �2(Pm)-balls of radius ε. Note that the �2(Pm)-ball of radius ε centered at
any function fτ∗(x) ∈ F(β) is defined as

{
fτ ∈ F(β) : 1

m

∑m
k=1( fτ (Xk) − fτ∗(Xk))

2

< ε2
}
. In view of (103), since F(β) ⊆ F(0) for any β > 0, we can prove (102) by

showing that there exists an absolute constant c3 such that

E

∫ 2σm

0

√
log N (F(0); �2(Pm); ε)dε ≤ c3

√
logm. (104)

In order to conclude (104), we first give an upper bound for N (F(0); �2(Pm); ε) for
fixed ε, m and {Xk}mk=1 by constructing a specific �2(Pm)-ball covering {Bi }Nε

i=1 of
F(0). We note that since fτ (Xk) ≤ 1 for any f ∈ F(0) and Xk ≥ 0, the covering
number N (F(0); �2(Pm); ε) equals 1 for all ε ≥ 1; therefore, its log is zero and
in this case there is no contribution to the integral in (104). It is thus sufficient to
consider ε < 1. For simplicity, we represent each ball Bi in our proposed cover by an
interval Ii = [ai , bi ) that indicates the range of parameters τ of functions in Bi . In our
construction, I1 = [a1,∞), bi+1 = ai for i = 1, . . . , Nε −1 and {Ii }Nε

i=1 cover [0,∞).
This implies that Bi = { fτ : τ ∈ Ii }, i = 1, . . . , Nε, cover F(0) = { fτ : τ ∈ [0,∞)}.

123



Foundations of Computational Mathematics

We define

I1 =
(

2 log( 1
ε
) + 2

min1≤k≤m Xk
,∞
)

. (105)

We claim that the ball B1 = { fτ : τ ∈ I1} is contained in B(0, ε), whose center
fτ (x) ≡ 0 corresponds to τ = ∞. Indeed, if τ ∈ I1 and ε < 1, then τ Xk >

2 log(1/ε) + 2 > 2 and in particular exp( 12τ Xk) > τ Xk . Using these inequalities, we
verify our claim as follows:

√√√√ 1

m

m∑
k=1

(e−τ Xk+1τ Xk)2 ≤ max
1≤k≤m

e−τ Xk+1τ Xk < max
1≤k≤m

e− 1
2 τ Xk+1 < ε.

Given Ii = (ai , bi ], we define Ii+1 = (ai+1, bi+1], where bi+1 = ai and ai+1 =
ai − ε/(2e), so that |Ii+1| = ε/(2e). We claim that Bi+1 = { fτ : τ ∈ Ii+1} is
contained in B( fbi+1 , ε). Indeed, since the function xex+1 is Lipschitz with constant
e and 0 ≤ Xk ≤ 2, for any τ ∈ Ii+1

√√√√ 1

m

m∑
k=1

( fτ (Xk) − fbi+1(Xk))2 ≤ max
1≤k≤m

|e−τ Xk+1τ Xk − e−bi+1Xk+1bi+1Xk |

≤ e max
1≤k≤m

|τ − bi+1|Xk ≤ 2e|ai+1 − bi+1| = ε.

We have thus obtained a covering of F(0) by �2(Pm)-balls with radius ε. The total
number of corresponding intervals (where intervals Ii , i ≥ 2, cover (0, a1) and have
length ε/(2e)) is at most 2ea1/ε + 1. Using this observation and the value of a1
specified in (105), then applying the facts Xk ≤ 2 and ε < 1, and at last the inequality
1 + log x ≤ x , we obtain that

N (F(β); �2(Pm); ε) ≤ 4e
(log( 1ε ) + 1) 1ε
min1≤k≤m Xk

+ 1 < 6e
(log( 1ε ) + 1) 1ε
min1≤k≤m Xk

< e3
1

min1≤k≤m Xk

1

ε2
.

(106)

Wenote that the cdf ofmin1≤k≤m Xk is 1−(1−P(x))m . Combining this observation,
the fact that ε < 1 and (106), and then applying basic inequalities, using the notation
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a+ := max(a, 0), and in particular final application of Jensen’s inequality with the
concave function

√
x , we obtain that

E

∫ 2σm

0

√
log N (F(β); �2(Pm ); ε)dε <

∫ 2

0

∫ 1

0

√
log

1

x
+ 2 log

1

ε
+ 3 dε d(1 − (1 − P(x))m )

≤
∫ 2

0

∫ 1

0

(√(
log

1

x

)
+

+
√
2

(
log

1

ε

))
dε d(1 − (1 − P(x))m ) + √

3

=
∫ 1

0

√
log

1

x
d(1 − (1 − P(x))m ) + √

2
∫ 1

0

√
log

1

ε
dε + √

3

≤
√∫ 1

0
log

1

x
d(1 − (1 − P(x))m ) + √

2 + √
3. (107)

Next, we give an upper bound for the first term in the RHS of (107), while con-
sidering the two cases of Theorem 7. If Xk , 1 ≤ k ≤ m, is supported on [a,∞) and
a � 1/m, then

∫ 1

0
log

1

x
d(1 − (1 − P(x))m) ≤

(
log

1

a

)
+

� logm. (108)

If on the other hand, the quantile function Q(x) is differentiable and Q′(x)/Q(x) �
1/x for x < P(1), then we substitute u = 1 − P(x) and obtain that

∫
x∈[0,1]

log
1

x
d(1 − (1 − P(x))m) = −

∫
u∈[1−P(1),1]

log
1

Q(1 − u)
d(1 − um)

=
∫
u∈[1−P(1),1]

(1 − um)d log
1

Q(1 − u)
=
∫ 1

1−P(1)
(1 − um)

Q′(1 − u)

Q(1 − u)
du

�
∫ 1

0

1 − um

1 − u
du =

∫ 1

0

m−1∑
i=0

uidu =
m∑
i=1

1

i
≤ (logm + 1). (109)

Combining (107)-(109), we conclude (104) and thus Lemma 7.
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