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The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multi-
variate genome-wide association study meta-analysis of 8,246 Europeanindividuals, we identified 203 genome-wide-significant
signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the
regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several
regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated
actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are

shaped by both individual and coordinated genetic actions.

n 1991, Atchley and Hall epitomized one of the major problems
in contemporary biology as the need “to understand how com-
plex morphological structures arise during development and how
they are altered during evolution” (p. 102)". This problem continues
to captivate biologists, geneticists, anthropologists and clinicians
almost three decades later. In their review, the authors describe
a ‘complicated developmental choreography’ in which intrinsic
genetic factors, epigenetic factors and interactions between the two
make up the progeny genotype, which engages with the environment
to ultimately produce a complex morphological trait composed of
separate component parts'. We now understand that the intrinsic
genetic factors ultimately contributing to complex morphologi-
cal traits consist not only of single variants altering protein struc-
ture and/or function, but also noncoding variants and interactions
among variants, each affecting multiple tissues and developmental
timepoints. This realization requires methods capable of describ-
ing the genetic architecture of complex morphological traits, which
includes identifying the individual genetic variants contributing to
morphological variation and interactions among those variants™’.
The human face—an exemplar complex morphological struc-
ture—is highly multipartite and results from the intricate coordina-
tion of genetic, cellular and environmental factors**. Through prior
genome-wide association studies (GWAS), over 100 loci have been
implicated in normal-range facial morphology’~* (Supplementary

Table 1). However, as with all complex morphological traits, our
ability to identify and describe the genetic architecture of the face
is limited by our ability to accurately characterize its phenotypic
variation®, identify variants of both large and small effect’” and
identify interactions between variants. We previously described a
data-driven approach to facial phenotyping, which facilitated the
identification and replication of 15 loci involved in global-to-local
variation in facial morphology'. Here, we apply this phenotyp-
ing approach to two larger cohorts from the United States and
United Kingdom (ry,, =8,246; Supplementary Table 2) and apply
multivariate techniques to uncover new biological insights into
the genetic architecture of the human face. We now identify 203
genome-wide-significant (120 also study-wide-significant) sig-
nals, located in 138 cytogenetic bands, associated with multivariate
normal-range facial morphology. Many of these loci harbor genes
that are involved in craniofacial syndromes but that had not yet
been observed in GWAS for normal-range facial morphology; how-
ever, 53 genome-wide-significant (26 also study-wide-significant)
peaks are located in regions with no previously known role in facial
development or disease, potentially pointing to previously unknown
genes and pathways involved in facial development. We addition-
ally provide evidence that variants at our genome-wide-significant
peaks are involved in regulating enhancer activity in cell types con-
trolling facial morphogenesis across the developmental timeline.
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Furthermore, we reveal interactions between variants at different
loci affecting similar aspects of facial shape variation, identify-
ing gene sets that work in concert to build human faces. With this
work, we not only push forward our understanding of human facial
genetics, but also illustrate the potential for researchers to confront
Atchley and Hall’s problem, by intensively characterizing complex
morphological variation and using advanced methods to identify
factors involved in the developmental choreography of complex
morphological structures.

Results

Multivariate phenotyping and meta-analysis framework. To
study facial variation at both global and local scales, we start with a
set of three-dimensional (3D) facial surface scans, upon which we
map a dense mesh of 7,160 homologous vertices*. We then apply
a data-driven facial segmentation approach, defined by grouping
vertices that are strongly correlated using hierarchical spectral clus-
tering'®”. The configurations of each of the resulting 63 segments
are then subjected independently to a Generalized Procrustes analy-
sis, after which principal component analysis (PCA) is performed
in conjunction with parallel analysis to capture the major pheno-
typic variation in each facial segment*** (Extended Data Fig. 1).
The number of principal components (PCs) kept at this stage of the
analysis ranged from 7 to 70, with segments containing large num-
bers of quasi-landmarks generally requiring more PCs to describe
the variation in that segment. The inherent shape variability in each
segment also plays a role in the number of PCs retained by paral-
lel analysis, with more variable segments retaining more PCs. For
example, although segments 5 and 25 contain similar numbers of
quasi-landmarks, because the variability of the nose (segment 5) is
generally greater than that of the lower cheeks (segment 25), the
parallel analysis for segment 5 retained 32 PCs while for segment 25
it retained only 20 PCs (Extended Data Fig. 1b).

We then tested for genetic association between the facial PCs and
7,417,619 SNPs by using a data-driven approach (Extended Data
Fig. 2). Within each segment, instead of a priori selecting the PCs
of interest, or treating each of the 63 segments as a single ‘trait, we
use canonical correlation analysis (CCA) to first identify the linear
combination of components in each segment maximally correlated
with the SNP being tested in the identification cohort. We call this
multivariate combination of PCs the ‘trait. Thus, each SNP is asso-
ciated (although not always with significance) with its own ‘trait’
in each segment. Subsequently, the verification cohort is projected
onto each of these traits, creating univariate ‘phenotype’ variables
that are tested for genotype—phenotype associations by using linear
regression. The projection ensures that the shape variation tested
in the verification step is equivalent to the ‘trait’ used in the iden-
tification step. The identification and verification P values are then
meta-analyzed using Stouffer’s method**®. The whole process is
then repeated, switching the dataset used for identification and veri-
fication, thereby resulting in 126 meta-analysis P values and traits
(63 segments X 2 meta-analysis tracks) for each SNP. Further details
are available in the Methods and Supplementary Notes 1 and 2.

Sharing of genome-wide signals between facial segments. We
first assessed the degree to which variation in each facial segment
shares the same patterns of association across the genome by com-
puting the linkage disequilibrium score correlation (LDSC) based
on genome-wide-association P values for each pair of facial seg-
ments**!. This 63 X 63 matrix of correlations was visualized on top
of the facial segmentation hierarchy to assess between-segment
correlations within and between facial quadrants (Extended Data
Fig. 3), although it is important to note that these LDSCs should
not be considered ‘genetic correlations’ in the typical way of a uni-
variate trait, since the z-scores used are unsigned. The LDSCs were
highest between segments of the same facial quadrant (that is, lips,
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nose, lower face, upper face), validating the hierarchical cluster-
ing used to initially define the segments (Extended Data Fig. 3b).
Average-linkage hierarchical clustering of the facial segments based
on the correlation values gave rise to four main clusters, each corre-
sponding primarily to segments from the same quadrant (Extended
Data Fig. 4). Despite substantial within-quadrant similarity, there
were notable correlations between groups of segments from differ-
ent quadrants (Extended Data Fig. 3a). Some of these specific cor-
relations reflect close physical proximity of the segments in different
quadrants (for example, segments 12 and 33), but some correlations
seem to reflect the shared embryological origins of groups of seg-
ments. Specifically, segments representing the nose (quadrant II)
and upper face (quadrant IV) cluster together, and most segments
representing the lips (quadrant I) and lower face (quadrant IIT) clus-
ter together (Extended Data Fig. 4). Quadrants II and IV together
approximate the frontonasal prominence, which appears earlier
in development than the mandibular and maxillary prominences,
which are approximated by quadrants I and III, respectively®.

Genome-wide-association meta-analysis. In total, we identified
17,612 SNPs with P values (Py, ys and/or Py i) lower than the
genome-wide threshold (P<5x107%). Of these, 11,398 SNPs also
passed the study-wide-significance threshold (P<6.96x107')
(Supplementary Fig. 1). For each peak passing the genome-wide
threshold, we designated the SNP with the lowest P value across
all facial segments as the ‘lead SNP) refining our results to 218
genome-wide-significant lead SNPs. Of these, 203 SNPs showed
consistent genetic effects on the trait identified in the US- and
UK-driven meta-analyses in the facial segment with the low-
est P value for that SNP (Fig. 1 and Supplementary Table 3), and
120 of these were also below study-wide significance. Visual rep-
resentations of the LocusZoom™ and effect plots for each of the
203 genome-wide-significant SNPs are available in the FigShare
repository™.

The global-to-local approach means that we often identified
associations between a single SNP and variation in many facial seg-
ments. In this article, we focus primarily on the segment in which the
SNP had its lowest P value (the ‘Best segment’) and provide infor-
mation on in which meta-analysis track (Meta-US or Meta-UK)
the SNP reached this significance level (the ‘Best meta-analysis
track’). Thus, throughout the rest of the article, the reported P val-
ues for each SNP will be in the format of Py, ., (Best segment) =
value. By plotting the strongest association results for each segment
(Fig. 1, left), segments 1 and 2 are visibly the ‘Best segment’ for most
SNPs, with n =20 SNPs reaching lowest significance in the full face
(segment 1) in the US-driven meta-analysis (n=15 for Meta-UK)
and n=19 SNPs reaching lowest significance in segment 2 in the
US-driven meta-analysis (n =18 for Meta-UK).

Genes near lead SNPs are enriched for both craniofacial and limb
development. In a GREAT* analysis of the regions surrounding the
203 genome-wide-significant lead SNPs, the top ten terms (based
on lowest binomial P values) in the mouse phenotype, human phe-
notype and gene ontology (GO) biological processes categories are
all highly relevant to craniofacial shape and overall morphology
(Extended Data Fig. 5a), with the top human phenotype being oral
clefting. A FUMA™ analysis of the same regions highlighted genes
overlapping several pathways related to abnormal cellular main-
tenance and also included pathways highly relevant for morpho-
logical development, like the Wnt, Hedgehog and TGF signaling
pathways (Extended Data Fig. 5b).

Facial GWAS peaks are enriched for enhancers specific to cell
types across the timeline of facial development. To assess the likely
cell types and developmental timepoints in which our GWAS regions
are active, we compiled H3K27ac ChIP-seq signals—detecting a
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Fig. 1| Overall results of US-driven and UK-driven meta-analyses. On the left, numbered blocks representing the 63 facial segments arranged and colored
according to quadrant (I, orange; I, red; ll1, light blue; IV, dark blue), the full face (white) and segments 2 (light orange) and 3 (ice blue). The histogram
arranged on the left side represents the number of genome-wide-significant lead SNPs reaching their lowest P value in each segment, with each rectangle
representing one SNP. The US-driven meta-analysis results are on the outside of the circle and the UK-driven meta-analysis results are on the inside of

the circle. In the center, the global-to-local facial segmentation of all 3D images included in this analysis, obtained using hierarchical spectral clustering,

are colored to match with the quadrants on the left. On the right, a Miami plot of the US-driven meta-analysis P values on the outside and the UK-driven
meta-analysis P values on the inside, with chromosomes colored and labeled. Values plotted are the result of Stouffer's meta-analysis of one-sided right-tailed
identification and verification P values, detailed in the Methods, and are -log,, scaled (range, 0-80). The red line represents the genome-wide-significance
threshold (P=5x10"8) and the black line represents the study-wide threshold (P=6.96 x107°). Created using Circos v.0.69-8 (ref. >*).

marker of the promoters of transcriptionally active genes and active
distal enhancers***—from approximately 100 different cell types
and tissues, including cranial neural crest cells (CNCCs), fetal and
adult osteoblasts and mesenchymal stem cell-derived chondrocytes,
as well as dissected embryonic craniofacial tissues (Carnegie stages
13-20). Both CNCCs and craniofacial tissues showed the highest
H3K27ac signals in the vicinity of the 203 genome-wide-significant
lead SNPs, whereas no H3K27ac signal was observed for 203 ran-
dom SNPs matched for allele frequency and distance to the near-
est gene (Fig. 2a). The difference in H3K27ac signal between the
203 genome-wide-significant lead and random SNPs was signifi-
cant based on a two-sided Wilcoxon rank-sum test for many cell
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types and tissues, with CNCCs and embryonic craniofacial tissues
having the greatest median differences (Extended Data Fig. 6 and
Supplementary Table 4).

To distinguish enrichment between coding and noncoding
elements, we examined chromatin signals in CNCCs and embry-
onic craniofacial tissues in more detail, using ChIP-seq data on
additional chromatin marks and transcription factors®*. In the
CNCCs, candidate regulatory regions in the vicinity of the 203
genome-wide-significant lead SNPs were enriched significantly for
strong and intermediate enhancers and depleted in weak promoters
(Fig. 2b). In embryonic craniofacial tissue, all developmental stages
sampled were significantly enriched for the chromHMM states of
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Fig. 2 | Regions near the 203 genome-wide-significant lead SNPs are enriched for enhancers preferentially active in cranial neural crest cells and
embryonic craniofacial tissue. a, Each boxplot represents the distribution of H3K27ac signal in 20-kb regions around the 203 genome-wide-significant lead
SNPs (top) or 203 random SNPs (bottom) in one sample, with cranial neural crest cells and embryonic craniofacial tissues highlighted. Boxplots plot the first
and third quartiles, with a dark black line representing the median. Whiskers extend to the largest and smallest values no further than 1.5x the interquartile
range from the first and third quartiles, respectively. The dashed red lines represent the median level of H3K27ac reads per million (RPM) signal across all
cell types and tissues. A larger labeled version of a is available in the FigShare repository®. b,c, For each class of regulatory element in either CNCCs derived
from induced pluripotent stem cells (iPSC) (b) or embryonic craniofacial tissue (c), the number of elements within 20 kb of the 203 genome-wide-significant
lead SNPs was compared to the number within 20 kb of 203 random SNPs by using a two-sided Fisher's exact test. Points represent estimated odds ratio and
surrounding bars represent 95% confidence intervals. Asterisks indicate any Benjamini-Hochberg adjusted P value < 0.05. For embryonic craniofacial tissue,
enrichments were calculated for each Carnegie stage separately, as Wilderman et al.*® performed chromatin state segmentation for each stage separately.
Descriptions of all mnemonics can be found at: https:/egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.

active enhancers, active enhancer flanks and weak enhancers, and
depleted in quiescent/low and heterochromatin states (Fig. 2c).

Cell-type-specific activity patterns were used to further subdi-
vide the 203 genome-wide-significant lead SNPs by using k-means
clustering of H3K27ac signals (Fig. 3). As expected, many lead SNPs
showed specific activity for CNCCs and craniofacial tissue (for
example, cluster 5), representing activity at an early time point in
development. Interestingly, however, some SNPs showed preferen-
tial activity for either CNCCs or craniofacial tissue (for example,
clusters 1 and 2). Greater specificity for CNCCs could arise because
CNCCs constitute a relatively small proportion of the cells pres-
ent in craniofacial tissue at Carnegie stages 13-20, while greater
specificity for craniofacial tissue could be due to activity in further
differentiated cell types of the face.

Known and new loci. We identified 89 genome-wide-significant
(66 also study-wide-significant) peaks that overlap with the results

of prior association studies of normal-range facial phenotypes.
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Ofthese,29genome-wide-significant (20alsostudy-wide-significant)
peaks were reported by studies with overlapping samples as this study
and 60 genome-wide-significant (46 also study-wide-significant)
peaks were previously reported by studies with completely non-
overlapping sample sets. A total of 61 genome-wide (28 also
study-wide) significant peaks observed in our analysis are located
at loci harboring putative craniofacial genes (implicated from
human malformations or animal models), but which had not yet
been observed in GWAS for normal-range facial morphology. Our
GWAS additionally revealed 53 genome-wide-sigificant (26 also
study-wide-significant) peaks at loci harboring genes with no previ-
ously known role in facial development or disease. The annotation
for each GWAS peak can be found in Supplementary Table 3.

Genomic regions harboring multiple lead SNPs. With our pheno-
typing and analysis framework, in many cases we are able to provide
a more nuanced understanding of the underlying genetic architec-
ture of facial variation. For example, variants at the TBX15-WARS2
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Fig. 3 | Activity of 203 genome-wide-significant lead SNPs in all cell types studied. H3K27ac signal calculation and k-means clustering of SNPs were
performed as described in Methods. Average-linkage clustering on Euclidean distances was performed both within each of the six row clusters and for all
columns. Descriptions of all abbreviations can be found at https:/egg2.wustl.edu/roadmap/web_portal/meta.html.

locus (1p12; Fig. 4) were previously reported to be associated with
forehead prominence’ and self-reported chin dimples'’, already
indicating that this locus has multiple spatially separated effects
on the face. In our current analysis, we see the same influence on
forehead morphology, as previously reported by our group'®, with
lead SNP rs3936018, located in the promoter region of WARS2,
reaching its lowest significance in segment 14 (P ys(segment
14) = 8.01x 107°®). Interestingly, this lead SNP overlaps in loca-
tion with a SNP not originally identified in our peak selection
approach, 1512027501 (Py,.us(segment 1) = 1.03 X 10~*"). The latter
was most significant in segment 1, the full face, and is not a good
proxy for the former (%, 0.075; normalized coefficient of linkage
disequilibrium D’, 0.979), indicating it is likely an independent
statistical signal. Another signal, approximately 275kb upstream
of TBX15 (rs7513680), was most significantly associated with
morphology in segment 51 (Py, yx(segment 51) = 7.03x107"),
representing the cheek area around the corners of the mouth.
Lastly, another GWAS peak is present approximately 301kb down-
stream of WARS2 (rs17023457) with an effect in the upper cheeks
(Pyiewwux(segment 48) = 3.26x107*%). Of interest, we observed 24
such loci with multiple genome-wide-significant peaks that are each
associated with different facial traits (Supplementary Table 5 and
Supplementary Data 1).

Genetic interactions impacting facial variation. To better ana-
lyze and rank the effects of multiple genotypes on a facial trait, we
utilized structural equation modeling (SEM) to refine our under-
standing of which groups of genome-wide-significant variants best
explain the variance observed in each facial segment. SEM is a
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multivariate statistical analysis technique that analyzes structural
relationships between measured variables (for example, genetic
variants and covariates) and latent constructs (univariate pheno-
types derived from the PCs of the analyzed facial segment). This
was done in an iterative manner, resulting in 50 well-fitting SEM
models (corresponding to 50 facial segments; Supplementary Data
2). For each of these 50 models, the output included a univariate
latent variable and a list of variants ranked by their estimated con-
tribution to that variable, highlighting the polygenic nature of facial
variation captured by the latent variable. Higher correlation of
cross-sample H3K27ac activity was found when comparing SNPs
deemed significant by the same SEM model than when comparing
SNPs nonsignificant in the same SEM model (Extended Data Fig. 7).
Additionally, of the SEM-significant SNPs, four SNP combinations
displayed evidence of pairwise epistatic interactions (Table 1, Fig. 5,
Extended Data Fig. 8 and Supplementary Note 3).

Discussion

In their review, Atchley and Hall' provided a framework with which
we can better understand and describe the development of com-
plex morphological structures. In this analysis, we have focused
on one part of this framework and have identified intrinsic genetic
factors contributing to normal-range variation in the structure
of the human face. By implementing an open-ended multivariate
association method, in which the inherent morphological variation
within each of these segments drives the association, and by using
both standard and modified-for-multivariate follow-up bioinfor-
matic approaches, we describe the association between SNPs and
facial traits as well as the likely cellular functions of the regions
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Fig. 4 | TBX15-WARS2 multi-peak locus. LocusZoom?® plots and facial effects for four association signals near the TBX75-WARS2 locus. Clustering based on
r? was performed to separate noncorrelated signals, resulting in the separation of four SNP clusters. Color for each SNP is based on cluster association, with
saturation indicating r? correlation with the most significant SNP in the cluster. SNPs represented by diamonds are the genome-wide-significant lead SNPs
also present in the 1000G Phase 3 dataset; SNPs represented by circles are adjacent SNPs also present in the 1000G Phase 3 dataset; SNPs represented

by asterisks are those not present in the 1000G Phase 3 dataset. For the segment in which each lead SNP had its lowest effect, we plot the facial effects

for the lead SNPs reaching significance in that segment as the normal displacement (displacement in the direction normal to the facial surface) in each
quasi-landmark going from minor to major allele, with red colored areas shifting outward while blue colored areas shift inward.

surrounding these SNPs. We also highlight regions with multiple
SNPs affecting different facial phenotypes as well as evidence for
multiple SNPs working in concert to produce a single phenotype.
Taken in summary, our results illustrate an avenue for investigat-
ing the coordinated processes underlying complex morphological
structures, like the human face, at a deeper level than single associa-
tions between genotype and univariate phenotype.

Opverall, our association results reflect patterns from known bio-
logical processes. For instance, linkage disequilibrium (LD) score
regression correlations between segments seem to reflect the shared
embryological origins of different parts of the face, indicating that
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the hierarchical spectral clustering of the face based on structural
correlations effectively partitions underlying genetic signals into
biologically coherent groups. It is additionally clear from the large
number of genome-wide-significant SNPs reaching their strongest
association in the full face and segment 2 (covering the nose and
upper lip) that these facial regions are ‘hotspots’ for genomic sig-
nals (Fig. 1). In general, quadrant II (representing the nose) and
quadrant IV (representing the forehead and eyes) had the most
genome-wide-significant lead SNPs reaching lowest significance
in segments within each quadrant. This is unsurprising, given the
close relationship between visible facial features in those areas and

NATURE GENETICS | VOL 53 | JANUARY 2021 | 45-53 | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

NATURE GENETICS

ARTICLES

Table 1| Four SNPs with evidence of epistatic interactions

Segment SNP 1 SNP 2 Test P value
rsID Location Gene annotation  rsID Location Gene annotation =il
rs10838269 11:44378010 ALX4 rs11175967 12:66321344  HMGA2 23.9422 9.94 %1077
9 rs76244841 1:2775953 PRDM16 rs62443772 7:42131949 GLI3 16.5745 4.68x10°¢
n rs6740960 2:42181679 PKDCC rs6795164 31133885925  SLCO2A1 16.3707 5.21x10-°
22 rs7373685 3128107020 GATA2 rs7843236 8:121980512 SNTBI1 15.7837 710x10-°

For each of the 50 segments with a refined SEM model, we used the latent variables and SNP lists to test for evidence of epistasis using a two-sided linear regression epistasis test in Plink v.1.9, with
Bonferroni multiple-testing correction. For the four SNP pairs with significant evidence of epistatic interactions, Table 1lists the epistasis P value, rsID, GRCh37 location and gene annotation. The phenotypic

and marginal distributions for the pairs are depicted as boxplots in Fig. 5 and Extended Data Fig. 8.
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Fig. 5 | Phenotypic and marginal distributions for the rs62443772-rs76244841 epistatic pair. Plotted in the first column and last row are the marginal
phenotypic distributions of the genotypes, which shows the phenotypic distribution that would occur if the two genotypes were acting alone. The median
phenotype was also calculated for each diplotype as the average of the marginal medians of the singular genotypes (blue dashed lines on the colored
plots). The observed diplotype median (black line on the colored plots) was compared to the expected diplotype median (blue dashed lines on the
colored blots) via Mood's Median test> with one degree of freedom. The resulting log-transformed P value was used to color the boxplots to illustrate
significance, unless the difference was nonsignificant, in which case the color was automatically set to gray. Within each colored boxplot is the
untransformed Mood's median P value as well as the number of individuals used for significance testing. Boxplots plot the first and third quartiles, with a
dark black line representing the median. Whiskers extend to the largest and smallest values no further than 1.5x the interquartile range from the first and

third quartiles, respectively.

the underlying skeletal structure. Indeed, regions with less corre-
spondence to underlying skeletal structure, like the upper lip (quad-
rant I), had many fewer lead SNPs reaching lowest significance in
the contained segments, and facial regions with some structural
correspondence but still greatly impacted by age and adiposity, like
the lower face and cheeks (quadrant IIT), had only slightly more.
Reassuringly, the genes located within 500kb of our
genome-wide-significant lead SNPs were highly enriched for pro-
cesses and phenotypes associated with craniofacial development
and morphogenesis in humans and mice (Extended Data Fig. 5).
Notably, the top human phenotype was oral clefting, indicating a
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substantial overlap between the genes involved in normal facial vari-
ation and those implicated in the most common craniofacial birth
defect in humans. Furthermore, many of the surrounding genes to
which the genome-wide-significant lead SNPs were annotated are
known to be involved in pathways relevant for craniofacial develop-
ment, such as the Wnt signaling and TGFp pathways (Extended Data
Fig. 5b). Our GWAS signals were also enriched for processes associ-
ated with limb development and related phenotypes, pointing to a
shared genetic architecture between faces and limbs (Extended Data
Fig. 5a) and a number of genes near our genome-wide-significant
loci (for example, DIx homeobox genes, BMP genes, and FGFR2)
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have well-established roles in limb development*. These findings
are also supported by the large number of human syndromes that
present with both facial and limb malformations®.

For the regions surrounding the 203 genome-wide-significant
lead SNPs, both CNCCs and embryonic craniofacial tissues
showed the highest enrichment in H3K27ac signal (Fig. 2a).
These observations are consistent with (1) activity of our 203
genome-wide-significant lead SNPs in CNCCs and embryonic cra-
niofacial tissues and (2) an embryonic origin for human facial varia-
tion across the timeline of facial development, as CNCCs represent
an early time point in facial development whereas the craniofacial
tissues represent progressively later timepoints. In both CNCCs
and craniofacial tissue at all sampled developmental stages, regions
in the vicinity of the 203 genome-wide-significant lead SNPs were
significantly enriched for predicted enhancers and not promoters
(Fig. 2b,c). This is an especially intriguing result, as recent evidence
has described the action of multiple enhancers, each showing dif-
ferent tissue or timing specificity, in modulating expression levels
to affect craniofacial development”. Complementing our GREAT
analysis results, indicating that some genes near our GWAS peaks
are involved in both facial and limb development, a subset of
genome-wide-significant lead SNPs showed preferential activity in
additional in-vitro-derived cell types relevant to both the face and
the rest of the skeletal system, including osteoblasts, chondrocytes,
differentiating skeletal muscle myoblasts, fibroblasts and keratino-
cytes (for example, cluster 3; Fig. 3). Together, these results suggest
that genetic variation underlying facial morphology operates by
modulating enhancer activity across multiple cell types throughout
the timeline of embryonic facial development.

A total of 61 genome-wide-significant peaks from our analysis
did not overlap with the results of prior GWAS for normal-range
facial morphology, but were located nearby putative craniofacial
genes implicated from human malformations or animal models.
For instance, MSX1 has been implicated in orofacial clefting in
humans**** and mice’>*, and is also expressed widely in lip and den-
tal tissues during development”. We observed two distinct peaks
at the MSX1I locus (4p16.2), one approximately 55kb upstream of
MSX1 with a pronounced effect on the lateral upper lip (lead SNP
rs13117653; Pyus(Segment 34) = 4.2x107'¥) and a second peak,
about 323 kb upstream of MSX1 and located in the intron of STX18,
involving the lateral lower lip and mandible (lead SNP rs3910659;
Ppenuk(segment 25) = 4.45%107% Extended Data Fig. 9a-e). This
result could indicate a potential role of STX18 in craniofacial devel-
opment, although the STX18 protein is important primarily for
functioning of the endoplasmic reticulum. Alternatively, this result
could provide further evidence that complex phenotypic effects seen
in our human sample could be due to the action of multiple regula-
tory elements within a single locus. In support of this, Attanasio
et al. demonstrated that the activity of MsxI in the second pharyn-
geal arch and maxillary process of the e11.5 mouse embryo is reca-
pitulated by the combined activity of two separate enhancers®.

We also identified 53 genome-wide-significant signals in regions
harboring genes with no previously known role in craniofacial devel-
opment or disease, although many of the implicated genes are known
to have a general role in developmental processes critical to morpho-
genesis. For example, in the current study, variants at the DACT1
locus are associated with mandibular morphology (Extended Data
Fig. 9f-h). DACT1 is an established antagonist of the Wnt signal-
ing pathway, which is known to be involved in craniofacial devel-
opment®, although DACT1 is studied mostly for its involvement in
gastric cancer. However, DACT1I has also been shown to inhibit the
delamination of neural crest cells, further supporting its involvement
in facial development®. These new signals are promising new candi-
dates for potential roles in facial morphogenesis.

In addition to better understanding which parts of the face had
the most signals, we capitalized on the utility of facial segmentation
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via hierarchical clustering to finely parse out the effect of a SNP
even within a complex genomic region. Notably, we observed 24
loci with multiple genome-wide-significant peaks each associated
with different facial traits, suggesting that these variants might over-
lap with or be impacted by regulatory elements that affect the face
in highly specific ways (Supplementary Table 5 and Supplementary
Data 1). An important consideration to our peak selection pro-
cedure is that it is statistical and heuristic in nature, being based
on investigator-chosen thresholds of both distance and similarity
of associated facial phenotypes, and thus is not perfect. Refining a
peak selection approach based on combinations of distance, LD pat-
terns, and trait similarity was beyond the grasp of this paper, but
we believe such an approach has potential for further interrogating
the complex genetic architecture of facial variation, as we have illus-
trated using the TBX15-WARS2 locus (Fig. 4).

Given the complexity of the human face and its component traits,
it is likely that the genetic architecture contributing to facial varia-
tion includes groups of genomic regions that contribute to the same
facial trait, perhaps through actions in similar cell types or explicit
interactions among variants. Importantly, genome-wide-significant
SNPs that significantly explained variance in the same segment,
based on the SEM for that segment, showed higher correlations of
cross-sample H3K27ac activity than when compared with SNPs
that did not, indicating that the SEM-refined lists of SNPs for each
segment are likely those that are similar in either their spatial or
temporal cellular activity (Extended Data Fig. 7). Tests for epis-
tasis using the SEM-refined SNP lists for each segment identified
four SNP combinations with significant evidence of pairwise epi-
static interactions (Table 1). For example, rs76244841 (PRDM16
associated; Py, yx(segment 30) = 1.48x107%) and rs62443772
(GLI3 associated; Py, yx(segment 22) = 5.35X107'¢) were found
to have a significant interaction in facial segment 9, which covers
the premaxillary soft tissue from the base of the columella to the
oral commissure (Table 1 and Fig. 5). Interestingly, PRDM16 and
GLI3 are both part of a tetrameric Hedgehog signaling complex in
Drosophila melanogaster (Supplementary Note 3)°°-*%. Overall, these
results indicate that the statistical evidence of SNP groups influenc-
ing polygenic facial variation identified through SEM, and explicit
variant interactions suggested by the epistasis analysis, are poten-
tially representative of true biological relationships but must be con-
firmed with further study.

In conclusion, with this work we have not only reported
genomic variants influencing normal-range facial variation, but
have also sought to use our in-depth facial phenotyping approach
and bioinformatic tools to illustrate one way in which research-
ers without access to functional follow-up analyses can delve
deeper into the genetic architecture of complex morphological
traits. These results illustrate the potential to highlight spatial
and temporal connections between SNPs, representing a major
step forward in our ability to characterize the polygenic genetic
architecture of complex morphological structures. In performing
an open-ended and minimally restrictive study, we are optimistic
that our results will be useful for other research efforts to better
understand the biological forces that shape human and nonhu-
man morphology.
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Methods

Sample and recruitment. The samples used for analysis included a combination
of three independently collected datasets from the United States (US; n,s=4,680)
and one dataset from the United Kingdom (UK; ny =3,566), for a total

sample size of n=_8,246. The US samples originated from the 3D Facial Norms
cohort™ (3DFN) and studies at the Pennsylvania State University (PSU) and
Indiana University-Purdue University Indianapolis (IUPUI). The UK dataset
included samples from the Avon Longitudinal Study of Parents and their
Children (ALSPAC)**". Institutional review board approval was obtained at
each recruitment site, and all participants gave their written informed consent
before participation. For children, written consent was obtained from a parent
or legal guardian. Some individuals from the 3DFN and PSU samples were
tested previously for associations with facial morphology in our prior work'. A
breakdown of the samples used for analysis is shown in Supplementary Table 2
and further details are available in the Supplementary Methods. In all datasets,
participants with missing information in sex, age, height or weight, or with
insufficient image quality were removed.

Genotyping and imputation. Due to the several genotyping platforms used

for the US cohort (details in the Supplementary Methods), we chose to impute

the samples from each platform separately, then combine the imputed results™.
For each dataset, standard data cleaning and quality assurance practices were
performed based on the GRCh37 genome assembly. Phasing was performed using
SHAPEIT?2 (v.2.r900)* and imputation to the 1000G Phase 3 reference panel®
performed using the positional Burrows-Wheeler Transform®' pipeline (v.3.1) of
the Sanger Imputation Server (v.0.0.6)*. After post-imputation quality control and
intersection of imputed SNPs, a single merged dataset of all US participants was
created with 7,417,619 SNPs for analysis.

The raw genotype data from ALSPAC were not available, and restrictions are
in place against merging the ALSPAC genotypes with any others. For this reason,
ALSPAC genotypes, phased using SHAPEIT2* and imputed to the 1000G Phase 1
reference panel (Version 3)* using IMPUTE2, were obtained directly from the
ALSPAC database and held separately during the analysis. After post-imputation
quality control, the ALSPAC dataset contained 8,629,873 SNPs for analysis.

For both datasets, SNPs on the X chromosome were coded 0/2 for hemizygous
males, to match with the 0/1/2 coding for females'”.

Ancestry axes and selection of European participants. From the post-imputation
merged dataset of US participants, we identified the European participants by
projecting them into a PC space constructed using the 1000G Phase 3 dataset,
first filtered for LD and SNPs shared between both datasets. Further details are
available in the Supplementary Methods. In the combined PC space, we calculated
the ancestry axes for the US participants and the Euclidean distance between all
US participants and the 1000G samples. Using a kth nearest neighbor algorithm,
we identified the five nearest 1000G neighbors for each US participant. The most
common 1000G population label from these five nearest neighbors was then
assigned to the US participant, and participants assigned the 1000G European
population labels of CEU, TSI, FIN, GBR and IBS were selected for analysis.
Ancestry axes were calculated for the UK participants by projecting them
into the 1000G Phase 3 dataset in a manner similar to that described for the
US participants. Since all ALSPAC participants available for this analysis were
European, no additional ancestry refinement was performed.

3D image acquisition. For all datasets, 3D images were captured using either

a digital facial stereophotogrammetry system or a laser scanning system. All
participants were asked to have closed mouths and to maintain a neutral facial
expression during image capture®. For the 3DFN sample, facial surfaces were
acquired using the 3dMDface (3dMD) camera system. PSU images were obtained
with either the 3dMDface or Vectra H1 system (Canfield Scientific). The IUPUI
sample was fully imaged using Vectra H1. The ALSPAC sample was imaged using
a Konica Minolta Vivid 900 laser scanner (Konica Minolta Sensing Europe).

For this system, two high-resolution facial scans were taken and then processed,
merged and registered using a macro algorithm in Rapidform 2004 software (INUS
Technology Inc.).

3D image registration and quality control. The 3D surface images and their
reflections were registered using the MeshMonk registration framework (v.0.0.6)**
in Matlab 2017b. This process results in a homologous configuration of 7,160
spatially dense quasi-landmarks, allowing the image data from different individuals
and camera systems to be standardized”. Images differing greatly from the norm
or with large holes were investigated manually and either removed or re-processed,
with details available in the Supplementary Methods. Although variation in
asymmetric facial features is of interest, in this work we sought only to study
variation in symmetric facial shape.

Segmentation of facial shape. To study global and local effects on facial variation,
we performed a data-driven facial segmentation on the UK and US datasets
combined, as described previously'®. Before segmentation, images in the two
datasets were separately adjusted for sex, age, age-squared, height, weight, facial

size, the first four genomic ancestry axes and the camera system, using PLSR
(function plsregress from Matlab 2017b). As an illustration, the age adjustment

is visualized in Supplementary Fig. 2. After adjustment, facial segments were
defined by grouping vertices that are correlated strongly using hierarchical spectral
clustering'®**. The strength of covariation between quasi-landmarks was defined
using Escoufier’s RV coefficient®>””. The RV coefficient was then used to build a
structural similarity matrix that defined the hierarchical construction of 63 facial
segments, broken into five levels (Extended Data Fig. 1a). The configurations of
each segment were then subjected independently to a Generalized Procrustes
analysis®, after which a PCA was performed in combination with parallel analysis
to capture the major variance in the facial segments with fewer variables**”
(Extended Data Fig. 1b).

Multivariate genome-wide-association meta-analyses. The meta-analysis
framework utilized consists of three steps performed separately for each of the 63
segments: identification, verification, and meta-analysis (Extended Data Fig. 2).
For all analyses, the genotypes were coded additively based on the presence of the
major allele. In the identification step, for each of the 63 facial segments, each SNP
was associated with phenotypic variation using CCA (canoncorr in Matlab 2017b).
CCA is a multivariate analysis that extracts the linear combination of PCs, which
represent the direction of phenotypic effect in shape space (which we call a ‘trait’)
that are maximally correlated with a SNP, and returns a correlation value between
those PCs and the SNP tested. Because CCA does not accommodate adjustments
for covariates, we removed the effect of relevant covariates (sex, age, age-squared,
height, weight, facial size, the first four genomic ancestry axes and the camera
system), on both the independent (SNP) and the dependent (facial shape) variables
using PLSR (plsregress from Matlab 2017b), and thus performed the CCA under

a reduced model with residualized variables. The correlation value between PCs
and SNPs is tested for significance based on Rao’s F-test approximation® (right tail,
one-sided test). In summary, for each of the 63 segments, the CCA component of
the identification step identifies the phenotypic trait most correlated with each SNP
(Traityg and Traity in Extended Data Fig. 2) and Rao’s F-test provides a P value
(Pccpus and Peey ux) representing the strength of the correlation. CCA has also
been implemented in ‘mv-PLINK”. Performance tests of mv-PLINK have shown
that it outperforms univariate methods and has similar power to other multivariate
methods of association”~"?, which generally have higher statistical power than
univariate methods™°.

In the verification step, the shape PCs of the nonidentification dataset were
projected onto the trait found in the identification stage, which returns a univariate
variable (which we call a ‘phenotype’; UniVars and UniVar,). These univariate
variables were then tested for genotype—phenotype associations in a standard linear
regression (regstats in Matlab 2017b) with the SNP genotypes of the verification
dataset as independent variable and the univariate trait projection score as the
dependent variable. This function employs a t-statistic and a one-sided (right
tail) P value was obtained with the Student’s f cumulative distribution function”
(function tcdf in Matlab 2017b).

In the meta-analysis step, the identification P value (from Rao’s F-test on
the canonical correlation) and the verification P value (from the univariate
regression) were combined using Stouffer’s method***, which was chosen because
a meta-analysis of beta values was not possible given that the CCA returns a
positive correlation value, not a beta statistic. The entire process was repeated,
resulting in two meta-analysis P values (Py, ys and Py, yx) accompanied by two
identified traits per segment and per SNP: first using US data in the identification
stage and UK data as verification (META; or US-driven), then using UK data in
the identification stage and US data as verification (META or UK-driven). A
validation of our analysis pipeline is available in Supplementary Note 1.

Sharing of genome-wide signal between facial segments. To assess the extent
to which genome-wide signals of association with facial variation were shared
between a pair of facial segments, LD score regression’’ was applied to the
meta-analysis, after converting the meta P values to z-scores and ignoring the
sign or direction of effect. The former was required because of the multivariate
nature of our results and the latter was needed since CCA is a one-sided test
with canonical correlations always between [0 1]. As a result, all resulting genetic
correlations reported here are restricted to be positive as well. Further details on
the calculation of LDSC values are available in the Supplementary Methods. This
process was done twice, once each for the US- and UK-driven meta-analyses. A
high degree of congruence (r; = 0.95) between the results based on the US- and
UK-driven meta-analyses was observed, and the average correlation of both
between each pair of facial segments was reported. The 63 X 63 matrix of average
correlations was visualized on top of the facial segmentation hierarchy to assess
correlation both within and between facial quadrants (Extended Data Fig. 3) and
used to perform average-linkage hierarchical clustering (Extended Data Fig. 4).

GWAS peak selection. The analysis strategy yielded 126 meta-analysis P values
and 126 traits for every SNP, representing the 63 segments X two meta-analysis
tracks. Per SNP, the lowest P value was selected, and we noted in which
meta-analysis track (META s or META;; ‘Best meta-analysis track’) and segment
(‘Best segment’) this P value occurred. The study-wide Bonferroni threshold
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(P<6.96 % 107'%) was calculated as 5% 107%/(1.0042 X 1.6631 X 43.0145), with the
denominator values representing the number of independent tests per SNP, across
both meta-analysis tracks, and across all segments, respectively. These values

were calculated using 10,000 permutations each of 1,000 random SNPs, with

more details available in Supplementary Note 2 and the permutation outcomes
available in the FigShare repository for this article’. Although a study-wide
threshold was calculated, we chose to annotate lead SNPs reaching at least
genome-wide threshold to retain as many potentially biologically meaningful
results as possible. The FigShare repository also provides information on all

SNPs reaching suggestive significance (P=5x1077) as well as QQ plots for each
segment in all stages of the analysis™. For the initial peak selection, we chose to
group SNPs below genome-wide threshold by genomic position, and the SNP

with the lowest P value per genomic region was selected as the lead SNP. Within
a+500-kb window of the resulting genome-wide-significant lead SNPs, we further
refined the selection by performing a regression of slopes on the traits defined

in the identification stage (in Best meta-analysis track and Best segment) to
determine if adjacent SNPs showed consistent effects with the lead SNP, resulting
in 218 genome-wide-significant lead SNPs. Of these 218 lead SNPs, 203 showed
consistent traits in the US and UK datasets in the Best segment (Supplementary
Table 3), with more details in the Supplementary Methods. Visual representations
of the LocusZoom™ and effect plots for each of the 203 genome-wide-significant
SNPs are available in the FigShare repository*. The 203 lead SNPs were mapped to
138 cytogenetic bands (loci) using the Ensembl GRCh37 locations™. This method
of peak selection is statistical in nature and is thus not perfect. For example,

our inspection of the LocusZoom™ plots for the TBX15-WARS2 locus led to the
identification of two clusters of SNPs, based on 72 correlation, sharing the same
genomic positions and affecting different facial segments, but separating these two
clusters was not possible in our initial peak selection and they were considered a
single signal until manual investigation. To comprehensively identify SNPs within
a locus contributing to facial morphology, and the specific facial segments affected,
fine mapping and other detailed investigations are needed.

Gene annotation. Genes +500kb of the genome-wide-significant lead SNPs were
identified using the Table Browser of the UCSC Genome Browser”. The most likely
candidate gene per lead SNP was identified based on a three-step system using first
literature searches, then the results from Hooper et al. on the transcriptomics of
mouse facial development®, then the FUMA gene prioritization algorithm (v.1.3.3)*.
Further details are available in the Supplementary Methods. Using the available
literature, we classified the lead SNP into one of five categories: ‘Region previously
implicated in normal-range facial morphology’, ‘Region previously implicated in
normal-range facial morphology using other analyses of these data, ‘Candidate gene
implicated in craniofacial morphology through animal model, ‘Region or candidate
gene implicated in craniofacial morphology through human dysmorphology’

and ‘No previous association’ To the best of our knowledge, all links with facial
morphology from the literature are provided in Supplementary Table 3.

To investigate the potential roles of the identified genome-wide-significant lead
SNPs, analyses using FUMA (v.1.3.3)*, which can test for enrichment of a set of
genes in predefined pathways, and GREAT (v.3.0.0)*, which predicts the function
of cis-regulatory regions, were performed using preset parameters (Extended Data
Fig. 5). In this article, we focus on the top FUMA and GREAT results,
based on P value, and have provided the full export of GREAT results in the
FigShare repository*.

Cell-type-specific enhancer enrichment. To assess activity of the 203
genome-wide-significant lead SNPs in various cell types and tissues (further details
in the Supplementary Methods), we analyzed signals of acetylation of histone H3
on lysine 27 (H3K27ac). Across cell types and tissues, we compared 20-kb windows
containing the 203 genome-wide-significant lead SNPs, 203 random SNPs matched
for minor allele frequency and distance to the distance to the nearest gene by using
SNPsnap®!, or 619 Crohn’s disease-associated SNPs from the National Center for
Biotechnology Information-European Bioinformatics Institute (NCBI-EBI) GWAS
catalog®. Regions in the vicinity of SNPs associated with Crohn’s disease showed
the highest H3K27ac signal in various immune cell types, serving as a positive
control for both our approach and dataset (Extended Data Fig. 10). A two-sided
Wilcoxon rank-sum test was used to compare the H3K27ac signal between the 203
genome-wide-significant lead and random SNPs, within each cell type and tissue
analyzed. K-means clustering was performed on the lead SNP H3K27ac signal
across all cell types and tissues with k=6, as we found that this value maximized
the number of clusters without significantly impacting cluster quality, as measured
by silhouette width (Fig. 3).

Chromatin state association in CNCCs and embryonic craniofacial tissue.

Lists of human CNCC regulatory elements were annotated based on multiple
chromatin marks by Prescott et al.”” and embryonic craniofacial chromHMM
states were computed in combined data from each Carnegie stage by Wilderman

et al.”’. For each set of regulatory regions, all regions within 20kb of either
genome-wide-significant lead SNPs or the above-described 203 random SNPs were
considered. Enrichment/depletion of each class of regulatory region for lead SNPs
versus random SNPs was computed using a two-sided Fisher’s exact test (Fig. 2b,c).
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Structural equation modeling. To better define the cause—effect relationships
between the significant genotypes and their collective traits, both the US

and UK participants were used as input for SEM using the lavaan package
(v.0.6-3) in R (>3.5.0)*, which reports a two-sided P value. For our analyses,
separate SEM models were constructed for each segment using each of the 203
genome-wide-significant lead SNPs and the shape PCs for all participants, with
additional information available in the Supplementary Methods.

For each of the 50 SEM models where the refinement process was successful
(details in the Supplementary Methods), final model fit indices and model
parameter estimates are provided in Supplementary Data 2. Reassuringly, for
segments that are closely related in the segmentation hierarchy (segments 5,

11, 23 and 47) there is an average overlap of 46% of the variants meeting the

P <0.05 cutoff for SEM significance, compared to 13.6% average overlap for
nonhierarchically related segments (segments 5 and 6). The H3K27ac activity
across all cell types was compared for significant variants both within and between
segments using Spearman’s rho using two-sided Kruskal-Wallis tests (Extended
Data Fig. 7).

Epistasis analysis. We additionally used the univariate latent variable and the
variants passing the P <0.05 significance cutoff from the final 50 refined SEM
models (P<0.1 for segments 7, 16 and 25) to assess whether interactions between
genotypes increase or decrease the distribution of the latent variable. For each
segment, the effect on the latent variable of all diplotype combinations of variants
were assessed via a linear regression epistasis analysis in Plink v.1.9 (ref. **).

After Bonferroni correction for multiple testing, four SNP pairs were significant

at P<0.05 (Table 1). For these four pairs, the nine diplotype combinations and
their normalized phenotypic and marginal distributions were plotted (Fig. 5 and
Extended Data Fig. 8) to assess the genotypic contribution to epistatic masking (the
combination of two variants reduce the phenotype) and boosting (the combination
of two variants increase the phenotype). For each diplotype combination, the
marginal phenotypic medians of the singular genotypes were averaged to visualize
the predicted phenotypic distribution that would occur if the two genotypes were
acting independently, and this average median was compared to the medians of the
combined diplotypes. Significance testing was performed using a two-sided Mood’s
Median test> with one degree of freedom. These steps were performed using the

R packages agricolae (v.1.3-0), cowplot (v.1.0.0), ggplot2 (v.3.1.1), ggpubr (v.0.2),
gridExtra (v.2.3), gtable (v.0.3.0), grid (v.3.6.2), Hmisc (v.4.2-0), psych (v.1.8.12)
and data.table (v.1.12.0).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All of the genotypic markers for the 3DFN dataset are available to the research
community through the dbGaP controlled-access repository (http://www.ncbi.
nlm.nih.gov/gap) at accession no. phs000949.v1.p1. The raw source data for the
phenotypes—the 3D facial surface models in.obj format—are available through the
FaceBase Consortium (https://www.facebase.org) at accession no. FB00000491.01.
Access to these 3D facial surface models requires proper institutional ethics
approval and approval from the FaceBase data access committee. Additional details
can be requested from S.M.W.

The participants making up the PSU and IUPUI datasets were not collected
with broad data sharing consent. Given the highly identifiable nature of both facial
and genomic information and unresolved issues regarding risk to participants, we
opted for a more conservative approach to participant recruitment. Broad data
sharing of the raw data from these collections would thus be in legal and ethical
violation of the informed consent obtained from the participants. This restriction
is not because of any personal or commercial interests. Additional details can be
requested from M.D.S. and S.W. for the PSU and IUPUI datasets, respectively.
The ALSPAC (UK) data will be made available to bona fide researchers on
application to the ALSPAC Executive Committee (http://www.bris.ac.uk/alspac/
researchers/data-access). Ethical approval for the study was obtained from the
ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

Publicly available data used were the 1000G Phase 3 data (ftp://
ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/), the list of HapMap 3
SNPs excluding the MHC region (http://ldsc.broadinstitute.org/static/
media/w_hm3.noMHC.snplist.zip), and ChIP-seq files from Prescott et al.”
(GSE70751), Najafova et al.** (GSE82295), Baumgart et al.** (GSE89179), Nott
et al.¥” (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCell Types_hg19),
Pattison et al.*® (GSE119997), Wilderman et al."’ (GSE97752) and the Roadmap
Epigenomics Project® (https://egg2.wustl.edu/roadmap/data/byFileType/
alignments/consolidated/). Meta-analysis GWAS statistics are available on
GWAS Catalog (GCP000044). All data relevant to run future replications and
meta-analysis efforts are provided in the FigShare repository for this work™, along
with additional figures (https://doi.org/10.6084/m9.figshare.c.4667261). Items
available in the FigShare repository are (1) anthropometric mask: a Matfile of the
anthropometric mask used; (2) association statistics and effects of the 203 lead
SNPs: facial effects, LocusZoom plots and association statistics from each stage
of the analysis for the 203 lead SNPs; (3) calculation of study-wide-significance
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threshold: script and permutation outcomes needed to replicate the calculation of
the study-wide-significance threshold; (4) facial segment assignments: segment
assignments for each quasi-landmark in the anthropometric mask; (5) Fig. 2a
labeled: a larger version of Fig. 2a, with all cell types and tissues labeled; (6)
GREAT Export: raw output of the GREAT analysis; (7) PCA shape constructs: PCA
shape spaces for all 63 facial segments; (8) QQ plots: QQ plots for each segment
in all stages of the analysis; (9) script to explore facial segments and GWAS hits:
MatLab script for select data exploration functions; (10) SNPs reaching suggestive
significance in either meta-analysis track: association statistics of all SNPs with

P <5x1077in METAUS or METAUK tracks; (11) source data for manuscript
figures: source data in Excel format for all figures, where possible.

Code availability

KU Leuven provides the MeshMonk (v.0.0.6) spatially dense facial-mapping
software, free to use for academic purposes (https://github.com/TheWebMonks/
meshmonk). Matlab 2017b implementations of the hierarchical spectral clustering
to obtain facial segmentations are available from a previous publication® (https://
doi.org/10.6084/m9.figshare.7649024).

The statistical analyses in this work were based on functions of the statistical
toolbox in Matlab 2017b, SHAPEIT2 (v.2.r900), Sanger Imputation Server (v.0.0.6),
PBWT pipeline (v.3.1), MeshMonk (v.0.0.6), LDSC (v.1.0.1), FUMA (v.1.3.3),
GREAT (v.3.0.0), Plink v.1.9, lavaan (v.0.6-3), R (>v.3.4), agricolae (v.1.3-0),
cowplot (v.1.0.0), ggplot2 (v.3.1.1), ggpubr (v.0.2), gridExtra (v.2.3), gtable (v.0.3.0),
grid (v.3.6.2), Hmisc (v.4.2-0), psych (v.1.8.12), data.table (v.1.12.0), Genotype
Harmonizer (v.1.4.20), KING (v.2.1.3), bowtie2 (v.2.3.4.2), bedtools (v.2.27.1) and
Bioconductor (v.3.7), as mentioned throughout the Methods.
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Extended Data Fig. 1| Hierarchical spectral clustering of facial shape. a, Global-to-local facial segmentation of all 3D images (ny,,, = 8,246), obtained
using hierarchical spectral clustering. Segments are colored in teal and identical to those in Fig. 1. Roman numerals represent ‘quadrants’ of facial
segments. b, The number of principal components retained after parallel analysis for each facial segment.
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ancestry, with quality-controlled images, covariates, and imputed genetic data were selected to obtain the analyzed data. Identification: For each facial
segment, canonical correlation analysis (CCA) and Rao's F-test approximation was used to identify the multivariate combination of facial principal
components most correlated with the genotypes, which led to a P value (Pccays Of Pecaux) @nd multivariate phenotypic trait most correlated with each
SNP (Trait,s and Trait). Verification: The principal components of the other dataset were then projected onto this trait to obtain a univariate variable

representing the distribution of participants from the verification dataset for the trait identified in the identification dataset (UniVar and UniVar). The

genotypes of the verification dataset are then tested against this variable via linear regression, resulting in an additional P value (P ya..ux @nd Pyaivar-us)-

Meta-Analysis: The P values from identification and verification are meta-analyzed using Stouffer's method, resulting in the final set of P values from each

meta-analysis track (Pyera.us and Pyerauk)-
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Extended Data Fig. 3 | Genomic signal correlations. LDSC correlations between segments. a, Correlations between segments from different quadrants,
ranging from 0.8 to 0.88, which seem to reflect both physical proximity of segments on the face and shared embryological origins. b, Correlations ranging
from 0.88 to 1, which are mostly between segments within the same facial quadrant.
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Extended Data Fig. 4 | Clustering of facial segments on the basis of shared genetic signals. Correlations between facial segments on the basis of
SNP P values were calculated using LDSC, as described in Methods, and average-linkage hierarchical clustering was performed using the matrix of
correlation values. Quadrant colors in legend refer to the quadrant of the polar dendrogram in which the facial segment lies in, also represented by the
facial images at the top, and embryonic facial prominences are assigned to each facial segment.
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Extended Data Fig. 5 | GREAT and FUMA analyses showing enrichment for craniofacial and limb development. a, GREAT analysis. For the top ten GO
terms in each category, plotted is the binomial test Bonferroni-corrected P value (red; negative values) and binomial region fold enrichment (blue; positive
values). Behind every GO term, in parentheses we indicate the number of genes in the test set with the annotation (Observed) and the total number of
genes in the genome with the annotation (Total), with the format (Observed/Total). Dashed line represents significance at P=log;,(0.05) = -1.3. b, FUMA
analysis, indicating the KEGG pathways that were significantly enriched in our results. Multiple pathways are relevant for craniofacial development. The
right panel shows the genes that are involved in the pathways.
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Extended Data Fig. 6 | H3K27ac signal is significantly different in 203 lead vs. 203 random SNPs for relevant facial tissues. For all cell types and tissues,
each represented by a point above, the median difference between H3K27ac RPM signal between the 203 lead SNPs vs. 203 random SNPs was tested

for significance using a two-sided Wilcoxon rank-sum test. The thin dashed line represents the 5% false discovery rate P value of 0.0094, using the
Benjamini-Hochberg method. Relative to the random, MAF-matched SNPs, the lead SNPs are significantly enriched for H3K27ac signal in many cell types,
with the highest magnitude differences being from CNCCs (blue) and embryonic craniofacial tissues (orange). Test statistics used to create this plot are
available in Supplementary Table 4.
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Extended Data Fig. 7 | Correlation of H3K27ac activity among SEM models. a, For all segments (aka ‘masks’), we compared the H3K27ac activity

for significant SNPs from the refined SEM model for variation in that facial segment. Plotted is the Spearman'’s rho correlation between pairs of SNPs
significant in the same SEM model (‘Within Mask’); pairs of SNPs where one is from the SEM model and the other is not ('Within To Out’), and where

both SNPs in the pair are from a different SEM model ("Out To Out’). Segments where the distribution of correlation across all cell types was significantly
different (Benjamini-Hochberg adjusted P< 0.05) based on a two-sided Kruskal-Wallis test are indicated in black. b, For all cell types, the median
correlation across all segments is plotted for each of the three SNP groupings. Significance between the means was determined using a two-sided Kruskal-
Wallis test. Boxplots plot the first and third quartiles, with a dark black line representing the median. Whiskers extend to the largest and smallest values no
further than 1.5 X the inter-quartile range from the first and third quartiles, respectively.
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Extended Data Fig. 8 | Phenotypic and marginal distributions for diplotype combinations. For a random SNP pairing (a) and each significant epistasis
pair (b-d), boxplots are plotted to visualize the epistatic effect on the phenotype. The marginal phenotypic medians of the singular genotypes (non-shaded
boxplots) were used to calculate and visualize the predicted diplotype phenotypic distribution that would occur if the two genotypes were acting alone.
The median phenotype was also calculated for each diplotype as the average of the marginal medians of the singular genotypes (blue dashed lines on the
colored plots). This median was compared to the observed medians of the diplotypes (solid black lines; colored boxplots) via Mood's Median test with

one degree of freedom. Log-transformed P values were used to color boxplots if there was a significant (P<0.05; log(P) >1.30) difference between the
expected phenotype of the combined genotype and observed diplotype. Boxplots plot the first and third quartiles, with a dark black line representing the
median. Whiskers extend to the largest and smallest values no further than 1.5 X the inter-quartile range from the first and third quartiles, respectively.
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
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A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Three-dimensional images composed of surface and texture maps were taken using the 3dMD Face (3dMD, Atlanta, GA) and Vectra H1
(Canfield Scientific, Parsippany, NJ) 3D imaging systems, or the Konica Minolta Vivid 900 (Konica Minolta Sensing Europe, Milton Keynes,
UK) laser scanner. Images gathered using the Konica laser scanner were processed using a macro algorithm in Rapidform 2004 software
(INUS Technology Inc., Seoul, South Korea). Genotyping was performed using the Illumina OmniExpress + Exome v1.2 array, the 23andMe
v3 and v4 arrays (Mountain View, CA), the lllumina Infinium Multi-Ethnic Global-8 v1 array, or the Illumina Human Hap550 quad array.

Data analysis KU Leuven provides the MeshMonk spatially dense facial mapping software (v0.0.6), free to use for academic purposes (https://
github.com/TheWebMonks/meshmonk). Matlab 2017b implementations of the hierarchical spectral clustering to obtain facial
segmentations are available from a previous publication (https://doi.org/10.6084/m9.figshare.7649024). The statistical analyses in this
work were based on functions of the statistical toolbox in Matlab 2017b, SHAPEIT2 (v2.r900), Sanger Imputation Server (v0.0.6), PBWT
pipeline (v3.1), MeshMonk (v0.0.6), LDSC (v1.0.1), FUMA (v1.3.3), GREAT (v3.0.0), Plink 1.9, lavaan (v0.6-3), R (>3.4), agricolae (v1.3-0),
cowplot (v1.0.0), ggplot2 (v3.1.1), ggpubr (v0.2), gridExtra (v2.3), gtable (v0.3.0), grid (v3.6.2), Hmisc (v4.2-0), psych (v1.8.12), data.table
(v1.12.0), Genotype Harmonizer (v1.4.20), KING (v2.1.3), bowtie2 (v2.3.4.2), bedtools (v2.27.1), and bioconductor (v3.7) as mentioned
throughout the Methods.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All of the genotypic markers for the 3DFN dataset are available to the research community through the dbGaP controlled-access repository (http://
www.ncbhi.nlm.nih.gov/gap) at accession #phs000929.v1.p1. The raw source data for the phenotypes - the 3D facial surface models in .obj format - are available
through the FaceBase Consortium (https://www.facebase.org) at accession #FB00000491.01. Access to these 3D facial surface models requires proper institutional
ethics approval and approval from the FaceBase data access committee. Additional details can be requested from SMW [smwst46@ pitt.edu].

The participants making up the PSU and IUPUI datasets were not collected with broad data sharing consent. Given the highly identifiable nature of both facial and
genomic information and unresolved issues regarding risk to participants, we opted for a more conservative approach to participant recruitment. Broad data
sharing of the raw data from these collections would thus be in legal and ethical violation of the informed consent obtained from the participants. This restriction is
not because of any personal or commercial interests. Additional details can be requested from MDS [mds17@psu.edu] and SW [walshsus@iupui.edu] for the PSU
and IUPUI datasets, respectively.

The ALSPAC (UK) data will be made available to bona fide researchers on application to the ALSPAC Executive Committee (http://www.bris.ac.uk/alspac/
researchers/data-access). Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

KU Leuven provides the MeshMonk (v0.0.6) spatially dense facial mapping software, free to use for academic purposes (https://github.com/TheWebMonks/
meshmonk). Matlab 2017b implementations of the hierarchical spectral clustering to obtain facial segmentations are available from a previous publication (https://
doi.org/10.6084/m9.figshare.7649024.v1).

Publicly available data used were: 1000G Phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/), the list of HapMap 3 SNPs excluding the MHC
region provided by LDSC (http://Idsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip), and ChlIP-seq files from Prescott et al. (GSE70751), Najafova et al.
(GSE82295), Baumgart et al. (GSE89179), Nott et al. (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19), Pattison et al. (GSE119997), Wilderman
et al. (SE97752) and the Roadmap Epigenomics Project (https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/).

Meta-analysis GWAS statistics are available on GWAS Catalog (GCP000044). All relevant data to run future replications and meta-analysis efforts are provided in the
FigShare repository for this work34, along with additional figures (https://doi.org/10.6084/m9.figshare.c.4667261). Items available in the FigShare repository are:
(1) Anthropometric mask: a Matfile of the anthropometric mask used; (2) Association statistics and effects of the 203 lead SNPs: Facial effects, LocusZoom plots,
and association statistics from each stage of the analysis for the 203 lead SNPs; (3) Calculation of study-wide significance threshold: Script and permutation
outcomes needed to replicate the calculation of the study-wide significance threshold; (4) Facial segment assignments: Segment assignments for each quasi
landmark in the anthropometric mask; (5) Figure 2A labeled: A larger version of Figure 2A, with all cell types and tissues labeled; (6) GREAT Export: Raw output of
the GREAT analysis; (7) PCA shape constructs: PCA shape spaces for all 63 facial segments; (8) QQ plots: QQ plots for each segment in all stages of the analysis; (9)
Script to explore facial segments and GWAS hits: MatLab script for select data exploration functions; (10) SNPs reaching suggestive significance in either meta-
analysis track: Association statistics of all SNPs with P < 5 x 10-7 in METAUS or METAUK tracks; (11) Source data for manuscript figures: Source data in Excel format
for all figures, where possible.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size was determined by the amount of 3DFN data available in the public facial data repository (Facebase.org), the amount of data
available in the B2261 ALSPAC study, and by the number of individuals of European descent with genotype data and 3D facial images that
were collected with informed consent as part of several studies based at The Pennsylvania State University and Indiana University Purdue
University Indianapolis. More information is found in Methods.

Data exclusions  For both US and UK participants, outlier 3D facial images, likely caused by image mapping errors, were identified using two approaches. First,
as described in prior work, outlier faces were identified by calculating z-scores from the Mahalanobis distance between the average face and
each individual face. Faces with z-scores higher than two were manually investigated. Second, a score was calculated that reflects the missing
data present in the image due to holes, spikes, and other mesh artifacts, which can be caused by facial hair or errors during the preprocessing
steps. Images with high scores, indicating large gaps in the mesh, were manually investigated. During the manual check, the images were
either classified as poor quality and removed or were preprocessed and mapped again.

For US cohorts, genotype samples were excluded if there was poor concordance of genetic and reported sex, evidence of chromosomal
aberrations, missing genotype call rate > 10%, and heterozygosity values +3 standard deviations from the sample mean.

For the 3DFN sample, 3D images and genotype data were obtained from the 3D Facial Norms repository. Recruitment was limited to
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individuals aged 3 to 40 years old and of self-reported European ancestry. Individuals were excluded if they reported a personal or family
history of any birth defect or syndrome affecting the head or face, a personal history of any significant facial trauma or facial surgery, or any
medical condition that might alter the structure of the face. The intersection of unrelated participants with quality-controlled images,
covariates, and genotype data from individuals of European descent resulted in 1,906 individuals for analysis.

The PSU sample included 3D images and genotypes of participants recruited through several studies at the Pennsylvania State University.
Individuals were excluded from the analysis if they were below 18 years of age and if they reported a personal history of significant trauma or
facial surgery, or any medical condition that might alter the structure of the face. No restriction on ancestry or ethnicity was imposed during
recruitment, but only individuals of European descent were used in this study. The intersection of unrelated European participants with
quality-controlled images, covariates, and genotype data resulted in 1,990 individuals for analysis.

The IUPUI sample includes 3D images and genotypic data from individuals recruited in Indianapolis, IN and Twinsburg, OH. Individuals who
were below 18 years of age were recruited if they had a parent or legal guardian’s signature. Similar to the PSU sample cohort, no restrictions
were placed on the recruitment of participants, but only unrelated individuals of European descent, without significant facial injury or medical
condition, and those meeting all quality control criteria were used in this study (n = 784).

The UK sample was derived from the ALSPAC dataset, a longitudinal birth cohort in which pregnant women residing in Avon with an expected
delivery date between 1 April 1991 and 31 December 1992 were recruited. At the time, 14,541 pregnant women were recruited and DNA
samples were collected for 11,343 children. Genome-wide data was available for 8,952 subjects and of the B2261 study, titled “Exploring
distinctive facial features and their association with known candidate variants.” In addition to this, 4,731 3D images were available. UK
genotype samples were excluded on the basis of genetic sex and reported gender mismatches, minimal or excessive heterozygosity,
disproportionate levels of individual missingness (>3%), and insufficient sample replication (IBD <0.8). The intersection of unrelated
participants of European ancestry with quality-controlled images, covariates, and genotype data included 3,566 individuals.
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Replication Replication was achieved by proper separation of the data into identification and verification datasets, based on completely separate
sampling, imaging, genotyping, and imputation. More information is found in Methods.

Randomization  No randomization took place, group membership of identification and verification was determined by the separately obtained datasets
available. Because canonical correlation analysis does not accommodate adjustments for covariates, we removed the effect of relevant
covariates (sex, age, age-squared, height, weight, facial size, the first four genomic ancestry axes, and the camera system), on both the
independent (SNP) and the dependent (facial shape pre segmentation) variables using partial least squares regression (plsregress from Matlab
2017b), and thus performed the canonical correlation analysis under a reduced model with residualized variables.

Blinding Blinding was not relevant to this study, as no treatment outcomes were assessed and data analysis procedures were standardized across all

individuals. Two independent datasets were constructed from the sampling efforts of four different research centers, and the analysis was
done by yet another research center.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a 7 Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology |X| |:| MRI-based neuroimaging

Animals and other organisms

Human research participants
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Clinical data

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Cranial neural crest cells (CNCCs) originated from WiCell (H9 ESC) and the Fred Gage laboratory (iPSC; Salk Institute),
available from Prescott et al. (GSE70751)
Fetal osteoblast cell line, undifferentiated and differentiated, originated from Najafova et al. (GSE82295)
Mesenchymal stem cell-derived osteoblasts originated from Baumgart et al. (GSE89179)
Various brain cell types originated from Nott et al. (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19)
Surface ectoderm samples originated from Pattison et al. (GSE119997)
Embryonic craniofacial tissue originated from Wilderman et al. (GSE97752)
All other fetal and adult cell tissues and cell types originated from the Roadmap Epigenomics Project (https://egg2.wustl.edu/
roadmap/data/byFileType/alignments/consolidated/)
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Sample type, ID, and URL for each cell type/tissue is available in Supplementary Table 4




Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

For the CNCCs, we analyzed the genomic sequence data from the lines. Please refer to the original publications for the
authentication of the other cell types and tissues.

For the CNCCs, we used PCR tests to test for mycoplasma contamination. Pease refer to the original publications for the
testing of the other cell types and tissues.

No commonly misidentified cell lines were used.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

For the 3DFN sample, 3D images and genotype data were obtained from the 3D Facial Norms repository. The repository includes
3D facial surface images and self-reported demographic descriptors as well as basic anthropometric measurements from
individuals recruited at four US sites: Pittsburgh, PA (PITT IRB PRO09060553 and RB0405013); Seattle, WA (Seattle Children’s IRB
12107); Houston, TX (UT Health Committee for the Protection of Human Subjects HSC-DB-09-0508); and lowa City, IA (University
of lowa Human Subjects Office IRB (200912764 and 200710721). Recruitment was limited to individuals aged 3 to 40 years old
and of self-reported European ancestry. Individuals were excluded if they reported a personal or family history of any birth
defect or syndrome affecting the head or face, a personal history of any significant facial trauma or facial surgery, or any medical
condition that might alter the structure of the face. The intersection of unrelated participants with quality-controlled images,
covariates, and genotype data from individuals of European descent resulted in 1,906 individuals for analysis (Female N = 1,172;
Male N = 734). Average height of these participants was 163.43 cm (sd = 20.57 cm). Average weight of these participants was
64.33 kg (sd = 22.38 kg)

The PSU sample included 3D images and genotypes of participants recruited through several studies at the Pennsylvania State
University and sampled at the following locations: Urbana-Champaign, IL (PSU IRB 13103); New York, NY (PSU IRB 45727);
Cincinnati, OH (UC IRB 2015-3073); Twinsburg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 4320); Austin, TX (PSU
IRB 44929); and San Antonio, TX (PSU IRB 1278). Participants self-reported information on age, ethnicity, ancestry, and body
characteristics, and data were gathered on height and weight. Individuals were excluded from the analysis if they were below 18
years of age and if they reported a personal history of significant trauma or facial surgery, or any medical condition that might
alter the structure of the face. No restriction on ancestry or ethnicity was imposed during recruitment, but only individuals of
European descent were used in this study. The intersection of unrelated European participants with quality-controlled images,
covariates, and genotype data resulted in 1,990 individuals for analysis (Female N = 1,380; Male N = 610). Age ranged from 18 to
88 years old. Average height of these participants was 168.75 cm (sd = 9.23 cm). Average weight of these participants was 73.88
kg (sd = 17.05 kg).

The IUPUI sample includes 3D images and genotypic data from individuals recruited in Indianapolis, IN and Twinsburg, OH (IUPUI
IRB 1409306349). Participants self-reported information on age, height, weight, and ancestry at the time of the collection.
Individuals who were below 18 years of age were included if they had a parent or legal guardian’s signature. Similar to the PSU
sample cohort, no restrictions were placed on the recruitment of participants, but only n = 784 individuals of European descent
and those meeting all quality control criteria were used in this study (Female N = 539; Male N = 245). Age ranged from 7 to 78
years old. Average height of these participants was 169.24 cm (sd = 11.30 cm). Average weight of these participants was 71.88
kg (sd = 18.65 kg).

The UK sample was derived from the ALSPAC dataset, a longitudinal birth cohort in which pregnant women residing in Avon with
an expected delivery date between 1 April 1991 and 31 December 1992 were recruited. At the time, 14,541 pregnant women
were recruited and DNA samples were collected for 11,343 children. Genome-wide data was available for 8,952 subjects of the
B2261 study, titled “Exploring distinctive facial features and their association with known candidate variants.” In addition to this,
4,731 3D images were available along with information on sex, age, weight, height, ancestry, and other body characteristics. The
ALSPAC study website contains details of all the data that is available through a fully searchable data dictionary (http://
www.bris.ac.uk/alspac/researchers/our-data/). The intersection of participants of European ancestry with quality-controlled
images, covariates, and genotype data included 3,566 individuals (Female N = 1,884; Male N = 1,682). Ethical approval for the
study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Informed consent
for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the
ALSPAC Ethics and Law Committee at the time. Consent for biological samples has been collected in accordance with the Human
Tissue Act (2004). Age ranged from 14 to 17 years old. Average height of these participants was 169.38 cm (sd = 8.42 cm).
Average weight of these participants was 61.52 kg (sd = 11.75 kg).

For all datasets, there was no imbalance in gender, and weight and height distributions follow typical distributions seen in a
European-derived population. We removed the effect of relevant covariates (sex, age, age-squared, height, weight, facial size,
the first four genomic ancestry axes, and the camera system), on both the independent (SNP) and the dependent (facial shape
pre segmentation) variables using partial least squares regression (plsregress from Matlab 2017b), and thus performed the
canonical correlation analysis under a reduced model with residualized variables.

Two publicly available datasets, one from FaceBase and one from the ALSPAC project were used and did not involve any
recruitment specific to this work. The other datasets used from PSU and IUPUI, and their characteristics, as mentioned above,
were recruited over different studies and did not contain any specific selection or bias that might influence this work.

We have complied with all relevant ethical regulations for work with human participants and informed consent was obtained.
Institutional review board (IRB) approval was obtained at each recruitment site and all participants gave their written informed
consent prior to participation; for children, written consent was obtained from a parent or legal guardian. For the 3DFN sample,
the following local ethics approvals were obtained: Pittsburgh, PA (PITT IRB PRO09060553 and RB0405013); Seattle, WA (Seattle
Children’s IRB 12107); Houston, TX (UT Health Committee for the Protection of Human Subjects HSC-DB-09-0508); and lowa City,
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IA (University of lowa Human Subjects Office IRB (200912764 and 200710721). For the Penn State sample, the following local
ethics approvals were obtained: Urbana-Champaign, IL (PSU IRB 13103); New York, NY (PSU IRB 45727); Cincinnati, OH (UC IRB
2015-3073); Twinsburg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 4320); Austin, TX (PSU IRB 44929); and San
Antonio, TX (PSU IRB 1278). For the IUPUI sample, the following local ethics approvals were obtained: Indianapolis, IN and
Twinsburg, OH (IUPUI IRB 1409306349). For the ALSPAC sample, approval was obtained from the ALSPAC Ethics and Law
Committee and the Local Research Ethics Committees. Consent for biological samples was collected in accordance with the
Human Tissue Act (2004).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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