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In 1991, Atchley and Hall epitomized one of the major problems 
in contemporary biology as the need “to understand how com-
plex morphological structures arise during development and how 

they are altered during evolution” (p. 102)1. This problem continues 
to captivate biologists, geneticists, anthropologists and clinicians 
almost three decades later. In their review, the authors describe 
a ‘complicated developmental choreography’ in which intrinsic 
genetic factors, epigenetic factors and interactions between the two 
make up the progeny genotype, which engages with the environment 
to ultimately produce a complex morphological trait composed of 
separate component parts1. We now understand that the intrinsic 
genetic factors ultimately contributing to complex morphologi-
cal traits consist not only of single variants altering protein struc-
ture and/or function, but also noncoding variants and interactions 
among variants, each affecting multiple tissues and developmental 
timepoints. This realization requires methods capable of describ-
ing the genetic architecture of complex morphological traits, which 
includes identifying the individual genetic variants contributing to 
morphological variation and interactions among those variants2,3.

The human face—an exemplar complex morphological struc-
ture—is highly multipartite and results from the intricate coordina-
tion of genetic, cellular and environmental factors4–6. Through prior 
genome-wide association studies (GWAS), over 100 loci have been 
implicated in normal-range facial morphology7–23 (Supplementary 

Table 1). However, as with all complex morphological traits, our 
ability to identify and describe the genetic architecture of the face 
is limited by our ability to accurately characterize its phenotypic 
variation4, identify variants of both large and small effect15 and 
identify interactions between variants. We previously described a 
data-driven approach to facial phenotyping, which facilitated the 
identification and replication of 15 loci involved in global-to-local 
variation in facial morphology16. Here, we apply this phenotyp-
ing approach to two larger cohorts from the United States and 
United Kingdom (nTotal = 8,246; Supplementary Table 2) and apply 
multivariate techniques to uncover new biological insights into 
the genetic architecture of the human face. We now identify 203 
genome-wide-significant (120 also study-wide-significant) sig-
nals, located in 138 cytogenetic bands, associated with multivariate 
normal-range facial morphology. Many of these loci harbor genes 
that are involved in craniofacial syndromes but that had not yet 
been observed in GWAS for normal-range facial morphology; how-
ever, 53 genome-wide-significant (26 also study-wide-significant) 
peaks are located in regions with no previously known role in facial 
development or disease, potentially pointing to previously unknown 
genes and pathways involved in facial development. We addition-
ally provide evidence that variants at our genome-wide-significant 
peaks are involved in regulating enhancer activity in cell types con-
trolling facial morphogenesis across the developmental timeline. 
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The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multi-
variate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant 
signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the 
regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several 
regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated 
actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are 
shaped by both individual and coordinated genetic actions.
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Furthermore, we reveal interactions between variants at different 
loci affecting similar aspects of facial shape variation, identify-
ing gene sets that work in concert to build human faces. With this 
work, we not only push forward our understanding of human facial 
genetics, but also illustrate the potential for researchers to confront 
Atchley and Hall’s problem, by intensively characterizing complex 
morphological variation and using advanced methods to identify 
factors involved in the developmental choreography of complex 
morphological structures.

Results
Multivariate phenotyping and meta-analysis framework. To 
study facial variation at both global and local scales, we start with a 
set of three-dimensional (3D) facial surface scans, upon which we 
map a dense mesh of 7,160 homologous vertices24. We then apply 
a data-driven facial segmentation approach, defined by grouping 
vertices that are strongly correlated using hierarchical spectral clus-
tering16,25. The configurations of each of the resulting 63 segments 
are then subjected independently to a Generalized Procrustes analy-
sis, after which principal component analysis (PCA) is performed 
in conjunction with parallel analysis to capture the major pheno-
typic variation in each facial segment26,27 (Extended Data Fig. 1). 
The number of principal components (PCs) kept at this stage of the 
analysis ranged from 7 to 70, with segments containing large num-
bers of quasi-landmarks generally requiring more PCs to describe 
the variation in that segment. The inherent shape variability in each 
segment also plays a role in the number of PCs retained by paral-
lel analysis, with more variable segments retaining more PCs. For 
example, although segments 5 and 25 contain similar numbers of 
quasi-landmarks, because the variability of the nose (segment 5) is 
generally greater than that of the lower cheeks (segment 25), the 
parallel analysis for segment 5 retained 32 PCs while for segment 25 
it retained only 20 PCs (Extended Data Fig. 1b).

We then tested for genetic association between the facial PCs and 
7,417,619 SNPs by using a data-driven approach (Extended Data 
Fig. 2). Within each segment, instead of a priori selecting the PCs 
of interest, or treating each of the 63 segments as a single ‘trait’, we 
use canonical correlation analysis (CCA) to first identify the linear 
combination of components in each segment maximally correlated 
with the SNP being tested in the identification cohort. We call this 
multivariate combination of PCs the ‘trait’. Thus, each SNP is asso-
ciated (although not always with significance) with its own ‘trait’ 
in each segment. Subsequently, the verification cohort is projected 
onto each of these traits, creating univariate ‘phenotype’ variables 
that are tested for genotype–phenotype associations by using linear 
regression. The projection ensures that the shape variation tested 
in the verification step is equivalent to the ‘trait’ used in the iden-
tification step. The identification and verification P values are then 
meta-analyzed using Stouffer’s method28,29. The whole process is 
then repeated, switching the dataset used for identification and veri-
fication, thereby resulting in 126 meta-analysis P values and traits 
(63 segments × 2 meta-analysis tracks) for each SNP. Further details 
are available in the Methods and Supplementary Notes 1 and 2.

Sharing of genome-wide signals between facial segments. We 
first assessed the degree to which variation in each facial segment 
shares the same patterns of association across the genome by com-
puting the linkage disequilibrium score correlation (LDSC) based 
on genome-wide-association P values for each pair of facial seg-
ments30,31. This 63 × 63 matrix of correlations was visualized on top 
of the facial segmentation hierarchy to assess between-segment 
correlations within and between facial quadrants (Extended Data 
Fig. 3), although it is important to note that these LDSCs should 
not be considered ‘genetic correlations’ in the typical way of a uni-
variate trait, since the z-scores used are unsigned. The LDSCs were 
highest between segments of the same facial quadrant (that is, lips, 

nose, lower face, upper face), validating the hierarchical cluster-
ing used to initially define the segments (Extended Data Fig. 3b). 
Average-linkage hierarchical clustering of the facial segments based 
on the correlation values gave rise to four main clusters, each corre-
sponding primarily to segments from the same quadrant (Extended 
Data Fig. 4). Despite substantial within-quadrant similarity, there 
were notable correlations between groups of segments from differ-
ent quadrants (Extended Data Fig. 3a). Some of these specific cor-
relations reflect close physical proximity of the segments in different 
quadrants (for example, segments 12 and 33), but some correlations 
seem to reflect the shared embryological origins of groups of seg-
ments. Specifically, segments representing the nose (quadrant II) 
and upper face (quadrant IV) cluster together, and most segments 
representing the lips (quadrant I) and lower face (quadrant III) clus-
ter together (Extended Data Fig. 4). Quadrants II and IV together 
approximate the frontonasal prominence, which appears earlier 
in development than the mandibular and maxillary prominences, 
which are approximated by quadrants I and III, respectively32.

Genome-wide-association meta-analysis. In total, we identified 
17,612 SNPs with P values (PMeta-US and/or PMeta-UK) lower than the 
genome-wide threshold (P ≤ 5 × 10−8). Of these, 11,398 SNPs also 
passed the study-wide-significance threshold (P ≤ 6.96 × 10−10) 
(Supplementary Fig. 1). For each peak passing the genome-wide 
threshold, we designated the SNP with the lowest P value across 
all facial segments as the ‘lead SNP’, refining our results to 218 
genome-wide-significant lead SNPs. Of these, 203 SNPs showed 
consistent genetic effects on the trait identified in the US- and 
UK-driven meta-analyses in the facial segment with the low-
est P value for that SNP (Fig. 1 and Supplementary Table 3), and 
120 of these were also below study-wide significance. Visual rep-
resentations of the LocusZoom33 and effect plots for each of the 
203 genome-wide-significant SNPs are available in the FigShare 
repository34.

The global-to-local approach means that we often identified 
associations between a single SNP and variation in many facial seg-
ments. In this article, we focus primarily on the segment in which the 
SNP had its lowest P value (the ‘Best segment’) and provide infor-
mation on in which meta-analysis track (Meta-US or Meta-UK) 
the SNP reached this significance level (the ‘Best meta-analysis 
track’). Thus, throughout the rest of the article, the reported P val-
ues for each SNP will be in the format of PBest track (Best segment) = 
value. By plotting the strongest association results for each segment  
(Fig. 1, left), segments 1 and 2 are visibly the ‘Best segment’ for most 
SNPs, with n = 20 SNPs reaching lowest significance in the full face 
(segment 1) in the US-driven meta-analysis (n = 15 for Meta-UK) 
and n = 19 SNPs reaching lowest significance in segment 2 in the 
US-driven meta-analysis (n = 18 for Meta-UK).

Genes near lead SNPs are enriched for both craniofacial and limb 
development. In a GREAT35 analysis of the regions surrounding the 
203 genome-wide-significant lead SNPs, the top ten terms (based 
on lowest binomial P values) in the mouse phenotype, human phe-
notype and gene ontology (GO) biological processes categories are 
all highly relevant to craniofacial shape and overall morphology 
(Extended Data Fig. 5a), with the top human phenotype being oral 
clefting. A FUMA36 analysis of the same regions highlighted genes 
overlapping several pathways related to abnormal cellular main-
tenance and also included pathways highly relevant for morpho-
logical development, like the Wnt, Hedgehog and TGFβ signaling 
pathways (Extended Data Fig. 5b).

Facial GWAS peaks are enriched for enhancers specific to cell 
types across the timeline of facial development. To assess the likely 
cell types and developmental timepoints in which our GWAS regions 
are active, we compiled H3K27ac ChIP–seq signals—detecting a 
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marker of the promoters of transcriptionally active genes and active 
distal enhancers37,38—from approximately 100 different cell types 
and tissues, including cranial neural crest cells (CNCCs), fetal and 
adult osteoblasts and mesenchymal stem cell-derived chondrocytes, 
as well as dissected embryonic craniofacial tissues (Carnegie stages 
13–20). Both CNCCs and craniofacial tissues showed the highest 
H3K27ac signals in the vicinity of the 203 genome-wide-significant 
lead SNPs, whereas no H3K27ac signal was observed for 203 ran-
dom SNPs matched for allele frequency and distance to the near-
est gene (Fig. 2a). The difference in H3K27ac signal between the 
203 genome-wide-significant lead and random SNPs was signifi-
cant based on a two-sided Wilcoxon rank-sum test for many cell 

types and tissues, with CNCCs and embryonic craniofacial tissues 
having the greatest median differences (Extended Data Fig. 6 and 
Supplementary Table 4).

To distinguish enrichment between coding and noncoding 
elements, we examined chromatin signals in CNCCs and embry-
onic craniofacial tissues in more detail, using ChIP–seq data on 
additional chromatin marks and transcription factors39,40. In the 
CNCCs, candidate regulatory regions in the vicinity of the 203 
genome-wide-significant lead SNPs were enriched significantly for 
strong and intermediate enhancers and depleted in weak promoters 
(Fig. 2b). In embryonic craniofacial tissue, all developmental stages 
sampled were significantly enriched for the chromHMM states of 
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active enhancers, active enhancer flanks and weak enhancers, and 
depleted in quiescent/low and heterochromatin states (Fig. 2c).

Cell-type-specific activity patterns were used to further subdi-
vide the 203 genome-wide-significant lead SNPs by using k-means 
clustering of H3K27ac signals (Fig. 3). As expected, many lead SNPs 
showed specific activity for CNCCs and craniofacial tissue (for 
example, cluster 5), representing activity at an early time point in 
development. Interestingly, however, some SNPs showed preferen-
tial activity for either CNCCs or craniofacial tissue (for example, 
clusters 1 and 2). Greater specificity for CNCCs could arise because 
CNCCs constitute a relatively small proportion of the cells pres-
ent in craniofacial tissue at Carnegie stages 13–20, while greater 
specificity for craniofacial tissue could be due to activity in further  
differentiated cell types of the face.

Known and new loci. We identified 89 genome-wide-significant 
(66 also study-wide-significant) peaks that overlap with the results 
of prior association studies of normal-range facial phenotypes.  

Of these, 29 genome-wide-significant (20 also study-wide-significant) 
peaks were reported by studies with overlapping samples as this study 
and 60 genome-wide-significant (46 also study-wide-significant) 
peaks were previously reported by studies with completely non-
overlapping sample sets. A total of 61 genome-wide (28 also 
study-wide) significant peaks observed in our analysis are located 
at loci harboring putative craniofacial genes (implicated from 
human malformations or animal models), but which had not yet 
been observed in GWAS for normal-range facial morphology. Our 
GWAS additionally revealed 53 genome-wide-sigificant (26 also 
study-wide-significant) peaks at loci harboring genes with no previ-
ously known role in facial development or disease. The annotation 
for each GWAS peak can be found in Supplementary Table 3.

Genomic regions harboring multiple lead SNPs. With our pheno-
typing and analysis framework, in many cases we are able to provide 
a more nuanced understanding of the underlying genetic architec-
ture of facial variation. For example, variants at the TBX15-WARS2 
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locus (1p12; Fig. 4) were previously reported to be associated with 
forehead prominence16 and self-reported chin dimples11, already 
indicating that this locus has multiple spatially separated effects 
on the face. In our current analysis, we see the same influence on 
forehead morphology, as previously reported by our group16, with 
lead SNP rs3936018, located in the promoter region of WARS2, 
reaching its lowest significance in segment 14 (PMeta-US(segment 
14) = 8.01 × 10−58). Interestingly, this lead SNP overlaps in loca-
tion with a SNP not originally identified in our peak selection 
approach, rs12027501 (PMeta-US(segment 1) = 1.03 × 10−41). The latter 
was most significant in segment 1, the full face, and is not a good 
proxy for the former (r2, 0.075; normalized coefficient of linkage  
disequilibrium D′, 0.979), indicating it is likely an independent 
statistical signal. Another signal, approximately 275 kb upstream 
of TBX15 (rs7513680), was most significantly associated with 
morphology in segment 51 (PMeta-UK(segment 51) = 7.03 × 10−13), 
representing the cheek area around the corners of the mouth. 
Lastly, another GWAS peak is present approximately 301 kb down-
stream of WARS2 (rs17023457) with an effect in the upper cheeks 
(PMeta-UK(segment 48) = 3.26 × 10−15). Of interest, we observed 24 
such loci with multiple genome-wide-significant peaks that are each 
associated with different facial traits (Supplementary Table 5 and 
Supplementary Data 1).

Genetic interactions impacting facial variation. To better ana-
lyze and rank the effects of multiple genotypes on a facial trait, we 
utilized structural equation modeling (SEM) to refine our under-
standing of which groups of genome-wide-significant variants best 
explain the variance observed in each facial segment. SEM is a  

multivariate statistical analysis technique that analyzes structural 
relationships between measured variables (for example, genetic 
variants and covariates) and latent constructs (univariate pheno-
types derived from the PCs of the analyzed facial segment). This 
was done in an iterative manner, resulting in 50 well-fitting SEM 
models (corresponding to 50 facial segments; Supplementary Data 
2). For each of these 50 models, the output included a univariate 
latent variable and a list of variants ranked by their estimated con-
tribution to that variable, highlighting the polygenic nature of facial 
variation captured by the latent variable. Higher correlation of 
cross-sample H3K27ac activity was found when comparing SNPs 
deemed significant by the same SEM model than when comparing 
SNPs nonsignificant in the same SEM model (Extended Data Fig. 7).  
Additionally, of the SEM-significant SNPs, four SNP combinations 
displayed evidence of pairwise epistatic interactions (Table 1, Fig. 5, 
Extended Data Fig. 8 and Supplementary Note 3).

Discussion
In their review, Atchley and Hall1 provided a framework with which 
we can better understand and describe the development of com-
plex morphological structures. In this analysis, we have focused 
on one part of this framework and have identified intrinsic genetic 
factors contributing to normal-range variation in the structure 
of the human face. By implementing an open-ended multivariate 
association method, in which the inherent morphological variation 
within each of these segments drives the association, and by using 
both standard and modified-for-multivariate follow-up bioinfor-
matic approaches, we describe the association between SNPs and  
facial traits as well as the likely cellular functions of the regions 
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Fig. 3 | Activity of 203 genome-wide-significant lead SNPs in all cell types studied. H3K27ac signal calculation and k-means clustering of SNPs were 
performed as described in Methods. Average-linkage clustering on Euclidean distances was performed both within each of the six row clusters and for all 
columns. Descriptions of all abbreviations can be found at https://egg2.wustl.edu/roadmap/web_portal/meta.html.
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surrounding these SNPs. We also highlight regions with multiple 
SNPs affecting different facial phenotypes as well as evidence for 
multiple SNPs working in concert to produce a single phenotype. 
Taken in summary, our results illustrate an avenue for investigat-
ing the coordinated processes underlying complex morphological 
structures, like the human face, at a deeper level than single associa-
tions between genotype and univariate phenotype.

Overall, our association results reflect patterns from known bio-
logical processes. For instance, linkage disequilibrium (LD) score 
regression correlations between segments seem to reflect the shared 
embryological origins of different parts of the face, indicating that 

the hierarchical spectral clustering of the face based on structural 
correlations effectively partitions underlying genetic signals into 
biologically coherent groups. It is additionally clear from the large 
number of genome-wide-significant SNPs reaching their strongest 
association in the full face and segment 2 (covering the nose and 
upper lip) that these facial regions are ‘hotspots’ for genomic sig-
nals (Fig. 1). In general, quadrant II (representing the nose) and 
quadrant IV (representing the forehead and eyes) had the most 
genome-wide-significant lead SNPs reaching lowest significance 
in segments within each quadrant. This is unsurprising, given the 
close relationship between visible facial features in those areas and 
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the underlying skeletal structure. Indeed, regions with less corre-
spondence to underlying skeletal structure, like the upper lip (quad-
rant I), had many fewer lead SNPs reaching lowest significance in 
the contained segments, and facial regions with some structural 
correspondence but still greatly impacted by age and adiposity, like 
the lower face and cheeks (quadrant III), had only slightly more.

Reassuringly, the genes located within 500 kb of our 
genome-wide-significant lead SNPs were highly enriched for pro-
cesses and phenotypes associated with craniofacial development 
and morphogenesis in humans and mice (Extended Data Fig. 5). 
Notably, the top human phenotype was oral clefting, indicating a 

substantial overlap between the genes involved in normal facial vari-
ation and those implicated in the most common craniofacial birth 
defect in humans. Furthermore, many of the surrounding genes to 
which the genome-wide-significant lead SNPs were annotated are 
known to be involved in pathways relevant for craniofacial develop-
ment, such as the Wnt signaling and TGFβ pathways (Extended Data 
Fig. 5b). Our GWAS signals were also enriched for processes associ-
ated with limb development and related phenotypes, pointing to a 
shared genetic architecture between faces and limbs (Extended Data 
Fig. 5a) and a number of genes near our genome-wide-significant 
loci (for example, Dlx homeobox genes, BMP genes, and FGFR2) 

Table 1 | Four SNPs with evidence of epistatic interactions

Segment SNP 1 SNP 2 Test 
statistic

P value

rsID Location Gene annotation rsID Location Gene annotation

6 rs10838269 11:44378010 ALX4 rs11175967 12:66321344 HMGA2 23.9422 9.94 × 10−7

9 rs76244841 1:2775953 PRDM16 rs62443772 7:42131949 GLI3 16.5745 4.68 × 10−6

11 rs6740960 2:42181679 PKDCC rs6795164 3:133885925 SLCO2A1 16.3707 5.21 × 10−5

22 rs7373685 3:128107020 GATA2 rs7843236 8:121980512 SNTB1 15.7837 7.10 × 10−5

For each of the 50 segments with a refined SEM model, we used the latent variables and SNP lists to test for evidence of epistasis using a two-sided linear regression epistasis test in Plink v.1.9, with 
Bonferroni multiple-testing correction. For the four SNP pairs with significant evidence of epistatic interactions, Table 1 lists the epistasis P value, rsID, GRCh37 location and gene annotation. The phenotypic 
and marginal distributions for the pairs are depicted as boxplots in Fig. 5 and Extended Data Fig. 8.
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have well-established roles in limb development41. These findings 
are also supported by the large number of human syndromes that 
present with both facial and limb malformations42.

For the regions surrounding the 203 genome-wide-significant 
lead SNPs, both CNCCs and embryonic craniofacial tissues 
showed the highest enrichment in H3K27ac signal (Fig. 2a). 
These observations are consistent with (1) activity of our 203 
genome-wide-significant lead SNPs in CNCCs and embryonic cra-
niofacial tissues and (2) an embryonic origin for human facial varia-
tion across the timeline of facial development, as CNCCs represent 
an early time point in facial development whereas the craniofacial 
tissues represent progressively later timepoints. In both CNCCs 
and craniofacial tissue at all sampled developmental stages, regions 
in the vicinity of the 203 genome-wide-significant lead SNPs were 
significantly enriched for predicted enhancers and not promoters 
(Fig. 2b,c). This is an especially intriguing result, as recent evidence 
has described the action of multiple enhancers, each showing dif-
ferent tissue or timing specificity, in modulating expression levels 
to affect craniofacial development43. Complementing our GREAT 
analysis results, indicating that some genes near our GWAS peaks 
are involved in both facial and limb development, a subset of 
genome-wide-significant lead SNPs showed preferential activity in 
additional in-vitro-derived cell types relevant to both the face and 
the rest of the skeletal system, including osteoblasts, chondrocytes, 
differentiating skeletal muscle myoblasts, fibroblasts and keratino-
cytes (for example, cluster 3; Fig. 3). Together, these results suggest 
that genetic variation underlying facial morphology operates by 
modulating enhancer activity across multiple cell types throughout 
the timeline of embryonic facial development.

A total of 61 genome-wide-significant peaks from our analysis 
did not overlap with the results of prior GWAS for normal-range 
facial morphology, but were located nearby putative craniofacial 
genes implicated from human malformations or animal models. 
For instance, MSX1 has been implicated in orofacial clefting in 
humans44,45 and mice45,46, and is also expressed widely in lip and den-
tal tissues during development47. We observed two distinct peaks 
at the MSX1 locus (4p16.2), one approximately 55 kb upstream of 
MSX1 with a pronounced effect on the lateral upper lip (lead SNP 
rs13117653; PMeta-US(segment 34) = 4.2 × 10−18) and a second peak, 
about 323 kb upstream of MSX1 and located in the intron of STX18, 
involving the lateral lower lip and mandible (lead SNP rs3910659; 
PMeta-UK(segment 25) = 4.45 × 10−9; Extended Data Fig. 9a–e). This 
result could indicate a potential role of STX18 in craniofacial devel-
opment, although the STX18 protein is important primarily for 
functioning of the endoplasmic reticulum. Alternatively, this result 
could provide further evidence that complex phenotypic effects seen 
in our human sample could be due to the action of multiple regula-
tory elements within a single locus. In support of this, Attanasio 
et al. demonstrated that the activity of Msx1 in the second pharyn-
geal arch and maxillary process of the e11.5 mouse embryo is reca-
pitulated by the combined activity of two separate enhancers43.

We also identified 53 genome-wide-significant signals in regions 
harboring genes with no previously known role in craniofacial devel-
opment or disease, although many of the implicated genes are known 
to have a general role in developmental processes critical to morpho-
genesis. For example, in the current study, variants at the DACT1 
locus are associated with mandibular morphology (Extended Data 
Fig. 9f–h). DACT1 is an established antagonist of the Wnt signal-
ing pathway, which is known to be involved in craniofacial devel-
opment48, although DACT1 is studied mostly for its involvement in 
gastric cancer. However, DACT1 has also been shown to inhibit the 
delamination of neural crest cells, further supporting its involvement 
in facial development49. These new signals are promising new candi-
dates for potential roles in facial morphogenesis.

In addition to better understanding which parts of the face had 
the most signals, we capitalized on the utility of facial segmentation  

via hierarchical clustering to finely parse out the effect of a SNP 
even within a complex genomic region. Notably, we observed 24 
loci with multiple genome-wide-significant peaks each associated 
with different facial traits, suggesting that these variants might over-
lap with or be impacted by regulatory elements that affect the face 
in highly specific ways (Supplementary Table 5 and Supplementary 
Data 1). An important consideration to our peak selection pro-
cedure is that it is statistical and heuristic in nature, being based 
on investigator-chosen thresholds of both distance and similarity 
of associated facial phenotypes, and thus is not perfect. Refining a 
peak selection approach based on combinations of distance, LD pat-
terns, and trait similarity was beyond the grasp of this paper, but 
we believe such an approach has potential for further interrogating 
the complex genetic architecture of facial variation, as we have illus-
trated using the TBX15-WARS2 locus (Fig. 4).

Given the complexity of the human face and its component traits, 
it is likely that the genetic architecture contributing to facial varia-
tion includes groups of genomic regions that contribute to the same 
facial trait, perhaps through actions in similar cell types or explicit 
interactions among variants. Importantly, genome-wide-significant 
SNPs that significantly explained variance in the same segment, 
based on the SEM for that segment, showed higher correlations of 
cross-sample H3K27ac activity than when compared with SNPs 
that did not, indicating that the SEM-refined lists of SNPs for each 
segment are likely those that are similar in either their spatial or 
temporal cellular activity (Extended Data Fig. 7). Tests for epis-
tasis using the SEM-refined SNP lists for each segment identified 
four SNP combinations with significant evidence of pairwise epi-
static interactions (Table 1). For example, rs76244841 (PRDM16 
associated; PMeta-UK(segment 30) = 1.48 × 10−8) and rs62443772 
(GLI3 associated; PMeta-UK(segment 22) = 5.35 × 10−16) were found 
to have a significant interaction in facial segment 9, which covers 
the premaxillary soft tissue from the base of the columella to the 
oral commissure (Table 1 and Fig. 5). Interestingly, PRDM16 and 
GLI3 are both part of a tetrameric Hedgehog signaling complex in 
Drosophila melanogaster (Supplementary Note 3)50–52. Overall, these 
results indicate that the statistical evidence of SNP groups influenc-
ing polygenic facial variation identified through SEM, and explicit 
variant interactions suggested by the epistasis analysis, are poten-
tially representative of true biological relationships but must be con-
firmed with further study.

In conclusion, with this work we have not only reported 
genomic variants influencing normal-range facial variation, but 
have also sought to use our in-depth facial phenotyping approach 
and bioinformatic tools to illustrate one way in which research-
ers without access to functional follow-up analyses can delve 
deeper into the genetic architecture of complex morphological 
traits. These results illustrate the potential to highlight spatial 
and temporal connections between SNPs, representing a major 
step forward in our ability to characterize the polygenic genetic 
architecture of complex morphological structures. In performing 
an open-ended and minimally restrictive study, we are optimistic 
that our results will be useful for other research efforts to better 
understand the biological forces that shape human and nonhu-
man morphology.
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Methods
Sample and recruitment. The samples used for analysis included a combination 
of three independently collected datasets from the United States (US; nUS = 4,680) 
and one dataset from the United Kingdom (UK; nUK = 3,566), for a total 
sample size of n = 8,246. The US samples originated from the 3D Facial Norms 
cohort55 (3DFN) and studies at the Pennsylvania State University (PSU) and 
Indiana University-Purdue University Indianapolis (IUPUI). The UK dataset 
included samples from the Avon Longitudinal Study of Parents and their 
Children (ALSPAC)56,57. Institutional review board approval was obtained at 
each recruitment site, and all participants gave their written informed consent 
before participation. For children, written consent was obtained from a parent 
or legal guardian. Some individuals from the 3DFN and PSU samples were 
tested previously for associations with facial morphology in our prior work16. A 
breakdown of the samples used for analysis is shown in Supplementary Table 2 
and further details are available in the Supplementary Methods. In all datasets, 
participants with missing information in sex, age, height or weight, or with 
insufficient image quality were removed.

Genotyping and imputation. Due to the several genotyping platforms used 
for the US cohort (details in the Supplementary Methods), we chose to impute 
the samples from each platform separately, then combine the imputed results58. 
For each dataset, standard data cleaning and quality assurance practices were 
performed based on the GRCh37 genome assembly. Phasing was performed using 
SHAPEIT2 (v.2.r900)59 and imputation to the 1000G Phase 3 reference panel60 
performed using the positional Burrows-Wheeler Transform61 pipeline (v.3.1) of 
the Sanger Imputation Server (v.0.0.6)62. After post-imputation quality control and 
intersection of imputed SNPs, a single merged dataset of all US participants was 
created with 7,417,619 SNPs for analysis.

The raw genotype data from ALSPAC were not available, and restrictions are 
in place against merging the ALSPAC genotypes with any others. For this reason, 
ALSPAC genotypes, phased using SHAPEIT259 and imputed to the 1000G Phase 1 
reference panel (Version 3)63 using IMPUTE264, were obtained directly from the 
ALSPAC database and held separately during the analysis. After post-imputation 
quality control, the ALSPAC dataset contained 8,629,873 SNPs for analysis.

For both datasets, SNPs on the X chromosome were coded 0/2 for hemizygous 
males, to match with the 0/1/2 coding for females12.

Ancestry axes and selection of European participants. From the post-imputation 
merged dataset of US participants, we identified the European participants by 
projecting them into a PC space constructed using the 1000G Phase 3 dataset, 
first filtered for LD and SNPs shared between both datasets. Further details are 
available in the Supplementary Methods. In the combined PC space, we calculated 
the ancestry axes for the US participants and the Euclidean distance between all 
US participants and the 1000G samples. Using a kth nearest neighbor algorithm, 
we identified the five nearest 1000G neighbors for each US participant. The most 
common 1000G population label from these five nearest neighbors was then 
assigned to the US participant, and participants assigned the 1000G European 
population labels of CEU, TSI, FIN, GBR and IBS were selected for analysis.

Ancestry axes were calculated for the UK participants by projecting them 
into the 1000G Phase 3 dataset in a manner similar to that described for the 
US participants. Since all ALSPAC participants available for this analysis were 
European, no additional ancestry refinement was performed.

3D image acquisition. For all datasets, 3D images were captured using either 
a digital facial stereophotogrammetry system or a laser scanning system. All 
participants were asked to have closed mouths and to maintain a neutral facial 
expression during image capture65. For the 3DFN sample, facial surfaces were 
acquired using the 3dMDface (3dMD) camera system. PSU images were obtained 
with either the 3dMDface or Vectra H1 system (Canfield Scientific). The IUPUI 
sample was fully imaged using Vectra H1. The ALSPAC sample was imaged using 
a Konica Minolta Vivid 900 laser scanner (Konica Minolta Sensing Europe). 
For this system, two high-resolution facial scans were taken and then processed, 
merged and registered using a macro algorithm in Rapidform 2004 software (INUS 
Technology Inc.).

3D image registration and quality control. The 3D surface images and their 
reflections were registered using the MeshMonk registration framework (v.0.0.6)24 
in Matlab 2017b. This process results in a homologous configuration of 7,160 
spatially dense quasi-landmarks, allowing the image data from different individuals 
and camera systems to be standardized24. Images differing greatly from the norm 
or with large holes were investigated manually and either removed or re-processed, 
with details available in the Supplementary Methods. Although variation in 
asymmetric facial features is of interest, in this work we sought only to study 
variation in symmetric facial shape.

Segmentation of facial shape. To study global and local effects on facial variation, 
we performed a data-driven facial segmentation on the UK and US datasets 
combined, as described previously16. Before segmentation, images in the two 
datasets were separately adjusted for sex, age, age-squared, height, weight, facial 

size, the first four genomic ancestry axes and the camera system, using PLSR 
(function plsregress from Matlab 2017b). As an illustration, the age adjustment 
is visualized in Supplementary Fig. 2. After adjustment, facial segments were 
defined by grouping vertices that are correlated strongly using hierarchical spectral 
clustering16,25. The strength of covariation between quasi-landmarks was defined 
using Escoufier’s RV coefficient66,67. The RV coefficient was then used to build a 
structural similarity matrix that defined the hierarchical construction of 63 facial 
segments, broken into five levels (Extended Data Fig. 1a). The configurations of 
each segment were then subjected independently to a Generalized Procrustes 
analysis68, after which a PCA was performed in combination with parallel analysis 
to capture the major variance in the facial segments with fewer variables26,27 
(Extended Data Fig. 1b).

Multivariate genome-wide-association meta-analyses. The meta-analysis 
framework utilized consists of three steps performed separately for each of the 63 
segments: identification, verification, and meta-analysis (Extended Data Fig. 2). 
For all analyses, the genotypes were coded additively based on the presence of the 
major allele. In the identification step, for each of the 63 facial segments, each SNP 
was associated with phenotypic variation using CCA (canoncorr in Matlab 2017b). 
CCA is a multivariate analysis that extracts the linear combination of PCs, which 
represent the direction of phenotypic effect in shape space (which we call a ‘trait’) 
that are maximally correlated with a SNP, and returns a correlation value between 
those PCs and the SNP tested. Because CCA does not accommodate adjustments 
for covariates, we removed the effect of relevant covariates (sex, age, age-squared, 
height, weight, facial size, the first four genomic ancestry axes and the camera 
system), on both the independent (SNP) and the dependent (facial shape) variables 
using PLSR (plsregress from Matlab 2017b), and thus performed the CCA under 
a reduced model with residualized variables. The correlation value between PCs 
and SNPs is tested for significance based on Rao’s F-test approximation69 (right tail, 
one-sided test). In summary, for each of the 63 segments, the CCA component of 
the identification step identifies the phenotypic trait most correlated with each SNP 
(TraitUS and TraitUK in Extended Data Fig. 2) and Rao’s F-test provides a P value 
(PCCA-US and PCCA-UK) representing the strength of the correlation. CCA has also 
been implemented in ‘mv-PLINK’70. Performance tests of mv-PLINK have shown 
that it outperforms univariate methods and has similar power to other multivariate 
methods of association70–72, which generally have higher statistical power than 
univariate methods70–76.

In the verification step, the shape PCs of the nonidentification dataset were 
projected onto the trait found in the identification stage, which returns a univariate 
variable (which we call a ‘phenotype’; UniVarUS and UniVarUK). These univariate 
variables were then tested for genotype–phenotype associations in a standard linear 
regression (regstats in Matlab 2017b) with the SNP genotypes of the verification 
dataset as independent variable and the univariate trait projection score as the 
dependent variable. This function employs a t-statistic and a one-sided (right 
tail) P value was obtained with the Student’s t cumulative distribution function77 
(function tcdf in Matlab 2017b).

In the meta-analysis step, the identification P value (from Rao’s F-test on 
the canonical correlation) and the verification P value (from the univariate 
regression) were combined using Stouffer’s method28,29, which was chosen because 
a meta-analysis of beta values was not possible given that the CCA returns a 
positive correlation value, not a beta statistic. The entire process was repeated, 
resulting in two meta-analysis P values (PMeta-US and PMeta-UK) accompanied by two 
identified traits per segment and per SNP: first using US data in the identification 
stage and UK data as verification (METAUS or US-driven), then using UK data in 
the identification stage and US data as verification (METAUK or UK-driven). A 
validation of our analysis pipeline is available in Supplementary Note 1.

Sharing of genome-wide signal between facial segments. To assess the extent 
to which genome-wide signals of association with facial variation were shared 
between a pair of facial segments, LD score regression30,31 was applied to the 
meta-analysis, after converting the meta P values to z-scores and ignoring the 
sign or direction of effect. The former was required because of the multivariate 
nature of our results and the latter was needed since CCA is a one-sided test 
with canonical correlations always between [0 1]. As a result, all resulting genetic 
correlations reported here are restricted to be positive as well. Further details on 
the calculation of LDSC values are available in the Supplementary Methods. This 
process was done twice, once each for the US- and UK-driven meta-analyses. A 
high degree of congruence (rS = 0.95) between the results based on the US- and 
UK-driven meta-analyses was observed, and the average correlation of both 
between each pair of facial segments was reported. The 63 × 63 matrix of average 
correlations was visualized on top of the facial segmentation hierarchy to assess 
correlation both within and between facial quadrants (Extended Data Fig. 3) and 
used to perform average-linkage hierarchical clustering (Extended Data Fig. 4).

GWAS peak selection. The analysis strategy yielded 126 meta-analysis P values 
and 126 traits for every SNP, representing the 63 segments × two meta-analysis 
tracks. Per SNP, the lowest P value was selected, and we noted in which 
meta-analysis track (METAUS or METAUK; ‘Best meta-analysis track’) and segment 
(‘Best segment’) this P value occurred. The study-wide Bonferroni threshold 
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(P ≤ 6.96 × 10−10) was calculated as 5 × 10−8/(1.0042 × 1.6631 × 43.0145), with the 
denominator values representing the number of independent tests per SNP, across 
both meta-analysis tracks, and across all segments, respectively. These values 
were calculated using 10,000 permutations each of 1,000 random SNPs, with 
more details available in Supplementary Note 2 and the permutation outcomes 
available in the FigShare repository for this article34. Although a study-wide 
threshold was calculated, we chose to annotate lead SNPs reaching at least 
genome-wide threshold to retain as many potentially biologically meaningful 
results as possible. The FigShare repository also provides information on all 
SNPs reaching suggestive significance (P = 5 × 10−7) as well as QQ plots for each 
segment in all stages of the analysis34. For the initial peak selection, we chose to 
group SNPs below genome-wide threshold by genomic position, and the SNP 
with the lowest P value per genomic region was selected as the lead SNP. Within 
a ± 500-kb window of the resulting genome-wide-significant lead SNPs, we further 
refined the selection by performing a regression of slopes on the traits defined 
in the identification stage (in Best meta-analysis track and Best segment) to 
determine if adjacent SNPs showed consistent effects with the lead SNP, resulting 
in 218 genome-wide-significant lead SNPs. Of these 218 lead SNPs, 203 showed 
consistent traits in the US and UK datasets in the Best segment (Supplementary 
Table 3), with more details in the Supplementary Methods. Visual representations 
of the LocusZoom33 and effect plots for each of the 203 genome-wide-significant 
SNPs are available in the FigShare repository34. The 203 lead SNPs were mapped to 
138 cytogenetic bands (loci) using the Ensembl GRCh37 locations78. This method 
of peak selection is statistical in nature and is thus not perfect. For example, 
our inspection of the LocusZoom33 plots for the TBX15-WARS2 locus led to the 
identification of two clusters of SNPs, based on r2 correlation, sharing the same 
genomic positions and affecting different facial segments, but separating these two 
clusters was not possible in our initial peak selection and they were considered a 
single signal until manual investigation. To comprehensively identify SNPs within 
a locus contributing to facial morphology, and the specific facial segments affected, 
fine mapping and other detailed investigations are needed.

Gene annotation. Genes ±500 kb of the genome-wide-significant lead SNPs were 
identified using the Table Browser of the UCSC Genome Browser79. The most likely 
candidate gene per lead SNP was identified based on a three-step system using first 
literature searches, then the results from Hooper et al. on the transcriptomics of 
mouse facial development80, then the FUMA gene prioritization algorithm (v.1.3.3)36. 
Further details are available in the Supplementary Methods. Using the available 
literature, we classified the lead SNP into one of five categories: ‘Region previously 
implicated in normal-range facial morphology’, ‘Region previously implicated in 
normal-range facial morphology using other analyses of these data’, ‘Candidate gene 
implicated in craniofacial morphology through animal model’, ‘Region or candidate 
gene implicated in craniofacial morphology through human dysmorphology’ 
and ‘No previous association’. To the best of our knowledge, all links with facial 
morphology from the literature are provided in Supplementary Table 3.

To investigate the potential roles of the identified genome-wide-significant lead 
SNPs, analyses using FUMA (v.1.3.3)36, which can test for enrichment of a set of 
genes in predefined pathways, and GREAT (v.3.0.0)35, which predicts the function 
of cis-regulatory regions, were performed using preset parameters (Extended Data 
Fig. 5). In this article, we focus on the top FUMA and GREAT results,  
based on P value, and have provided the full export of GREAT results in the 
FigShare repository34.

Cell-type-specific enhancer enrichment. To assess activity of the 203 
genome-wide-significant lead SNPs in various cell types and tissues (further details 
in the Supplementary Methods), we analyzed signals of acetylation of histone H3 
on lysine 27 (H3K27ac). Across cell types and tissues, we compared 20-kb windows 
containing the 203 genome-wide-significant lead SNPs, 203 random SNPs matched 
for minor allele frequency and distance to the distance to the nearest gene by using 
SNPsnap81, or 619 Crohn’s disease-associated SNPs from the National Center for 
Biotechnology Information-European Bioinformatics Institute (NCBI-EBI) GWAS 
catalog82. Regions in the vicinity of SNPs associated with Crohn’s disease showed 
the highest H3K27ac signal in various immune cell types, serving as a positive 
control for both our approach and dataset (Extended Data Fig. 10). A two-sided 
Wilcoxon rank-sum test was used to compare the H3K27ac signal between the 203 
genome-wide-significant lead and random SNPs, within each cell type and tissue 
analyzed. K-means clustering was performed on the lead SNP H3K27ac signal 
across all cell types and tissues with k = 6, as we found that this value maximized 
the number of clusters without significantly impacting cluster quality, as measured 
by silhouette width (Fig. 3).

Chromatin state association in CNCCs and embryonic craniofacial tissue. 
Lists of human CNCC regulatory elements were annotated based on multiple 
chromatin marks by Prescott et al.39 and embryonic craniofacial chromHMM 
states were computed in combined data from each Carnegie stage by Wilderman 
et al.40. For each set of regulatory regions, all regions within 20 kb of either 
genome-wide-significant lead SNPs or the above-described 203 random SNPs were 
considered. Enrichment/depletion of each class of regulatory region for lead SNPs 
versus random SNPs was computed using a two-sided Fisher’s exact test (Fig. 2b,c).

Structural equation modeling. To better define the cause–effect relationships 
between the significant genotypes and their collective traits, both the US 
and UK participants were used as input for SEM using the lavaan package 
(v.0.6-3) in R (≥3.5.0)83, which reports a two-sided P value. For our analyses, 
separate SEM models were constructed for each segment using each of the 203 
genome-wide-significant lead SNPs and the shape PCs for all participants, with 
additional information available in the Supplementary Methods.

For each of the 50 SEM models where the refinement process was successful 
(details in the Supplementary Methods), final model fit indices and model 
parameter estimates are provided in Supplementary Data 2. Reassuringly, for 
segments that are closely related in the segmentation hierarchy (segments 5, 
11, 23 and 47) there is an average overlap of 46% of the variants meeting the 
P < 0.05 cutoff for SEM significance, compared to 13.6% average overlap for 
nonhierarchically related segments (segments 5 and 6). The H3K27ac activity 
across all cell types was compared for significant variants both within and between 
segments using Spearman’s rho using two-sided Kruskal–Wallis tests (Extended 
Data Fig. 7).

Epistasis analysis. We additionally used the univariate latent variable and the 
variants passing the P < 0.05 significance cutoff from the final 50 refined SEM 
models (P < 0.1 for segments 7, 16 and 25) to assess whether interactions between 
genotypes increase or decrease the distribution of the latent variable. For each 
segment, the effect on the latent variable of all diplotype combinations of variants 
were assessed via a linear regression epistasis analysis in Plink v.1.9 (ref. 84). 
After Bonferroni correction for multiple testing, four SNP pairs were significant 
at P < 0.05 (Table 1). For these four pairs, the nine diplotype combinations and 
their normalized phenotypic and marginal distributions were plotted (Fig. 5 and 
Extended Data Fig. 8) to assess the genotypic contribution to epistatic masking (the 
combination of two variants reduce the phenotype) and boosting (the combination 
of two variants increase the phenotype). For each diplotype combination, the 
marginal phenotypic medians of the singular genotypes were averaged to visualize 
the predicted phenotypic distribution that would occur if the two genotypes were 
acting independently, and this average median was compared to the medians of the 
combined diplotypes. Significance testing was performed using a two-sided Mood’s 
Median test54 with one degree of freedom. These steps were performed using the 
R packages agricolae (v.1.3-0), cowplot (v.1.0.0), ggplot2 (v.3.1.1), ggpubr (v.0.2), 
gridExtra (v.2.3), gtable (v.0.3.0), grid (v.3.6.2), Hmisc (v.4.2-0), psych (v.1.8.12) 
and data.table (v.1.12.0).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the genotypic markers for the 3DFN dataset are available to the research 
community through the dbGaP controlled-access repository (http://www.ncbi.
nlm.nih.gov/gap) at accession no. phs000949.v1.p1. The raw source data for the 
phenotypes—the 3D facial surface models in.obj format—are available through the 
FaceBase Consortium (https://www.facebase.org) at accession no. FB00000491.01. 
Access to these 3D facial surface models requires proper institutional ethics 
approval and approval from the FaceBase data access committee. Additional details 
can be requested from S.M.W.

The participants making up the PSU and IUPUI datasets were not collected 
with broad data sharing consent. Given the highly identifiable nature of both facial 
and genomic information and unresolved issues regarding risk to participants, we 
opted for a more conservative approach to participant recruitment. Broad data 
sharing of the raw data from these collections would thus be in legal and ethical 
violation of the informed consent obtained from the participants. This restriction 
is not because of any personal or commercial interests. Additional details can be 
requested from M.D.S. and S.W. for the PSU and IUPUI datasets, respectively.
The ALSPAC (UK) data will be made available to bona fide researchers on 
application to the ALSPAC Executive Committee (http://www.bris.ac.uk/alspac/
researchers/data-access). Ethical approval for the study was obtained from the 
ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

Publicly available data used were the 1000G Phase 3 data (ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), the list of HapMap 3 
SNPs excluding the MHC region (http://ldsc.broadinstitute.org/static/
media/w_hm3.noMHC.snplist.zip), and ChIP–seq files from Prescott et al.39 
(GSE70751), Najafova et al.85 (GSE82295), Baumgart et al.86 (GSE89179), Nott 
et al.87 (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19), 
Pattison et al.88 (GSE119997), Wilderman et al.40 (GSE97752) and the Roadmap 
Epigenomics Project89 (https://egg2.wustl.edu/roadmap/data/byFileType/
alignments/consolidated/). Meta-analysis GWAS statistics are available on 
GWAS Catalog (GCP000044). All data relevant to run future replications and 
meta-analysis efforts are provided in the FigShare repository for this work34, along 
with additional figures (https://doi.org/10.6084/m9.figshare.c.4667261). Items 
available in the FigShare repository are (1) anthropometric mask: a Matfile of the 
anthropometric mask used; (2) association statistics and effects of the 203 lead 
SNPs: facial effects, LocusZoom plots and association statistics from each stage 
of the analysis for the 203 lead SNPs; (3) calculation of study-wide-significance 
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threshold: script and permutation outcomes needed to replicate the calculation of 
the study-wide-significance threshold; (4) facial segment assignments: segment 
assignments for each quasi-landmark in the anthropometric mask; (5) Fig. 2a 
labeled: a larger version of Fig. 2a, with all cell types and tissues labeled; (6) 
GREAT Export: raw output of the GREAT analysis; (7) PCA shape constructs: PCA 
shape spaces for all 63 facial segments; (8) QQ plots: QQ plots for each segment 
in all stages of the analysis; (9) script to explore facial segments and GWAS hits: 
MatLab script for select data exploration functions; (10) SNPs reaching suggestive 
significance in either meta-analysis track: association statistics of all SNPs with 
P < 5 × 10−7 in METAUS or METAUK tracks; (11) source data for manuscript 
figures: source data in Excel format for all figures, where possible.

Code availability
KU Leuven provides the MeshMonk (v.0.0.6) spatially dense facial-mapping 
software, free to use for academic purposes (https://github.com/TheWebMonks/
meshmonk). Matlab 2017b implementations of the hierarchical spectral clustering 
to obtain facial segmentations are available from a previous publication25 (https://
doi.org/10.6084/m9.figshare.7649024).

The statistical analyses in this work were based on functions of the statistical 
toolbox in Matlab 2017b, SHAPEIT2 (v.2.r900), Sanger Imputation Server (v.0.0.6), 
PBWT pipeline (v.3.1), MeshMonk (v.0.0.6), LDSC (v.1.0.1), FUMA (v.1.3.3), 
GREAT (v.3.0.0), Plink v.1.9, lavaan (v.0.6-3), R (>v.3.4), agricolae (v.1.3-0), 
cowplot (v.1.0.0), ggplot2 (v.3.1.1), ggpubr (v.0.2), gridExtra (v.2.3), gtable (v.0.3.0), 
grid (v.3.6.2), Hmisc (v.4.2-0), psych (v.1.8.12), data.table (v.1.12.0), Genotype 
Harmonizer (v.1.4.20), KING (v.2.1.3), bowtie2 (v.2.3.4.2), bedtools (v.2.27.1) and 
Bioconductor (v.3.7), as mentioned throughout the Methods.

References
	55.	Weinberg, S. M. et al. The 3D facial norms database: part 1. A web-based 

craniofacial anthropometric and image repository for the clinical and 
research community. Cleft Palate Craniofac. J. 53, e185–e197 (2016).

	56.	Boyd, A. et al. Cohort profile: the ‘children of the 90s’—the index offspring of 
the Avon longitudinal study of parents and children. Int. J. Epidemiol. 42, 
111–127 (2013).

	57.	Fraser, A. et al. Cohort profile: the Avon longitudinal study of parents and 
children: ALSPAC mothers cohort. Int. J. Epidemiol. 42, 97–110 (2013).

	58.	Verma, S. S. et al. Imputation and quality control steps for combining 
multiple genome-wide datasets. Front. Genet. 5, 370 (2014).

	59.	 Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing 
for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).

	60.	The 1000 Genomes Project Consortium. A global reference for human 
genetic variation. Nature 526, 68–74 (2015).

	61.	Durbin, R. Efficient haplotype matching and storage using the positional 
Burrows-Wheeler transform (PBWT). Bioinforma. Oxf. Engl. 30,  
1266–1272 (2014).

	62.	McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype 
imputation. Nat. Genet. 48, 1279–1283 (2016).

	63.	1000 Genomes Project Consortium. et al. An integrated map of genetic 
variation from 1,092 human genomes. Nature 491, 56–65 (2012).

	64.	Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands 
of genomes. G3 Genes Genomics Genet. 1, 457–470 (2011).

	65.	Heike, C. L., Upson, K., Stuhaug, E. & Weinberg, S. M. 3D digital 
stereophotogrammetry: a practical guide to facial image acquisition.  
Head. Face Med. 6, 18 (2010).

	66.	Robert, P. & Escoufier, Y. A unifying tool for linear multivariate statistical 
methods: the RV-coefficient. J. R. Stat. Soc. Ser. C. Appl. Stat. 25,  
257–265 (1976).

	67.	Klingenberg, C. P. Morphometric integration and modularity in 
configurations of landmarks: tools for evaluating a priori hypotheses.  
Evol. Dev. 11, 405–421 (2009).

	68.	Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal 
superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).

	69.	Olson, C. L. On choosing a test statistic in multivariate analysis of variance. 
Psychol. Bull. 83, 579–586 (1976).

	70.	Ferreira, M. A. R. & Purcell, S. M. A multivariate test of association. 
Bioinformatics 25, 132–133 (2009).

	71.	Galesloot, T. E., van Steen, K., Kiemeney, L. A. L. M., Janss, L. L. & 
Vermeulen, S. H. A comparison of multivariate genome-wide association 
methods. PLoS One 9, e95923 (2014).

	72.	Porter, H. F. & O’Reilly, P. F. Multivariate simulation framework reveals 
performance of multi-trait GWAS methods. Sci. Rep. 7, 38837 (2017).

	73.	O’Reilly, P. F. et al. MultiPhen: joint model of multiple phenotypes can 
increase discovery in GWAS. PLoS One 7, e34861 (2012).

	74.	 Korte, A. et al. A mixed-model approach for genome-wide association studies 
of correlated traits in structured populations. Nat. Genet. 44, 1066–1071 (2012).

	75.	Stephens, M. A unified framework for association analysis with multiple 
related phenotypes. PLoS One 8, e65245 (2013).

	76.	Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms 
for genome-wide association studies. Nat. Methods 11, 407–409 (2014).

	77.	Devroye, L. Non-uniform Random Variate Generation (Springer, 1986).
	78.	Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
	79.	Karolchik, D. et al. The UCSC table browser data retrieval tool. Nucleic Acids 

Res. 32, D493–D496 (2004).
	80.	Hooper, J. E. et al. Systems biology of facial development: contributions of 

ectoderm and mesenchyme. Dev. Biol. 426, 97–114 (2017).
	81.	Pers, T. H., Timshel, P. & Hirschhorn, J. N. SNPsnap: a Web-based tool for 

identification and annotation of matched SNPs. Bioinformatics 31,  
418–420 (2015).

	82.	Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide 
association studies, targeted arrays and summary statistics 2019. Nucleic Acids 
Res. 47, D1005–D1012 (2019).

	83.	Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. 
Softw. 48, 1–36 (2012).

	84.	Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger 
and richer datasets. GigaScience 4, 7 (2015).

	85.	Najafova, Z. et al. BRD4 localization to lineage-specific enhancers is 
associated with a distinct transcription factor repertoire. Nucleic Acids Res. 
45, 127–141 (2017).

	86.	Baumgart, S. J. et al. CHD1 regulates cell fate determination by activation of 
differentiation-induced genes. Nucleic Acids Res. 45, 7722–7735 (2017).

	87.	Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps 
and disease risk association. Science 366, 1134–1139 (2019).

	88.	Pattison, J. M. et al. Retinoic acid and BMP4 cooperate with TP63 to alter 
chromatin dynamics during surface epithelial commitment. Nat. Genet. 50, 
1658–1665 (2018).

	89.	Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference 
human epigenomes. Nature 518, 317–330 (2015).

Acknowledgements
We are extremely grateful to all the individuals and families who took part in this 
study, the midwives for their help in recruiting them and the whole ALSPAC team, 
which includes interviewers, computer and laboratory technicians, clerical workers, 
research scientists, volunteers, managers, receptionists and nurses. We are also very 
grateful to all of the US participants for generously donating their time to our research, 
and to present and former laboratory members who worked tirelessly to make these 
analyses possible. Pittsburgh personnel, data collection and analyses were supported by 
the National Institute of Dental and Craniofacial Research (U01-DE020078, program 
director/principal investigators (PD/PIs): M.L.M./S.M.W.; R01-DE016148, PD/PIs: 
M.L.M./S.M.W.; and R01-DE027023, PD/PIs: S.M.W./J.R.S.). Funding for genotyping by 
the National Human Genome Research Institute (X01-HG007821 and X01-HG007485, 
PD/PI: M.L.M.) and funding for initial genomic data cleaning by the University of 
Washington provided by contract HHSN268201200008I from the National Institute for 
Dental and Craniofacial Research awarded to the Center for Inherited Disease Research 
(https://www.cidr.jhmi.edu/). Penn State personnel, data collection and analyses were 
supported by Procter & Gamble, Company (UCRI-2015-1117-HN-532, PD/PIs: H.L.N.), 
the Center for Human Evolution and Development at Penn State, the Science Foundation 
of Ireland Walton Fellowship (04.W4/B643, PD/PI: M.D.S.), the US National Institute of 
Justice (2008-DN-BX-K125, PD/PI: M.D.S.; and 2018-DU-BX-0219, PD/PIs: S.W.) and 
by the US Department of Defense. IUPUI personnel, data collection and analyses were 
supported by the National Institute of Justice (2015-R2-CX-0023, 2014-DN-BX-K031 
and 2018-DU-BX-0219, PD/PI: S.W.). University of Cincinnati personnel and data 
collection were supported by Procter & Gamble, Company (UCRI-2015-1117-HN-532, 
PD/PI: H.L.N.). The UK Medical Research Council and Wellcome (grant no. 
102215/2/13/2) and the University of Bristol provide core support for ALSPAC. The 
publication is the work of the authors and K.I. and P.C. will serve as guarantors for the 
contents of this paper. A comprehensive list of grants funding is available on the ALSPAC 
website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.
pdf). ALSPAC GWAS data was generated by Sample Logistics and Genotyping Facilities 
at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using 
support from 23andMe. The KU Leuven research team and analyses were supported 
by the National Institute of Dental and Craniofacial Research (R01-DE027023, PD/PIs: 
S.M.W./J.R.S.), The Research Fund KU Leuven (BOF-C1, C14/15/081 and C14/20/081, 
PD/PI: P.C.), The Research Program of the Research Foundation—Flanders (FWO, 
G078518N, PD/PI: P.C.) and a Senior Clinical Investigator Fellowship of The Research 
Foundation—Flanders (G078714N, PD/PI: G.H.). Stanford University personnel and 
analyses were supported by the National Institute of Dental and Craniofacial Research 
(R01-DE027023, PD/PIs: S.M.W./J.R.S.; and U01-DE024430, PD/PIs: J.W./L. Selleri), the 
Howard Hughes Medical Institute and the March of Dimes Foundation (1-FY15-312, 
PD/PI: J.W.).

Author contributions
P.C., M.D.S., S.M.W., J.R.S., J.W. and S.W. conceptualized the study (ideas; formulation 
or evolution of overarching research goals and aims). J.D.W., K.I., R.J.E., M.K.L., J.L., 
S.W. and P.C. carried out the data curation (management activities to annotate (produce 
metadata), scrub data and maintain research data for initial use and later re-use). J.D.W., 
K.I., S.N., R.J.E., H.H., J.R., J.L. and P.C. carried out the formal analysis (application 
of statistical, mathematical, computational or other formal techniques to analyze or 

NatUre Genetics | www.nature.com/naturegenetics

https://github.com/TheWebMonks/meshmonk
https://github.com/TheWebMonks/meshmonk
https://doi.org/10.6084/m9.figshare.7649024
https://doi.org/10.6084/m9.figshare.7649024
https://www.cidr.jhmi.edu/
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.nature.com/naturegenetics


ArticlesNaTUrE GEnETIcs

synthesize study data). S.R., H.L.N., E.F., T.S., M.L.M., J.R.S., J.W., S.W., S.M.W., M.D.S. 
and P.C. were responsible for funding acquisition (acquisition of the financial support for 
the project leading to this publication). J.D.W., K.I., S.N., R.J.E., H.H., J.R., M.K.L., J.L. 
and P.C. carried out the investigation (conducting a research and investigation process, 
specifically performing the experiments or data/evidence collection). J.D.W., S.N., R.J.E., 
J.M., S.R., E.E.Q., H.L.N., T.S., M.L.M., J.W., S.W., S.M.W. and M.D.S. provided the 
resources (provision of study materials, computing resources or other analysis tools). P.C., 
S.M.W., M.D.S., S.W., J.W., J.R.S., M.L.M., T.S., H.P. and G.H. carried out the supervision 
(oversight and leadership responsibility for the research activity planning and execution, 
including mentorship external to the core team). J.D.W., K.I., S.N., R.J.E., H.H., J.R., 
M.K.L. and P.C. did the visualization (preparation, creation and/or presentation of the 
published work, specifically visualization/data presentation). J.D.W., K.I., S.N., R.J.E. and 
J.R. wrote the original draft. J.D.W., K.I., S.N., R.J.E., H.H., J.R., S.R., E.E.Q., M.L.M., H.P., 
J.R.S., J.W., S.W., S.M.W., M.D.S. and P.C. reviewed and edited the final manuscript.

Competing interests
H.L.N. has received $6,000 in consulting fees from Procter & Gamble, Company.  
Procter & Gamble, Company had no role in the conceptualization, design, data analysis, 
decision to publish or preparation of this manuscript. All other authors declare no 
competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41588-020-00741-7.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-020-00741-7.

Correspondence and requests for materials should be addressed to J.D.W., K.I. or P.C.

Reprints and permissions information is available at www.nature.com/reprints.

NatUre Genetics | www.nature.com/naturegenetics

https://doi.org/10.1038/s41588-020-00741-7
https://doi.org/10.1038/s41588-020-00741-7
https://doi.org/10.1038/s41588-020-00741-7
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


Articles NaTUrE GEnETIcs

Extended Data Fig. 1 | Hierarchical spectral clustering of facial shape. a, Global-to-local facial segmentation of all 3D images (nTotal = 8,246), obtained 
using hierarchical spectral clustering. Segments are colored in teal and identical to those in Fig. 1. Roman numerals represent ‘quadrants’ of facial 
segments. b, The number of principal components retained after parallel analysis for each facial segment.
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Extended Data Fig. 2 | Study design. Sample Wrangling: Images and genotypes from each study were intersected and unrelated participants of European 
ancestry, with quality-controlled images, covariates, and imputed genetic data were selected to obtain the analyzed data. Identification: For each facial 
segment, canonical correlation analysis (CCA) and Rao’s F-test approximation was used to identify the multivariate combination of facial principal 
components most correlated with the genotypes, which led to a P value (PCCA-US or PCCA-UK) and multivariate phenotypic trait most correlated with each 
SNP (TraitUS and TraitUK). Verification: The principal components of the other dataset were then projected onto this trait to obtain a univariate variable 
representing the distribution of participants from the verification dataset for the trait identified in the identification dataset (UniVarUK and UniVarUS). The 
genotypes of the verification dataset are then tested against this variable via linear regression, resulting in an additional P value (PUniVar-UK and PUniVar-US). 
Meta-Analysis: The P values from identification and verification are meta-analyzed using Stouffer’s method, resulting in the final set of P values from each 
meta-analysis track (PMETA-US and PMETA-UK).
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Extended Data Fig. 3 | Genomic signal correlations. LDSC correlations between segments. a, Correlations between segments from different quadrants, 
ranging from 0.8 to 0.88, which seem to reflect both physical proximity of segments on the face and shared embryological origins. b, Correlations ranging 
from 0.88 to 1, which are mostly between segments within the same facial quadrant.
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Extended Data Fig. 4 | Clustering of facial segments on the basis of shared genetic signals. Correlations between facial segments on the basis of  
SNP P values were calculated using LDSC, as described in Methods, and average-linkage hierarchical clustering was performed using the matrix of 
correlation values. Quadrant colors in legend refer to the quadrant of the polar dendrogram in which the facial segment lies in, also represented by the 
facial images at the top, and embryonic facial prominences are assigned to each facial segment.
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Extended Data Fig. 5 | GREAT and FUMA analyses showing enrichment for craniofacial and limb development. a, GREAT analysis. For the top ten GO 
terms in each category, plotted is the binomial test Bonferroni-corrected P value (red; negative values) and binomial region fold enrichment (blue; positive 
values). Behind every GO term, in parentheses we indicate the number of genes in the test set with the annotation (Observed) and the total number of 
genes in the genome with the annotation (Total), with the format (Observed/Total). Dashed line represents significance at P = log10(0.05) = -1.3. b, FUMA 
analysis, indicating the KEGG pathways that were significantly enriched in our results. Multiple pathways are relevant for craniofacial development. The 
right panel shows the genes that are involved in the pathways.

NatUre Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNaTUrE GEnETIcs

Extended Data Fig. 6 | H3K27ac signal is significantly different in 203 lead vs. 203 random SNPs for relevant facial tissues. For all cell types and tissues, 
each represented by a point above, the median difference between H3K27ac RPM signal between the 203 lead SNPs vs. 203 random SNPs was tested 
for significance using a two-sided Wilcoxon rank-sum test. The thin dashed line represents the 5% false discovery rate P value of 0.0094, using the 
Benjamini–Hochberg method. Relative to the random, MAF-matched SNPs, the lead SNPs are significantly enriched for H3K27ac signal in many cell types, 
with the highest magnitude differences being from CNCCs (blue) and embryonic craniofacial tissues (orange). Test statistics used to create this plot are 
available in Supplementary Table 4.
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Extended Data Fig. 7 | Correlation of H3K27ac activity among SEM models. a, For all segments (aka ‘masks’), we compared the H3K27ac activity 
for significant SNPs from the refined SEM model for variation in that facial segment. Plotted is the Spearman’s rho correlation between pairs of SNPs 
significant in the same SEM model (‘Within Mask’); pairs of SNPs where one is from the SEM model and the other is not (‘Within To Out’), and where 
both SNPs in the pair are from a different SEM model (‘Out To Out’). Segments where the distribution of correlation across all cell types was significantly 
different (Benjamini–Hochberg adjusted P < 0.05) based on a two-sided Kruskal–Wallis test are indicated in black. b, For all cell types, the median 
correlation across all segments is plotted for each of the three SNP groupings. Significance between the means was determined using a two-sided Kruskal–
Wallis test. Boxplots plot the first and third quartiles, with a dark black line representing the median. Whiskers extend to the largest and smallest values no 
further than 1.5 × the inter-quartile range from the first and third quartiles, respectively.
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Extended Data Fig. 8 | Phenotypic and marginal distributions for diplotype combinations. For a random SNP pairing (a) and each significant epistasis 
pair (b–d), boxplots are plotted to visualize the epistatic effect on the phenotype. The marginal phenotypic medians of the singular genotypes (non-shaded 
boxplots) were used to calculate and visualize the predicted diplotype phenotypic distribution that would occur if the two genotypes were acting alone. 
The median phenotype was also calculated for each diplotype as the average of the marginal medians of the singular genotypes (blue dashed lines on the 
colored plots). This median was compared to the observed medians of the diplotypes (solid black lines; colored boxplots) via Mood’s Median test with 
one degree of freedom. Log-transformed P values were used to color boxplots if there was a significant (P < 0.05; log(P) > 1.30) difference between the 
expected phenotype of the combined genotype and observed diplotype. Boxplots plot the first and third quartiles, with a dark black line representing the 
median. Whiskers extend to the largest and smallest values no further than 1.5 × the inter-quartile range from the first and third quartiles, respectively.
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Extended Data Fig. 9 | MSX1 and DACT1 loci. LocusZoom plots for the two association signals nearby MSX1 (a), which has previously been implicated in 
orofacial clefting in humans and mice, and DACT1 (f), which is a novel result. Points represent one-sided -log10(P) of the METAUK meta-analysis track for 
the facial segment illustrated in the normal displacement figures (b, d, g) and are colored based on linkage disequilibrium with the labeled SNP. Asterisks 
indicate genotyped SNPs and circles indicate imputed SNPs. Facial effects for the two association signals nearby MSX1: rs3910659 (b) and rs13117653  
(d) and the signal nearby DACT1: rs10047930 (g). Effects are the normal displacement (displacement in the direction locally normal to the facial surface) 
in each quasi landmark of the lowest facial segment reaching genome-wide significance in METAUK, going from the minor to the major allele. Blue indicates 
inward depression; red indicates outward protrusion. Yellow rosette plots depict the -log10(P) of the meta-analysis P value (one-sided, right-tailed) per 
facial segment in METAUK track. Black-encircled facial segments have reached genome-wide significance (P = 5 × 10−8). (c) rs3910659; (e) rs13117653;  
(h) rs10047930.
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Extended Data Fig. 10 | Regions nearby previously published SNPs associated with risk for Crohn’s disease are preferentially active in immune cells 
and tissues. Each boxplot represents the distribution of H3K27ac signal in 20 kb regions around 619 Crohn’s disease-associated SNPs from the NCBI-EBI 
GWAS catalog in one sample. See Methods for details on calculation of H3K27ac signal. Samples corresponding to immune cells and tissues are 
highlighted in red. Thin dashed line at ~2.9 is the median level of signal across all cell types and tissues. Boxplots plot the first and third quartiles, with a 
dark black line representing the median. Whiskers extend to the largest and smallest values no further than 1.5 × the inter-quartile range from the first and 
third quartiles, respectively.
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Data collection Three-dimensional images composed of surface and texture maps were taken using the 3dMD Face (3dMD, Atlanta, GA) and Vectra H1 
(Canfield Scientific, Parsippany, NJ) 3D imaging systems, or the Konica Minolta Vivid 900 (Konica Minolta Sensing Europe, Milton Keynes, 
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(INUS Technology Inc., Seoul, South Korea). Genotyping was performed using the Illumina OmniExpress + Exome v1.2 array, the 23andMe 
v3 and v4 arrays (Mountain View, CA), the Illumina Infinium Multi-Ethnic Global-8 v1 array, or the Illumina Human Hap550 quad array. 

Data analysis KU Leuven provides the MeshMonk spatially dense facial mapping software (v0.0.6), free to use for academic purposes (https://
github.com/TheWebMonks/meshmonk). Matlab 2017b implementations of the hierarchical spectral clustering to obtain facial 
segmentations are available from a previous publication (https://doi.org/10.6084/m9.figshare.7649024). The statistical analyses in this 
work were based on functions of the statistical toolbox in Matlab 2017b, SHAPEIT2 (v2.r900), Sanger Imputation Server (v0.0.6), PBWT 
pipeline (v3.1), MeshMonk (v0.0.6), LDSC (v1.0.1), FUMA (v1.3.3), GREAT (v3.0.0), Plink 1.9, lavaan (v0.6-3), R (>3.4), agricolae (v1.3-0), 
cowplot (v1.0.0), ggplot2 (v3.1.1), ggpubr (v0.2), gridExtra (v2.3), gtable (v0.3.0), grid (v3.6.2), Hmisc (v4.2-0), psych (v1.8.12), data.table 
(v1.12.0), Genotype Harmonizer (v1.4.20), KING (v2.1.3), bowtie2 (v2.3.4.2), bedtools (v2.27.1), and bioconductor (v3.7) as mentioned 
throughout the Methods. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.



2

nature research  |  reporting sum
m

ary
O

ctober 2018
Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All of the genotypic markers for the 3DFN dataset are available to the research community through the dbGaP controlled-access repository (http://
www.ncbi.nlm.nih.gov/gap) at accession #phs000929.v1.p1. The raw source data for the phenotypes - the 3D facial surface models in .obj format - are available 
through the FaceBase Consortium (https://www.facebase.org) at accession #FB00000491.01. Access to these 3D facial surface models requires proper institutional 
ethics approval and approval from the FaceBase data access committee. Additional details can be requested from SMW [smwst46@pitt.edu]. 
 
The participants making up the PSU and IUPUI datasets were not collected with broad data sharing consent. Given the highly identifiable nature of both facial and 
genomic information and unresolved issues regarding risk to participants, we opted for a more conservative approach to participant recruitment. Broad data 
sharing of the raw data from these collections would thus be in legal and ethical violation of the informed consent obtained from the participants. This restriction is 
not because of any personal or commercial interests. Additional details can be requested from MDS [mds17@psu.edu] and SW [walshsus@iupui.edu] for the PSU 
and IUPUI datasets, respectively. 
 
The ALSPAC (UK) data will be made available to bona fide researchers on application to the ALSPAC Executive Committee (http://www.bris.ac.uk/alspac/
researchers/data-access). Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. 
 
KU Leuven provides the MeshMonk (v0.0.6) spatially dense facial mapping software, free to use for academic purposes (https://github.com/TheWebMonks/
meshmonk). Matlab 2017b implementations of the hierarchical spectral clustering to obtain facial segmentations are available from a previous publication (https://
doi.org/10.6084/m9.figshare.7649024.v1).  
 
Publicly available data used were: 1000G Phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), the list of HapMap 3 SNPs excluding the MHC 
region provided by LDSC (http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip), and ChIP-seq files from Prescott et al. (GSE70751), Najafova et al. 
(GSE82295), Baumgart et al. (GSE89179), Nott et al. (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19), Pattison et al. (GSE119997), Wilderman 
et al. (GSE97752) and the Roadmap Epigenomics Project (https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/). 
 
Meta-analysis GWAS statistics are available on GWAS Catalog (GCP000044). All relevant data to run future replications and meta-analysis efforts are provided in the 
FigShare repository for this work34, along with additional figures (https://doi.org/10.6084/m9.figshare.c.4667261). Items available in the FigShare repository are: 
(1) Anthropometric mask: a Matfile of the anthropometric mask used; (2) Association statistics and effects of the 203 lead SNPs: Facial effects, LocusZoom plots, 
and association statistics from each stage of the analysis for the 203 lead SNPs; (3) Calculation of study-wide significance threshold: Script and permutation 
outcomes needed to replicate the calculation of the study-wide significance threshold; (4) Facial segment assignments: Segment assignments for each quasi 
landmark in the anthropometric mask; (5) Figure 2A labeled: A larger version of Figure 2A, with all cell types and tissues labeled; (6) GREAT Export: Raw output of 
the GREAT analysis; (7) PCA shape constructs: PCA shape spaces for all 63 facial segments; (8) QQ plots: QQ plots for each segment in all stages of the analysis; (9) 
Script to explore facial segments and GWAS hits: MatLab script for select data exploration functions; (10) SNPs reaching suggestive significance in either meta-
analysis track: Association statistics of all SNPs with P < 5 × 10-7 in METAUS or METAUK tracks; (11) Source data for manuscript figures: Source data in Excel format 
for all figures, where possible.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size was determined by the amount of 3DFN data available in the public facial data repository (Facebase.org), the amount of data 
available in the B2261 ALSPAC study, and by the number of individuals of European descent with genotype data and 3D facial images that 
were collected with informed consent as part of several studies based at The Pennsylvania State University and Indiana University Purdue 
University Indianapolis. More information is found in Methods.

Data exclusions For both US and UK participants, outlier 3D facial images, likely caused by image mapping errors, were identified using two approaches. First, 
as described in prior work, outlier faces were identified by calculating z-scores from the Mahalanobis distance between the average face and 
each individual face. Faces with z-scores higher than two were manually investigated. Second, a score was calculated that reflects the missing 
data present in the image due to holes, spikes, and other mesh artifacts, which can be caused by facial hair or errors during the preprocessing 
steps. Images with high scores, indicating large gaps in the mesh, were manually investigated. During the manual check, the images were 
either classified as poor quality and removed or were preprocessed and mapped again. 
 
For US cohorts, genotype samples were excluded if there was poor concordance of genetic and reported sex, evidence of chromosomal 
aberrations, missing genotype call rate > 10%, and heterozygosity values ±3 standard deviations from the sample mean.  
 
For the 3DFN sample, 3D images and genotype data were obtained from the 3D Facial Norms repository. Recruitment was limited to 
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individuals aged 3 to 40 years old and of self-reported European ancestry. Individuals were excluded if they reported a personal or family 
history of any birth defect or syndrome affecting the head or face, a personal history of any significant facial trauma or facial surgery, or any 
medical condition that might alter the structure of the face. The intersection of unrelated participants with quality-controlled images, 
covariates, and genotype data from individuals of European descent resulted in 1,906 individuals for analysis. 
 
The PSU sample included 3D images and genotypes of participants recruited through several studies at the Pennsylvania State University. 
Individuals were excluded from the analysis if they were below 18 years of age and if they reported a personal history of significant trauma or 
facial surgery, or any medical condition that might alter the structure of the face. No restriction on ancestry or ethnicity was imposed during 
recruitment, but only individuals of European descent were used in this study. The intersection of unrelated European participants with 
quality-controlled images, covariates, and genotype data resulted in 1,990 individuals for analysis. 
 
The IUPUI sample includes 3D images and genotypic data from individuals recruited in Indianapolis, IN and Twinsburg, OH. Individuals who 
were below 18 years of age were recruited if they had a parent or legal guardian’s signature. Similar to the PSU sample cohort, no restrictions 
were placed on the recruitment of participants, but only unrelated individuals of European descent, without significant facial injury or medical 
condition, and those meeting all quality control criteria were used in this study (n = 784). 
 
The UK sample was derived from the ALSPAC dataset, a longitudinal birth cohort in which pregnant women residing in Avon with an expected 
delivery date between 1 April 1991 and 31 December 1992 were recruited. At the time, 14,541 pregnant women were recruited and DNA 
samples were collected for 11,343 children. Genome-wide data was available for 8,952 subjects and of the B2261 study, titled “Exploring 
distinctive facial features and their association with known candidate variants.” In addition to this, 4,731 3D images were available. UK 
genotype samples were excluded on the basis of genetic sex and reported gender mismatches, minimal or excessive heterozygosity, 
disproportionate levels of individual missingness (>3%), and insufficient sample replication (IBD <0.8). The intersection of unrelated 
participants of European ancestry with quality-controlled images, covariates, and genotype data included 3,566 individuals. 

Replication Replication was achieved by proper separation of the data into identification and verification datasets, based on completely separate 
sampling, imaging, genotyping, and imputation. More information is found in Methods.

Randomization No randomization took place, group membership of identification and verification was determined by the separately obtained datasets 
available. Because canonical correlation analysis does not accommodate adjustments for covariates, we removed the effect of relevant 
covariates (sex, age, age-squared, height, weight, facial size, the first four genomic ancestry axes, and the camera system), on both the 
independent (SNP) and the dependent (facial shape pre segmentation) variables using partial least squares regression (plsregress from Matlab 
2017b), and thus performed the canonical correlation analysis under a reduced model with residualized variables.

Blinding Blinding was not relevant to this study, as no treatment outcomes were assessed and data analysis procedures were standardized across all 
individuals. Two independent datasets were constructed from the sampling efforts of four different research centers, and the analysis was 
done by yet another research center. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Cranial neural crest cells (CNCCs) originated from WiCell (H9 ESC) and the Fred Gage laboratory (iPSC; Salk Institute), 
available from Prescott et al. (GSE70751) 
Fetal osteoblast cell line, undifferentiated and differentiated, originated from Najafova et al. (GSE82295) 
Mesenchymal stem cell-derived osteoblasts originated from Baumgart et al. (GSE89179) 
Various brain cell types originated from Nott et al. (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19) 
Surface ectoderm samples originated from Pattison et al. (GSE119997) 
Embryonic craniofacial tissue originated from Wilderman et al. (GSE97752) 
All other fetal and adult cell tissues and cell types originated from the Roadmap Epigenomics Project (https://egg2.wustl.edu/
roadmap/data/byFileType/alignments/consolidated/) 
 
Sample type, ID, and URL for each cell type/tissue is available in Supplementary Table 4
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Authentication For the CNCCs, we analyzed the genomic sequence data from the lines. Please refer to the original publications for the 

authentication of the other cell types and tissues.

Mycoplasma contamination For the CNCCs, we used PCR tests to test for mycoplasma contamination. Pease refer to the original publications for the 
testing of the other cell types and tissues.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used. 

Human research participants
Policy information about studies involving human research participants

Population characteristics For the 3DFN sample, 3D images and genotype data were obtained from the 3D Facial Norms repository. The repository includes 
3D facial surface images and self-reported demographic descriptors as well as basic anthropometric measurements from 
individuals recruited at four US sites: Pittsburgh, PA (PITT IRB PRO09060553 and RB0405013); Seattle, WA (Seattle Children’s IRB 
12107); Houston, TX (UT Health Committee for the Protection of Human Subjects HSC-DB-09-0508); and Iowa City, IA (University 
of Iowa Human Subjects Office IRB (200912764 and 200710721). Recruitment was limited to individuals aged 3 to 40 years old 
and of self-reported European ancestry. Individuals were excluded if they reported a personal or family history of any birth 
defect or syndrome affecting the head or face, a personal history of any significant facial trauma or facial surgery, or any medical 
condition that might alter the structure of the face. The intersection of unrelated participants with quality-controlled images, 
covariates, and genotype data from individuals of European descent resulted in 1,906 individuals for analysis (Female N = 1,172; 
Male N = 734). Average height of these participants was 163.43 cm (sd = 20.57 cm). Average weight of these participants was 
64.33 kg (sd = 22.38 kg) 
 
The PSU sample included 3D images and genotypes of participants recruited through several studies at the Pennsylvania State 
University and sampled at the following locations: Urbana-Champaign, IL (PSU IRB 13103); New York, NY (PSU IRB 45727); 
Cincinnati, OH (UC IRB 2015-3073); Twinsburg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 4320); Austin, TX (PSU 
IRB 44929); and San Antonio, TX (PSU IRB 1278). Participants self-reported information on age, ethnicity, ancestry, and body 
characteristics, and data were gathered on height and weight. Individuals were excluded from the analysis if they were below 18 
years of age and if they reported a personal history of significant trauma or facial surgery, or any medical condition that might 
alter the structure of the face. No restriction on ancestry or ethnicity was imposed during recruitment, but only individuals of 
European descent were used in this study. The intersection of unrelated European participants with quality-controlled images, 
covariates, and genotype data resulted in 1,990 individuals for analysis (Female N = 1,380; Male N = 610). Age ranged from 18 to 
88 years old. Average height of these participants was 168.75 cm (sd = 9.23 cm). Average weight of these participants was 73.88 
kg (sd = 17.05 kg). 
  
The IUPUI sample includes 3D images and genotypic data from individuals recruited in Indianapolis, IN and Twinsburg, OH (IUPUI 
IRB 1409306349). Participants self-reported information on age, height, weight, and ancestry at the time of the collection. 
Individuals who were below 18 years of age were included if they had a parent or legal guardian’s signature. Similar to the PSU 
sample cohort, no restrictions were placed on the recruitment of participants, but only n = 784 individuals of European descent 
and those meeting all quality control criteria were used in this study (Female N = 539; Male N = 245). Age ranged from 7 to 78 
years old. Average height of these participants was 169.24 cm (sd = 11.30 cm). Average weight of these participants was 71.88 
kg (sd = 18.65 kg). 
 
The UK sample was derived from the ALSPAC dataset, a longitudinal birth cohort in which pregnant women residing in Avon with 
an expected delivery date between 1 April 1991 and 31 December 1992 were recruited. At the time, 14,541 pregnant women 
were recruited and DNA samples were collected for 11,343 children. Genome-wide data was available for 8,952 subjects of the 
B2261 study, titled “Exploring distinctive facial features and their association with known candidate variants.” In addition to this, 
4,731 3D images were available along with information on sex, age, weight, height, ancestry, and other body characteristics. The 
ALSPAC study website contains details of all the data that is available through a fully searchable data dictionary (http://
www.bris.ac.uk/alspac/researchers/our-data/). The intersection of participants of European ancestry with quality-controlled 
images, covariates, and genotype data included 3,566 individuals (Female N = 1,884; Male N = 1,682). Ethical approval for the 
study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Informed consent 
for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the 
ALSPAC Ethics and Law Committee at the time. Consent for biological samples has been collected in accordance with the Human 
Tissue Act (2004). Age ranged from 14 to 17 years old. Average height of these participants was 169.38 cm (sd = 8.42 cm). 
Average weight of these participants was 61.52 kg (sd = 11.75 kg). 
 
For all datasets, there was no imbalance in gender, and weight and height distributions follow typical distributions seen in a 
European-derived population. We removed the effect of relevant covariates (sex, age, age-squared, height, weight, facial size, 
the first four genomic ancestry axes, and the camera system), on both the independent (SNP) and the dependent (facial shape 
pre segmentation) variables using partial least squares regression (plsregress from Matlab 2017b), and thus performed the 
canonical correlation analysis under a reduced model with residualized variables.

Recruitment Two publicly available datasets, one from FaceBase and one from the ALSPAC project were used and did not involve any 
recruitment specific to this work. The other datasets used from PSU and IUPUI, and their characteristics, as mentioned above, 
were recruited over different studies and did not contain any specific selection or bias that might influence this work.

Ethics oversight We have complied with all relevant ethical regulations for work with human participants and informed consent was obtained. 
Institutional review board (IRB) approval was obtained at each recruitment site and all participants gave their written informed 
consent prior to participation; for children, written consent was obtained from a parent or legal guardian. For the 3DFN sample, 
the following local ethics approvals were obtained: Pittsburgh, PA (PITT IRB PRO09060553 and RB0405013); Seattle, WA (Seattle 
Children’s IRB 12107); Houston, TX (UT Health Committee for the Protection of Human Subjects HSC-DB-09-0508); and Iowa City, 
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IA (University of Iowa Human Subjects Office IRB (200912764 and 200710721). For the Penn State sample, the following local 
ethics approvals were obtained: Urbana-Champaign, IL (PSU IRB 13103); New York, NY (PSU IRB 45727); Cincinnati, OH (UC IRB 
2015-3073); Twinsburg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 4320); Austin, TX (PSU IRB 44929); and San 
Antonio, TX (PSU IRB 1278). For the IUPUI sample, the following local ethics approvals were obtained: Indianapolis, IN and 
Twinsburg, OH (IUPUI IRB 1409306349). For the ALSPAC sample, approval was obtained from the ALSPAC Ethics and Law 
Committee and the Local Research Ethics Committees. Consent for biological samples was collected in accordance with the 
Human Tissue Act (2004).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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