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Abstract

The extent to which brain functions are localized or distributed is a foundational question in
neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas
parcellation, and anatomical searchlight are biased by design toward finding localized repre-
sentations. Here we introduce the functional searchlight approach as an alternative to ana-
tomical searchlight analysis, the most commonly used exploratory multivariate fMRI
technique. Functional searchlight removes any anatomical bias by grouping voxels based
only on functional similarity and ignoring anatomical proximity. We report evidence that
visual and auditory features from deep neural networks and semantic features from a natu-
ral language processing model, as well as object representations, are more widely distrib-
uted across the brain than previously acknowledged and that functional searchlight can
improve model-based similarity and decoding accuracy. This approach provides a new way
to evaluate and constrain computational models with brain activity and pushes our under-
standing of human brain function further along the spectrum from strict modularity toward
distributed representation.

Author summary

There are two classical views about how the mind is organized in the brain. Early phrenol-
ogy and neurophysiology and later neuropsychology argued that brain regions are special-
ized for certain functions of the mind. Older behavioral neuroscience and more recent
neural network modeling and pattern classification instead argued against a one-to-one
mapping, and rather that functions of the mind are distributed across multiple brain
regions. Although there is considerable evidence for both perspectives in modern cogni-
tive neuroscience, we hypothesize that the degree to which functions are distributed has
been underestimated because of biases in prior work that favored finding specialized
regions. Our novel machine learning approach, functional searchlight, reveals that fea-
tures of a movie extracted with three different types of computational model and object
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representations are more widely distributed in the brain than suggested by current meth-
ods. Moreover, these distributed representations carry more movie content than could
previously be decoded from the brain. This suggests a better way to conduct model-based
analysis of brain data and provides a more solid basis on which to evaluate and refine the-
oretical models.

Introduction

One of the most important debates throughout the history of neuroscience has been whether
each mental function is localized to a dedicated brain region or distributed across regions [1].
Early studies of patients with specific brain damage and accompanying behavioral deficits sug-
gested that some functions, such as language and executive control, can be localized. This loc-
alist perspective provided the foundation for initial studies of the healthy brain with functional
magnetic resonance imaging (fMRI), which identified regions of interest with circumscribed
functions [2]. Subsequent studies, however, showed support for a distributional perspective by
suggesting that some functions instead arise out of the joint action of multiple regions [3].
Such claims were supported by the emergence of multivariate methods that decode the func-
tion of patterns of fMRI activity across populations of voxels [4].

Despite the promise of multivariate methods, the predominant exploratory approach for
finding distributed representations with them remains inherently localist. Specifically, patterns
of activity are extracted from small, contiguous anatomical volumes by moving a cube or
sphere of voxels, known as a “searchlight”, throughout the brain [5]. These patterns of activity
are passed on for subsequent multivariate analysis, such as decoding the category of a stimulus.
Although a valuable tool for mapping the informational contents of individual regions, infor-
mation spread across disparate regions is never included within the same searchlight and thus
neglected. One potential solution is to extract whole-brain patterns of activity [6]. However,
even if the information is distributed throughout the brain, only a fraction of voxels would be
expected to contribute, hence these multivariate models would be hard to fit and suffer from
the curse of dimensionality. Even if successful, it is hard to interrogate the model to determine
how the information is represented, because it is possible to observe different voxel weights for
identical activity profiles [7].

We hypothesized that for many cognitive functions, information is widely distributed
throughout the brain and that evidence for localized representation may partially be attributed
to anatomical constraints of current methods. To test this hypothesis, we developed a new
searchlight approach that is not bound by anatomy. This functional searchlight retains the
exhaustive search of traditional anatomical searchlight while eliminating the localist assump-
tion that only neighboring voxels contain useful information. It is also important to note that
functional searchlight is doing this exhaustive search on exactly the same brain voxels and
time series as anatomical searchlight, except the voxels that comprise each searchlight are dif-
ferent. Specifically, we re-map voxels from their original 3-D anatomical space with coordi-
nates in x (left-right), y (anterior-posterior), and z (inferior-superior) dimensions into a new
functional space with dimensions for orthogonal latent variables that capture reliable sources
of variation in brain activity irrespective of anatomy (Fig 1).

The functional space was learned through shared response modeling (SRM) [8], which
finds a k-dimensional representation capturing the information shared across participants
viewing the same stimulus. In functional space, two voxels are arranged close together if their
projection weights into the shared space are similar, that is, if they load similarly on the latent
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Fig 1. Transformation from anatomical space to functional space. (A) We use shared response modeling (SRM) to transform whole-brain
data into a k-dimensional shared feature space. (B) Each voxel is transformed into functional space by using its loadings on the dimensions of
the shared space as its coordinates in functional space. (C) Example functional space for one subject. Color indicates position on the anterior-
posterior y axis of the input anatomical space, and as can be seen voxels get reorganized in functional space. Voxels that are functionally
similar but anatomically disparate can be grouped together (e.g., blue-purple and red in top left). Note that this functional space is three-
dimensional for visualization purposes, but the functional space used in our analyses had 200 dimensions.

https://doi.org/10.1371/journal.pcbi.1008457.9001

variables. Because proximity in the functional space is governed entirely by this correspon-
dence and not by anatomical distance, a single searchlight in this space could have access to
information that is anatomically distributed throughout the brain. Just like an anatomical
searchlight, all voxels in the brain will be tested still, but the functional searchlight will include
different sets of voxels in the searchlights. To the extent that activity patterns extracted from
these functional searchlights better represent task information than those from anatomical
searchlights over contiguous voxels, the information can be said to be distributed.

This method has similarities to approaches used previously but is unique in its potential to
discover distributed representations. Functional alignment has been performed within a
region of interest [9] and within searchlights [10] to create denoised representations for input
to MVPA. In this case, functional alignment is a preprocessing step to remove sources of noise
not shared across participants and to compensate for small differences in anatomical align-
ment of voxels within the region of interest/searchlight. However, these methods are different
from ours: we perform functional alignment on the whole brain (rather than a subset of voxels)
to reorganize all voxels (rather than to denoise them) prior to running searchlight MVPA in
this reorganized space. Hence, our method is uniquely positioned to reveal broadly distributed
neural representations.
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Results

To first fit the SRM and compare the performance of functional vs. anatomical searchlights,
we used an fMRI dataset in which participants watched an episode of BBC’s “Sherlock” [11].
SRM requires a hyperparameter for the number of dimensions, which we determined to be

k = 200 by performing time-segment matching (S1 Fig). After learning this functional space
on half of the movie, we evaluated how well patterns of activity from functional searchlights
encoded visual, auditory, and semantic features using model-based analysis on the other half
of the movie. For each functional searchlight, the nearest 342 voxels in this high dimensional
space were used to define the searchlight, hence using the same number of voxels as was used
in the anatomical searchlight.

We first tested whether voxels in functional searchlights, relative to anatomical searchlights,
share more information with representations in stimulus-computable models of visual and
auditory processing. Deep neural networks (DNNs) offer a way to extract features from an
audio-visual stimulus and measure the expression of these features in the brain [12]. We com-
puted DNN activity separately for the video and audio components of the movie. For video,
DNN activity was computed for individual frames using AlexNet [13], a DNN model pre-
trained to recognize objects from natural images; hidden layer activity was averaged across
video frames that fell within the same TR (1.5s). For audio, 1.5s audio segments were fed into a
branching music-speech recognition DNN [14] (referred to here as KellNet).

For each layer in both the visual and auditory networks, a representational similarity matrix
(RSM) was computed as the correlation matrix of the DNN activity across all time-points. For
a given layer of the network, the pattern of activity across units at every time-point was corre-
lated with every other time-point in the movie. Likewise, an fMRI RSM was computed for
each searchlight as the correlation matrix of the BOLD activity patterns in the searchlight
across all time-points. The upper triangular elements of these model and brain RSMs were
then correlated in a second-order analysis to assess the similarity of the information captured
in the fMRI searchlight and DNN layer of a given network. To minimize the contribution of
the auto-correlation inherent in these data that would inflate the similarity, a buffer of 10 TRs
(15s) was excluded off the diagonal and ignored for subsequent analysis. This procedure was
completed for all subjects, searchlight locations, and hidden layers in both the visual and audi-
tory DNNG.

Not all searchlights were expected to represent the audio-visual content of movie. Hence,
we compared the performance of the top 1% of functional and anatomical searchlights. When
we take the top 1% of each, there will be an equivalent number of searchlights in each method
used for evaluation. Functional searchlights resulted in significantly higher RSA than anatomi-
cal searchlights for both visual features in AlexNet and auditory features in KellNet (for repre-
sentative layers, see Fig 2A left). Indeed, functional searchlights outperformed anatomical
searchlights in all AlexNet layers except the first and in all KellNet layers (Fig 3, S1 Table). The
average increase in RSA collapsing across layers was 5.433% for AlexNet (95% CI = [3.709,
7.224], bootstrap p < 0.0001) and 8.273% for KellNet ([5.423, 11.355], p < 0.0001). Voxels that
consistently contributed to the top 1% of functional searchlights were more distributed than
those that consistently contributed to the top 1% of anatomical searchlights (Fig 2B left). The
location of voxels from top-performing searchlights across individual subjects (S2 Fig) and the
median Euclidean distance between these voxels (S3 Fig) indicate that the representations cap-
tured by functional searchlight were distributed and consistent across subjects. The fact that
the advantage of functional searchlight over anatomical searchlight in visual and auditory anal-
yses increased for a larger searchlight size (S4 Fig) further suggests that the voxels in functional
searchlight were broadly distributed rather than locally concentrated in larger regions. By
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Fig 2. Enhanced performance of multivariate analysis with functional searchlight. We calculated the percent improvement of functional
searchlight over anatomical searchlight for every subject from the top-performing 1% of searchlights of each type. (A) Each dot represents the
percent improvement for a subject from an example layer in the AlexNet visual network (conv2) and the KellNet auditory network (fc7_W), as
well as for annotation vector decoding. Error bars depict 95% confidence intervals (CIs) from bootstrapping. Raw performance levels for each
searchlight type and non-parametric chance baselines can be found in Fig 3A. (B) For the visual and auditory analyses, we visualize which
voxels contained model-based information by depicting the count of the number of subjects for whom that voxel contributed to one or more of
the top 1% of their functional and anatomical searchlights. For the semantic analysis, we do the same but only visualize the center voxels of the
top 1% of searchlights to avoid clutter. (C) We compared functional vs. anatomical searchlight in a localizer task by attempting to classify brain
activity evoked by images from six categories: bodies, faces, houses, objects, landscapes, scrambled. Each dot represents percent improvement
from chance of the mean top 1% searchlight accuracy. Error bar depicts 95% CI from bootstrapping. (D) We visualize the locations of all voxels
that contributed to the top-performing searchlights for category decoding.

https://doi.org/10.1371/journal.pchi.1008457.g002

removing the assumption that information is anatomically local, we found neural representa-
tions that are more consistently correlated with model representations.

To generalize these findings beyond sensory systems, we then analyzed the representation
of semantic content in the brain. Theories of semantic cognition [15] and recent findings [16]
suggest that such content is widely distributed, and yet the extent may have been underesti-
mated empirically with current methods. We decoded semantic content of each time-point in
the movie by predicting sentence embeddings of the movie’s scene annotations from brain
activity [17]. We found considerably better decoding of annotation embeddings for the top 1%
of functional searchlights than the top 1% anatomical searchlights (Fig 2A right, S1 Table).
The average increase in annotation vector decoding was 94.155% (95% CI = [70.819, 116.024],
bootstrap p < 0.0001). In other words, aggregating information that is anatomically distrib-
uted throughout the brain (Fig 2B right) provided a more accurate representation that was
beneficial in probing neural representations of semantic content. Although the voxels from the
top-performing searchlights in the semantic analysis were highly distributed across the cortex
in every subject (S2 Fig), the spatial distribution of these voxels was not as consistent across
subjects as the visual and auditory analyses.
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Fig 3. Raw accuracy and percent improvement for all analyses. (A) Average performance in the top 1% of functional and anatomical searchlights for neural
network similarity, annotation vector decoding, and localizer category decoding. White bar is the functional searchlight performance, black bar is the anatomical
searchlight performance. Error bars represent standard error across subjects. Chance (red lines) was computed in the neural network similarity and annotation vector
decoding analysis as the mean of a null distribution estimated non-parametrically by rolling data in time, and in image classification as the theoretical chance level (1/
6 categories). (B) Percent improvement of functional over anatomical searchlight in the top 1% of searchlights for neural network similarity (all layers), annotation
vector decoding, and localizer category decoding. To calculate percent improvement, we first subtracted the chance level from the performance of each searchlight
type. Error bars represent 95% Cls.

https://doi.org/10.1371/journal.pcbi.1008457.g003

We performed follow-up analyses to explore the parameters that might affect functional
searchlight performance and account for its consistent advantage over the anatomical search-
light. When we varied the searchlight radius (54 Fig) the functional searchlight consistently
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outperformed the anatomical searchlight, but the degree of this depended on the test per-
formed, presumably due to the degree of distributed information required to succeed in the
test. We also asked whether the advantage for functional searchlight is because bilateral infor-
mation is being pooled, but even if the functional searchlight analysis was restricted within
hemisphere, the functional searchlight outperformed the anatomical searchlight (S5 Fig).
Finally, it is possible that the advantage of the functional searchlight is derived from having
more voxels in the searchlight, since brain boundaries do not constrain the functional align-
ment method. However, when we yoke the two methods to have identical numbers of voxels
in each searchlight, the functional searchlight is still superior (S6 Fig).

Although we used SRM to create the functional space in the main analyses, a lower-
dimensionality representation can be learned in other ways, such as through principal compo-
nents analysis (PCA). We explored replacing SRM with PCA in determining the functional
searchlights. As with SRM, PCA functional searchlight outperformed anatomical searchlight
(S7A Fig). However, SRM performed significantly better than PCA for the auditory and
semantic analyses (S7B Fig), though not for the visual analyses. These results indicate that it is
not always important to use a procedure that aggregates across participants (like SRM) in func-
tional searchlight. In fact, because PCA is run within an individual, it can be used for any type
of fMRI design (e.g., event-related trials in pseudo-random order across participants) and not
just movie data where there is known correspondence in timing and content across partici-
pants. Nevertheless, SRM performed better than or equal to PCA almost across the board, sug-
gesting that it is a good default when such correspondence exists.

To ensure that the utility of functional searchlight is not restricted to naturalistic movies,
we analyzed the StudyForrest dataset [18], in which subjects watched the Forrest Gump movie
and completed a block-design category localizer paradigm. We ran functional and anatomical
searchlight analyses to decode localizer image category from voxel activity patterns (six catego-
ries: bodies, faces, houses, small objects, landscapes, scrambled images). As before, the func-
tional space was learned from SRM of movie data (Forrest Gump). However, the resulting
functional searchlights were now applied to a separate localizer task with blocks of the different
categories. We found that the functional searchlight reliably outperformed anatomical search-
light (Fig 2C, S1 Table). The average increase in image classification was 12.576% (95% CI =
[9.615, 15.917], bootstrap p < 0.0001). Even for this more standard form of image classifica-
tion, which is often assumed to capture relatively localized representations in category-selec-
tive regions, the voxels that contributed to the top 1% of searchlights were much more
distributed in functional searchlight than anatomical searchlight. (Fig 2D). Additionally, we
tested whether the functional spaces generated from the Sherlock movie data and the Study-
Forrest movie data were similar. We found that the pairwise distances between voxels in these
spaces had a modest but highly significant positive correlation (S8 Fig). This suggests that
SRM can capture a general organization of voxels common across audiovisual movie viewing
conditions, but also that individual movie content may partly govern the learned functional
spaces.

To confirm that running a searchlight in functional space can capture distributed informa-
tion throughout the brain, we performed the RSA described above on simulated data with a
known spatial signal distribution. In particular, we simulated fMRI data [19] where the signal
from the units in the first fully connected layer of AlexNet was inserted into random voxels
with varying degrees of spatial smoothness. Our results indicated that the relative improve-
ment afforded by the functional searchlight is best when the signal is highly distributed
throughout the brain (Fig 4). This supports our interpretation that the functional searchlight
out-performs the anatomical searchlight because it picks up on information relevant for per-
ceptual and cognitive processing that is distributed throughout the brain.
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of AlexNet (see Methods). The error bars show 95% bootstrapped CIs and the dots represent individual subject
improvements. As the signal transitioned from localized to distributed, the relative gain in performance of the
functional searchlight increased.

https://doi.org/10.1371/journal.pchi.1008457.9004

Discussion

Searchlight analysis, a common multivariate technique in fMRI based on anatomical volumes,
is biased toward finding localized information. The functional searchlight is a way to better
characterize distributed representations without assumptions about anatomical locality. The
novelty of our method is both that it can be used to find a distributed set of voxels for this pur-
pose (whereas standard anatomical searchlight cannot) and that functional searchlight outper-
forms anatomical searchlight in almost every case we considered. This approach revealed a
tighter correspondence between the human brain and computational models as well as better
results on a more standard image category decoding paradigm. An important methodological
conclusion of this work is that conversion to functional space is worthwhile as a preprocessing
step prior to searchlight analysis. Our results indicate that SRM is not absolutely necessary for
creating the functional space because a within-subject dimensionality reduction method, such
as PCA, can also be effective.

There are several other powerful methods for multivariate fMRI that can pick up on distrib-
uted representations. For example, regularized whole-brain methods [20] use all voxels in the
brain as features for a regression but put a penalty on the matrix norm of the regression’s fea-
ture weights. In other words, all brain voxels are considered, but the space of solutions of how
voxels are weighted is restricted to those in which the vast majority of weights are either very
small or 0 and only a sparse set of voxels are the main drivers of the regression. Sparse-overlap-
ping Sets (SOS) Lasso extends this idea using structured sparsity [21]. In SOS Lasso, neighbor-
ing voxels within a specific radius are grouped into sets and, instead of having weights on
individual voxels that contribute to the sparsity penalty, weights are put on these voxel sets for
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the sparsity penalty. PrAGMATIC [22] is a similar approach that instead uses probabilistic
groupings.

These powerful methods generally utilize free parameters that need to be selected through
cross-validation or other computationally intensive routines. For example, regularized whole-
brain methods [20] require choosing a regularization function (L1 or L2) and fitting of a pen-
alty parameter, both of which have to be optimized through cross-validation grid search. SOS
Lasso also has choices for penalty terms and free parameters [21]. PrAGMATIC [22] requires
the fitting of extra parameters through a Markov Chain Monte Carlo (MCMC) framework.
Functional searchlight with SRM does not involve any free parameters, nor assumptions about
the sparsity of representations in the brain. That said, it does assume that the stimulus used to
construct the functional space will rearrange the voxels in a way that is relevant for subsequent
analyses. It is possible that in some domains, such as for complex cognitive control tasks, rear-
ranging voxels based on passive movie viewing will not improve analyses of those tasks. Future
work should investigate the boundary conditions of tasks that can benefit from functional
searchlight.

By enhancing model-based analysis in this way, fMRI can inform the development of new,
biologically plausible computational frameworks of cognitive function. This work also has the-
oretical implications in suggesting that, during viewing of a naturalistic audiovisual stimuli,
the brain’s representations of visual, auditory, and semantic information encoded within deep
neural network and natural language processing models, as well as object representations, are
more widely distributed than previously thought.

Methods
Ethics statement

This work is a computational experiment on public, anonymous data. Two public datasets
were used in this work [11,18]. The studies that generated these datasets were approval by the
local institutional review boards, as detailed in the original publications. No additional ethics
approvals were needed or obtained for the re-analyses reported herein.

General approach

Searchlight analysis. We conducted functional and anatomical searchlight analyses on
two different public datasets: ‘Sherlock’ [11] and ‘StudyForrest’ [18] and evaluated the differ-
ence in top-performing voxels across the two methods. The analyses on the ‘Sherlock’ dataset
were based on visual (AlexNet RSA), auditory (KellNet RSA), and semantic (annotation
embedding decoding) content of the movie while the analysis on the ‘StudyForrest’ was on
standard category decoding of still localizer image stimuli.

Searchlight analysis was performed by iterating the same computation over subset volumes
of voxels across the brain. The BrainIAK package was utilized for parallelizing the computa-
tions [23]. Each searchlight was a tensor centered on every voxel inside the brain, with a radius
of 3 voxels. This tensor was thus 7 x 7 x 7 x ¢ such that it represented a cube of voxels and ¢
time points from the movie (for ‘Sherlock’: t = 946 or 1030 for part 1 and part 2, respectively;
for ‘StudyForrest’: t = 624). When near the edge of the brain, anatomical searchlights often
contained fewer than the full 343 voxels of the cube because non-brain voxels were excluded
(minimum for ‘Sherlock’ = 115, ‘StudyForrest’ = 97). In the resulting brain map, each voxel’s
value represents the output of the analysis on that searchlight’s voxels. In this study, we refer to
this traditional searchlight analysis as an anatomical searchlight. We use the anatomical
searchlight as a baseline to compare with our new functional searchlight approach.
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In the functional searchlight, data were first embedded into a space where distances
between voxels were based on functional distance rather than anatomical distance, and then a
searchlight was run on these transformed data. Voxels that represent similar content will be
close to one another in functional space and thus included in the same searchlight. To create this
functional embedding, we use SRM [8], which maps voxels into a lower-dimensional feature
space of fMRI activity that reflects what is shared across participants while they view a common
stimulus. SRM is an unsupervised dimensionality reduction technique used for functionally
aligning multiple subjects’ fMRI data together on a dimensionality-reduced shared space. We
model fMRI responses X (v voxels by  times data matrix) for subject i as X; = W;S+E;. W; (v by k
features weight matrix) is subject-specific orthonormal bases representing individual functional
topographies. S (k by  shared response matrix) is latent features that capture shared variance
across all subjects. E; (v by t error matrix) is the subject response not captured by the shared
response to the common stimulus. SRM learns # (subjects) W; orthogonal weight matrices and
one S shared response matrix such that the quantity Y ;_, [|X; — W,S||, is minimized.

SRM can be applied to data in which participants are engaged by a common stimulus. In
our case, all subjects viewed the same audiovisual stimulus (‘Sherlock’: 1973 TRs, ‘StudyForr-
est’: 3599 TRs). For each dataset, SRM is trained on a separate portion of the data from what
was used for the main analyses. For ‘Sherlock’, we divided the data into two parts, the first with
946 TRs (part 1) and the second with 1030 TRs (part 2). We trained the SRM on part 1 and ran
our analyses on part 2, then reversed this order to train the SRM on part 2 and run analyses on
part 1. We averaged the results of both analysis folds. For ‘StudyForrest’, the movie viewing
portion (3599 TRs) was already separate from the localizer experiment portion (624 TRs) on
which we performed our searchlight analyses. For training the SRM, we only used the first two
runs of the movie portion (892 TRs) to roughly match the number of TRs we used to train the
SRM on the Sherlock dataset.

SRM is used to create a k-dimensional shared feature space, where k is selected via time-seg-
ment matching (see below). This means that each voxel had a weight, from their subject-spe-
cific orthogonal weight matrix, for how much that voxel loads on to each of the k features.
These weights were then used as coordinates to remap that voxel into a k-dimensional space,
independent of the voxel’s anatomical location. Voxels with a weight of 0 for each of the k fea-
tures were discarded, due to them not contributing at all to the shared feature space. We then
defined a searchlight for each voxel in functional space as the j-nearest neighbors of that voxel,
where distance was defined by the cosine distance between voxels’ functional space coordi-
nates. We chose j to match the size of the anatomical searchlights (in this case, j = 342). With
the exception of voxels that have exactly zero weight to the shared space, all voxels are used in
the functional searchlight, not just voxels with high shared space weights.

Statistics. For our primary analysis (Fig 2), we obtained the average performance of the
top 1% of searchlights for both functional searchlight and anatomical searchlight approaches.
We then subtracted the empirically derived chance performance for each searchlight type (see
below) from these averages and calculated the percent improvement of functional searchlight
over anatomical searchlight. To test significance, we generated 95% Cls of percent improve-
ment by bootstrap resampling across participants [24]. Specifically, we sampled with replace-
ment from the percent improvements of each of the (n = 16 for ‘Sherlock’, n = 15 for
‘StudyForrest’) subjects, calculated the average of each sample, and repeated the process 10,000
times. The logic of this approach is that to the extent that the effect is reliable across partici-
pants, the participants should be interchangeable and it should not matter which subjects are
sampled on a given iteration. We report the 95% Cls as the 2.5 percentile and 97.5™ percen-
tile of the resampled distribution. Functional searchlight performed significantly better than
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anatomical searchlight if and only if the lower bound of the CI for percent improvement is
above 0.

For ‘StudyForrest’, since the analysis had an a priori chance performance level (image cate-
gory decoding), chance was set as 1/number of categories (in this case, 1/6). For ‘Sherlock’,
since these analyses did not have a priori chance performance levels (e.g. neural network RSA),
we empirically determined the chance level non-parametrically using a rolling analysis. Across
100 iterations, we misaligned the brain and model data in time by shifting one of them with
respect to the other in multiples of 10 timepoints. By repeating all analyses after such misalign-
ment, we populated a null distribution of performance. We defined chance performance for a
given subject and analysis as the mean of this null distribution. This was then used as a refer-
ence for the real value, to calculate performance above chance.

Sherlock dataset

Participants. Full details can be found in the original publication of this dataset [11]. We
included the 16 participants who viewed the entire movie. They were right-handed, had nor-
mal or corrected-to-normal vision, and had never seen BBC’s Sherlock previously. Informed
written consent was obtained in accordance with a protocol approved by the Princeton Uni-
versity IRB.

Materials. Participants watched a 48-minute clip of the BBC television series “Sherlock”
from Season 1, Episode 1. The stimulus was divided into two similarly sized segments (part 1:
946 TRs and part 2: 1030 TRs). At the beginning of each segment, an audio-visual cartoon was
displayed for 30 s.

Data acquisition and preprocessing. The fMRI data were collected on a 3-T scanner (Sie-
mens Skyra) with a 20-channel head coil. A T2*-weighted echo-planar imaging (EPI) pulse
sequence (TE 28 ms, TR 1500 ms, flip angle 64°, 27 slices, 4 mm thickness, 3 x 3 mm in-plane
resolution, FOV 192 x 192 mm, whole-brain coverage) was used to acquire functional images.
A T1-weighted MPRAGE pulse sequence (0.89 mm isotropic resolution) was used to acquire
anatomical images. Preprocessing included slice-time correction, motion correction, linear
detrending, high-pass filtering (140 s cutoff), and registration of the functional volumes to a
template brain (MNI) at 3mm resolution. Every voxel was z-scored in time within movie run
and timing was aligned across participants.

Time-segment matching. We ran a time-segment matching analysis [8] to select the
number of dimensions for the functional space. An SRM was fit on one half of the training
data (i.e., one quarter of the episode) and used on the second half of the training data in a
leave-one-participant-out cross-validation. Time segments of 14s were taken from the left-out
participant’s data and correlated with all segments of the same length in the shared space aver-
aged over the remaining participants. The time-segment matching accuracy for each subject
was the proportion of test time segments that were maximally correlated with the correct time
segment in the shared space. We varied the number of features from 3 to 400 (step size of 10)
and observed that accuracy plateaued in both parts around 200 features (S1 Fig). Given these
results, we used k = 200 dimensions for the functional space.

DNN similarity analysis. We compared the similarity of activity patterns within func-
tional and anatomical searchlights to the similarity of visual and auditory representations
derived from deep neural network models. In particular, we compared a time-point by time-
point RSA of searchlight data to the similarity structure of visual (AlexNet [11]) and auditory
(KellNet [12]) DNNs also viewing the movie. AlexNet is a visual object recognition network
with five convolutional layers (conv1-5) and three fully connected layers (fc6-8). It takes a
227x227x3 colored image and outputs a 1,000-unit vector in its last fully connected layer,
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which contains its confidence of the image belonging to one of 1,000 image categories. KellNet
is an auditory network with separate branches for word recognition and music genre recogni-
tion. It takes as input a cochleagram generated from an audio waveform and returns a word
category and music genre category in each respective branch. The two branches share three
convolutional layers (conv1-3) and then each have their own two convolutional layers (conv4/
5_W for word recognition and conv4/5_G for music genre recognition) as well as their own
two fully connected layers (fc1/top_W for word recognition and fcl/top_G for music genre
recognition). fctop_W is a 587-unit vector that contains confidence in the sound belonging to
one of 587 word categories. fctop_G is a 41-unit vector that contains confidence in the sound
belonging to one of 41 music genres. In order to keep the naming convention consistent with
AlexNet, we refer to fc1_W and fc1_G as fc6W and fc6G, respectively, along with fctop_W
and fctop_G as fc7W and fc7G, respectively.

To obtain the model-based activity for the visual modality, AlexNet received individual
frames of the movie. We extracted the activations from each convolutional layer and fully con-
nected layer. We averaged the activity across a subset of frames within the same TR so that the
output was a pattern of activity for each TR of the movie. Each TR lasted 1.5 seconds and the
movie had 25 frames per second, so a single TR theoretically contained 37.5 frames. We averaged
activity using the middle 25 frames of each TR to reduce the autocorrelation across DNN features
of different TRs. The end result was AlexNet activity of the entire Sherlock movie in TR intervals.
To obtain the model-based activity for the auditory modality, we broke up the movie into 1.5s
audio clips (to match the TR) and generated cochleagrams for each TR to be used as an input to
KellNet. The activity these clips generated at each of the convolutional layers was then stored. This
model-based activity was used to create a representational similarity matrix (RSM) for each layer.
Let t be the number of TRs in the movie. For each layer and for each model, we constructed a ¢ x ¢
correlation matrix by correlating unit activity vectors across different TRs.

For each subject, we also constructed an RSM within each searchlight of the brain by corre-
lating voxel activity across different TRs. In these brain RSMs, elements close to the diagonal
will be highly similar due to the autocorrelation of the BOLD response. To remove this poten-
tial confound in measuring representational similarity, we imposed a buffer of 10 TRs (15s),
such that we only retained correlations between TRs separated by at least this much time.
These retained off-diagonal elements (i.e., TR pairs) of the model RSM and brain RSM were
unraveled into vectors of the same length. We then correlated these vectors to quantify the
similarity between representations in each searchlight and in a given layer of a computational
model, and assigned this second-order correlation to the center voxel.

Natural language decoding analysis. We compared functional and anatomical search-
light performance on a natural language decoding analysis. The Sherlock dataset contains a
handwritten annotation of what is happening in each TR of the movie (one sentence per TR,
averaging 18 words). In previous work, natural language processing (NLP) techniques were
used to create semantic vector representations of each annotation [15]. That is, each TR was
represented by a 100-dimensional vector that encodes the semantic meaning of the corre-
sponding annotation. These vectors were constructed from word embeddings built using a
latent-variable modeling approach [15,25] on the Wikipedia corpus for each word in a given
annotation. A domain-specific re-centering was applied to these word embeddings to make
each of them discriminative within the average topic of the Sherlock annotation vocabulary.
An embedding was defined for the entire annotation as a weighted average of the constituent
word embeddings, with weights determined by relative word frequencies.

We predicted these annotation vectors from brain activity using a scene ranking analysis
[15]. We used the first half of the movie to train the SRM and create the functional space,
which was then applied to the second half of the movie prior to analysis. Within the second
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half, we trained a ridge regression model on half of the timepoints (i.e., quarter of the movie)
to take searchlight voxels and predict the 100-dimensional annotation embedding of the other
half of timepoints. Specifically, we trained the SRM and learned the functional space on part 1,
then trained the ridge regression model on the first 530 TRs of part 2 to predict the last 500
TRs of part 2. This resulted in a predicted 100-dimensional annotation vector for each of these
500 TRs, which could be compared against the actual annotation vectors for these TRs to
quantify performance. We divided the 500 predicted and actual annotation vectors into 25
evenly sized bins, comprising 20 annotation vectors from consecutive TRs. We then computed
a 25 x 25 correlation matrix M, where M;; denotes the correlation of predicted bin i with the
actual bin j. Our reported accuracy is the proportion of predicted bins that were most highly
correlated with the corresponding actual bin (chance accuracy = 1/25 or 4%). Unlike previous
analyses, we did not reverse the order and train SRM on the second part and do analysis on
the first part. This is because the annotation vectors we used from [15,25] were normalized
using data from part 1 of the movie, so to avoid double dipping, we refrained from doing
annotation vector decoding on part 1 of the movie.

Study forrest dataset

Participants. Full details can be found in the original publication of this dataset [18] and
on the data sharing website: http://studyforrest.org/. We included the 15 participants who
completed both the movie viewing and localizer tasks. They were right-handed, had normal or
corrected-to-normal vision, and were native German speakers. All but three participants had
previously seen the movie Forrest Gump. They signed an informed consent for public sharing
of data in anonymized form. This study was approved by the Ethics Committee of the Otto-
von-Guericke University.

Materials. Participants watched the 2h (3599 TRs) movie Forrest Gump while listening to
the German audio track of the movie. In the specific StudyForrest dataset extension we used
[18], participants also completed a functional localizer task (624 TRs). They viewed 24 unique
grayscale images from six categories (human faces, human bodies without heads, houses, small
objects, outdoor scenes, and phase-scrambled images) in a block design. There were four loca-
lizer runs, each of which contained two blocks per stimulus category. Each block contained 16
images presented one-at-a-time for 900 ms followed by 100 ms of intertrial interval (ITI). To
maintain attention, participants performed a one-back task on the images.

Data acquisition and preprocessing. Extensive details on fMRI acquisition and prepro-
cessing are available in the original “StudyForrest” publication [26] on the functional movie
data and anatomical scans and the extension publication [18] on the functional localizer data.
The movie data were collected on a whole-body 7-Tesla Siemens MAGNETOM MRI scanner
equipped with a local circularly polarized head transmit and a 32-channel brain receive coil. A
T2*-weighted echo-planar imaging (EPI) pulse sequence (gradient-echo, TR 2s, 90° flip angle,
22 ms echo time, 0.78 ms echo spacing, 36 axial slices, 1.4 mm thickness, 1.4 x 1.4 mm in-
plane resolution, FOV 224 x 224 mm, whole-brain coverage) was used. EPI images were cor-
rected online for geometric and motion distortion. The localizer data were collected on whole-
body 3-Tesla Philips Achieva dStream MRI scanner equipped with a 32-channel head coil
[18]. A T2*-weighted EPI pulse sequence (gradient-echo, TR 2s, 90° flip angle, 30 ms echo
time, 35 axial slices, 3.0 mm thickness, 3.0 x 3.0 mm in-plane resolution, FOV 240 x 240 mm,
whole-brain coverage) was used. Preprocessing in the original work included a bandpass filter
(retaining 9-150 s period) and z-scoring within voxel.

Structural scans were obtained with a 3-Tesla Philips Achieva MRI scanner equipped with a
32-channel head coil (same as functional localizer task) using standard clinical protocols. A
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T1-weighted image was acquired with a 3D turbo field echo (TFE) sequence (TR 2500 ms, TE
5.7ms, 8° flip angle, 274 sagittal slices, 0.67 isotropic resolution, FOV 191.8 x 256 x 256 mm,
whole-brain coverage). We used the structural scans to align each participant to standard MNI
space using FLIRT in FSL [27].

Localizer category decoding analysis. We used both components of the StudyForrest
dataset. The first two runs of the movie data (892 TRs) were used to train an SRM model for
defining the functional space. To match the Sherlock dataset, we set k = 200 features for SRM.
The localizer data were then used for MVPA of image category within functional and anatomi-
cal searchlights. In both analyses, the searchlight kernel function used was a 3-fold stratified
cross-validation analysis, in which we trained a linear 6-way SVM classifier in each fold to
decode category. Performance for each searchlight is reported through mean accuracy across
folds. Because the training and test data of each fold are stratified, each image category is
equally represented and so the chance accuracy of this analysis is 1/6 = 16.67% (1/number of
categories).

Simulated dataset

We assume that functional searchlight outperforms anatomical searchlight because it can cap-
ture distributed information. We evaluated this interpretation by simulating fMRI data that
varied in how broadly information was distributed across the brain and repeating the AlexNet
analysis in the ‘Sherlock’ experiment. The simulation was performed using the fmrisim pack-
age in BrainTAK [19]. In particular, we simulated realistic fMRI noise from participant tem-
plates [28] and chose a set of voxels in the simulated brain to insert signal. We simulated 16
participants whole-brain data and inserted signal from the 4096 units of fc6 in AlexNet into
4096 voxels. Hence, if there were voxels in the brain that responded exactly the same the fc6
layer of AlexNet then their activity would look something like the signal that was simulated.
This signal was generated by convolving the unit activity (averaged across frames) for each TR
with a double-gamma hemodynamic response function. This signal was then added to the real-
istic neural noise so that the overall timeseries contained signal from the deep network, while
retaining properties of BOLD such as autocorrelation and lag. The magnitude of the inserted
signal was set at 0.5 percent signal change.

The voxels chosen to carry signal were determined based on how distributed the induced
signal was. In particular, we simulated a Gaussian Random Field (GRF) the same shape as each
simulated participant’s brain and chose the voxels containing the highest 4,096 GRF values as
the locations of the signal voxels. The GRF has a specific smoothness, parameterized by the
full-width half max (FWHM). If the GRF is smooth, then all of the highest values are likely to
be localized in a single area. However, if the GRF is not smooth, then these signal voxels will be
distributed throughout the brain. We created volumes with signals distributed over FWHM:s
0f 0.5, 1.0, 2.0, 4.0, 8.0, 16.0. In other words, we simulated participant data with signal distrib-
uted locally or broadly throughout the brain. To quantify performance, we repeated the main
representational similarity analysis of AlexNet on simulated data from anatomical and func-
tional searchlights.

Supporting information

S1 Fig. Selecting dimensionality of SRM with time-segment matching. We performed a
time-segment matching analysis [8] on the Sherlock data to determine how many SRM dimen-
sions to use. Within the training half of the movie, we trained an SRM with the corresponding
number of dimensions (x axis) on one half of the TRs and tested on the second half of the TRs.
The goal was to predict from which time window in the movie the test data were obtained
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(chance = 0.0212). Time-segment matching proportion correct (y axis) plateaued at approxi-
mately 200 dimensions considering both folds of the overall analysis.
(TIF)

S2 Fig. Distributed representations in individual subjects. The spatial distribution of the top
1% functional searchlight voxels for each subject and analysis.
(TIF)

S3 Fig. Anatomical distance between voxels within searchlights. The median Euclidean dis-
tance (in voxel units) of the anatomical coordinates of voxels from within the top 1% of func-
tional searchlights in the movie content experiment. Error bars denote 95% Cls across subjects
and the red line denotes the median Euclidean distance of voxels from within anatomical
searchlights (constant determined by searchlight radius). An appropriate ceiling for these val-
ues is the median Euclidean distance in a searchlight consisting of randomly chosen brain vox-
els (approximately 28 voxels).

(TIF)

$4 Fig. Effect of searchlight size on advantage of functional searchlight. For our main analy-
ses, we chose a searchlight radius = 3 (number of voxels for each searchlight 7 x 7 x 7 = 343).
Here we report movie content analyses results for radius = 2 (top row; number of voxels: 5 x 5
x 5 =125) and radius = 4 (bottom row; number of voxels: 9 x 9 x 9 = 729). A larger radius led
to a greater advantage for functional over anatomical searchlights in neural network analyses
and a smaller advantage for the NLP analyses. The y-tick values in the top plot for the semantic
analysis are a different range because the anatomical searchlight on the natural language
embeddings does very poorly when the searchlight radius is low. This speaks to our finding
that these natural language representations are widely distributed rather than localized in cir-
cumscribed regions of the brain.

(TIF)

S5 Fig. Within-hemisphere functional searchlight analysis. To test whether the improved
performance of functional searchlights reflects their ability to aggregate information across
hemispheres from bilateral regions that are anatomically distant but functionally homologous
(e.g., left and right auditory cortex), we re-ran all of our movie content analyses within one
hemisphere of the brain at a time (including fitting SRM) by completely ignoring the other
hemisphere. The error bars show 95% bootstrapped Cls. Even in the absence of bilateral infor-
mation, functional searchlight still consistently outperforms anatomical searchlight.

(TIF)

S6 Fig. Equating the number of voxels per searchlight across searchlight types. Some ana-
tomical searchlight volumes on the edge of the brain would contain non-brain voxels that
need to be excluded, resulting in fewer brain voxels defining the activity pattern. Since we are
taking the nearest neighbors in functional space, the number of voxels per functional search-
light is always the same. To ensure functional searchlight is not benefitting from having more
voxels in certain searchlights, we ran a version of our movie content analyses where each func-
tional searchlight was forced to contain the exact same number of voxels as the anatomical
searchlight for that voxel. The error bars show 95% bootstrapped Cls. Even when we force the
number of voxels per searchlight to match, functional searchlight still performs better.

(TTF)

S7 Fig. Substituting PCA when defining functional space. We repeated our analyses on the
movie content experiment but replaced SRM with PCA. In particular, we trained a PCA within
each subject using the half of the movie that was used for SRM training. Equating the number
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of dimensions used for SRM, we took the top 200 components (ordered by explained variance)
and used each voxel’s loading onto the components as coordinates for functional space. We
compared PCA functional searchlight vs. anatomical searchlight (A) as well as SRM functional
searchlight vs. PCA functional searchlight (B). PCA functional searchlight outperformed ana-
tomical searchlight. Defining functional space with SRM and PCA yielded similar results for
the visual network similarity analyses, but SRM outperformed PCA on both auditory network
similarity and the semantic analyses.

(TIF)

S8 Fig. Comparing SRM functional spaces from different datasets. To determine the simi-
larity of the functional spaces constructed by SRM for the Sherlock and StudyForrest datasets,
we extracted the Euclidean distances between all voxel pairs in functional space and then cor-
related these distances between datasets. The overall correlation was estimated by randomly
sampling the same 10,000 voxel pairs from the two datasets, calculating the correlation of dis-
tances in the sample, repeating 1,000 times with new random samples, and then averaging
across iterations. There was a positive correlation overall (r = 0.198). To test statistical signifi-
cance, we performed a non-parametric randomization test by repeating this process 1,000
times while randomly permuting the voxel distances of the Sherlock dataset each time to popu-
late a null distribution. The true correlation of the datasets was highly significant (p < 0.001).
One of the samples used to estimate the overall correlation is visualized in the plot, with each
dot depicting one voxel pair and the axes corresponding to their Euclidean distance in the two
functional spaces. Color coding by anatomical distance of each voxel pair indicates how dra-
matically SRM reshaped the brain based on function (i.e., voxels that are anatomically distant
can be functionally close, and vice versa). a.u. indicates arbitrary units.

(TIF)

S1 Table. Quantification of functional searchlight performance across all analyses. These
statistics were calculated based on the percent difference of the mean performance of the top
1% functional searchlights over the mean performance of the top 1% anatomical searchlights,
using empirically derived chance performance as a baseline.

(DOCX)
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