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Adult cognitive neuroscience has guided the study of human brain development by identifying regions associated
with cognitive functions at maturity. The activity, connectivity, and structure of a region can be compared across
ages to characterize the developmental trajectory of the corresponding function. However, developmental differ-
ences may reflect both the maturation of the function and also its organization across the brain. That is, a function
may be present in children but supported by different brain regions, leading its maturity to be underestimated.
Here we test the presence, maturity, and localization of adult functions in children using shared response model-
ing, a machine learning approach for functional alignment. After learning a lower-dimensional feature space from
fMRI activity as adults watched a movie, we translated these shared features into the anatomical brain space of
children 3-12 years old. To evaluate functional maturity, we correlated this reconstructed activity with children’s
actual fMRI activity as they watched the same movie. We found reliable correlations throughout cortex, even in
the youngest children. The strength of the correlation in the precuneus, inferior frontal gyrus, and lateral occip-
ital cortex predicted chronological age. These age-related changes were driven by three types of developmental
trajectories: emergence from absence to presence, consistency in anatomical expression, and reorganization from
one anatomical region to another. We also found evidence that the processing of pain-related events in the movie
underwent reorganization across childhood. This data-driven, naturalistic approach provides a new perspective

on the development of functional neuroanatomy throughout childhood.

1. Introduction

The advent of non-invasive neuroimaging techniques opened a new
window into the study of human cognitive development. Initial fMRI
studies of children examined functional differences in anatomical brain
regions associated with particular cognitive functions in adults, such as
the prefrontal cortex for executive function (Luna et al., 2001) and the
amygdala for fear processing (Thomas et al., 2001). This approach was
effective in characterizing the development of these brain regions. It also
provided evidence in support of a maturational account of development
(Johnson, 2011), which states that as cognitive functions come online
during development, they will occupy the same neural regions as adults.

However, other research has shown that cognitive functions can be
subserved by different brain regions at different ages (Bayet and Nelson,
2019; Brown et al., 2005; Durston et al., 2006; Jolles et al., 2011; Nel-
son et al., 2003; Schlaggar, 2002; Thomason et al., 2008). One striking
example is the development of visual object recognition: face process-
ing is initially supported by both left and right fusiform gyrus, but as
children learn to read, a region selective for visual words emerges in
the left fusiform gyrus and face processing begins to shift to being right
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lateralized (Centanni et al., 2018; Dehaene-Lambertz et al., 2018; Dun-
das et al., 2013). Thus, as children gain new cognitive skills, such as
reading, the localization of orthographic (and face) processing changes.
There are multiple interpretations for dynamic patterns of cognitive
development in the brain (Brown et al., 2006; Poldrack, 2010). For ex-
ample, studies sometimes show a shift from distributed to focal pro-
cessing over development (Durston et al., 2006); that is, functions are
localized to many regions early on, but localized to one or a smaller
number of regions later. Such a finding could be evidence of increased
efficiency of brain regions, decreased reliance on other regions for “sup-
port,” changes in the computations being performed, or simply artifacts
of greater variability in region localization in developing populations.
Changes in the number and relationship between brain regions sup-
porting a cognitive function can also be considered in the context of
the interactive specialization framework (Johnson, 2001; 2011). This
theory emphasizes that brain regions do not mature in isolation, but
specialize over experience through interactions with each other. For ex-
ample, if a newly emerging skill or function would be well-supported by
a brain region (e.g., because of its cells, circuitry, or connectivity) that
currently supports a different function, and if there is another brain re-
gion that already supports or could support the current function, there
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may be changes in tuning and connectivity between these regions to
accommodate the new function while retaining the current function in
conjunction with other regions.

The current study builds on prior work exploring dynamic changes
in functional brain development in two ways. Hypothesis-driven ap-
proaches can find evidence for the maturational account, but have a
harder time supporting alternatives. An analysis that can discover the
reorganization of a function on the cortex would be valuable in dis-
covering how the brain matures functionally. We therefore establish an
unbiased, data-driven approach that can capture different kinds of de-
velopmental change under a common framework, by searching for pat-
terns of functional activity rather than focusing on specific regions. We
do not assume the timing or types of cognitive functions that are re-
cruited (though consider this in a secondary analysis), but instead rely
on the idea that the time course of brain activity reflects the compu-
tations being performed. This means that similar time courses of brain
activity can be attributed to similar cognitive processes. Second, most
brain-based studies of cognitive development pursue a standard lab ap-
proach of isolating cognitive functions. Although vital for manipulating
and tracking exactly what is changing, an alternative, naturalistic ap-
proach could provide a more comprehensive and ecological sense of
how the brain is developing. Indeed, in adult cognitive neuroscience,
naturalistic paradigms such as movie-watching have yielded unexpected
insights into how the brain processes information across time-scales and
domains (Sonkusare et al., 2019). Movie-watching has also emerged as
an invaluable tool in children (see Vanderwal et al., 2019), with pre-
vious studies tending to focus on one or a small number of key cogni-
tive functions (Cantlon and Li, 2013; Richardson et al., 2018). Here we
operationalize function more holistically, as a collection of data-driven
features derived from adult brain activity. In this way, movie-watching
can be used to efficiently sample a broad swath of cognition.

To track the neural development of cognitive functions within and
across brain regions, we applied functional alignment (Chen et al., 2015)
to an open-access dataset (“Partly Cloudy”) of children aged 3-12 and
adults watching a movie during fMRI (Richardson et al., 2018). We used
open-source software for shared response modeling (SRM; Kumar et al.,
2020) to extract temporal features of brain activity that were shared
across the adults. For meaningful features to be extracted, this method
requires that brain activity is time-locked across participants, as occurs
when they watch the same movie (Hasson et al., 2004). Therefore, SRM
is currently not well-suited for resting-state fMRI, for which there is no
expectation that spontaneous activity will be aligned in time. There are
larger movie datasets from children than Partly Cloudy (Alexander et al.,
2017), which present additional opportunities for future research. How-
ever, to our knowledge, the Partly Cloudy dataset is unique in having
both children across a range of ages and an adult comparison group who
watched the same movie. This is crucial for the present goal of learning
features of adult function and assessing their expression in children as
a way of quantifying development.

In prior work, SRM has been used to distinguish scenes during movie-
watching (Chen et al., 2015; Turek et al., 2018), relate perception and
recall (Chen et al., 2017), and map semantic features to fMRI activity
(Vodrahalli et al., 2018). Here, we take a new approach of using SRM
to understand how content in the adult brain is represented in the de-
veloping brain. Although a variant of SRM has been used for age pre-
diction amongst adults ranging in age from 18 to 88 (Richard et al.,
2019), our study is unique in learning a shared response from one age
group (adults) and applying it to a completely independent age group
(children). By studying a large sample across childhood, this approach
can be used to characterize the developmental trajectory of adult brain
function. The features that SRM learns can be thought of as capturing ab-
stract cognitive functions that vary distinctively from each other across
the movie in a way that is consistent in adults. We then mapped the chil-
dren into this lower-dimensional feature space. These mappings were
used in reverse to port adult fMRI activity into each child’s anatomical
brain space. Comparing this reconstructed activity to the child’s actual

Neurolmage 226 (2021) 117606

fMRI activity allowed us to quantify the expression of adult functions
throughout childhood. Higher correlation between reconstructed and
actual activity means that the child’s brain expressed the abstract func-
tions shared in adults, what we refer to as “adult-like”. Although these
abstract functions cannot be cleanly identified with specific psychologi-
cal constructs, a key advantage of this data-driven approach is that they
can be aligned across adults and children without making any anatomi-
cal assumptions. There is no requirement that functions are instantiated
in the same brain regions across individuals, whether within or between
ages. In fact, our approach would be equally sensitive to the develop-
ment of functions that emerge within one region as to functions that
reorganize from one region to another.

2. Materials and methods
2.1. Data

The Partly Cloudy dataset was obtained from the OpenNeuro
database (accession number ds000228). A full description of data ac-
quisition can be found in the original paper (Richardson et al., 2018).
Participants with neuroimaging data available consisted of 33 adults
(18-39 years old; M = 24.8, SD = 5.3; 20 female) and 122 children
(3.5-12 years old; M = 6.7, SD = 2.3; 64 female; for more details, see
Table S1). Informed consent was obtained from adult participants and
from parents/guardians on behalf of child participants, who provided
their own assent. The study was approved by the Committee on the Use
of Humans as Experimental Subjects (COUHES) at the Massachusetts
Institute of Technology.

2.2. fMRI acquisition and preprocessing

Participants watched an animated movie (Sohn and Reher, 2009)
that lasted approximately 5 minutes while undergoing fMRI. No explicit
task was given beyond staying still and paying attention to the movie.
Adults and older children used the standard Siemens 32-channel head
coil. For younger children, one of two custom 32-channel phased-array
head coils was used (smallest coil: N =3, M = 3.91, SD = 0.42 years old;
smaller coil: N = 28, M = 4.07, SD = 0.42 years old). The only differ-
ence between head coils was their size. These size-optimized head coils
have been shown to increase signal-to-noise in participants with smaller
heads (Keil et al., 2011). fMRI data were collected using a gradient-echo
EPI sequence (TR = 2 s, TE = 30 ms, flip angle = 90°, matrix = 64x64,
slices = 32, interleaved slice acquisition) covering the whole brain. To
correct for slight variations in the voxel size and slice gap parameters
across participants, data were resampled to 3 mm isotropic with 10%
slice gap (the modal parameters). Children also participated in a num-
ber of behavioral tasks not related to the movie that are beyond the
scope of the current study.

Preprocessing of the structural and functional MRI data was per-
formed with fMRIPrep (v1.1.8; Esteban et al., 2019). First, T1-weighted
structural images from an MPRAGE sequence (GRAPPA = 3, slices =
176, resolution = 1 mm isotropic, adult coil FOV = 256 mm, child
coils FOV = 192 mm) were corrected for intensity non-uniformity using
N4BiasFieldCorrection (v2.1.0) and skull-stripped using antsBrainEx-
traction.sh (v2.1.0, OASIS template). Cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) masks were extracted from the
structural image using FAST (FSL v5.0.9). Surface reconstruction was
performed by FreeSurfer (v6.0.1). Nonlinear registration to an MNI
template for spatial normalization was performed with the antsRegis-
tration tool (ANTs v2.1.0). Registrations were visually inspected and
the quality of fit did not seem to differ across child and adult partici-
pants. Functional images were slice-time corrected using 3dTshift from
AFNI (v16.2.07), then motion corrected using FSL’s mcflirt (v5.0.9). Co-
registration to the structural scan was performed with 9 degrees of free-
dom using bbregister in FreeSurfer (v6.0.1). Transformations were con-
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Fig. 1. Schematic of the signal reconstruction pipeline. An SRM was trained on the first half of the fMRI data from a group of adults (N = 33; 2 example matrices
shown) and then each of the children (N = 122) was fit into this space. Adult fMRI data from the second half of the movie (i.e., not used to train the model) were
transformed into the shared space and averaged. This shared adult activity was then projected into each child’s brain and correlated with their actual activity. This
procedure was then repeated for training on the second half and testing on the first half.

catenated using antsApplyTransform (v2.1.0). Frame-wise displacement
was estimated using Nipype.

2.3. Experimental design

We used SRM (Chen et al., 2015; Turek et al., 2018) to identify ac-
tivity in the developing brain that could be predicted from adult brain
activity (illustrated in Fig. 1). This method assumes that all participants
were shown the same stimulus with the same number of time-points
but does not require that they have the same number of voxels. First,
the time-points from a group of adults were evenly split into training
and test sets for cross-validation purposes. We used one half of the adult
data to learn the shared feature space, consisting of features that cap-
tured shared temporal variance across adults, as well as the mappings
between individual adults’ brain activity and this shared space. No child
data were used for training the model. Prior to any other analyses, we
ran this analysis on subsets of the adult data varying the number of fea-
tures (5-80, in increments of 5) and found that 10 features learned from
a set of adults gave the highest whole-brain signal reconstruction values
for held-out adults (M = 0.087, SD = 0.031; Fig. S1). Although this was
the global maximum, other numbers of features yielded comparable sig-
nal reconstruction. Selecting one of these local maxima would change
the dimensionality of the shared response, which could affect the results.
This would be unwieldy to examine in the current paper, but could be

explored more thoroughly in future work, including by sampling differ-
ent numbers of features with more granularity in steps of 1 rather than
5 features.

After learning 10 shared features in adults using one half of the adult
data, we found the mapping (voxels by features) between an individual
child’s functional activity (voxels by time) and the shared response (time
by features) for this same portion of the movie. Singular value decom-
position was implemented to solve for the orthogonal weight matrix.
Values in each cell of this resulting weight matrix denote how strongly
a given voxel in the child expresses each of the 10 features discovered
from the adult data. Next, we used the remaining half of the adult data
to quantify how the 10 shared features were expressed in data not in-
volved in SRM training. Each adult’s transposed weight matrix (features
by voxels) was used to transform their raw voxel activity (voxels by
time) into the shared feature space (features by time). We then averaged
these shared responses across all adults to find the canonical adult re-
sponse in terms of shared features during this part of the movie. Finally,
each child’s weight matrix (voxels by features) was used to transform
the average adult shared response (features by time) into the child’s
brain space (voxels by time). This predicted response represents what
the child’s brain activity would look like if they expressed the same
shared features of adults. We quantified the extent to which this was
true by correlating the child’s actual raw response with this predicted
response for each voxel separately. Thus, higher signal reconstruction
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reflected greater adult-child functional similarity—i.e., more adult-like
functions in the child’s brain—agnostic to the anatomical localization of
these functions in either group. The voxelwise map of predicted-actual
correlations for each child was averaged across individuals within age
groups. We ran this entire procedure twice, training the SRM on the
first half of the movie and testing on the second half in one fold, and
then vice versa in another fold, and present results averaged across these
folds. Rather than using Pearson correlation as a standardized measure
of similarity, we could have estimated this association with a general
linear model (GLM) for each voxel, in which the predicted activity from
adults is entered as the explanatory variable and the actual child activ-
ity is treated as the response variable. The resulting beta values could
be used to test reliability across participants, which yields nearly identi-
cal statistical significance as correlation coefficients (Fig. S2), but with
the added benefit of reflecting the real magnitude of the relationship
between these variables. The GLM approach also makes it possible to
control for nuisance variables, such as head motion.

Our first objective was to assess the degree to which children’s brain
activity could be reconstructed from shared features learned in adults.
We quantified the noise ceiling for this group-level signal reconstruc-
tion by leaving one adult participant out of SRM training, correlating
that individual’s predicted and actual brain activity, and then iterating
through each adult. This was treated as the noise ceiling because the
held-out participant was from the same age group used to train the SRM.
Our second objective was to quantify how signal reconstruction may
change over development, and whether this could be a useful measure
for predicting an entirely held-out child’s age. We then explored how
the individual features that comprise the shared response may exhibit
different developmental trajectories throughout childhood. Finally, we
investigated the relationship between individual features and cognitive
constructs. Partly Cloudy was first used as a localizer for theory of mind
in adults (Jacoby et al., 2016). As such, different events in the movie
relevant to social cognition were annotated, including social, pain, and
mentalizing events. For each event type, we generated a time series of
events and convolved it with a double-gamma hemodynamic response
function (HRF). Because we used data from the second half of the movie
for predicting children’s brain activity from adult features, we restricted
our analyses of social cognitive events in that half. Two of the three
event types, pain and mentalizing events, were present in the second
half of the movie and could therefore be compared to the average ex-
pression of shared features in adults.

2.4. Statistical analysis

We used bootstrap resampling methods to statistically evaluate our
results non-parametrically (Efron and Tibshirani, 1986; Fan et al., 2020;
Kim et al., 2014). For each effect of interest, at the last step of the
analysis we randomly sampled participants with replacement to form
a new sample of the same size as the original group, averaged the effect
across the sample, and repeated for 10,000 iterations. The logic of this
approach is that if an effect is reliable across participants, the partici-
pants should be interchangeable, and a similar group effect should be
observed in each iteration. The resampled values across all iterations
reflect a sampling distribution of the effect of interest, further provid-
ing confidence intervals on the original effect. Null hypothesis testing
can be performed by determining the proportion of resampled values
that were of the opposite sign as the original effect. The original effect
can also be normalized into a z-statistic by dividing the mean of the
resampled distribution by its standard deviation. For voxelwise analy-
ses, this was performed in each voxel to create a statistical map. This
map was corrected for multiple comparisons using a cluster-based cor-
rection in FSL’s cluster tool (cluster-forming threshold, p<0.001). Cor-
rected p-values were found using Gaussian Random Field Theory and
the smoothness estimated from the original map.

We quantified the relationship between signal reconstruction and
age by first fitting a linear regression model for each voxel. We then

Neurolmage 226 (2021) 117606

used the same bootstrapping approach described above, now resampling
participants to calculate the relationship between signal reconstruction
and age in each iteration, resulting in a sampling distribution for the
relationship. We calculated the p-value as the proportion of iterations
on which the correlation coefficient from the linear regression model
went in the opposite direction from the original model. We compared
this model against other types of models that have been used previously
in developmental cognitive neuroscience (Schlichting et al., 2017). For
each voxel, we fit five regression models: (1) a linear model with age
alone as the predictor (as above), (2) a linear model with age and sex
as predictors, (3) a linear model with age and sex as predictors plus
an age-by-sex interaction term, (4) a quadratic model with just age as
a predictor, and (5) a quadratic model with age and sex as predictors
plus an age-by-sex interaction term. We then assessed which model gave
the lowest Akaike information criterion (AIC), a measure of the relative
quality of different models, for each voxel.

We used leave-one-out cross-validation to predict the age of children
from signal reconstruction. For each iteration, we fit the linear regres-
sion model between signal reconstruction and age in a training set of
N-1 participants. We did this separately for each voxel and retained the
clusters that were significant within the training set (based on the previ-
ously described bootstrap resampling method). Note that we ignored the
sign of the significant relationship in a cluster and thus it was possible
to find negative beta values. We then fit a regularized ridge regression
(penalty = 1) across voxels from the significant clusters. To predict age
in the held-out Nth test participant, we input their signal reconstruc-
tion scores across these voxels and output an estimated age. Finally, we
calculated the Pearson correlation and mean-squared error between the
chronological and predicted ages of children across iterations.

In addition to reconstructing all 10 adult features in children, we
also performed signal reconstruction for individual adult features. To
test single-feature reconstruction within the adults, we could not per-
form the fully cross-validated approach described above of leaving one
adult participant entirely out of both the training set used to learn the
SRM and the testing set used to generate predicted activity. This is be-
cause each training set would have contained a unique set of adults,
which could lead to different features and/or a different ordering of
features in the shared space. We would therefore not be confident that
we were considering the same feature across folds. Instead, we included
all adults when training the SRM on one half of the movie, so that there
would be a consistent shared space across adults and as used to recon-
struct children. Nevertheless, we left one adult out when averaging the
adult shared response for the other half of the movie, using the expres-
sion of the selected feature in all but that adult to predict their neural
activity. Because the reconstructed adult was used in SRM training, we
included a 10 time-point buffer between their training and test data
to minimize non-independence. Signal reconstruction of individual fea-
tures in children was identical to the main analysis, except based on
separate weight matrices for each child mapping from their voxel space
to a given adult feature. That is, although the adult data could not be
fully cross-validated, the data from children remained completely un-
touched during SRM training.

In the single-feature analysis, we sought to quantify how brain re-
gions changed in their expression of features over development. We
thus defined regions of interest (ROIs) using the Schaefer brain atlas
(Schaefer et al., 2018). This atlas consists of 100 parcels discovered from
resting-state connectivity data in adults and matched to 17 functional
networks (Yeo et al., 2011). We reconstructed each of the ten features
in adults and children and then calculated the average signal recon-
struction scores across voxels in each of the 100 parcels. For statistical
analysis, we used the same bootstrap resampling procedure across the
participants in a given age group, separately for each parcel and feature.
To correct for multiple comparisons across the parcels, we used Bonfer-
roni correction (100,000 bootstrap iterations were run to gain precision
on p-values for thresholding). Finally, the parcels that survived correc-
tion were ranked according to the strength of signal reconstruction.
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We used bootstrap resampling to quantify the relationship between
individual features and psychological constructs. For each feature, we
randomly sampled with replacement the expression of the feature in 33
adults (i.e., second half data transformed into their feature space), and
then averaged the results into a single adult shared response for the
feature. We then correlated the average adult shared response for each
feature with the convolved event time series for each event type and
repeated the procedure 10,000 times. We calculated the p-value as the
proportion of resamples in which the correlation had the opposite sign
from the original correlation, doubled to convert to two-tailed. Because
this was not a planned analysis, we corrected for 10 multiple compar-
isons (corresponding to the 10 features) with a Bonferroni correction.

2.5. Code accessibility

The analysis code for running the signal reconstruction analy-
sis pipeline is available on Github: https://github.com/tristansyates/
partly-recon.

3. Results
3.1. Adult-like brain function in early to middle childhood

We first characterized how well adult brain activity could be re-
constructed from other adults. Signal reconstruction was widespread
throughout the brain, especially in occipital and parietal cortices
(Fig. 2A). This indicates that the shared features learned by SRM from
one half of the movie accounted for adult brain activity during the other
half of the movie. Importantly, this only works because of the ability of
SRM to learn abstract features that generalize across the contents of the
two halves. Although we found tentative evidence for higher whole-
brain signal reconstruction in younger adults (Fig. S3), scores were re-
liably positive across the adult sample.

Remarkably, signal reconstruction was also widespread in the chil-
dren despite the fact that the functional features were defined entirely in
adults (Fig. 2B). Results were nearly identical when including nuisance
parameters in a GLM relating children’s actual and predicted brain ac-
tivity (Fig. S2) and were similar, but slightly stronger after accounting
for nuisance parameters prior to constructing the shared response (Fig.
S4). In the child brain, adult functions were most strongly represented
in lateral occipital and posterior medial regions, albeit weaker than in
the adult brain.

3.2. Relationship between age and signal reconstruction

The previous analysis collapsed across all children, but the degree
and location of signal reconstruction may vary with age. We quantified
these relationships by correlating, for each voxel in the brain, children’s
signal reconstruction values (i.e., the extent to which adult brain activ-
ity predicts that child’s brain activity) with their chronological age. Af-

All children

D
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Table 1

Different models used to predict signal reconstruction (SigRecon),
which is the correlation between predicted and actual activity in a held-
out child. For each voxel, the model with the lowest AIC was assigned
to that voxel. The average and standard deviation of AIC values for a
given model for voxels where that model was the best is shown in the
right column. Overall, the linear model used in our main analyses with
age as the only predictor best described the data.

Regression model Number of voxels AIC M (SD)
SigRecon ~ Age 39,111 2.41 (0.56)
SigRecon ~ Age + Sex 60 5.21 (1.39)
SigRecon ~ Age + Sex + Age * Sex 31 4.76 (1.91)
SigRecon ~ Age* 49 3.75 (2.01)
SigRecon ~ Age* + Sex? + Age * Sex 31 3.71 (1.05)

ter correcting for multiple comparisons, signal reconstruction was pos-
itively correlated with children’s age in regions including the bilateral
precuneus, bilateral lateral occipital cortex, postcentral gyrus, and in-
ferior frontal gyrus (Fig. 3A; see also Fig. S3). Thus, in these regions,
adult brain activity better predicts older children’s brain activity com-
pared to younger children. No regions showed a reliable negative corre-
lation. Alternative models taking into account children’s sex and testing
for quadratic relationships did not generally provide better fits than this
linear model (Table 1). The basic linear model with age alone gave the
lowest AIC values for the majority of voxels, and therefore minimized
the information loss when trading off with model complexity. Further-
more, individual voxels in which other models had the lowest AIC val-
ues were scattered across the brain, suggesting that they were capturing
noise and providing further evidence that the basic linear model per-
formed best.

3.3. Out-of-sample prediction of a child’s age from signal reconstruction

With chronological age related to signal reconstruction in several
regions of the brain, it may also be possible to predict the age of a
previously unseen child. In a nested cross-validation analysis, we first
trained a linear regression model between signal reconstruction and age
for each voxel in all but one child. Blind to this child, we determined
which voxels showed a significant relationship with age again through
bootstrapping and cluster correction. We then trained a ridge regression
model on these significant voxels. This model was used to predict the
held-out child’s chronological age from their multivariate pattern of sig-
nal reconstruction scores across the voxels. This procedure was repeated
122 times to use each child as the held-out test data once. Note that the
significant clusters varied slightly across iterations because the training
set changed when different children were used as test data. Finally, we
correlated the predicted and actual ages (Fig. 3B), and found a strong re-
lationship (r = 0.436, p <0.001). Indeed, our model had a mean-squared
error of 6.05, meaning that our average error in age prediction was 2.46
years across an age range of 8.78 years.
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Fig. 3. Relationship between signal recon-
struction and age. (A) Brain regions with a reli-
able correlation between signal reconstruction
92 of adult function in a child’s brain activity and
the child’s chronological age across all 122 chil-
61 dren, colored by the strength of the relation-
ship. (B) Similar regions are found in leave-
30 one-child-out iterations of the age prediction
analysis. Yellow-red colors signify regions that
were significant in a majority of iterations. Us-

Predicted age

ing signal reconstruction scores from these re-
gions, we could accurately predict the held-out
child’s chronological age.
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Fig. 4. Signal reconstruction of adult features was statistically reliable even in the youngest children, but spread anatomically and grew in strength throughout
childhood. To quantify this developmental change, we correlated the unthresholded voxelwise signal reconstruction in each age group with that of adults, revealing
increasing maturity: 3.5-4.5 years, r = 0.507; 4.5-5.5 years, r = 0.587; 5.5-7.5 years, r = 0.601; 7.5-9.5 years, r = 0.646; 9.5-12.3, r = 0.797.

3.4. Reliable signal reconstruction in all age groups

The relationship between signal reconstruction and age could reflect
a lack of adult function in early childhood that emerges in middle child-
hood. To evaluate this possibility, we divided children into five age bins
(3.5-4.5, 4.5-5.5, 5.5-7.5, 7.5-9.5, 9.5-12.3 years old), each containing
roughly the same number of participants (N = 20-26). This was done
for analytical convenience and was not intended to suggest discrete de-
velopmental stages. Although signal reconstruction increased with age,
we nevertheless found reliable signal reconstruction in every age group.
This includes lateral occipital, posterior medial, and supramarginal re-
gions, even in the youngest children aged 3-5 (Fig. 4). Signal recon-
struction emerged in frontal regions around age 5, and became more
pronounced in the older groups. To obtain a global measure of adult-
child similarity, we correlated the unthresholded maps of signal recon-
struction for each age group with that of adults. There was reasonable
agreement in all groups, though the amount of variance explained grew
from 25% in the youngest children to 64% in the oldest children.

3.5. Controlling for age-related noise in signal reconstruction

Increases in signal reconstruction over development may result from
younger children being “noisier” than older children and adults, includ-
ing because of differences in task compliance, preprocessing quality,
and/or BOLD physiology (Harris et al., 2011; Phan et al., 2018). Chil-
dren did move their heads more than adults overall, but this did not
track with age across children (analysis of number of time-points ex-
ceeding 2 mm motion threshold from Richardson et al. (2018): one-way

ANOVA across age groups, F(4,116) = 1.175, p = 0.325; correlation with
age across children, r = —0.112, p = 0.221).

Moreover, we can estimate and control for noise in different age
bands using the noise-ceiling approach from adults (Fig. 2A). For each
age group, we held one child out and used SRM to learn shared features
in the remaining children of that group. We then predicted the held-out
child’s voxel activity, correlated it with their actual activity, and aver-
aged across significant clusters to derive a global within-group signal
reconstruction score for each child. The average score across children
in a group provides a measure of the reliability of functional brain ac-
tivity in that group. This within-group signal reconstruction correlated
with chronological age (r = 0.359, p <0.001), consistent with decreasing
noise over development. Within-group signal reconstruction was also
correlated with adult-group signal reconstruction (r = 0.647, p <0.001).
Critically, however, the correlation between adult-group signal recon-
struction and chronological age (r = 0.418, p <0.001) persisted after
controlling for within-group signal reconstruction (r=0.261, p = 0.003).
In contrast, the correlation between within-group signal reconstruction
and chronological age did not hold after accounting for adult-group sig-
nal reconstruction (r = 0.128, p = 0.158). These results suggest that
adult features capture more about child brain function than changes in
noise over development.

3.6. Emergence and reorganization of adult function over child
development

There are at least two other potential explanations for the age-related
increases in signal reconstruction we observed. First, a subset of the
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adult functions being reconstructed may be absent from younger chil-
dren and mature over development to become present in older children
(emergence). Second, adult functions may be present in both younger
and older children but expressed in different brain regions over devel-
opment (reorganization). By both accounts, the brain regions expressing
a function in older children would not express it as strongly in younger
children. The accounts differ, however, in that reorganization but not
emergence predicts that the function would be expressed in other brain
regions in younger children.

Emergence and reorganization are difficult to distinguish with the
analysis approach used so far. By predicting the activity of each voxel
as a weighted combination of all adult features, we may have obscured
developmental trajectories that differed across features. We thus mod-
ified our pipeline to predict activity in children from individual adult
features, each of which captures a narrower, more unique range of adult
function. The modification occurred in step 4 (Fig. 1), where we now
transformed only one average adult feature at a time into the voxel space
of a child. Individual features do not necessarily isolate single functions,
and emergence and reorganization are not mutually exclusive, so it may
be possible to observe both patterns within a feature. We used a func-
tional atlas (Schaefer et al., 2018) to identify regions that showed the
strongest signal reconstruction for a given feature per age group.

We found evidence of both emergence and reorganization across dif-
ferent adult features, as well as a third pattern in which a feature was
expressed in the same brain region(s) across development (consistency).
Representative features illustrating these three types of trajectories are
depicted in Fig. 5 (for all features, see Figs. S5 and S6). For example,
Feature 4 was not reliably expressed in the two youngest age groups and
emerged in the lingual gyrus of older children and adults (Fig. 5A). In
contrast, Feature 6 was expressed most strongly in the posterior cingu-
late and lingual gyrus consistently throughout development (Fig. 5B).
Finally, Feature 7 was expressed most strongly in the precuneus and
posterior cingulate of children and migrated to be more strongly rep-
resented in parietal regions in adults (Fig. 5C). This feature also inter-
estingly shows some consistency over development. Nonetheless, it was
one of several features where the average signal reconstruction value
across the whole brain was significantly related to child age (Fig. S3).
Thus, by measuring functional profiles regardless of anatomy, signal re-
construction revealed developmental changes both within and across
brain regions.

3.7. Cognitive interpretation of shared features

The features that we learned from adult fMRI activity are abstrac-
tions, making it difficult to assign them to specific cognitive functions.
Moreover, our data-driven approach with SRM means that it is possible
that some cognitive functions may be partially distributed across fea-
tures, while others may not account for enough variance to be included
in the model. Nonetheless, in a follow-up analysis, we explored the re-
lationship of these features to cognitive functions that were evoked by
this movie. An earlier study annotated different events relevant to social
cognition in the same movie, including pain and mentalizing event types
(Jacoby et al., 2016). For each event type, we convolved the time series
of events with a double-gamma HRF and correlated it with the average
expression of each shared feature from adults (Fig. 6). For pain events,
only one of the features (Feature 9) was reliably correlated (p <0.05, cor-
rected). For mentalizing events, none of the features were correlated.
Interestingly, Feature 9 was most strongly expressed in the cuneus of
adults and the oldest children, the postcentral gyrus near the temporo-
parietal junction of the middle age group (eight- and nine-year-olds) and
the posterior cingulate of younger children (Fig. S6). These findings in
adults and children over eight are in line with the prior studies showing
that the cuneus is more active for pain than mentalizing events in adults
(Jacoby et al., 2016) and that bilateral postcentral gyrus is a node in the
pain network (Bruneau et al., 2015; 2012). Although the posterior cin-
gulate is usually more activated for mentalizing events than pain events
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in adults, here it is related to pain processing in young children. These
results highlight that the localization of pain processing in the develop-
ing brain is dynamic, with the role of the posterior cingulate and other
regions changing during this time. Furthermore, this shows that even
quite young children are capable of representing the pain state of oth-
ers, and that applying data-driven then confirmatory analyses can be a
powerful combination for understanding cognitive development in the
brain.

4. Discussion

In this study, we sought to bring a new perspective to the long-
standing question of how and when the developing brain becomes
“adult-like” (Johnson, 2011; Somerville, 2016). The typical approach
for answering this question is to align children and adults into a com-
mon anatomical space and compare activity between groups in the same
brain regions (Cantlon and Li, 2013; Dosenbach et al., 2010; Fair et al.,
2009; Gogtay et al., 2004; Richardson et al., 2018). Thus, even when
the goal is to understand functional similarities and differences over de-
velopment, anatomy serves as a guide and constraint. The alternative
approach we employed is to align children and adults into a common
functional space, which allowed us to quantify adult-like brain activity
in children without making any assumptions about a consistent map-
ping between function and anatomy over development. This anatomi-
cally agnostic approach has the advantage of finding representations in
the developing brain that may otherwise be overlooked. It does not re-
quire pre-specifying the type of function that is expected to differ across
development a priori. Instead, it uses a data-driven approach to extract
content from the movie that explains brain activity and to identify where
in the brain this content is represented. In children as young as 3.5 years
old watching a short movie, we found regions of the brain, especially
in occipital cortex, that reliably expressed functional features shared
amongst adults who watched the same movie. Based on where and how
strongly these features were expressed, we were able to build a predic-
tive model of age that depended only on brain activity during movie
watching. We then demonstrated the power of functional alignment by
revealing features of adult function that emerge and reorganize across
anatomical locations over development. Finally, we showed how con-
firmatory hypothesis testing can be performed within this framework to
interpret shared adult functions and how they develop.

We interpreted increasing signal reconstruction with age as evidence
of functional specialization and maturation in the developing brain. A
related but slightly different framing is that brain functionality itself was
not always changing in these cases, but rather it was the way that chil-
dren deployed this functionality during the movie. For instance, if older
children attended to the content of the movie in a more adult-like fash-
ion than younger children, this may have affected perceptual input to
downstream functions and increased similarity to adult brain activity.
The defining characteristic of this interpretation is that younger chil-
dren may possess the capacity for such functions but not engage them
because of attentional differences in perceptual input. Even if attention
was allocated similarly across age, richer schematic knowledge in older
children may have enhanced their understanding of the movie narrative
(Brod et al., 2017; Ghosh and Gilboa, 2014) by highlighting connections
between objects and events that may not otherwise be easily integrated.
Again, younger children may have the capacity for this kind of inte-
gration in principle but be unable to deploy it without access to the
relevant conceptual knowledge. Of course, attention and memory are
functions of the brain, and so developmental differences in these func-
tions are what we sought to characterize in the first place. The key point
is that increasing signal reconstruction could reflect the development of
a function or of necessary perceptual or conceptual precursors to that
function.

Signal reconstruction allowed us to build a predictive model of age
based on how strongly children’s brains represented the shared features
of adults. Our predictive model was highly significant, but a limitation
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Fig. 5. Trajectories of functional development within and across brain regions. (A-C) To understand the nature of developmental changes in signal reconstruction,
we predicted activity from one adult feature at a time rather than all features. We used a functional parcellation to identify which regions expressed a given feature
most strongly in each age group. Parcels with significant signal reconstruction of adult features within each age group (p<0.05, corrected) were ranked by the strength
of the reconstruction. For ease of visualization, here we color up to the top five parcels for each feature and age group. The anatomical labels for these parcels were
obtained from the Talairach atlas. Three example adult features are depicted across ages, illustrating developmental trajectories we refer to as emergence (Feature
4), consistency (Feature 6), and reorganization (Feature 7). The top five parcels for the remaining features are depicted in Fig. S5 and all parcels that are significant
for each group are displayed in Fig. S6. Asterisks indicate which parcels differed significantly in signal reconstruction of each feature across age groups (p <0.05,

corrected; Fig. S7).

is that the strength of the relationship was moderate, and the mean er-
ror in age was substantial for the sample’s age range. Larger sample
sizes and more training data (i.e., longer movie) in future studies could
increase precision. Nonetheless, other studies using out-of-sample cross-
validation methods like ours have found a similar range of relationship
strength (Finn et al., 2015; Lin et al., 2018).

A variant of the signal reconstruction approach allowed us to identify
different types of developmental trajectories across adult features. We
used ROIs defined by functional connectivity (Schaefer et al., 2018) to
map the developmental trajectories of neural features shared amongst
adults. The voxels that comprise a region in this atlas have homoge-
neous functional activity and connectivity in adults. We used the term
“emergence” to describe features of adult brain activity that were not
reliably expressed in any regions of young children’s brains, but ap-
peared in older children and were present in the same location up until
adulthood. Features that showed “consistency” were those in which the
localization remained consistent in all of the age groups tested, includ-
ing the youngest children. Finally, features that showed “reorganiza-
tion” were those that were reliably expressed in at least one parcel in
the brains of children and adults, but where the localization of these
parcels varied across ages. Therefore, features that exhibit the first tra-
jectory (emergence) may comprise late-developing cognitive functions,
while the other feature types comprise cognitive functions that can be
represented by younger children.

Although both emergence and consistency of features in adult re-
gions over development are consistent with multiple accounts of brain
development, the reorganization of features over development cannot
be explained by a maturational account, which argues that certain
cognitive functions are tied to particular brain regions and minimally
influenced by the environment and nearby regions. This may apply
to certain highly specialized regions, such as for vision or language
(Kanwisher, 2010), but our results highlight that many adult features
are not characterized by a one-to-one mapping between structure and
function, and that assuming this might obscure functional similarities
across development. It is worth noting that a more pure form of reor-
ganization, whereby a feature in adulthood is no longer expressed at
all in the regions in which it was previously expressed, was less com-
mon in our study. Instead, we tended to observe relative reorganization,
whereby the set of regions expressing a feature remains fairly consis-
tent over development but the rank order of which regions show the
strongest expression changes. For example, the precuneus was replaced
by the postcentral gyrus as the region with highest signal reconstruction
of feature 7 for children around 9 years old, even though the precuneus
continued to express the function through adulthood. Future work track-
ing individuals longitudinally should try to understand why reorganiza-
tion occurs and how it relates to environmental changes or new skill
acquisition (e.g., reading; Dehaene-Lambertz et al., 2018).
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Our findings that several relevant features are present as early as
3 years of age, in either the same or different regions as expressed in
adults, suggest early adultlike cognition. Even so, these data-driven fea-
tures remain abstract and are not easily decomposed into specific cog-
nitive functions. Moreover, although the features captured unique and
substantial variance shared across adults, each may still embed multi-
ple cognitive functions with similar temporal profiles of brain activity.
This has implications for interpreting features showing anatomical re-
organization of function over development (e.g., Fig. 5C). Specifically,
our definition of reorganization was that the same functions were sub-
served by different brain regions over development—that is, a cognitive
function that manifests in region X of younger children is expressed in
region Y of adults. This could occur if the original region was co-opted by
a different function (Behrmann and Plaut, 2015) or if the nature of the
function changed with increasing skill and expertise (Johnson, 2001).

However, the possibility of multiple functions being embedded in a
given feature suggests an alternative interpretation. Namely, these func-
tions may have stable organization over development, but the relative
weighting of the functions as captured by the feature may change. Con-
sider a hypothetical feature that is active during the title and credits of
the movie. This feature might capture multiple language-related func-
tions engaged by these scenes, such as letter recognition in region X
and semantic comprehension in region Y. We would expect even the
younger age groups to respond to the orthography of the words and
thus show signal reconstruction in X, but perhaps only the older chil-
dren and adults would respond to the meaning of the words and show
signal reconstruction in Y. Disentangling these possibilities requires a
better understanding of how the abstract features from SRM relate to the
contents of the movie and to the cognitive functions that are engaged.
Future studies could make progress in this direction by using reverse
correlation (Hasson et al., 2004) or hand-coded events in the movie to
better ascertain the functional profile of the features. Indeed, we found
that Feature 9 was related to the processing of pain events identified by
prior annotations of the movie. This pain-related feature demonstrates
the power of our data-driven approach to understanding cognitive devel-
opment, as it was expressed in different regions of the brain in younger
children and adults. Although the regions recruited in older children and
adults were predicted by previous research (Bruneau et al., 2015; Jacoby

Time (TR)

et al., 2016), the region recruited in younger children, the posterior cin-
gulate, is typically associated with mentalizing rather than observing
physical pain (Bruneau et al., 2015; Saxe and Powell, 2006). Thus, sig-
nal reconstruction allowed us to find evidence for commonalities in the
ability to process pain events over development, despite differences in
anatomical localization. Although annotations were not available for
other types of events, this movie likely engaged other functions related
to visual processing, object recognition, and narrative comprehension.
The relationship between adult shared features and these cognitive func-
tions remains an avenue for future research.

Future work could also address the cognitive underpinnings of
shared features by selecting or designing movies to target specific cog-
nitive functions. Indeed, a constraint in our study, and SRM more gen-
erally, is that the features extracted depend on the movie. The use of
other data for functional alignment, including from live action videos,
different sensory modalities, or synchronized trials of varied cognitive
tasks could sample cognition even more broadly. This might allow SRM
to learn a richer functional space that provides a more complete picture
of functional brain development across childhood. Additionally, it might
reveal other types of developmental trajectories that were not evident
in the current study. In one of the three types of neural trajectories we
defined (reorganization), a function that may be present behaviorally
from a young age undergoes neural changes, such that it is subserved
by one region early on before reorganizing to another region later in
development. The transition between these two regions may inform be-
havioral findings of a U-shaped (or inverted U-shaped) curve, where
younger children and adults are more similar than children of inter-
mediate ages (Siegler, 2004). Combining this approach with behavioral
measures could therefore reveal why such changes occur.

Another limitation of the current study is that we rely on shared fea-
tures learned in adults, yet there may be developmental changes within
the adult cohort. Indeed, the adult sample includes a large age range,
and we found some evidence that younger adults had higher signal re-
construction than older adults (Fig. S3). However, the younger adults
comprise a larger proportion of the sample, which likely biased the SRM
features to be more consistent with their features. Regardless, any adult
heterogeneity does not compromise our analyses of children; signal re-
construction within the adults was reliable across the sample, suggesting
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that the shared response was able to capture functions that are stable
over this age range. One takeaway from this result is that our approach
can be applied successfully to adults (akin to Richard et al., 2019). It
also hints at the possibility of learning shared features in younger age
groups and testing on older age groups. Thus, in addition to characteriz-
ing the emergence of adult features of cognition over development, our
analyses could be applied in reverse to answer the complementary ques-
tion of what child features disappear over development into adulthood
(or in aging from young adults to the elderly). Future work with larger
cohorts of similarly-aged children may be able to answer this question.

We focused on brain development, but the techniques in our paper
could be applied productively to a number of questions that involve
comparing functional activity across groups. For instance, learning the
functional features shared amongst a clinical population and then re-
constructing these features in an undiagnosed individual may be use-
ful for predicting whether the individual will develop the condition.
This method could also be used to assess how and when a learner’s
brain starts to resemble that of an expert over the course of training.
Because signal reconstruction does not require that the group and indi-
vidual have the same brain sizes or even anatomical organization, this
approach could even be applied between humans and non-human an-
imals to trace how cognitive functions are shared over phylogeny. In-
deed, there is no requirement that the group and individual be brains
at all, which could, for example, allow states of a computational model
to be ported into the brain for model-based analysis, or vice versa for
brain-computer interfaces.
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