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Abstract 13 
 14 
Artificial neural networks trained to solve sensory tasks can develop statistical representations 15 
that match those in biological circuits. However, it remains unclear whether they can reproduce 16 
properties of individual neurons. Here, we investigated how artificial networks predict individual 17 
neuron properties in fruit fly motion circuits. We trained anatomically-constrained networks to 18 
predict movement in natural scenes, solving the same inference problem as fly motion detectors. 19 
Units in the artificial networks adopted many properties of analogous individual neurons, even 20 
though the networks were not explicitly trained to match these properties. Among these 21 
properties was the split into ON and OFF motion detectors, which is not predicted by classical 22 
models for motion detection. The match between model and neurons was closest when the model 23 
was trained to be robust to noise. Our results demonstrate how anatomical, task, and noise 24 
constraints can explain response properties of individual neurons in a small neural network.  25 

Introduction 26 
 27 
Biological neural networks (BNNs) have evolved through natural selection to perform tasks that 28 
promote survival, but it is often unclear how their properties relate to the tasks they perform. 29 
Recent work in sensory systems has shown that artificial neural networks (ANNs) optimized to 30 
perform ethologically-relevant tasks often develop stimulus representations similar to those in 31 
BNNs. For instance, ANNs trained to categorize visual objects possess intermediate 32 
representations similar to those in the hierarchical processing steps in primate visual cortex 1. 33 
Similarly, representations of temperature in zebrafish are similar to those in artificial neural 34 
networks trained to navigate thermal gradients 2. These comparisons between ANNs and BNNs 35 
test a hypothesis about the goal of the biological circuit: is optimizing a network to perform a 36 
specific task under specific constraints sufficient to account for a set of the biological network’s 37 
properties?3-5 These prior studies have drawn connections between clusters of nodes or layers in 38 
an ANN and the heterogeneous response properties of groups neurons in regions of the brain. In 39 
this study, we show that specific nodes in a trained ANN can have properties that correspond to 40 
individual neurons in a biological circuit. To do this, we apply connectomic constraints to small 41 
ANNs to create an a priori correspondence between specific ANN nodes and individual neurons 42 
in the biological network. In this framework, we compare the task-optimized ANN to the 43 
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evolved BNN to show how optimization and constraints—especially noise—account for the 44 
properties of individual neurons in a biological circuit.  45 
 46 
We focus on the fruit fly Drosophila’s motion detection circuits (Fig. 1A), which are critical to 47 
the fly’s visual navigation behaviors 6-9. These circuits are well-studied, so that anatomical 48 
connectivity has been measured 10-13, along with many functional properties of neurons in the 49 
circuit 7, 9, 14-31. These motion circuits have evolved two types of motion detectors: T4 neurons, 50 
which are selective for moving light edges, and T5 neurons, which are selective for moving dark 51 
edges. T4 and T5 neurons are arranged retinotopically so that for each location in visual space 52 
there are two T4 neurons and two T5 neurons sensitive to motion along the horizontal axis, one 53 
T4 and one T5 neuron sensitive to leftward motion and one of each sensitive to rightward 54 
motion. Each individual neuron in these classes receives excitatory and inhibitory input from 55 
neurons that signal visual intensity in 3 spatially-separated locations (Fig. 1A) 10, 11, 18.  56 
 57 
Textbook models for motion estimation, including the Hassenstein-Reichardt correlator model 58 
and the motion energy model 32, 33, may be largely derived from first principles 34, 35 and suggest 59 
that temporal delays, spatially separated inputs, and nonlinear processing are critical to the task 60 
of motion detection 36. These models specify a minimum set of conditions and plausible 61 
computations to arrive at direction-selective signals, but they fail to account for many of the 62 
features measured in the fly’s motion circuits. In particular: (1) The three spatially-separated 63 
inputs to T4 and T5 are organized such that the central signal is fast, while the two flanking 64 
signals are slow 18, 24, 37 (Fig. 1B). Moreover, when local luminance increases, one flanking 65 
signal has the opposite influence on the downstream motion detector compared to the other two 66 
spatial locations 10. For an individual T4 cell, activity is effectively inhibited by light at one 67 
location in visual space while excited by the other two, and T5 cells are effectively excited by 68 
light at one location while inhibited at the other two 16, 27. None of these properties of the inputs 69 
to the fly motion detectors follows clearly from classical models. (2) Horizontal motion detection 70 
is organized into four parallel pathways, consisting of light and dark moving edge detectors in 71 
both horizontal directions 7 (Fig. 1C), a split not present in or explained by classical models. (3) 72 
Although T4 and T5 neurons are direction-selective, they also respond to specific stationary light 73 
or dark edges 30 (Fig. 1D), an unexpected result for cells that detect visual motion. (4) The 74 
motion detectors T4 and T5 show opponent suppression: they respond less to the sum of null and 75 
preferred direction motion stimuli than to preferred direction motion stimuli alone. This 76 
phenomenon runs counter to predictions of common, classical motion detection models 29 (Fig. 77 
1E). (5) Last, the four neurons that encode horizontal motion have signals that tend to be non-78 
coactive when presented with moving natural scenes, so that their signals are decorrelated 28 79 
(Fig. 1F). This decorrelation is not addressed by classical models of motion detection. Since 80 
classical models do not account for this suite of qualitative properties of identified neurons in the 81 
fly’s motion circuits, we asked whether they could be explained by optimizing a network to 82 
detect motion under the anatomical constraints of the fly’s motion circuits. 83 
 84 
In this study, we developed a set of three shallow, convolutional ANN models ranging from 85 
abstract to more biophysically realistic. The models created a direct correspondence between 86 
analogous ANN units and BNN neurons. We trained these models to predict the velocity or 87 
direction of moving natural scenes, and then examined their solutions and response properties. 88 
The trained models could account for many response properties of individual neuron types 89 
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measured in the fly’s motion circuits, including the five listed above (Fig. 1). Therefore, the task 90 
of predicting natural scene velocities, combined with anatomical constraints from the circuit 91 
connectivity, were sufficient to account for circuit response properties that are not accounted for 92 
by classical models. Moreover, by investigating different model constraints, we found that 93 
robustness to noise was the primary factor that generated artificial units with properties like the 94 
neurons in the fly’s circuits. In sum, these results show that many unexplained properties of 95 
individual neurons in this small neural network are consistent with and predicted by a system 96 
optimized for motion detection in the presence of noise. 97 

Results 98 
 99 
Detecting motion in natural scenes 100 
Our goal is to relate optimized ANNs to the evolved circuits in the fly. To make this comparison, 101 
we began by setting up a problem for the artificial networks to solve that is similar to problem 102 
solved by the fly (Fig. 2A-C). In the fly eye, the direction-selective neurons T4 and T5 use 103 
luminance information over time from different points in space to infer the direction and speed 104 
of visual motion 34, 35, 38. Individual T4 and T5 neurons perform this task in small regions of the 105 
visual field, receiving input from approximately three neighboring columns 10, 11, 18. They 106 
perform these operations while the fly navigates natural environments. 107 
 108 
To approximate the naturalistic inputs to fly motion detectors, we rigidly translated panoramic 109 
natural scenes 39 using stochastic velocities in yaw rotation (Fig. 2A). The rigid translation of 110 
panoramic scenes ignores the occlusions and the different angular velocities that arise from an 111 
animal translating through the world, but it mimics closely the type of scenes generated by an 112 
animal purely rotating in the world. Flies use motion detection circuitry to stabilize their 113 
orientation in the face of angular perturbations 40, 41, so this is a reasonable starting point. Rigid 114 
translation of natural scenes has been used with some success in other studies aimed at 115 
understanding processing properties of motion detectors 38, 42-47.  116 
 117 
The stochastic velocities for scene motion were drawn from a zero-mean Gaussian distribution 118 
with standard deviation of 100º/s and a correlation half-life of 200 ms (Fig. 2B, see Methods). 119 
This amplitude of turning is typical of walking flies 48, 49. In this study, it is critical that stimuli 120 
do not have a constant velocity over time, since constant velocities would allow stimuli 121 
arbitrarily far in the past to inform current velocity estimates 35. The correlation time of 200 ms 122 
roughly matches correlation times in fly turning during walking 48, 49, and ensures that only 123 
recent information can be used to infer current visual velocities. 124 
 125 
Last, we approximated the optical filtering of scenes by the discrete fly ommatidia. These 126 
filtering properties largely persist into downstream medulla neurons 24, 50. To do this, we created 127 
discrete signals with separation of 5º, roughly matching the separation of neighboring 128 
Drosophila ommatidia 51. For each ommatidial signal, we spatially filtered the scene at each time 129 
point with a two-dimensional Gaussian that roughly matched the acceptance angles of 130 
ommatidial optics 51, creating sets of 72 ommatidial signals from 360º horizontal strips across 131 
scenes (Fig. 2C). 132 
 133 
Overall, these procedures generated a dataset with naturalistic neighboring ommatidial signals 134 
over time associated with a specific random velocity trace. The signals were obtained from 135 
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random elevation and azimuthal positions on randomly chosen panoramic images. The task for 136 
the ANN (and for the fly eye) is to infer the velocity or direction of motion (latent variables) 137 
from this suite of ommatidial luminance signals.  138 
 139 
Shallow neural networks for motion detection 140 
We developed shallow model architectures that incorporated varying degrees of biophysical 141 
detail. To do this, we defined three basic unit types for motion detection (Fig. 2D). All unit types 142 
received inputs over time from three neighboring ommatidia, constraining the units to match the 143 
three spatial inputs measured to T4 and T5 10. The units linearly filter these inputs in time with 144 
three distinct kernels that are learned through training. The three different types of units are 145 
distinguished by the nature of the nonlinearity used to combine the three spatially-offset inputs 146 
(see Methods).  147 
 148 
The first unit type employs a linear-nonlinear (LN) processing step, so that the temporally 149 
filtered signals are simply added together and the sum acted upon by a threshold-linear rectifier 150 
(Fig. 2D, left). A nonlinearity is required to generate direction-selective signals 33, 36. This unit 151 
type is closely related to the motion energy model and is similar to models describing directional 152 
neural signals in mouse retina 52, 53 and directional and other signals in mammalian cortex 54-57. It 153 
is also similar to models suggested to describe directional signals in T4 and T5 16, 17. We call this 154 
the linear-nonlinear (LN) unit. 155 
 156 
The second unit type employs an additional threshold-linear rectifier after each ommatidial 157 
signal is filtered in time, but before the three signals are linearly combined and thresholded again 158 
(Fig. 2D, middle). This rectification of the signals from each spatial location mimics rectification 159 
observed in the calcium and voltage signals of medulla interneurons upstream of motion 160 
detectors in the fly 15, 50, 58. Because this model involves two sequential stages of linear-nonlinear 161 
processing, we call this the LNLN unit. 162 
 163 
The third unit type also rectifies the filtered ommatidial signals, but it uses a synaptic 164 
nonlinearity to combine the three filtered, rectified signals (Fig. 2D, right). This synaptic 165 
nonlinearity considers each of the three inputs to be synaptic conductances with associated 166 
reversal potentials, which are learned though training. The nonlinearity is a weighted sum of the 167 
conductances divided by an unweighted sum of the conductances (see Methods). This model is 168 
similar to other biophysically realistic models for T4 and T5 direction-selectivity 19, 21, 29, 59, 60; 169 
models of downstream, wide-field neurons have also productively taken conductances into 170 
account 61. The biophysical model in this case assumes a pseudo-steady-state response, which is 171 
justified by the fast cellular time constants measured in T4 19. We call this the synaptic 172 
nonlinearity unit. 173 
 174 
These three unit classes are nested within one another. That is, the LN unit is a special case of 175 
the LNLN unit, and the LNLN unit is a special case of the synaptic nonlinearity unit. Thus, 176 
progressing from LN to LNLN to synaptic nonlinearity adds more parameters, and in principle, 177 
the more complex units can only perform better, since each could still obtain the solution of the 178 
simpler units. 179 
 180 
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These three unit types were each placed into models with architecture that matched the circuitry 181 
in the fly eye (Fig. 2E). The three model classes consisted of multiple units of the same type, and 182 
the weights in each unit were optimized through training on the naturalistic dataset we defined. 183 
In this architecture, each unit (+) was paired with a unit (–) constrained to be mirror symmetric in 184 
space, and the two resulting signals were subtracted from one another. This differencing reflects 185 
the opponent subtraction of oppositely tuned motion signals that occurs in the fly eye 186 
downstream of T4 and T5 62, 63. In each case, two pairs of symmetric units were trained (𝐴"/𝐴$ 187 
and 𝐵"/𝐵$), unless otherwise noted. In all three model classes, the temporal filters were free 188 
parameters, as were weights in linear combinations and biases before the rectifications.  189 
 190 
We scaled the natural scene training images so that each set of 72 ommatidial signals had zero 191 
mean and unit variance. This is because early visual processing computes deviations from 192 
average, rather than absolute luminance levels 26, 64, 65. The signals arriving at motion detectors in 193 
flies also undergo processing to normalize signal amplitude 66, 67. 194 
 195 
Last, we added two forms of noise to our models (Fig. 2E, see Methods). First, we imposed 196 
additive noise at the input signals, after contrast computation. This front-end noise reflects noise 197 
noted in photoreceptor and lamina cell signaling 68, 69. Second, we included multiplicative noise 198 
at the output of each unit of the model before they were subtracted to generate the overall signal. 199 
This back-end noise represents intrinsic noise in the circuit 70, which could arise from variability 200 
in the signals and signal transmission of directional units 19, 21. We varied both the front-end and 201 
back-end noise to investigate how noise affects the types of solutions found by fitting our 202 
models. 203 
 204 
Training models  205 
We used TensorFlow 71 to train multiple instances of these three model classes using gradient 206 
descent with different initializations (Fig. 2F, see Methods). The models were trained to use the 207 
preceding 300 ms of visual data, reflecting plausible filtering properties of biological neurons, to 208 
predict the current scene velocity. During training, the models were optimized by adjusting the 209 
temporal filter weights, as well as biases that were applied before each nonlinearity, and 210 
additional weighting parameters in the LNLN and synaptic nonlinearity model. The different 211 
models all converged on solutions, but the more complex LNLN and synaptic nonlinearity 212 
models converged more slowly, and the converged solutions had larger variability in their 213 
performance (Fig. 2F). We evaluated model performance on a hold-out dataset, which was 214 
independent of the training data. Model output depended on the particular scene, but gave 215 
reasonable velocity estimates over many scenes (Fig. 2G, H).  216 
 217 
Trained models possess the neuronal features of fly motion detectors 218 
When we trained the three model classes to predict image velocity in the presence of noise, the 219 
trained models showed many of the non-canonical properties possessed by the fly’s motion 220 
detectors (Fig. 3). Most importantly, the paired units in all three models could be classified as 221 
‘T4-like’ or ‘T5-like’, based on whether they responded most to light or dark flashes. We 222 
evaluated the properties of trained models in a noise-free regime, corresponding to a bright 223 
visual stimulus and responses averaged over many trials (see Methods).  224 
 225 
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All three trained models had units possessing temporal filters with similar shapes, and with 226 
relative dynamics and polarities similar to those measured in cells upstream of T4 and T5 (Fig. 227 
3(i)). The measured filters are slower than those in the trained ANNs, potentially because they 228 
represented calcium measured using optical indicators 72. However, like T4 and T5 cells (Fig. 229 
1B), all trained units had high-pass filters on the center input, and slower, more lowpass filters 230 
on the flanking inputs. The central input of the T4-like units were sensitive to positive 231 
derivatives, while the center input of the T5-like unit were sensitive to negative derivatives, just 232 
as in T4 and T5 cells. Both T4- and T5-like units had a positively-signed filter on one side and a 233 
negatively-signed filter on the other, in the pattern of T4 and T5 cells.  234 
 235 
In all trained units, the third filter (𝑓') in the trained T4- and T5-like units had a small initial 236 
response of the opposite sign to its prolonged, delayed response. This feature was not observed 237 
in measurements of calcium in the cells proposed to correspond to input 3 (Fig. 1A) 24, 37, or in 238 
measurements of voltage responses in T4 or T5 19, 21. In the learned filters for the LN, LNLN, 239 
and synaptic nonlinearity T4- and T5-like units, the prolonged, second lobe had a larger integral 240 
than the initial lobe by factors of 10 to 15. Thus, the second lobe tended to dominate the initial 241 
transient.  242 
 243 
This pattern of temporal filtering in the trained models led to strong direction- and edge polarity-244 
selectivity (Fig. 3(ii)). Each unit responded much more strongly to a single direction and a single 245 
edge type (ON-edges or light edges vs. OFF-edges or dark edges) than to any other combination. 246 
The ON- vs. OFF-edge selectivity of each unit corresponded to the sign of the central derivative 247 
filter, just as in the fly’s circuitry. The direction-selectivity corresponded to the signs and shapes 248 
of the two flanking filters. The LNLN model was more selective than the LN model, responding 249 
exclusively to one edge type, while the synaptic nonlinearity showed intermediate selectivity. 250 
Critically, all three models generated ON- and OFF-edge direction-selective units, even though 251 
no such constraint was imposed on them. 252 
 253 
Several other features of the fly motion circuits were also reproduced. All three models showed 254 
stationary edge responses that matched the empirical response patterns in T4 and T5 (Fig. 3(iii)). 255 
In these cases, the trained units responded to edges of the same polarity as the analogous fly 256 
neuron (T4 or T5). The neurons T4 and T5 respond less to a sum of preferred and null direction 257 
sinusoids than to preferred direction sinusoids alone (Fig. 1E) 29, a form of opponent 258 
suppression. When the models were trained, the LNLN and synaptic nonlinearity models also 259 
showed this sort of opponency in the responses of their individual direction-selective units (Fig. 260 
3(iv)). (The LN units are mathematically incapable of generating this opponency 29.) We 261 
observed low coactivation between units presented with natural scenes, with coactivation 262 
decreasing from LN to LNLN to synaptic nonlinearity models (Fig. 3(v)). Last, when presented 263 
with sinusoidal stimuli, these trained models respond to signal strength and to temporal 264 
frequencies with tuning that roughly matches physiological and behavioral measurements 265 
downstream of T4 and T5 9, 73-75 (Fig. S1). This was particularly true of the LNLN and synaptic 266 
nonlinearity models.  267 
 268 
Collectively, these data show that these model classes, when trained to predict natural scene 269 
velocities, adopt many properties of T4 and T5 circuits that are not explained by classical models 270 
of motion detection. Thus, this training regime is sufficient to account for a wide array of 271 
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specific response properties found in this circuit. Solutions found by ANNs depend not only on 272 
the loss function, but also on constraints imposed on the network. To understand how model and 273 
training constraints affected model solutions, we therefore set about investigating how different 274 
aspects of the model classes, loss functions, training data, and noise affected the trained 275 
solutions. Since the trained LN model is readily interpretable and can account qualitatively for 276 
most of the biological data, we focus on that model for the remainder of this study, except to 277 
probe opponent suppression. 278 
 279 
ANN solutions do not depend strongly on the loss function or training data 280 
First, we asked how the model solution depended on the loss function being optimized. We 281 
initially trained the models to estimate the true velocity, minimizing a loss function equal to the 282 
squared error between model output and the instantaneous image velocity (Fig. 3). However, 283 
while this objective for model motion detectors has been used previously with some success 38, 284 
44, fly motion detectors might instead have evolved predict some other, nonlinear function of the 285 
true velocity. How much does the solution depend on the loss function? To answer this question, 286 
we trained models to predict an extreme function of the velocity: its direction only (Fig. 4AB). 287 
The LN model was trained to classify just the direction of the motion, without regard to its speed 288 
(see Methods). Interestingly, the units in the trained models looked largely identical in this case, 289 
becoming direction and edge polarity selective, sensitive to stationary edges, and showing little 290 
coactivity between units. 291 
 292 
We wondered whether the mirror symmetry we had imposed on our model pairs would arise 293 
naturally through training. We trained a set of four units without the mirror symmetry pairing, 294 
using 12 independent temporal filters, 3 for each units. We found that the best performing 295 
solutions always included two mirror-symmetric pairs that were subtracted (Fig. S2). This likely 296 
reflects the mirror symmetry imposed in our training dataset, which matched the natural world’s 297 
visual mirror symmetries. 298 
 299 
Next, we asked whether the division into ON- and OFF-edge detector units that we observed 300 
(Fig. 3) depended on asymmetries in light and dark in natural scenes. These natural scene 301 
asymmetries have been hypothesized to account for a variety of asymmetries in fly behavior 38, 43, 302 
76 and differences between T4 and T5 44. Could those asymmetries in the inputs also lead to these 303 
models splitting detector units into ON- and OFF-edge selective units? One may imagine 304 
alternate divisions between unit pairs, for instance one pair tuned to fast and one to slow stimuli. 305 
To address this question, we trained the models with the same velocity distribution, but instead 306 
of panoramic naturalistic photographs as the visual input we used sinusoidal gratings (Fig. 4C). 307 
Unlike the photographs, the sinusoidal gratings are light-dark symmetric. Interestingly, the two 308 
unit pairs in each model still became sensitive to ON- and OFF-edges. We wanted to test 309 
whether this split into ON- and OFF-edge selective channels depended on the precise 310 
nonlinearity we used. When we changed the LN-model’s nonlinearity from a threshold-linear 311 
function to a saturating, sigmoid function while training on natural scenes, it had little effect on 312 
the model solution (Fig. S2). Our results indicate that the division into ON- and OFF-edge 313 
selective units is a natural outcome when estimating motion in scenes that contains both positive 314 
and negative contrasts and when there are two unit pairs available to optimize. 315 
 316 
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Largest marginal performance improvement comes from adding the second detector pair 317 
We wanted to better understand why flies have two primary motion detectors types (i.e., T4 and 318 
T5 neurons), rather than 1 or 3. Our initial models had included two different unit pairs, which in 319 
trained models developed properties similar to T4 and T5. We therefore created and trained LN 320 
models with different numbers of unit pairs, ranging from 1 to 5 (Fig. 4D). Increasing the 321 
number of unit pairs increased model performance under low- and high-noise training 322 
conditions, but the largest marginal improvement in performance came from increasing from 1 323 
unit pair to 2 unit pairs, where the performance metric more than doubled under the low-noise 324 
training conditions. After that, adding more unit pairs provided smaller performance 325 
improvements. If the cost of adding additional units in biological systems is high, this result may 326 
explain why flies have only two elementary motion detector types, tuned to light and dark edges 327 
respectively. 328 
 329 
Training with high noise is more robust to changes in noise 330 
We next asked how noise during training affected the structure of solutions. To investigate this, 331 
trained LN models under a range of front-end noise and back-end noise conditions. We then 332 
asked how well models performed when tested under conditions that were different from their 333 
training noise level. The best-performing models in a particular noise regime were the ones 334 
trained under that same noise regime (Fig. 4E). However, when models trained in high noise 335 
regimes were tested in low noise regimes, they still performed reasonably well, while models 336 
trained in low noise regimes performed very poorly in high noise regimes. Similarly, the high-337 
noise trained model performed better over many noise regimes (Fig. S2D). This effect held for 338 
both front-end and back-end noise. 339 
 340 
The high-noise trained models performed worse on the hold-out training data because they are 341 
solving a far more difficult task when there is substantial noise injected (Fig. S3). Importantly, 342 
the high-noise trained units were far more direction-selective to sinusoids than low-noise trained 343 
units (Fig. S3E), better matching the strong direction-selectivity to sinusoids of T4 and T5 cells 344 
7, 9, 16, 17. We therefore set out to compare properties of the high- and low-noise trained solutions. 345 
 346 
Training noise strongly affects direction-selectivity and edge-polarity-selectivity 347 
The noise amplitude at both the front- and back-end substantially changes the learned solutions 348 
(Fig. 5). First, the front-end noise amplitude dramatically changed the temporal extent of the 349 
learned filters (Fig. 5(i)). When more noise was added, the filters became more extended in time, 350 
averaging over time to minimize the influence of the noise. The correlation time scale of the 351 
velocity means that averaging over more than ~200 ms is not useful for computing the current 352 
velocity 35. With less noise, there was less need to average, and using only the most recent 353 
measurements of intensity produced the best estimate of the current velocity. 354 
 355 
Second, the back-end noise strongly influenced the degree of edge-polarity- and direction-356 
selectivity in the individual LN units (Fig. 5(ii)). In the high noise cases, the T4- and T5-like 357 
units were more edge-selective and more direction-selective. In the low noise cases, the units 358 
responded strongly to light edges in one direction and dark edges in the other, with a slight 359 
imbalance that was direction-selective; this pattern is unlike T4 and T5 responses. In low noise, 360 
the trained units are responding strongly to spatial gradients and only slightly to direction. In the 361 
low noise case, the opponent subtraction step could cancel out large responses, leaving only the 362 
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small difference as an estimate of motion. When back-end noise was added, this computational 363 
strategy was no longer viable, since the subtraction of the paired unit could no longer reliably 364 
subtract the non-direction-selective components of the responses. As a result, the individual units 365 
within each pair converged on solutions that were robust to this noise by being more direction-366 
selective even before the subtraction step.  367 
 368 
Last, adding noise to the system made the units less selective for stationary edges (Fig. 5(iii)). In 369 
all cases, the spatial pattern of responses to stationary edges matched those in T4 and T5, but 370 
when more back-end noise was added, the units responded less to these stationary edges. This 371 
seems likely to be closely to related to the increase in edge-polarity and direction-selectivity with 372 
increasing noise. The back-end noise prevents precise cancellation of the signals from stationary 373 
scenes, making it advantageous for the model to respond less to such stimuli. In the fly, 374 
responses to these stationary edges are about one quarter of responses to preferred direction 375 
moving edges 30. 376 
 377 
Increased noise increases opponency and sparsity 378 
To evaluate the effects of noise on opponency and sparsity, we performed the same sweep of 379 
front- and back-end noise while training LN models (Fig. 6(i)). We measured unit opponent 380 
suppression as the degree to which the mean response was decreased when a null-direction 381 
sinusoid was added to a preferred-direction sinusoid. In the case of LN models, the response to 382 
the sum can never be less than the response to the preferred-direction sinusoid alone 29. But 383 
increasing the noise in the system made the response to the sum closer and closer to the response 384 
to the preferred direction sinusoid alone (Fig. 6CD(i)). 385 
 386 
When we trained the LNLN model with different noise levels, opponency increased with 387 
increasing noise levels (Fig. 6(ii)). That is, the units decreased their response to the sum of the 388 
sinusoids in the presence of high noise (Fig. 6B-D(ii)). Opponency in these primary directional 389 
cells in Drosophila has been hypothesized to cancel out ‘common mode’ correlations, leaving a 390 
larger dynamic range for motion signals 29. When noise is added to the model, it may be more 391 
important to make the unit signals as direction-selective as possible, and the opponent properties 392 
measured could reflect that additional direction-selectivity. 393 
 394 
Last, we examined how changing the noise characteristics affected the decorrelation of the 395 
signals among units in an LN model (Fig 6(iii)). As back-end noise was increased during 396 
training, the resulting LN units became less coactivated by the naturalistic stimuli. This seems 397 
linked to the increased direction- and edge-selectivity of the units under larger back-end noise 398 
(Fig. 5(ii)). When units are more edge- and direction-selective, a given stimulus activates only 399 
one of them, since there should be only one edge type moving in one direction through the model 400 
receptive field.  401 

Discussion 402 
 403 
This study has demonstrated the potential for fine-grained, neuron-level mapping between task 404 
optimized ANNs and real neural circuits. Results showed that an optimized model for visual 405 
motion detection could account for many measured neural properties in the Drosophila motion 406 
detection circuits that are not predicted by textbook models for motion detection, like the 407 
Hassenstein-Reichardt correlator and motion energy models 32, 33. Anatomical constraints from 408 
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the real circuit were key to developing this correspondence. Our work also demonstrated that 409 
robustness to noise was critical to generating artificial networks that matched measured 410 
properties.  411 
 412 
Importantly, these results were not built into the fitting routine or model architecture. The tests of 413 
similarity between ANN and BNNs were also distinct from the training data. One can imagine 414 
other solutions that might have performed well in the training. For instance, one could imagine 415 
splitting the 𝐴"/𝐴$ and 𝐵"/𝐵$ unit pairs to be tuned to fast and slow motion, respectively, thus 416 
covering a wide range of input velocities, rather than dividing them into ON- and OFF-edge 417 
detectors. Alternately, the ON- and OFF-edge segregation need not be complete, as happens in 418 
the low-noise optimizations, where units were not particularly edge or direction selective (Fig. 419 
5). Last, the two flanking filters do not need to have opposite signs and be delayed with respect 420 
to the center filter: if all three filters had single lobes with the same sign and have delays of 𝜏, 421 
2𝜏, and 3𝜏, they could sum up above a nonlinear threshold only for stimuli consisting of motion 422 
in one direction. However, these counterfactual solutions did not occur when the models were 423 
optimized for performance. This leads us to interpret these features in fly motion detectors as 424 
having evolved to optimize performance in motion detection, and suggests that we have 425 
identified crucial constraints on the circuit.  426 
 427 
Loss functions and optimization  428 
In this study, we used loss functions that minimized error in predicting the velocity or direction 429 
of a moving natural scene. How realistic is this task? Motion detectors in flies generate graded 430 
responses that depend on direction and speed 36, so it’s a reasonable place to start. But future 431 
studies could incorporate more realistic tasks, such as training a motion detector to act as the 432 
input for an agent-based model that attempts to move with a stable course through an 433 
environment. Such a task would require incorporating knowledge of the downstream circuitry 434 
and locomotor control 77. One could also imagine that motion-sensing would arise from networks 435 
trained to detect and land on objects, which would be a highly ethological task. More simply, one 436 
could also incorporate known downstream circuitry, such as the shunting mechanisms that 437 
perform a kind of gain control in spatial integration of T4 and T5 units 61, 78. Such studies might 438 
generate new hypotheses about the evolutionary origin of motion detectors. Here, the simplest 439 
loss functions we considered appear sufficient to generate many of the features in the fly’s 440 
circuits. 441 
 442 
Our study used gradient descent to optimize the models. We examined the best performing 443 
models from a suite of initializations, since models could become trapped in sub-optimal local 444 
optima. How might optimization occur in the fly’s visual circuit? There is some experience 445 
dependent plasticity in flies dependent on light level 79, but it seems likely that optomotor circuit 446 
structure and function is genetically determined to a large degree, and optimized over 447 
generations of natural selection. The gradient descent procedure we used can become stuck in 448 
local optima because our networks are shallow and not over-parameterized 80. Interestingly, 449 
optimization algorithms that are similar to natural selection can optimize models efficiently and 450 
may be able to avoid local optima 81. Our results show that one can think productively about 451 
these visual circuits as solutions to an optimization problem, solved by evolution.  452 
 453 
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Influence of noise 454 
The model features that matched biology did not arise from the task and network structure alone, 455 
but depended critically on noise in the system. The back-end noise we added made units more 456 
direction-selective and forced them to have larger differences between preferred and null 457 
direction responses. In that way, it penalized large, correlated responses from opposing units. 458 
Thus, adding noise had an effect similar to adding a sparsity constraint explicitly, for instance by 459 
adding a term to the loss function proportional to the absolute value of all unit responses. 460 
Sparsity is commonly observed in neural systems 82, and non-coactivity of parallel motion 461 
detectors has previously been hypothesized to organize their response properties 28. Here, by 462 
adding noise during training, we can see one logic of the sparse solution, since the non-463 
coactivation of the units makes the system more robust to noise. Interestingly, the common 464 
technique of dropout training, in which only a stochastic subset of weights are updated during 465 
each learning iteration, is equivalent in to injecting certain types of noise into the network 83. 466 
This means that many artificial networks trained using dropout techniques are already implicitly 467 
trained to be robust to corruption by noise. By adding this noise explicitly, we control this 468 
constraint and can more easily relate it to biological sources of noise. 469 
 470 
Sources of noise 471 
Given the influence of noise on the model solutions (Figs. 4, 5, 6), it is important to ask whether 472 
the noise injected into the models is consistent with what is known about the fly’s visual circuits. 473 
If so, then our modeling suggests that those noise sources impose strong constraints on the circuit 474 
that influence the solutions that have evolved in the fly.  475 
 476 
Front-end noise could be attributed to fluctuations in photoreceptor signals or signals in 477 
downstream lamina and medulla cells. Photoreceptor signal-to-noise has been well-characterized 478 
and depends strongly on the absolute light intensity, as well as on temperature 69, 84. When light 479 
intensity is high, the signal-to-noise ratio of photoreceptors in flies can be ~10, while under low-480 
light conditions, the signal-to-noise ratio can decrease to ~0.1 (ratio of powers). This range 481 
extends beyond the range of noise in our sweeps (Figs. 4-6). Since the front-end noise is 482 
variable, it seems likely that the fly has evolved to deal with the full range, not just a single noise 483 
level, as in our numerical experiments. 484 
 485 
Less is known about noise deeper in the visual system. Studies in locust have suggested that 486 
signal-to-noise actually decreases in feature detectors further from the sensory periphery 85. 487 
Electrical recordings of T4 and T5 responses to strong driving stimuli show relatively little trial 488 
to trial variability (SNR of ~10, signal/std noise) but higher variability between cells (SNR of ~2 489 
mean signal/std) 19, 21. The larger variance between cells could reflect long timescale gain 490 
fluctuations within cells. Noise within a cell could also be amplified by expansive nonlinearities 491 
that transform voltage into calcium and calcium into synaptic release. Synaptic transmission 492 
might also decrease signal-to-noise due to synaptic vesicle release statistics, since it’s 493 
metabolically expensive to transmit high SNR signals 86. With more careful measurements of the 494 
noise characteristics of T4 and T5, one could add more accurate, spectrally-matched noise 495 
models to the fitting procedure performed here. 496 
 497 
Although we trained models with noise at specific levels, the biological circuit is likely exposed 498 
to varying levels of noise, dependent on stimulus and internal state. Since the high-noise training 499 
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regime is most generalizable across noise regimes (Fig. 4E, Supp. Fig. S2), it may be that 500 
training in high-noise is most similar to optimization under a range of different noise levels. 501 
 502 
Structure of delays in 3-input motion detectors 503 
The optimized models in this study consistently showed a fast central input and delayed flanking 504 
inputs with opposite signs (Fig. 3). This configuration appears in the fly motion detectors (Fig. 505 
1A) but has also been suggested to explain cortical direction-selective signals 87. This functional 506 
organization emerged with all three unit types, and did not depend on whether the model was 507 
predicting the stimulus velocity or just its direction (Fig. 4). It has a clear orientation in space-508 
time, suggestive of motion energy-like processing 16, 17. Interestingly, this delayed-opposite-509 
flanks weighting structure also appears in a completely different optimization task, in which a 510 
network is trained to preserve similarity under translation of images 88. This flanking 511 
organization in the circuit has been postulated to improve opponency through synaptic 512 
nonlinearities 29, but it is present in the LN and LNLN trained models, so it appears to be helpful 513 
even without the synaptic nonlinearity. Thus, this spatiotemporal weighting structure in motion 514 
detection acts flexibly to solve many different constraints and optimization problems. This could 515 
also serve the fly’s visual system well, since neurons downstream to T4 and T5 are specialized to 516 
detect both visual flow 6, 63 and looming stimuli 89, and likely other visual features 90. 517 
 518 
ON- and OFF-edge detectors and natural scenes 519 
In this study, ON- and OFF-edge selective motion detectors emerged naturally as solutions to the 520 
task of detecting motion. This did not depend strongly on the loss function, training data, or form 521 
of the nonlinearity (Fig. 4, S2). The units must remain near the nonlinear threshold in order to 522 
generate direction-selective signals, and it appears that there is a greater benefit to tuning units to 523 
ON- and OFF-edges, rather than choosing to respond to ON-edges only, for instance, but with 524 
unit pairs tuned to different speeds. If the system did not contain both ON- and OFF-edge 525 
selective pairs, it would not respond to roughly half of all inputs. This logic could explain 526 
parallels in motion computation among species91, 92, including the split into ON- and OFF-edge 527 
motion detectors in flies and in mouse retina 93, 94 and the evidence for edge polarity-selective 528 
motion responses in primate cortex 30, 76, 95-98. Flies, zebrafish, and humans all treat light and dark 529 
signals asymmetrically in computing motion in ways that seem tuned to improve naturalistic 530 
performance 38, 43, 44, 76, 96, 99. This suggests there are additional benefits to pathway splitting not 531 
explored here. One powerful explanation for sensory spliting into ON and OFF pathways is 532 
based on preserving stimulus information under metabolic constraints 100, 101, but it is not clear 533 
whether that logic maps onto the optimization task here, in which the model infers a latent 534 
variable and there is no obvious analogue to a metabolic constraint. 535 
 536 
Stationary edge responses 537 
Prior experiments have shown responses in T4 and T5 neurons to flashes 17, 19, 21, 23, 25, 28 or 538 
sinusoids 102, which are consistent with classical models 33. Our results shed light on T4 and T5 539 
responses to stationary edges of specific polarities (Fig. 1D) 30. Under low-noise conditions, 540 
models performed best when they were strongly sensitive to edges of a single polarity and only 541 
mildly direction-selective (Fig. 5(ii)). The non-directional responses were cancelled by other 542 
units. Under high-noise training, direction-selectivity increased, reducing their responses to 543 
stationary edges (Fig. 5(iii)). These results suggest that a motion detector unit predicts motion 544 
best when it responds to stationary edges and has partner units to cancel this signal. This 545 
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approach is limited by system noise, reducing the response amplitude to stationary edges. The 546 
biological responses to stationary edges may reflect the emphasis on spatial gradients in the low-547 
noise solutions. 548 
 549 
Circuit features neglected in these models 550 
While our three models proceeded from more abstract to more biophysical, they all neglected 551 
many known features of the circuit, which could have important effects on the learned solutions. 552 
The network architecture was based on connectome reconstruction, but it focused on connections 553 
between T4 and T5 and their inputs and did not take into account many other circuit features. We 554 
summarize here some important simplifications made in this study. (1) We represented all the 555 
circuitry upstream of medulla interneurons as a simple spatial and temporal filter, when in fact 556 
there is complex gain control and changes in dynamics that take place upstream of medulla 557 
interneurons 69, 103-105. Our calculation of contrast during training may relate to some of these 558 
early operations. Moreover, all these early visual neurons have nonlinear response properties, 559 
while we focused on only the rectification in the inputs to directional units and the nonlinearities 560 
within those units. (2) Visual interneurons upstream of T4 and T5 have different shapes of 561 
receptive fields, including center-surround antagonism 14, 24, 50, 104, which could influence their 562 
response properties in performance-based fitting procedures. (3) In training models, we assumed 563 
perfect contrast normalization, when in fact there are dynamics and spatial scales for this 564 
operation 66, 67. (4) Our units have only one neuron at each of the three spatially separated inputs, 565 
but anatomy suggests there are multiple input neurons at some positions 10, 11, 13, and functional 566 
studies show they may interact nonlinearly 18. (5) Our models are feedforward, when there are 567 
multiple instances of lateral interactions and feedback in the true circuit 10, 11, 13. (6) Early 568 
temporal and spatial processing change to integrate signals differently under different levels of 569 
signal and noise 64, 65, 106, while our model did not include adaptation. In understanding 570 
constraints on the system, some of these features are likely to be important to determining the 571 
solution. However, the simplifications made in this study still allowed us to generate trained 572 
models with neuronal features shared by the biological circuits. 573 
 574 
Performance optimization and model realism 575 
Models of motion estimation in the fly range from the abstract to the biophysically detailed. The 576 
abstract ones are harder to relate to circuitry, but are easier to understand and can explain broad 577 
phenomenology 34, 35, 38, 107. The biophysically detailed ones have the power to explain specific 578 
voltage signals 19, 21, 59, 60. A range of models in between these two extremes connect motion 579 
detection to various aspects of the fly’s specific circuitry 16, 17, 29, 44, 67, 108. In the modeling here, 580 
we moved across this spectrum by optimizing three models that ranged progressively from more 581 
abstract — similar to motion energy models 33 — to more biologically realistic — similar to 582 
previously published models that could be hand-tuned to perform well 29, 59. The more abstracted 583 
models provided results that were easier to interpret, but this work shows how abstracted models 584 
can be related to the biologically realistic ones in terms of the performance and properties of 585 
optimized solutions. It was not necessary to include synaptic biophysics to reproduce the circuit 586 
features we examined here, but it was helpful to include rectifications that occur upstream of the 587 
motion detectors (Fig. 3). 588 
 589 
This work adds to a suite of models that have shown how constraints and optimization contribute 590 
to sensory processing. Some of these models have been fit directly to predict data 109, 110, while 591 
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ours and others 1, 2, 111 have been optimized to perform specific tasks. Our work is closest to two 592 
prior approaches. In fitting retinal responses to a convolutional neural network, other studies 593 
have found that the model that fits best has units that look similar to the responses of the 594 
progression of cell types in the retina 109, 110. These studies included temporal processing, as ours 595 
did, but had weaker anatomical constraints, using 3 layers of units, without specifying a priori 596 
how units in each layer were connected. The artificial network was fit to recorded retinal outputs, 597 
so features of the artificial network reflect circuit components but do not provide information 598 
about the tasks performed by the biological circuit.  599 
 600 
A different approach used detailed connectomic data to investigate the fly motion circuits by 601 
training a network to detect the position and displacement of a visual object in a movie 111. That 602 
study employed a far more detailed set of connection constraints, encompassing 40+ neuron 603 
types arrayed over a large swath of visual space. It used a separate network to interpret the 604 
outputs of the fly eye. That study found that it could obtain direction-selective signals in T4 and 605 
T5 neurons in the model when using measured synaptic connectivity with inferred signs and 606 
manually imposed delays. In the present study, we focused on a small set of neurons upstream of 607 
T4 and T5 with well-defined spatial receptive fields and we fit both temporal processing and 608 
synaptic weighting. This allowed us to interpret how processing properties in a shallow, 609 
feedforward ANN compared to those measured in neurons in the biological circuit. 610 
 611 
Mappings between artificial networks and biological circuits 612 
Both anatomical constraints and functional optimization were essential to creating a mapping 613 
between this artificial network and the biological one. Our results were made more interpretable 614 
by making simplifying assumptions based on the connectome. There are many properties one 615 
could measure in a circuit, and comparisons with task-optimized models allow one to evaluate 616 
how such properties relate to a specific task or constraint. This study argues that when strong 617 
anatomical constraints are included in performance optimized models, there can be a close 618 
correspondence between the model units and the analogous individual neurons. 619 
 620 
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STAR Methods 634 
 635 
RESOURCE AVAILABILITY 636 
 637 
Lead Contact 638 
Further information and requests for code or data should be directed to and will be fulfilled by 639 
the lead contact, Damon A. Clark (damon.clark@yale.edu). 640 
 641 
Materials availability 642 
This study did not generate new unique reagents. 643 
 644 
Data and code availability 645 
Python and Matlab code to train all models in this paper and generate all figures in this paper is 646 
available at http://www.github.com/ClarkLabCode/T4T5TrainingCode. Code is in Matlab 647 
(Mathworks, Natick, MA), Python, and several Python libraries 71, 112-114. The natural image 648 
database used in this study has DOI https://doi.org/10.4119/unibi/2689637 and is available at 649 
https://pub.uni-bielefeld.de/rc/2689637/2693616. 650 
 651 
METHOD DETAILS 652 
 653 
Training data 654 
We wanted to train neural networks to predict velocity traces 𝑣(𝑡) from simulated visual input 655 
signals over space and time. To create velocity traces with the statistical properties similar to fly 656 
rotation, we first drew samples from a Gaussian distribution with mean of 0º/s and standard 657 
deviation of 100º/s. These samples were placed in a 1-dimensional vector with a sample rate of 658 
100 Hz. To create autocorrelations in the trace, this vector was convolved with an exponential 659 
filter ℎ(𝑡) = 𝐾 exp(−𝑡/𝜏) where 𝜏	 = 	0.2/ log2 s and 𝐾 was chosen so that the variance 660 
remained unchanged under filtering. This resulted in a velocity trace with an autocorrelation 661 
half-life of 200 ms and a standard deviation of 100 º/s (as in the original trace). This trace 662 
corresponds to an auto-regressive Gaussian process of order 1, which is a discrete time 663 
approximation of an Ornstein-Uhlenbeck process. These scales are comparable to those in 664 
walking flies 48, 49. The final traces contained 101 elements each, corresponding to 1.01 seconds 665 
of simulated time. 666 

After creating the velocity traces, we constructed corresponding matrices of simulated 667 
photoreceptor activation values. Conceptually, for each 101-element velocity trace, we needed a 668 
3x101 element photoreceptor matrix that corresponds to the activations of the three inputs to our 669 
models. In order to efficiently generate and use these 3x101 element matrices, we generated 670 
72x101 element matrices corresponding to a full 360 degrees of photoreceptor activities, spaced 671 
5 degrees apart 51. These 72 photoreceptors observed natural scenes rotating at the speed 672 
specified by the 101-element velocity trace. These matrices can be used in convolution 673 
operations to quickly simulate the behavior of many model motion detectors.  674 

To generate these 72x101 matrices, we took a dataset of natural scenes 39 and selected 241 675 
images of natural environments, excluding indoor and architectural scenes. These scenes were 676 
panoramic captures of 360x97.5 degrees sampled at around 2.6 pixels per degree. For each 677 
velocity trace, we selected a natural scene image at random. We convolved these images with a 5 678 
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degree FWHM gaussian filter, approximating the acceptance angle of fly photoreceptors 51. We 679 
converted the velocity trace into a position trace by integrating over time. These positions were 680 
used as offsets when converting the images in the spatially filtered dataset from 927x251 pixels 681 
to 72x20x101 elements representing the activations of an array of 72x20 photoreceptors at 101 682 
points in time. The 20 rows of photoreceptors were spaced every 5º in elevation. Each row of 683 
photoreceptors had an associated set of signal traces 𝑠=,? where 𝑛 represents the azimuthal 684 
location and 𝑡 represents time. Each set of 𝑠=,? was treated independently in further processing 685 
by duplicating the corresponding velocity traces such that the responses of all rows of 686 
photoreceptors could be used to predict the same velocity trace. For each velocity trace and 687 
photoreceptor matrix generated in this manner, we also created a paired trace with the entire 688 
spatial structure reversed (and negated velocities), in order to ensure that the dataset was 689 
balanced with respect to the direction of motion.  Finally, the input images were mean subtracted 690 
and scaled so that the set of spatially filtered signals 𝑠=,? had a mean of zero and a unit variance, 691 
computed over all signals in a row and over time. In total, we created 8664 velocity traces and 692 
corresponding 72x101 element photoreceptor matrices, divided into a 6346 trace training set and 693 
a 2318 trace test set. 694 

To generate the sinusoidal training data (Fig. 4), we substituted the natural scenes with 695 
sinusoidal gratings with wavelengths chosen from a uniform distribution ranging from 20º to 90º. 696 
All other processing steps were identical. 697 
 698 
Model definitions 699 
Our models consisted of multiple units whose outputs were summed to generate the model 700 
predictions. We defined (+) and (–) versions of each unit type, corresponding to mirror 701 
symmetric units that were added and subtracted to generate the final model outputs. To obtain 702 
the unit outputs, we filtered signals, 𝑠?, in time by convolving them with filters, 𝑓?, with 30 703 
elements, corresponding to 300 ms in time. We define this convolution as (𝒇 ∗ 𝒔)? =704 
	∑ 𝑓E𝑠?$EFG
EHI . 705 

 706 
The mirror symmetric LN units were defined as: 707 

𝑢K",? = 𝜙 MN𝒇𝑘,1 ∗ 𝒔1Q𝑡 + N𝒇𝑘,2 ∗ 𝒔2Q𝑡 + N𝒇𝑘,3 ∗ 𝒔3Q𝑡 + 𝑏𝑘T 708 

𝑢K$,? = 𝜙 MN𝒇𝑘,1 ∗ 𝒔3Q𝑡 + N𝒇𝑘,2 ∗ 𝒔2Q𝑡 + N𝒇𝑘,3 ∗ 𝒔1Q𝑡 + 𝑏𝑘T 709 

Where 𝑠U are the input signals, and all parameters (𝒇K,U and 𝑏K) are identical for both units in the 710 
pair, and the pairs are indexed by 𝑘. The activation function 𝜙 is everywhere a rectified linear 711 
unit (ReLU): 712 

𝜙(𝑥) = W𝑥	if	𝑥 > 0
0	if	𝑥 ≤ 0 713 

 714 
The mirror symmetric LNLN units were defined as:  715 
𝑢K",? = 𝜙 M𝑤𝑘,1𝜙 MN𝒇𝑘,1 ∗ 𝒔1Q𝑡 + 𝑏𝑘,1T + 𝑤𝑘,2𝜙 MN𝒇𝑘,2 ∗ 𝒔2Q𝑡 + 𝑏𝑘,2T + 	𝑤𝑘,3𝜙 MN𝒇𝑘,3 ∗ 𝒔3Q𝑡 + 𝑏𝑘,3T + 𝑏𝑘,4T  716 

𝑢K$,? = 𝜙 M𝑤𝑘,1𝜙 MN𝒇𝑘,1 ∗ 𝒔3Q𝑡 + 𝑏𝑘,1T + 𝑤𝑘,2𝜙 MN𝒇𝑘,2 ∗ 𝒔2Q𝑡 + 𝑏𝑘,2T + 	𝑤𝑘,3𝜙 MN𝒇𝑘,3 ∗ 𝒔1Q𝑡 + 𝑏𝑘,3T + 𝑏𝑘,4T  717 
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As above, all the parameters are the same for both units in the pair. Each 𝑤K,U is a scalar free 718 
parameter. 719 
 720 
For the synaptic nonlinearity, we followed previous work to create a nonlinearity that treats input 721 
LN lines as conductances in the membrane of a postsynaptic cell, and then computes the steady 722 
state voltage, given weighting parameters that are equivalent to reversal potentials in a real cell 723 
19, 29, 59, 115. This approximates the membrane time constants as being much smaller than typical 724 
variations in inputs 19: 725 
𝑆K,?(𝑠_, 𝑠F, 𝑠')726 

=	
𝑤K,_𝜙 MN𝒇K,_ ∗ 𝒔_Q? + 𝑏K,_T + 𝑤K,F𝜙 MN𝒇K,F ∗ 𝒔FQ? + 𝑏K,FT +	𝑤K,'𝜙 MN𝒇K,' ∗ 𝒔'Q? + 𝑏K,'T

1 + 𝜙 MN𝒇K,_ ∗ 𝒔_Q? + 𝑏K,_T + 𝜙 MN𝒇K,F ∗ 𝒔FQ? + 𝑏K,FT + 	𝜙 MN𝒇K,' ∗ 𝒔'Q? + 𝑏K,'T
 727 

We then defined our two units as: 728 
𝑢K",? = 𝜙(𝑆K,?(𝑠_, 𝑠F, 𝑠') + 𝑏K,`) 729 
𝑢K$,? = 𝜙(𝑆K,?(𝑠', 𝑠F, 𝑠_) + 𝑏K,`) 730 

Where the second activation function could correspond to a calcium nonlinearity acting on the 731 
membrane voltage 17, 29, 59. 732 
 733 
Our model outputs, 𝑅?, weighted two pairs of units by the scalars 𝑎K as follows: 734 

𝑅? = 𝑎_N𝑢_",? − 𝑢_$,?Q + 𝑎FN𝑢F",? − 𝑢F$,?Q 735 
This arrangement of units within models gave us three models: the LN model using two pairs of 736 
LN units, the LNLN model using two pairs of LNLN units, and the synaptic nonlinearity model 737 
using two pairs of synaptic nonlinearity units. When we examined additional units in Figure 4, 738 
we added the additional pairs with new weight parameters. 739 
 740 
Noise in the models 741 
We added noise to the models at two stages. First, we added front end noise by adding random 742 
samples from a zero-mean Gaussian distribution to each element in the matrices 𝑠=,?. Since the 743 
standard deviation of these matrices was unity, the standard deviation of the added noise 744 
controlled the relative amplitude of signal and noise. Second, we multiplied the output of each 745 
model unit 𝑢K±,? by random draws from a lognormal distribution for each point in time. The 746 
lognormal distribution was chosen such that its mean was 1, and its standard deviation 747 
determined the relative size of the output noise. The output noise was chosen to be multiplicative 748 
rather than additive so that the models could not escape the noise by producing very large unit 749 
outputs and then rescale them with the model weights after the addition of noise. The standard 750 
deviations for both these sources varied according to the experiment. 751 
 752 
Training protocols 753 
All models were trained in Python using TensorFlow 71. Due to the convolution operations 754 
employed by our neural network models, for each 72×101× [batch size] input to our model, the 755 
output was a set of 70×72×[batch size] velocities corresponding to a set of 72×[batch size] true 756 
velocities. We duplicated these true velocities to create tensors of 70×72×[batch size]. To train 757 
the models, we chose the loss function to be the mean squared error between the true input 758 
velocity and the individual model outputs, 𝑅? (not averaged over space). In the case of models 759 
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trained to predict the direction of motion (Fig. 4B), we converted the velocity trace into a binary 760 
direction trace, and the loss function became the cross-entropy of the true direction with a 761 
sigmoid function acting on the model output, 𝑅?. The primary analyzed models each had two 762 
unit types with three filters each (180 parameters). In the LN model, each of the two LN unit 763 
pairs had one additional bias term associated with the threshold nonlinearity. In the LNLN 764 
model, each of the LNLN units had four additional bias terms associated with the four threshold 765 
nonlinearities, and three additional weight parameters for the three rectified input arms. For the 766 
synaptic nonlinearity model, the additional parameters were the same as for the LNLN model.  767 
 768 
To train our models, we used the Adam optimizer with an initial learning rate of 0.03 and 769 
learning rate decay such that the final learning rate was 0.0027. We trained for 1000 epochs with 770 
a batch size of 128. For each set of model hyperparameters (model type, direction prediction, 771 
input and output noise, etc.), we trained 50 instantiations of that model. Each instantiation had a 772 
different initial set of weights drawn from a “Glorot” distribution 116. For analysis, we chose the 773 
9 highest performing models for each set of hyperparameters as evaluated by the coefficient of 774 
determination in the training dataset. Multiple training runs from the same initialization tended to 775 
arrive at the same solution, suggesting that in our training regime, the stochasticity of 776 
initialization affects solutions more than stochasticity in training protocol. 777 
 778 
Stimuli for comparison with biological data 779 
To compare model responses to those measured in fly visual circuits, we created several visual 780 
stimuli to present to our models. First, to obtain the effective linear filters of the inputs to the 781 
synaptic model, we stimulated the model with independent, Gaussian noise to each input, with 782 
zero mean and unit variance, then extracted the kernels from the unit output, using standard 783 
methods 117.  784 
 785 
To make comparisons with responses to edges (Fig. 1C), we created light and dark edges 786 
expanding over time so that the image, 𝑚, over space and time, was: 787 

𝑚(𝑥, 𝑡) = ±2	 f𝐻(𝑥 ± 𝑣𝑡) −
1
2h 788 

where we used all combinations of ± to make light and dark edges moving in both directions. 789 
The stimulus velocity 𝑣 was 30º/s. These images were spatially filtered to create the input signals 790 
𝑠=,?. 791 
 792 
To compare responses to different stationary edges (Fig. 1D), we created a light and dark square 793 
wave with an image over space of: 794 

𝑚(𝑥) = sign fsin f
2𝜋𝑥
𝜆 hh 795 

where the wavelength 𝜆 was chosen to be 80º. These images were spatially filtered to create the 796 
input signals 𝑠=,?. 797 
 798 
To compare responses to sinusoids moving the preferred and null directions and to their sum 799 
(Fig. 1E), we created images as follows: 800 

𝑚mn(𝑥, 𝑡) =
1
2 sin

(𝑘𝑥 − 𝜔𝑡) 801 
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𝑚pn(𝑥, 𝑡) =
1
2 sin

(𝑘𝑥 + 𝜔𝑡) 802 

𝑚mn"pn(𝑥, 𝑡) =
1
2 sin

(𝑘𝑥 − 𝜔𝑡) +
1
2 sin

(𝑘𝑥 + 𝜔𝑡) 803 
The spatial frequency was chosen to be 𝑘 = 2𝜋/60 deg-1 and 𝜔 = 2𝜋 s-1. In sweeps of spatial 804 
and temporal frequency (Supp. Fig. 1), the spatial and temporal frequencies were chosen as 805 
labeled. When signal strength was swept, the sinusoid amplitude was changed as labeled. As 806 
with the other stimuli, these images were spatially filtered. 807 
 808 
To compare the degree of coactivation (Fig. 1F), we used the natural scenes test (holdout) 809 
dataset described above. 810 
 811 
In all comparisons of the model with data, we set the noise values in the model to 0, regardless of 812 
training regime, unless otherwise noted. Setting the input noise to 0 is the equivalent of having a 813 
bright stimulus with high signal to noise, as is typical of experiments. Setting the output noise to 814 
0 is the equivalent of averaging over many trials of the same stimulus (since the multiplicative 815 
noise has expected value of 1). Averaging over trials was typical in the comparison data (Fig. 1). 816 
 817 
Metrics 818 
We summarized properties of models with several metrics (Figs. 5 and 6). Fraction of variance 819 
explained was evaluated using the coefficient of determination in the holdout (test) dataset; it 820 
could be negative if the model performed worse than uniformly predicting the average velocity 821 
in the dataset. We evaluated the timescale of the learned filters by calculating the center of mass 822 
(or expected value) of the absolute value of the filters. 823 
 824 
We also evaluated the edge selectivity indices (ESIs) and the direction selectivity indices (DSIs) 825 
of the models by simulating the responses to the moving edges. We simulated a light edge and a 826 
dark edge moving in the positive and negative direction, each as a separate trace. Then, for each 827 
unit in the model, we calculated the maximum of the absolute value of the response. For each 828 
unit, we averaged the PD and ND max responses across the dark and light edges, and separately 829 
averaged the light and dark max responses across the PD and ND edges. Then, for each unit we 830 
compute the selectivity index; 𝐸𝑆𝐼 = tuvwxy$tz{|}

tuvwxy"tz{|}
	, where 𝑅~U��? is the average of the max 831 

response to light edges in both preferred and null directions and 𝑅���K  is the average of the max 832 
response to dark edges in both preferred and null directions. Similarly, 𝐷𝑆𝐼 = t��$t��

t��"t��
	where 833 

𝑅mn is the average of the max response to light and dark edges in the preferred direction while 834 
𝑅pn  is the average of the max response to light and dark edges in the null direction. Finally, we 835 
computed selectivity index for the model as a whole by taking the mean of the absolute values of 836 
the selectivity indices of the individual units. 837 
 838 
To summarize the static edge activation as a scalar value for each model, we stimulated the 839 
model units with static edges of both polarities centered on the central receptor and found the 840 
steady state response. We report the model response as the average of all unit responses to both 841 
edges. 842 
 843 
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In order to measure opponent suppression, we generated a moving sinusoidal grating dataset with 844 
PD, ND, and PD+ND stimuli, as described above. We then calculated the space- and time-845 
averaged responses of the individual units our models to these three stimuli. We defined an 846 
opponency index of these units as 𝑂𝐼 = t��$t��

t��"t��
 where 𝑅mn and 𝑅�m are the time-averaged unit 847 

response to the preferred direction sinusoid grating and the response to the counterphase grating 848 
respectively. We then defined the model’s opponency index as the average of the opponency 849 
indices of its units. 850 
 851 
Finally, we evaluated the sparsity of the coactivation of the model units in response to the test 852 
set, naturalistic stimuli, with no noise added. Coactivation between units 𝑚 and 𝑛 was defined as 853 
𝐶=� = _

�
∑ ��,y

���∑ ��,y��
y��

��,y

���∑ ��,y�
�
y��

�
?H_ , where 𝑢=,? is the response trace of unit 𝑛 at time 𝑡 and 854 

𝑢�,? is defined similarly; 𝑇 is the length of the trace in time. Averages were taken over the entire 855 
test dataset. We defined a sparsity index as the root mean square difference between the 856 
coactivation matrix of the model units and the identity matrix and then rescaled it so that a 857 
sparsity index of 1 corresponds to the identity matrix and a sparsity of 0 corresponds to all units 858 
being 100% coactive. 859 
 860 
 861 
  862 
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Figures 863 

 864 
Figure 1. Non-canonical measured properties of primary motion detecting neurons in 865 
Drosophila.  866 

A) Connectivity schematic of the three spatially separated inputs to T4 and T5 neurons, two 867 
parallel, primary motion detectors in Drosophila’s visual system. Dashed lines indicate 868 
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that a cell is in the OFF pathway. Round synapses indicate excitatory connections, while 869 
bars indicate inhibitory synapses. 870 

B) For each cell immediately upstream of T4 and T5, we plot the linear model prediction of 871 
the calcium response to an impulse of light signed by their input to T4 and T5. Neurons 872 
in position 2 show fast dynamics compared to the neurons in flanking positions. Inputs 873 
from position 3 have the opposite influence on T4 and T5 from neurons in positions 1 and 874 
2. Data from 24, 37. 875 

C) Traces of T4 and T5 calcium responses to light and dark edges moving in the preferred 876 
(rightward) and null (leftward) directions. Data from 30. 877 

D) Mean calcium responses of T4 and T5 neurons to a stationary square wave stimulus as a 878 
function of position, showing preferential responses at edges of specific polarity. Data 879 
from 30. 880 

E) Mean calcium responses of T4 and T5 neurons to preferred direction (PD) and null 881 
direction (ND) drifting sinusoid gratings, as well as to their sum (PD+ND). The addition 882 
of null direction motion suppresses calcium responses in T4 and T5, a form of opponent 883 
suppression in primary motion detectors. Data from 29. 884 

F) T4 and T5 calcium signals in response to naturalistic stimuli tend to be non-coactive. 885 
Arrows indicate the direction selectivity of the different neuron classes. Data from 28. 886 

  887 
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 888 
Figure 2. Models predicted velocities of naturalistic training data.  889 

A) Panoramic natural scene from database 39. Horizontal yellow box shows a 1-dimensional 890 
cut through the scene. The luminance trace of that cut is shown below the image, with the 891 
positions of simulated photoreceptors below the x-axis. 892 

B) Dynamic velocities traces were drawn from a Gaussian distribution with a correlation 893 
time of 200 ms (see Methods). 894 
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C) Scenes were translated at the assigned velocities in order to generate a trace of inputs that 895 
mirrored the ommatidial inputs of a fly (see Methods). Each trace represents the activity 896 
of a photoreceptor located at the position of the photoreceptor in (A) with matching color. 897 

D) Three different shallow network unit types were tested: a linear-nonlinear unit (LN), an 898 
LNLN unit, and a unit combining inputs using a biophysical nonlinearity (see Methods). 899 

E) In the models, two units were each paired with a mirror symmetric version of themselves 900 
(A+ with A–, B+ with B–), and signals from the units were subtracted. A and B units had 901 
the same architecture but were trained with independent weights. The model output was 902 
the sum of these differences. Noise was added at the front-end of the model (𝜂) and at the 903 
back end (𝜎, see Methods). 904 

F) Models containing the three different unit types were trained to predict the scene velocity 905 
from ommatidial signal traces. The training converged (left) and the fully-trained models 906 
predicted 30-40% of the variance in the velocity (right). These traces show results for 907 
training with 𝜂 = 𝜎 = 1/8. 908 

G) Example traces of inputs and outputs of an LN model trained as in (F), as compared to 909 
the true input velocity (blue). Different model outputs (gray) are for different spatial 910 
locations in images, with the same velocity trace. The mean value of the model responses 911 
is plotted in red. 912 

H) Scatter plot of individual instantaneous model outputs against the true velocity. 913 
  914 
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 915 
Figure 3. Models trained to predict naturalistic velocities possess many properties of the 916 
biological circuit. Data shown includes: (i) Spatiotemporal receptive fields composed of time 917 
traces of the filters of the 3 spatially separated inputs to T4 and T5 or to T4- and T5-like units. 918 
Each input filter is normalized. (ii) Responses to light and dark edges moving left and right. (iii) 919 
Responses to stationary square waves. For model responses, the full vertical extent of the dashed 920 
lines is the amplitude of responses to the preferred moving edge in (ii). (iv) Relative responses to 921 
preferred and null direction sinusoids, and their sum. (v) Coactivation of units in response to 922 
naturalistic stimuli. 923 

A) Data from the fly, as in Figure 1. 924 
B) As in (A), but for a trained LN model. 925 
C) As in (A), but for a trained LNLN model. 926 
D) As in (A), but for a trained synaptic nonlinearity model. All three models were trained 927 

with noise values of 𝜂 = 𝜎 = 1. 928 
  929 
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 930 
Figure 4. Effects of model loss function, training, architecture, and noise. 931 

A) Summary of properties measured in T4 and T5 (from Figure 1). Data shows false color 932 
time traces of 3 spatially separated input filters (i), responses to light and dark edges 933 
moving left and right (ii), responses to stationary square waves (iii), responses to 934 
preferred and null direction sinusoids, and their sum (iv), and coactivation of units in 935 
response to naturalistic stimuli (v). 936 

B) As in (A), but showing the results of an LN model with an alternate loss function, in 937 
which it was trained to predict direction of motion rather than predict velocity of motion. 938 
Compare with Fig. 3B. Model was trained with noise of 𝜂 = 𝜎 = 1. 939 

C) As in (A), but showing the results of an LN model trained on sinusoidal gratings instead 940 
of natural scenes. Compare with Fig. 3B. Model was trained with noise of 𝜂 = 𝜎 = 1. 941 

D) The number of mirror-symmetric, subtracted unit pairs was swept from one to five (top), 942 
while measuring the fraction of variance explained for LN models trained and evaluated 943 
in high and low noise conditions. All unit pairs received inputs from the same 3 spatial 944 
locations. Throughout the rest of this study, two pairs were used. 945 

E) Fraction of variance explained by models trained at a variety of front- and back-end noise 946 
levels, then tested at low noise (top) and high noise (bottom). The top 9 models are shown 947 
as a 3x3 grid at the coordinate of a specific parameter set. Low noise evaluation used 948 
parameters 𝜂 = 𝜎 = 0.125; high noise evaluation used parameters 𝜂 = 𝜎 = 1.  949 
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 950 
Figure 5. High training noise yields slower filter dynamics and stronger selectivity to 951 
moving edges. 952 

A) Summary of properties measured in T4 and T5 (from Fig. 1). Data shows false color time 953 
traces of 3 spatially separated input filters (i), responses to light and dark edges moving 954 
left and right (ii), and responses to stationary square waves (iii).  955 

B) Summary responses of models trained with different levels of front-end and back-end 956 
noise. Top 9 performing models of 50 trained are shown for each condition, measuring 957 
the center-of-mass of the filters (i), the ESI and DSI of the light and dark moving edge 958 
responses of each unit (ii, top and bottom), and the responses to stationary square waves 959 
of the units (iii). 960 

C) Example traces of a low-noise trained model (green square in (B)). Shown are filters for 961 
each unit (i), traces of responses to left and right moving light and dark edges (ii), and 962 
responses to stationary square wave stimuli (iii). 963 

D) As in (C) but with the high-noise trained model (purple square in (B)).  964 
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 965 
Figure 6. High training noise yields strong opponency and channel decorrelation. 966 

A) Summary of properties measured in T4 and T5 (from Figure 1). Data shows responses to 967 
preferred and null direction sinusoids (PD, ND) and their sum (PD+ND) (i), and 968 
coactivation of units in response to naturalistic stimuli (iii). 969 

B) Summary responses of models trained with different levels of front-end and back-end 970 
noise. The top 9 performing models of 50 trained are shown for each condition. Data 971 
shown is the opponency of LN models (i) and LNLN models (ii), where asterisks denote 972 
models with opponency near 1, out of the false color range. The sparsity index is shown 973 
for the LN model units in response to naturalistic stimuli (iii). The sparsity index is 1 974 
when the coactivation matrix is the identity matrix and is 0 when all elements in the 975 
matrix are 1. 976 

C) Example responses from a low-noise training protocol (green box in (B)). Opponency is 977 
shown for the LN model (i) and LNLN model (ii), while a coactivation matrix is shown 978 
for an LN model responding to naturalistic stimuli (iii). 979 

D) As in (C) but for a high-noise training protocol (purple box in (B)). 980 
  981 
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