

1 **Predicting individual neural responses with anatomically constrained task optimization**
2

3 **Authors**

4 Omer Mano^{1,2}, Matthew S. Creamer³, Bara A. Badwan⁴, Damon A. Clark^{1,2,3,5,6}

5 **Affiliations**

6 1 – Department of Molecular Cellular and Developmental Biology, Yale University, New
7 Haven, CT 06511, USA

8 2 – Department of Neuroscience, Yale University, New Haven, CT 06511, USA

9 3 – Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA

10 4 – School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA

11 5 – Department of Physics, Yale University, New Haven, CT 06511, USA

12 6 – Lead contact: damon.clark@yale.edu

13 **Abstract**

14
15 Artificial neural networks trained to solve sensory tasks can develop statistical representations
16 that match those in biological circuits. However, it remains unclear whether they can reproduce
17 properties of individual neurons. Here, we investigated how artificial networks predict individual
18 neuron properties in fruit fly motion circuits. We trained anatomically-constrained networks to
19 predict movement in natural scenes, solving the same inference problem as fly motion detectors.
20 Units in the artificial networks adopted many properties of analogous individual neurons, even
21 though the networks were not explicitly trained to match these properties. Among these
22 properties was the split into ON and OFF motion detectors, which is not predicted by classical
23 models for motion detection. The match between model and neurons was closest when the model
24 was trained to be robust to noise. Our results demonstrate how anatomical, task, and noise
25 constraints can explain response properties of individual neurons in a small neural network.

26 **Introduction**

27
28 Biological neural networks (BNNs) have evolved through natural selection to perform tasks that
29 promote survival, but it is often unclear how their properties relate to the tasks they perform.
30 Recent work in sensory systems has shown that artificial neural networks (ANNs) optimized to
31 perform ethologically-relevant tasks often develop stimulus representations similar to those in
32 BNNs. For instance, ANNs trained to categorize visual objects possess intermediate
33 representations similar to those in the hierarchical processing steps in primate visual cortex¹.
34 Similarly, representations of temperature in zebrafish are similar to those in artificial neural
35 networks trained to navigate thermal gradients². These comparisons between ANNs and BNNs
36 test a hypothesis about the goal of the biological circuit: is optimizing a network to perform a
37 specific task under specific constraints sufficient to account for a set of the biological network's
38 properties³⁻⁵? These prior studies have drawn connections between clusters of nodes or layers in
39 an ANN and the heterogeneous response properties of groups of neurons in regions of the brain. In
40 this study, we show that specific nodes in a trained ANN can have properties that correspond to
41 individual neurons in a biological circuit. To do this, we apply connectomic constraints to small
42 ANNs to create an *a priori* correspondence between specific ANN nodes and individual neurons
43 in the biological network. In this framework, we compare the task-optimized ANN to the

44 evolved BNN to show how optimization and constraints—especially noise—account for the
45 properties of individual neurons in a biological circuit.

46
47 We focus on the fruit fly *Drosophila*'s motion detection circuits (**Fig. 1A**), which are critical to
48 the fly's visual navigation behaviors⁶⁻⁹. These circuits are well-studied, so that anatomical
49 connectivity has been measured¹⁰⁻¹³, along with many functional properties of neurons in the
50 circuit^{7, 9, 14-31}. These motion circuits have evolved two types of motion detectors: T4 neurons,
51 which are selective for moving light edges, and T5 neurons, which are selective for moving dark
52 edges. T4 and T5 neurons are arranged retinotopically so that for each location in visual space
53 there are two T4 neurons and two T5 neurons sensitive to motion along the horizontal axis, one
54 T4 and one T5 neuron sensitive to leftward motion and one of each sensitive to rightward
55 motion. Each individual neuron in these classes receives excitatory and inhibitory input from
56 neurons that signal visual intensity in 3 spatially-separated locations (**Fig. 1A**)^{10, 11, 18}.

57
58 Textbook models for motion estimation, including the Hassenstein-Reichardt correlator model
59 and the motion energy model^{32, 33}, may be largely derived from first principles^{34, 35} and suggest
60 that temporal delays, spatially separated inputs, and nonlinear processing are critical to the task
61 of motion detection³⁶. These models specify a minimum set of conditions and plausible
62 computations to arrive at direction-selective signals, but they fail to account for many of the
63 features measured in the fly's motion circuits. In particular: (1) The three spatially-separated
64 inputs to T4 and T5 are organized such that the central signal is fast, while the two flanking
65 signals are slow^{18, 24, 37} (**Fig. 1B**). Moreover, when local luminance increases, one flanking
66 signal has the opposite influence on the downstream motion detector compared to the other two
67 spatial locations¹⁰. For an individual T4 cell, activity is effectively inhibited by light at one
68 location in visual space while excited by the other two, and T5 cells are effectively excited by
69 light at one location while inhibited at the other two^{16, 27}. None of these properties of the inputs
70 to the fly motion detectors follows clearly from classical models. (2) Horizontal motion detection
71 is organized into four parallel pathways, consisting of light and dark moving edge detectors in
72 both horizontal directions⁷ (**Fig. 1C**), a split not present in or explained by classical models. (3)
73 Although T4 and T5 neurons are direction-selective, they also respond to specific stationary light
74 or dark edges³⁰ (**Fig. 1D**), an unexpected result for cells that detect visual motion. (4) The
75 motion detectors T4 and T5 show opponent suppression: they respond less to the sum of null and
76 preferred direction motion stimuli than to preferred direction motion stimuli alone. This
77 phenomenon runs counter to predictions of common, classical motion detection models²⁹ (**Fig.**
78 **1E**). (5) Last, the four neurons that encode horizontal motion have signals that tend to be non-
79 coactive when presented with moving natural scenes, so that their signals are decorrelated²⁸
80 (**Fig. 1F**). This decorrelation is not addressed by classical models of motion detection. Since
81 classical models do not account for this suite of qualitative properties of identified neurons in the
82 fly's motion circuits, we asked whether they could be explained by optimizing a network to
83 detect motion under the anatomical constraints of the fly's motion circuits.

84
85 In this study, we developed a set of three shallow, convolutional ANN models ranging from
86 abstract to more biophysically realistic. The models created a direct correspondence between
87 analogous ANN units and BNN neurons. We trained these models to predict the velocity or
88 direction of moving natural scenes, and then examined their solutions and response properties.
89 The trained models could account for many response properties of individual neuron types

90 measured in the fly's motion circuits, including the five listed above (**Fig. 1**). Therefore, the task
91 of predicting natural scene velocities, combined with anatomical constraints from the circuit
92 connectivity, were sufficient to account for circuit response properties that are not accounted for
93 by classical models. Moreover, by investigating different model constraints, we found that
94 robustness to noise was the primary factor that generated artificial units with properties like the
95 neurons in the fly's circuits. In sum, these results show that many unexplained properties of
96 individual neurons in this small neural network are consistent with and predicted by a system
97 optimized for motion detection in the presence of noise.

98 **Results**

99

100 *Detecting motion in natural scenes*

101 Our goal is to relate optimized ANNs to the evolved circuits in the fly. To make this comparison,
102 we began by setting up a problem for the artificial networks to solve that is similar to problem
103 solved by the fly (**Fig. 2A-C**). In the fly eye, the direction-selective neurons T4 and T5 use
104 luminance information over time from different points in space to infer the direction and speed
105 of visual motion^{34, 35, 38}. Individual T4 and T5 neurons perform this task in small regions of the
106 visual field, receiving input from approximately three neighboring columns^{10, 11, 18}. They
107 perform these operations while the fly navigates natural environments.

108

109 To approximate the naturalistic inputs to fly motion detectors, we rigidly translated panoramic
110 natural scenes³⁹ using stochastic velocities in yaw rotation (**Fig. 2A**). The rigid translation of
111 panoramic scenes ignores the occlusions and the different angular velocities that arise from an
112 animal translating through the world, but it mimics closely the type of scenes generated by an
113 animal purely rotating in the world. Flies use motion detection circuitry to stabilize their
114 orientation in the face of angular perturbations^{40, 41}, so this is a reasonable starting point. Rigid
115 translation of natural scenes has been used with some success in other studies aimed at
116 understanding processing properties of motion detectors^{38, 42-47}.

117

118 The stochastic velocities for scene motion were drawn from a zero-mean Gaussian distribution
119 with standard deviation of 100°/s and a correlation half-life of 200 ms (**Fig. 2B**, see **Methods**).
120 This amplitude of turning is typical of walking flies^{48, 49}. In this study, it is critical that stimuli
121 do not have a constant velocity over time, since constant velocities would allow stimuli
122 arbitrarily far in the past to inform current velocity estimates³⁵. The correlation time of 200 ms
123 roughly matches correlation times in fly turning during walking^{48, 49}, and ensures that only
124 recent information can be used to infer current visual velocities.

125

126 Last, we approximated the optical filtering of scenes by the discrete fly ommatidia. These
127 filtering properties largely persist into downstream medulla neurons^{24, 50}. To do this, we created
128 discrete signals with separation of 5°, roughly matching the separation of neighboring
129 *Drosophila* ommatidia⁵¹. For each ommatidial signal, we spatially filtered the scene at each time
130 point with a two-dimensional Gaussian that roughly matched the acceptance angles of
131 ommatidial optics⁵¹, creating sets of 72 ommatidial signals from 360° horizontal strips across
132 scenes (**Fig. 2C**).

133

134 Overall, these procedures generated a dataset with naturalistic neighboring ommatidial signals
135 over time associated with a specific random velocity trace. The signals were obtained from

136 random elevation and azimuthal positions on randomly chosen panoramic images. The task for
137 the ANN (and for the fly eye) is to infer the velocity or direction of motion (latent variables)
138 from this suite of ommatidial luminance signals.

139

140 *Shallow neural networks for motion detection*

141 We developed shallow model architectures that incorporated varying degrees of biophysical
142 detail. To do this, we defined three basic unit types for motion detection (**Fig. 2D**). All unit types
143 received inputs over time from three neighboring ommatidia, constraining the units to match the
144 three spatial inputs measured to T4 and T5¹⁰. The units linearly filter these inputs in time with
145 three distinct kernels that are learned through training. The three different types of units are
146 distinguished by the nature of the nonlinearity used to combine the three spatially-offset inputs
147 (see **Methods**).

148

149 The first unit type employs a linear-nonlinear (LN) processing step, so that the temporally
150 filtered signals are simply added together and the sum acted upon by a threshold-linear rectifier
151 (**Fig. 2D, left**). A nonlinearity is required to generate direction-selective signals^{33,36}. This unit
152 type is closely related to the motion energy model and is similar to models describing directional
153 neural signals in mouse retina^{52,53} and directional and other signals in mammalian cortex⁵⁴⁻⁵⁷. It
154 is also similar to models suggested to describe directional signals in T4 and T5^{16,17}. We call this
155 the linear-nonlinear (LN) unit.

156

157 The second unit type employs an additional threshold-linear rectifier after each ommatidial
158 signal is filtered in time, but before the three signals are linearly combined and thresholded again
159 (**Fig. 2D, middle**). This rectification of the signals from each spatial location mimics rectification
160 observed in the calcium and voltage signals of medulla interneurons upstream of motion
161 detectors in the fly^{15,50,58}. Because this model involves two sequential stages of linear-nonlinear
162 processing, we call this the LNLN unit.

163

164 The third unit type also rectifies the filtered ommatidial signals, but it uses a synaptic
165 nonlinearity to combine the three filtered, rectified signals (**Fig. 2D, right**). This synaptic
166 nonlinearity considers each of the three inputs to be synaptic conductances with associated
167 reversal potentials, which are learned through training. The nonlinearity is a weighted sum of the
168 conductances divided by an unweighted sum of the conductances (see **Methods**). This model is
169 similar to other biophysically realistic models for T4 and T5 direction-selectivity^{19,21,29,59,60};
170 models of downstream, wide-field neurons have also productively taken conductances into
171 account⁶¹. The biophysical model in this case assumes a pseudo-steady-state response, which is
172 justified by the fast cellular time constants measured in T4¹⁹. We call this the synaptic
173 nonlinearity unit.

174

175 These three unit classes are nested within one another. That is, the LN unit is a special case of
176 the LNLN unit, and the LNLN unit is a special case of the synaptic nonlinearity unit. Thus,
177 progressing from LN to LNLN to synaptic nonlinearity adds more parameters, and in principle,
178 the more complex units can only perform better, since each could still obtain the solution of the
179 simpler units.

180

181 These three unit types were each placed into models with architecture that matched the circuitry
182 in the fly eye (**Fig. 2E**). The three model classes consisted of multiple units of the same type, and
183 the weights in each unit were optimized through training on the naturalistic dataset we defined.
184 In this architecture, each unit (+) was paired with a unit (−) constrained to be mirror symmetric in
185 space, and the two resulting signals were subtracted from one another. This differencing reflects
186 the opponent subtraction of oppositely tuned motion signals that occurs in the fly eye
187 downstream of T4 and T5^{62,63}. In each case, two pairs of symmetric units were trained (A_+/A_-
188 and B_+/B_-), unless otherwise noted. In all three model classes, the temporal filters were free
189 parameters, as were weights in linear combinations and biases before the rectifications.
190

191 We scaled the natural scene training images so that each set of 72 ommatidial signals had zero
192 mean and unit variance. This is because early visual processing computes deviations from
193 average, rather than absolute luminance levels^{26,64,65}. The signals arriving at motion detectors in
194 flies also undergo processing to normalize signal amplitude^{66,67}.
195

196 Last, we added two forms of noise to our models (**Fig. 2E**, see **Methods**). First, we imposed
197 additive noise at the input signals, after contrast computation. This front-end noise reflects noise
198 noted in photoreceptor and lamina cell signaling^{68,69}. Second, we included multiplicative noise
199 at the output of each unit of the model before they were subtracted to generate the overall signal.
200 This back-end noise represents intrinsic noise in the circuit⁷⁰, which could arise from variability
201 in the signals and signal transmission of directional units^{19,21}. We varied both the front-end and
202 back-end noise to investigate how noise affects the types of solutions found by fitting our
203 models.
204

205 *Training models*

206 We used TensorFlow⁷¹ to train multiple instances of these three model classes using gradient
207 descent with different initializations (**Fig. 2F**, see **Methods**). The models were trained to use the
208 preceding 300 ms of visual data, reflecting plausible filtering properties of biological neurons, to
209 predict the current scene velocity. During training, the models were optimized by adjusting the
210 temporal filter weights, as well as biases that were applied before each nonlinearity, and
211 additional weighting parameters in the LNLN and synaptic nonlinearity model. The different
212 models all converged on solutions, but the more complex LNLN and synaptic nonlinearity
213 models converged more slowly, and the converged solutions had larger variability in their
214 performance (**Fig. 2F**). We evaluated model performance on a hold-out dataset, which was
215 independent of the training data. Model output depended on the particular scene, but gave
216 reasonable velocity estimates over many scenes (**Fig. 2G, H**).
217

218 *Trained models possess the neuronal features of fly motion detectors*

219 When we trained the three model classes to predict image velocity in the presence of noise, the
220 trained models showed many of the non-canonical properties possessed by the fly's motion
221 detectors (**Fig. 3**). Most importantly, the paired units in all three models could be classified as
222 'T4-like' or 'T5-like', based on whether they responded most to light or dark flashes. We
223 evaluated the properties of trained models in a noise-free regime, corresponding to a bright
224 visual stimulus and responses averaged over many trials (see **Methods**).
225

226 All three trained models had units possessing temporal filters with similar shapes, and with
227 relative dynamics and polarities similar to those measured in cells upstream of T4 and T5 (**Fig.**
228 **3(i)**). The measured filters are slower than those in the trained ANNs, potentially because they
229 represented calcium measured using optical indicators ⁷². However, like T4 and T5 cells (**Fig.**
230 **1B**), all trained units had high-pass filters on the center input, and slower, more lowpass filters
231 on the flanking inputs. The central input of the T4-like units were sensitive to positive
232 derivatives, while the center input of the T5-like unit were sensitive to negative derivatives, just
233 as in T4 and T5 cells. Both T4- and T5-like units had a positively-signed filter on one side and a
234 negatively-signed filter on the other, in the pattern of T4 and T5 cells.
235

236 In all trained units, the third filter (f_3) in the trained T4- and T5-like units had a small initial
237 response of the opposite sign to its prolonged, delayed response. This feature was not observed
238 in measurements of calcium in the cells proposed to correspond to input 3 (**Fig. 1A**) ^{24,37}, or in
239 measurements of voltage responses in T4 or T5 ^{19,21}. In the learned filters for the LN, LNLN,
240 and synaptic nonlinearity T4- and T5-like units, the prolonged, second lobe had a larger integral
241 than the initial lobe by factors of 10 to 15. Thus, the second lobe tended to dominate the initial
242 transient.
243

244 This pattern of temporal filtering in the trained models led to strong direction- and edge polarity-
245 selectivity (**Fig. 3(ii)**). Each unit responded much more strongly to a single direction and a single
246 edge type (ON-edges or light edges vs. OFF-edges or dark edges) than to any other combination.
247 The ON- vs. OFF-edge selectivity of each unit corresponded to the sign of the central derivative
248 filter, just as in the fly's circuitry. The direction-selectivity corresponded to the signs and shapes
249 of the two flanking filters. The LNLN model was more selective than the LN model, responding
250 exclusively to one edge type, while the synaptic nonlinearity showed intermediate selectivity.
251 Critically, all three models generated ON- and OFF-edge direction-selective units, even though
252 no such constraint was imposed on them.
253

254 Several other features of the fly motion circuits were also reproduced. All three models showed
255 stationary edge responses that matched the empirical response patterns in T4 and T5 (**Fig. 3(iii)**).
256 In these cases, the trained units responded to edges of the same polarity as the analogous fly
257 neuron (T4 or T5). The neurons T4 and T5 respond less to a sum of preferred and null direction
258 sinusoids than to preferred direction sinusoids alone (**Fig. 1E**) ²⁹, a form of opponent
259 suppression. When the models were trained, the LNLN and synaptic nonlinearity models also
260 showed this sort of opponency in the responses of their individual direction-selective units (**Fig.**
261 **3(iv)**). (The LN units are mathematically incapable of generating this opponency ²⁹.) We
262 observed low coactivation between units presented with natural scenes, with coactivation
263 decreasing from LN to LNLN to synaptic nonlinearity models (**Fig. 3(v)**). Last, when presented
264 with sinusoidal stimuli, these trained models respond to signal strength and to temporal
265 frequencies with tuning that roughly matches physiological and behavioral measurements
266 downstream of T4 and T5 ^{9,73-75} (**Fig. S1**). This was particularly true of the LNLN and synaptic
267 nonlinearity models.
268

269 Collectively, these data show that these model classes, when trained to predict natural scene
270 velocities, adopt many properties of T4 and T5 circuits that are not explained by classical models
271 of motion detection. Thus, this training regime is sufficient to account for a wide array of

272 specific response properties found in this circuit. Solutions found by ANNs depend not only on
273 the loss function, but also on constraints imposed on the network. To understand how model and
274 training constraints affected model solutions, we therefore set about investigating how different
275 aspects of the model classes, loss functions, training data, and noise affected the trained
276 solutions. Since the trained LN model is readily interpretable and can account qualitatively for
277 most of the biological data, we focus on that model for the remainder of this study, except to
278 probe opponent suppression.
279

280 *ANN solutions do not depend strongly on the loss function or training data*

281 First, we asked how the model solution depended on the loss function being optimized. We
282 initially trained the models to estimate the true velocity, minimizing a loss function equal to the
283 squared error between model output and the instantaneous image velocity (**Fig. 3**). However,
284 while this objective for model motion detectors has been used previously with some success ^{38,}
285 ⁴⁴, fly motion detectors might instead have evolved predict some other, nonlinear function of the
286 true velocity. How much does the solution depend on the loss function? To answer this question,
287 we trained models to predict an extreme function of the velocity: its direction only (**Fig. 4AB**).
288 The LN model was trained to classify just the direction of the motion, without regard to its speed
289 (see **Methods**). Interestingly, the units in the trained models looked largely identical in this case,
290 becoming direction and edge polarity selective, sensitive to stationary edges, and showing little
291 coactivity between units.
292

293 We wondered whether the mirror symmetry we had imposed on our model pairs would arise
294 naturally through training. We trained a set of four units without the mirror symmetry pairing,
295 using 12 independent temporal filters, 3 for each units. We found that the best performing
296 solutions always included two mirror-symmetric pairs that were subtracted (**Fig. S2**). This likely
297 reflects the mirror symmetry imposed in our training dataset, which matched the natural world's
298 visual mirror symmetries.
299

300 Next, we asked whether the division into ON- and OFF-edge detector units that we observed
301 (**Fig. 3**) depended on asymmetries in light and dark in natural scenes. These natural scene
302 asymmetries have been hypothesized to account for a variety of asymmetries in fly behavior ^{38, 43,}
303 ⁷⁶ and differences between T4 and T5 ⁴⁴. Could those asymmetries in the inputs also lead to these
304 models splitting detector units into ON- and OFF-edge selective units? One may imagine
305 alternate divisions between unit pairs, for instance one pair tuned to fast and one to slow stimuli.
306 To address this question, we trained the models with the same velocity distribution, but instead
307 of panoramic naturalistic photographs as the visual input we used sinusoidal gratings (**Fig. 4C**).
308 Unlike the photographs, the sinusoidal gratings are light-dark symmetric. Interestingly, the two
309 unit pairs in each model still became sensitive to ON- and OFF-edges. We wanted to test
310 whether this split into ON- and OFF-edge selective channels depended on the precise
311 nonlinearity we used. When we changed the LN-model's nonlinearity from a threshold-linear
312 function to a saturating, sigmoid function while training on natural scenes, it had little effect on
313 the model solution (**Fig. S2**). Our results indicate that the division into ON- and OFF-edge
314 selective units is a natural outcome when estimating motion in scenes that contains both positive
315 and negative contrasts and when there are two unit pairs available to optimize.
316

317 *Largest marginal performance improvement comes from adding the second detector pair*
318 We wanted to better understand why flies have two primary motion detectors types (i.e., T4 and
319 T5 neurons), rather than 1 or 3. Our initial models had included two different unit pairs, which in
320 trained models developed properties similar to T4 and T5. We therefore created and trained LN
321 models with different numbers of unit pairs, ranging from 1 to 5 (**Fig. 4D**). Increasing the
322 number of unit pairs increased model performance under low- and high-noise training
323 conditions, but the largest marginal improvement in performance came from increasing from 1
324 unit pair to 2 unit pairs, where the performance metric more than doubled under the low-noise
325 training conditions. After that, adding more unit pairs provided smaller performance
326 improvements. If the cost of adding additional units in biological systems is high, this result may
327 explain why flies have only two elementary motion detector types, tuned to light and dark edges
328 respectively.

329
330 *Training with high noise is more robust to changes in noise*

331 We next asked how noise during training affected the structure of solutions. To investigate this,
332 trained LN models under a range of front-end noise and back-end noise conditions. We then
333 asked how well models performed when tested under conditions that were different from their
334 training noise level. The best-performing models in a particular noise regime were the ones
335 trained under that same noise regime (**Fig. 4E**). However, when models trained in high noise
336 regimes were tested in low noise regimes, they still performed reasonably well, while models
337 trained in low noise regimes performed very poorly in high noise regimes. Similarly, the high-
338 noise trained model performed better over many noise regimes (**Fig. S2D**). This effect held for
339 both front-end and back-end noise.

340
341 The high-noise trained models performed worse on the hold-out training data because they are
342 solving a far more difficult task when there is substantial noise injected (**Fig. S3**). Importantly,
343 the high-noise trained units were far more direction-selective to sinusoids than low-noise trained
344 units (**Fig. S3E**), better matching the strong direction-selectivity to sinusoids of T4 and T5 cells
345 ^{7, 9, 16, 17}. We therefore set out to compare properties of the high- and low-noise trained solutions.

346
347 *Training noise strongly affects direction-selectivity and edge-polarity-selectivity*

348 The noise amplitude at both the front- and back-end substantially changes the learned solutions
349 (**Fig. 5**). First, the front-end noise amplitude dramatically changed the temporal extent of the
350 learned filters (**Fig. 5(i)**). When more noise was added, the filters became more extended in time,
351 averaging over time to minimize the influence of the noise. The correlation time scale of the
352 velocity means that averaging over more than ~200 ms is not useful for computing the current
353 velocity ³⁵. With less noise, there was less need to average, and using only the most recent
354 measurements of intensity produced the best estimate of the current velocity.

355
356 Second, the back-end noise strongly influenced the degree of edge-polarity- and direction-
357 selectivity in the individual LN units (**Fig. 5(ii)**). In the high noise cases, the T4- and T5-like
358 units were more edge-selective and more direction-selective. In the low noise cases, the units
359 responded strongly to light edges in one direction and dark edges in the other, with a slight
360 imbalance that was direction-selective; this pattern is unlike T4 and T5 responses. In low noise,
361 the trained units are responding strongly to spatial gradients and only slightly to direction. In the
362 low noise case, the opponent subtraction step could cancel out large responses, leaving only the

363 small difference as an estimate of motion. When back-end noise was added, this computational
364 strategy was no longer viable, since the subtraction of the paired unit could no longer reliably
365 subtract the non-direction-selective components of the responses. As a result, the individual units
366 within each pair converged on solutions that were robust to this noise by being more direction-
367 selective even before the subtraction step.

368
369 Last, adding noise to the system made the units less selective for stationary edges (**Fig. 5(iii)**). In
370 all cases, the spatial pattern of responses to stationary edges matched those in T4 and T5, but
371 when more back-end noise was added, the units responded less to these stationary edges. This
372 seems likely to be closely related to the increase in edge-polarity and direction-selectivity with
373 increasing noise. The back-end noise prevents precise cancellation of the signals from stationary
374 scenes, making it advantageous for the model to respond less to such stimuli. In the fly,
375 responses to these stationary edges are about one quarter of responses to preferred direction
376 moving edges³⁰.

377
378 *Increased noise increases opponency and sparsity*
379 To evaluate the effects of noise on opponency and sparsity, we performed the same sweep of
380 front- and back-end noise while training LN models (**Fig. 6(i)**). We measured unit opponent
381 suppression as the degree to which the mean response was decreased when a null-direction
382 sinusoid was added to a preferred-direction sinusoid. In the case of LN models, the response to
383 the sum can never be less than the response to the preferred-direction sinusoid alone²⁹. But
384 increasing the noise in the system made the response to the sum closer and closer to the response
385 to the preferred direction sinusoid alone (**Fig. 6CD(i)**).

386
387 When we trained the LN LN model with different noise levels, opponency increased with
388 increasing noise levels (**Fig. 6(ii)**). That is, the units decreased their response to the sum of the
389 sinusoids in the presence of high noise (**Fig. 6B-D(ii)**). Opponency in these primary directional
390 cells in *Drosophila* has been hypothesized to cancel out ‘common mode’ correlations, leaving a
391 larger dynamic range for motion signals²⁹. When noise is added to the model, it may be more
392 important to make the unit signals as direction-selective as possible, and the opponent properties
393 measured could reflect that additional direction-selectivity.

394
395 Last, we examined how changing the noise characteristics affected the decorrelation of the
396 signals among units in an LN model (**Fig 6(iii)**). As back-end noise was increased during
397 training, the resulting LN units became less coactivated by the naturalistic stimuli. This seems
398 linked to the increased direction- and edge-selectivity of the units under larger back-end noise
399 (**Fig. 5(ii)**). When units are more edge- and direction-selective, a given stimulus activates only
400 one of them, since there should be only one edge type moving in one direction through the model
401 receptive field.

402 **Discussion**

403
404 This study has demonstrated the potential for fine-grained, neuron-level mapping between task
405 optimized ANNs and real neural circuits. Results showed that an optimized model for visual
406 motion detection could account for many measured neural properties in the *Drosophila* motion
407 detection circuits that are not predicted by textbook models for motion detection, like the
408 Hassenstein-Reichardt correlator and motion energy models^{32, 33}. Anatomical constraints from

409 the real circuit were key to developing this correspondence. Our work also demonstrated that
410 robustness to noise was critical to generating artificial networks that matched measured
411 properties.

412 Importantly, these results were not built into the fitting routine or model architecture. The tests of
413 similarity between ANN and BNNs were also distinct from the training data. One can imagine
414 other solutions that might have performed well in the training. For instance, one could imagine
415 splitting the A_+/A_- and B_+/B_- unit pairs to be tuned to fast and slow motion, respectively, thus
416 covering a wide range of input velocities, rather than dividing them into ON- and OFF-edge
417 detectors. Alternately, the ON- and OFF-edge segregation need not be complete, as happens in
418 the low-noise optimizations, where units were not particularly edge or direction selective (Fig.
419 5). Last, the two flanking filters do not need to have opposite signs and be delayed with respect
420 to the center filter: if all three filters had single lobes with the same sign and have delays of τ ,
421 2τ , and 3τ , they could sum up above a nonlinear threshold only for stimuli consisting of motion
422 in one direction. However, these counterfactual solutions did not occur when the models were
423 optimized for performance. This leads us to interpret these features in fly motion detectors as
424 having evolved to optimize performance in motion detection, and suggests that we have
425 identified crucial constraints on the circuit.

426
427
428 *Loss functions and optimization*
429 In this study, we used loss functions that minimized error in predicting the velocity or direction
430 of a moving natural scene. How realistic is this task? Motion detectors in flies generate graded
431 responses that depend on direction and speed³⁶, so it's a reasonable place to start. But future
432 studies could incorporate more realistic tasks, such as training a motion detector to act as the
433 input for an agent-based model that attempts to move with a stable course through an
434 environment. Such a task would require incorporating knowledge of the downstream circuitry
435 and locomotor control⁷⁷. One could also imagine that motion-sensing would arise from networks
436 trained to detect and land on objects, which would be a highly ethological task. More simply, one
437 could also incorporate known downstream circuitry, such as the shunting mechanisms that
438 perform a kind of gain control in spatial integration of T4 and T5 units^{61,78}. Such studies might
439 generate new hypotheses about the evolutionary origin of motion detectors. Here, the simplest
440 loss functions we considered appear sufficient to generate many of the features in the fly's
441 circuits.

442
443 Our study used gradient descent to optimize the models. We examined the best performing
444 models from a suite of initializations, since models could become trapped in sub-optimal local
445 optima. How might optimization occur in the fly's visual circuit? There is some experience
446 dependent plasticity in flies dependent on light level⁷⁹, but it seems likely that optomotor circuit
447 structure and function is genetically determined to a large degree, and optimized over
448 generations of natural selection. The gradient descent procedure we used can become stuck in
449 local optima because our networks are shallow and not over-parameterized⁸⁰. Interestingly,
450 optimization algorithms that are similar to natural selection can optimize models efficiently and
451 may be able to avoid local optima⁸¹. Our results show that one can think productively about
452 these visual circuits as solutions to an optimization problem, solved by evolution.

454 *Influence of noise*
455 The model features that matched biology did not arise from the task and network structure alone,
456 but depended critically on noise in the system. The back-end noise we added made units more
457 direction-selective and forced them to have larger differences between preferred and null
458 direction responses. In that way, it penalized large, correlated responses from opposing units.
459 Thus, adding noise had an effect similar to adding a sparsity constraint explicitly, for instance by
460 adding a term to the loss function proportional to the absolute value of all unit responses.
461 Sparsity is commonly observed in neural systems ⁸², and non-coactivity of parallel motion
462 detectors has previously been hypothesized to organize their response properties ²⁸. Here, by
463 adding noise during training, we can see one logic of the sparse solution, since the non-
464 coactivation of the units makes the system more robust to noise. Interestingly, the common
465 technique of dropout training, in which only a stochastic subset of weights are updated during
466 each learning iteration, is equivalent in to injecting certain types of noise into the network ⁸³.
467 This means that many artificial networks trained using dropout techniques are already implicitly
468 trained to be robust to corruption by noise. By adding this noise explicitly, we control this
469 constraint and can more easily relate it to biological sources of noise.
470

471 *Sources of noise*
472 Given the influence of noise on the model solutions (**Figs. 4, 5, 6**), it is important to ask whether
473 the noise injected into the models is consistent with what is known about the fly's visual circuits.
474 If so, then our modeling suggests that those noise sources impose strong constraints on the circuit
475 that influence the solutions that have evolved in the fly.
476

477 Front-end noise could be attributed to fluctuations in photoreceptor signals or signals in
478 downstream lamina and medulla cells. Photoreceptor signal-to-noise has been well-characterized
479 and depends strongly on the absolute light intensity, as well as on temperature ^{69, 84}. When light
480 intensity is high, the signal-to-noise ratio of photoreceptors in flies can be ~ 10 , while under low-
481 light conditions, the signal-to-noise ratio can decrease to ~ 0.1 (ratio of powers). This range
482 extends beyond the range of noise in our sweeps (**Figs. 4-6**). Since the front-end noise is
483 variable, it seems likely that the fly has evolved to deal with the full range, not just a single noise
484 level, as in our numerical experiments.
485

486 Less is known about noise deeper in the visual system. Studies in locust have suggested that
487 signal-to-noise actually decreases in feature detectors further from the sensory periphery ⁸⁵.
488 Electrical recordings of T4 and T5 responses to strong driving stimuli show relatively little trial
489 to trial variability (SNR of ~ 10 , signal/std noise) but higher variability between cells (SNR of ~ 2
490 mean signal/std) ^{19, 21}. The larger variance between cells could reflect long timescale gain
491 fluctuations within cells. Noise within a cell could also be amplified by expansive nonlinearities
492 that transform voltage into calcium and calcium into synaptic release. Synaptic transmission
493 might also decrease signal-to-noise due to synaptic vesicle release statistics, since it's
494 metabolically expensive to transmit high SNR signals ⁸⁶. With more careful measurements of the
495 noise characteristics of T4 and T5, one could add more accurate, spectrally-matched noise
496 models to the fitting procedure performed here.
497

498 Although we trained models with noise at specific levels, the biological circuit is likely exposed
499 to varying levels of noise, dependent on stimulus and internal state. Since the high-noise training

500 regime is most generalizable across noise regimes (**Fig. 4E, Supp. Fig. S2**), it may be that
501 training in high-noise is most similar to optimization under a range of different noise levels.
502

503 *Structure of delays in 3-input motion detectors*

504 The optimized models in this study consistently showed a fast central input and delayed flanking
505 inputs with opposite signs (**Fig. 3**). This configuration appears in the fly motion detectors (**Fig.**
506 **1A**) but has also been suggested to explain cortical direction-selective signals ⁸⁷. This functional
507 organization emerged with all three unit types, and did not depend on whether the model was
508 predicting the stimulus velocity or just its direction (**Fig. 4**). It has a clear orientation in space-
509 time, suggestive of motion energy-like processing ^{16, 17}. Interestingly, this delayed-opposite-
510 flanks weighting structure also appears in a completely different optimization task, in which a
511 network is trained to preserve similarity under translation of images ⁸⁸. This flanking
512 organization in the circuit has been postulated to improve opponency through synaptic
513 nonlinearities ²⁹, but it is present in the LN and LNLN trained models, so it appears to be helpful
514 even without the synaptic nonlinearity. Thus, this spatiotemporal weighting structure in motion
515 detection acts flexibly to solve many different constraints and optimization problems. This could
516 also serve the fly's visual system well, since neurons downstream to T4 and T5 are specialized to
517 detect both visual flow ^{6, 63} and looming stimuli ⁸⁹, and likely other visual features ⁹⁰.
518

519 *ON- and OFF-edge detectors and natural scenes*

520 In this study, ON- and OFF-edge selective motion detectors emerged naturally as solutions to the
521 task of detecting motion. This did not depend strongly on the loss function, training data, or form
522 of the nonlinearity (**Fig. 4, S2**). The units must remain near the nonlinear threshold in order to
523 generate direction-selective signals, and it appears that there is a greater benefit to tuning units to
524 ON- and OFF-edges, rather than choosing to respond to ON-edges only, for instance, but with
525 unit pairs tuned to different speeds. If the system did not contain both ON- and OFF-edge
526 selective pairs, it would not respond to roughly half of all inputs. This logic could explain
527 parallels in motion computation among species ^{91, 92}, including the split into ON- and OFF-edge
528 motion detectors in flies and in mouse retina ^{93, 94} and the evidence for edge polarity-selective
529 motion responses in primate cortex ^{30, 76, 95-98}. Flies, zebrafish, and humans all treat light and dark
530 signals asymmetrically in computing motion in ways that seem tuned to improve naturalistic
531 performance ^{38, 43, 44, 76, 96, 99}. This suggests there are additional benefits to pathway splitting not
532 explored here. One powerful explanation for sensory splitting into ON and OFF pathways is
533 based on preserving stimulus information under metabolic constraints ^{100, 101}, but it is not clear
534 whether that logic maps onto the optimization task here, in which the model infers a latent
535 variable and there is no obvious analogue to a metabolic constraint.
536

537 *Stationary edge responses*

538 Prior experiments have shown responses in T4 and T5 neurons to flashes ^{17, 19, 21, 23, 25, 28} or
539 sinusoids ¹⁰², which are consistent with classical models ³³. Our results shed light on T4 and T5
540 responses to stationary edges of specific polarities (Fig. 1D) ³⁰. Under low-noise conditions,
541 models performed best when they were strongly sensitive to edges of a single polarity and only
542 mildly direction-selective (**Fig. 5(ii)**). The non-directional responses were cancelled by other
543 units. Under high-noise training, direction-selectivity increased, reducing their responses to
544 stationary edges (**Fig. 5(iii)**). These results suggest that a motion detector unit predicts motion
545 best when it responds to stationary edges and has partner units to cancel this signal. This

546 approach is limited by system noise, reducing the response amplitude to stationary edges. The
547 biological responses to stationary edges may reflect the emphasis on spatial gradients in the low-
548 noise solutions.

549

550 *Circuit features neglected in these models*

551 While our three models proceeded from more abstract to more biophysical, they all neglected
552 many known features of the circuit, which could have important effects on the learned solutions.
553 The network architecture was based on connectome reconstruction, but it focused on connections
554 between T4 and T5 and their inputs and did not take into account many other circuit features. We
555 summarize here some important simplifications made in this study. (1) We represented all the
556 circuitry upstream of medulla interneurons as a simple spatial and temporal filter, when in fact
557 there is complex gain control and changes in dynamics that take place upstream of medulla
558 interneurons^{69, 103-105}. Our calculation of contrast during training may relate to some of these
559 early operations. Moreover, all these early visual neurons have nonlinear response properties,
560 while we focused on only the rectification in the inputs to directional units and the nonlinearities
561 within those units. (2) Visual interneurons upstream of T4 and T5 have different shapes of
562 receptive fields, including center-surround antagonism^{14, 24, 50, 104}, which could influence their
563 response properties in performance-based fitting procedures. (3) In training models, we assumed
564 perfect contrast normalization, when in fact there are dynamics and spatial scales for this
565 operation^{66, 67}. (4) Our units have only one neuron at each of the three spatially separated inputs,
566 but anatomy suggests there are multiple input neurons at some positions^{10, 11, 13}, and functional
567 studies show they may interact nonlinearly¹⁸. (5) Our models are feedforward, when there are
568 multiple instances of lateral interactions and feedback in the true circuit^{10, 11, 13}. (6) Early
569 temporal and spatial processing change to integrate signals differently under different levels of
570 signal and noise^{64, 65, 106}, while our model did not include adaptation. In understanding
571 constraints on the system, some of these features are likely to be important to determining the
572 solution. However, the simplifications made in this study still allowed us to generate trained
573 models with neuronal features shared by the biological circuits.

574

575 *Performance optimization and model realism*

576 Models of motion estimation in the fly range from the abstract to the biophysically detailed. The
577 abstract ones are harder to relate to circuitry, but are easier to understand and can explain broad
578 phenomenology^{34, 35, 38, 107}. The biophysically detailed ones have the power to explain specific
579 voltage signals^{19, 21, 59, 60}. A range of models in between these two extremes connect motion
580 detection to various aspects of the fly's specific circuitry^{16, 17, 29, 44, 67, 108}. In the modeling here,
581 we moved across this spectrum by optimizing three models that ranged progressively from more
582 abstract — similar to motion energy models³³ — to more biologically realistic — similar to
583 previously published models that could be hand-tuned to perform well^{29, 59}. The more abstracted
584 models provided results that were easier to interpret, but this work shows how abstracted models
585 can be related to the biologically realistic ones in terms of the performance and properties of
586 optimized solutions. It was not necessary to include synaptic biophysics to reproduce the circuit
587 features we examined here, but it was helpful to include rectifications that occur upstream of the
588 motion detectors (**Fig. 3**).

589

590 This work adds to a suite of models that have shown how constraints and optimization contribute
591 to sensory processing. Some of these models have been fit directly to predict data^{109, 110}, while

592 ours and others ^{1,2,111} have been optimized to perform specific tasks. Our work is closest to two
593 prior approaches. In fitting retinal responses to a convolutional neural network, other studies
594 have found that the model that fits best has units that look similar to the responses of the
595 progression of cell types in the retina ^{109,110}. These studies included temporal processing, as ours
596 did, but had weaker anatomical constraints, using 3 layers of units, without specifying a priori
597 how units in each layer were connected. The artificial network was fit to recorded retinal outputs,
598 so features of the artificial network reflect circuit components but do not provide information
599 about the tasks performed by the biological circuit.

600

601 A different approach used detailed connectomic data to investigate the fly motion circuits by
602 training a network to detect the position and displacement of a visual object in a movie ¹¹¹. That
603 study employed a far more detailed set of connection constraints, encompassing 40+ neuron
604 types arrayed over a large swath of visual space. It used a separate network to interpret the
605 outputs of the fly eye. That study found that it could obtain direction-selective signals in T4 and
606 T5 neurons in the model when using measured synaptic connectivity with inferred signs and
607 manually imposed delays. In the present study, we focused on a small set of neurons upstream of
608 T4 and T5 with well-defined spatial receptive fields and we fit both temporal processing and
609 synaptic weighting. This allowed us to interpret how processing properties in a shallow,
610 feedforward ANN compared to those measured in neurons in the biological circuit.

611

612 *Mappings between artificial networks and biological circuits*

613 Both anatomical constraints and functional optimization were essential to creating a mapping
614 between this artificial network and the biological one. Our results were made more interpretable
615 by making simplifying assumptions based on the connectome. There are many properties one
616 could measure in a circuit, and comparisons with task-optimized models allow one to evaluate
617 how such properties relate to a specific task or constraint. This study argues that when strong
618 anatomical constraints are included in performance optimized models, there can be a close
619 correspondence between the model units and the analogous individual neurons.

620

621 **Contributions**

622 OM, MSC, and DAC conceived of the framework and numerical experiments. OM, MSC, and
623 BAB wrote code and ran numerical experiments. OM analyzed models and data. OM and DAC
624 wrote the paper.

625

626 **Acknowledgements**

627 We thank J. Fitzgerald, N. Kadakia, J. Lafferty, J. Murray, and members of the Clark lab for
628 feedback and illuminating conversations. We thank L. Romero and L. Khazan for their
629 contributions to coding on related projects. The Yale Center for Research Computing provided
630 helpful guidance and research computing infrastructure. DAC and this project were supported by
631 NIH R01EY026555, NSF IOS1558103, a Searle Scholar Award, and a Sloan Fellowship in
632 Neuroscience.

633

634 **STAR Methods**

635

636 RESOURCE AVAILABILITY

637

638 *Lead Contact*

639 Further information and requests for code or data should be directed to and will be fulfilled by
640 the lead contact, Damon A. Clark (damon.clark@yale.edu).

641

642 *Materials availability*

643 This study did not generate new unique reagents.

644

645 *Data and code availability*

646 Python and Matlab code to train all models in this paper and generate all figures in this paper is
647 available at <http://www.github.com/ClarkLabCode/T4T5TrainingCode>. Code is in Matlab
648 (Mathworks, Natick, MA), Python, and several Python libraries^{71, 112-114}. The natural image
649 database used in this study has DOI <https://doi.org/10.4119/unibi/2689637> and is available at
650 <https://pub.uni-bielefeld.de/rc/2689637/2693616>.

651

652 METHOD DETAILS

653

654 *Training data*

655 We wanted to train neural networks to predict velocity traces $v(t)$ from simulated visual input
656 signals over space and time. To create velocity traces with the statistical properties similar to fly
657 rotation, we first drew samples from a Gaussian distribution with mean of 0°/s and standard
658 deviation of 100°/s. These samples were placed in a 1-dimensional vector with a sample rate of
659 100 Hz. To create autocorrelations in the trace, this vector was convolved with an exponential
660 filter $h(t) = K \exp(-t/\tau)$ where $\tau = 0.2/\log 2$ s and K was chosen so that the variance
661 remained unchanged under filtering. This resulted in a velocity trace with an autocorrelation
662 half-life of 200 ms and a standard deviation of 100 °/s (as in the original trace). This trace
663 corresponds to an auto-regressive Gaussian process of order 1, which is a discrete time
664 approximation of an Ornstein-Uhlenbeck process. These scales are comparable to those in
665 walking flies^{48, 49}. The final traces contained 101 elements each, corresponding to 1.01 seconds
666 of simulated time.

667 After creating the velocity traces, we constructed corresponding matrices of simulated
668 photoreceptor activation values. Conceptually, for each 101-element velocity trace, we needed a
669 3x101 element photoreceptor matrix that corresponds to the activations of the three inputs to our
670 models. In order to efficiently generate and use these 3x101 element matrices, we generated
671 72x101 element matrices corresponding to a full 360 degrees of photoreceptor activities, spaced
672 5 degrees apart⁵¹. These 72 photoreceptors observed natural scenes rotating at the speed
673 specified by the 101-element velocity trace. These matrices can be used in convolution
674 operations to quickly simulate the behavior of many model motion detectors.

675 To generate these 72x101 matrices, we took a dataset of natural scenes³⁹ and selected 241
676 images of natural environments, excluding indoor and architectural scenes. These scenes were
677 panoramic captures of 360x97.5 degrees sampled at around 2.6 pixels per degree. For each
678 velocity trace, we selected a natural scene image at random. We convolved these images with a 5

679 degree FWHM gaussian filter, approximating the acceptance angle of fly photoreceptors⁵¹. We
 680 converted the velocity trace into a position trace by integrating over time. These positions were
 681 used as offsets when converting the images in the spatially filtered dataset from 927x251 pixels
 682 to 72x20x101 elements representing the activations of an array of 72x20 photoreceptors at 101
 683 points in time. The 20 rows of photoreceptors were spaced every 5° in elevation. Each row of
 684 photoreceptors had an associated set of signal traces $s_{n,t}$ where n represents the azimuthal
 685 location and t represents time. Each set of $s_{n,t}$ was treated independently in further processing
 686 by duplicating the corresponding velocity traces such that the responses of all rows of
 687 photoreceptors could be used to predict the same velocity trace. For each velocity trace and
 688 photoreceptor matrix generated in this manner, we also created a paired trace with the entire
 689 spatial structure reversed (and negated velocities), in order to ensure that the dataset was
 690 balanced with respect to the direction of motion. Finally, the input images were mean subtracted
 691 and scaled so that the set of spatially filtered signals $s_{n,t}$ had a mean of zero and a unit variance,
 692 computed over all signals in a row and over time. In total, we created 8664 velocity traces and
 693 corresponding 72x101 element photoreceptor matrices, divided into a 6346 trace training set and
 694 a 2318 trace test set.

695 To generate the sinusoidal training data (**Fig. 4**), we substituted the natural scenes with
 696 sinusoidal gratings with wavelengths chosen from a uniform distribution ranging from 20° to 90°.
 697 All other processing steps were identical.

698

699 *Model definitions*

700 Our models consisted of multiple units whose outputs were summed to generate the model
 701 predictions. We defined (+) and (–) versions of each unit type, corresponding to mirror
 702 symmetric units that were added and subtracted to generate the final model outputs. To obtain
 703 the unit outputs, we filtered signals, s_t , in time by convolving them with filters, f_t , with 30
 704 elements, corresponding to 300 ms in time. We define this convolution as $(\mathbf{f} * \mathbf{s})_t =$
 705 $\sum_{\tau=0}^{29} f_{\tau} s_{t-\tau}$.

706

707 The mirror symmetric LN units were defined as:

$$708 \quad u_{k+,t} = \phi \left((f_{k,1} * s_1)_t + (f_{k,2} * s_2)_t + (f_{k,3} * s_3)_t + b_k \right)$$

$$709 \quad u_{k-,t} = \phi \left((f_{k,1} * s_3)_t + (f_{k,2} * s_2)_t + (f_{k,3} * s_1)_t + b_k \right)$$

710 Where s_i are the input signals, and all parameters ($f_{k,i}$ and b_k) are identical for both units in the
 711 pair, and the pairs are indexed by k . The activation function ϕ is everywhere a rectified linear
 712 unit (ReLU):

$$713 \quad \phi(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$$

714

715 The mirror symmetric LNLN units were defined as:

$$716 \quad u_{k+,t} = \phi \left(w_{k,1} \phi \left((f_{k,1} * s_1)_t + b_{k,1} \right) + w_{k,2} \phi \left((f_{k,2} * s_2)_t + b_{k,2} \right) + w_{k,3} \phi \left((f_{k,3} * s_3)_t + b_{k,3} \right) + b_{k,4} \right)$$

$$717 \quad u_{k-,t} = \phi \left(w_{k,1} \phi \left((f_{k,1} * s_3)_t + b_{k,1} \right) + w_{k,2} \phi \left((f_{k,2} * s_2)_t + b_{k,2} \right) + w_{k,3} \phi \left((f_{k,3} * s_1)_t + b_{k,3} \right) + b_{k,4} \right)$$

718 As above, all the parameters are the same for both units in the pair. Each $w_{k,i}$ is a scalar free
719 parameter.

720
721 For the synaptic nonlinearity, we followed previous work to create a nonlinearity that treats input
722 LN lines as conductances in the membrane of a postsynaptic cell, and then computes the steady
723 state voltage, given weighting parameters that are equivalent to reversal potentials in a real cell
724 ^{19, 29, 59, 115}. This approximates the membrane time constants as being much smaller than typical
725 variations in inputs ¹⁹:

726
$$S_{k,t}(s_1, s_2, s_3) = \frac{w_{k,1}\phi\left((f_{k,1} * s_1)_t + b_{k,1}\right) + w_{k,2}\phi\left((f_{k,2} * s_2)_t + b_{k,2}\right) + w_{k,3}\phi\left((f_{k,3} * s_3)_t + b_{k,3}\right)}{1 + \phi\left((f_{k,1} * s_1)_t + b_{k,1}\right) + \phi\left((f_{k,2} * s_2)_t + b_{k,2}\right) + \phi\left((f_{k,3} * s_3)_t + b_{k,3}\right)}$$

727 We then defined our two units as:

728
729
$$u_{k+,t} = \phi(S_{k,t}(s_1, s_2, s_3) + b_{k,4})$$

730
$$u_{k-,t} = \phi(S_{k,t}(s_3, s_2, s_1) + b_{k,4})$$

731 Where the second activation function could correspond to a calcium nonlinearity acting on the
732 membrane voltage ^{17, 29, 59}.

733
734 Our model outputs, R_t , weighted two pairs of units by the scalars a_k as follows:
735
$$R_t = a_1(u_{1+,t} - u_{1-,t}) + a_2(u_{2+,t} - u_{2-,t})$$

736 This arrangement of units within models gave us three models: the LN model using two pairs of
737 LN units, the LNLN model using two pairs of LNLN units, and the synaptic nonlinearity model
738 using two pairs of synaptic nonlinearity units. When we examined additional units in Figure 4,
739 we added the additional pairs with new weight parameters.

740
741 *Noise in the models*

742 We added noise to the models at two stages. First, we added front end noise by adding random
743 samples from a zero-mean Gaussian distribution to each element in the matrices $s_{n,t}$. Since the
744 standard deviation of these matrices was unity, the standard deviation of the added noise
745 controlled the relative amplitude of signal and noise. Second, we multiplied the output of each
746 model unit $u_{k\pm,t}$ by random draws from a lognormal distribution for each point in time. The
747 lognormal distribution was chosen such that its mean was 1, and its standard deviation
748 determined the relative size of the output noise. The output noise was chosen to be multiplicative
749 rather than additive so that the models could not escape the noise by producing very large unit
750 outputs and then rescale them with the model weights after the addition of noise. The standard
751 deviations for both these sources varied according to the experiment.

752
753 *Training protocols*

754 All models were trained in Python using TensorFlow ⁷¹. Due to the convolution operations
755 employed by our neural network models, for each $72 \times 101 \times$ [batch size] input to our model, the
756 output was a set of $70 \times 72 \times$ [batch size] velocities corresponding to a set of $72 \times$ [batch size] true
757 velocities. We duplicated these true velocities to create tensors of $70 \times 72 \times$ [batch size]. To train
758 the models, we chose the loss function to be the mean squared error between the true input
759 velocity and the individual model outputs, R_t (not averaged over space). In the case of models

760 trained to predict the direction of motion (**Fig. 4B**), we converted the velocity trace into a binary
761 direction trace, and the loss function became the cross-entropy of the true direction with a
762 sigmoid function acting on the model output, R_t . The primary analyzed models each had two
763 unit types with three filters each (180 parameters). In the LN model, each of the two LN unit
764 pairs had one additional bias term associated with the threshold nonlinearity. In the LNLN
765 model, each of the LNLN units had four additional bias terms associated with the four threshold
766 nonlinearities, and three additional weight parameters for the three rectified input arms. For the
767 synaptic nonlinearity model, the additional parameters were the same as for the LNLN model.
768

769 To train our models, we used the Adam optimizer with an initial learning rate of 0.03 and
770 learning rate decay such that the final learning rate was 0.0027. We trained for 1000 epochs with
771 a batch size of 128. For each set of model hyperparameters (model type, direction prediction,
772 input and output noise, etc.), we trained 50 instantiations of that model. Each instantiation had a
773 different initial set of weights drawn from a “Glorot” distribution ¹¹⁶. For analysis, we chose the
774 9 highest performing models for each set of hyperparameters as evaluated by the coefficient of
775 determination in the training dataset. Multiple training runs from the same initialization tended to
776 arrive at the same solution, suggesting that in our training regime, the stochasticity of
777 initialization affects solutions more than stochasticity in training protocol.
778

779 *Stimuli for comparison with biological data*

780 To compare model responses to those measured in fly visual circuits, we created several visual
781 stimuli to present to our models. First, to obtain the effective linear filters of the inputs to the
782 synaptic model, we stimulated the model with independent, Gaussian noise to each input, with
783 zero mean and unit variance, then extracted the kernels from the unit output, using standard
784 methods ¹¹⁷.
785

786 To make comparisons with responses to edges (**Fig. 1C**), we created light and dark edges
787 expanding over time so that the image, m , over space and time, was:

$$788 \quad m(x, t) = \pm 2 \left(H(x \pm vt) - \frac{1}{2} \right)$$

789 where we used all combinations of \pm to make light and dark edges moving in both directions.
790 The stimulus velocity v was 30°/s. These images were spatially filtered to create the input signals
791 $s_{n,t}$.
792

793 To compare responses to different stationary edges (**Fig. 1D**), we created a light and dark square
794 wave with an image over space of:

$$795 \quad m(x) = \text{sign} \left(\sin \left(\frac{2\pi x}{\lambda} \right) \right)$$

796 where the wavelength λ was chosen to be 80°. These images were spatially filtered to create the
797 input signals $s_{n,t}$.
798

799 To compare responses to sinusoids moving the preferred and null directions and to their sum
800 (**Fig. 1E**), we created images as follows:
801

$$m_{PD}(x, t) = \frac{1}{2} \sin(kx - \omega t)$$

802 $m_{ND}(x, t) = \frac{1}{2} \sin(kx + \omega t)$

803 $m_{PD+ND}(x, t) = \frac{1}{2} \sin(kx - \omega t) + \frac{1}{2} \sin(kx + \omega t)$

804 The spatial frequency was chosen to be $k = 2\pi/60$ deg $^{-1}$ and $\omega = 2\pi$ s $^{-1}$. In sweeps of spatial
 805 and temporal frequency (**Supp. Fig. 1**), the spatial and temporal frequencies were chosen as
 806 labeled. When signal strength was swept, the sinusoid amplitude was changed as labeled. As
 807 with the other stimuli, these images were spatially filtered.

808 To compare the degree of coactivation (**Fig. 1F**), we used the natural scenes test (holdout)
 809 dataset described above.

810 In all comparisons of the model with data, we set the noise values in the model to 0, regardless of
 811 training regime, unless otherwise noted. Setting the input noise to 0 is the equivalent of having a
 812 bright stimulus with high signal to noise, as is typical of experiments. Setting the output noise to
 813 0 is the equivalent of averaging over many trials of the same stimulus (since the multiplicative
 814 noise has expected value of 1). Averaging over trials was typical in the comparison data (**Fig. 1**).
 815

816 *Metrics*

817 We summarized properties of models with several metrics (Figs. 5 and 6). Fraction of variance
 818 explained was evaluated using the coefficient of determination in the holdout (test) dataset; it
 819 could be negative if the model performed worse than uniformly predicting the average velocity
 820 in the dataset. We evaluated the timescale of the learned filters by calculating the center of mass
 821 (or expected value) of the absolute value of the filters.

822 We also evaluated the edge selectivity indices (ESIs) and the direction selectivity indices (DSIs)
 823 of the models by simulating the responses to the moving edges. We simulated a light edge and a
 824 dark edge moving in the positive and negative direction, each as a separate trace. Then, for each
 825 unit in the model, we calculated the maximum of the absolute value of the response. For each
 826 unit, we averaged the PD and ND max responses across the dark and light edges, and separately
 827 averaged the light and dark max responses across the PD and ND edges. Then, for each unit we
 828 compute the selectivity index; $ESI = \frac{R_{light} - R_{dark}}{R_{light} + R_{dark}}$, where R_{light} is the average of the max
 829 response to light edges in both preferred and null directions and R_{dark} is the average of the max
 830 response to dark edges in both preferred and null directions. Similarly, $DSI = \frac{R_{PD} - R_{ND}}{R_{PD} + R_{ND}}$ where

831 R_{PD} is the average of the max response to light and dark edges in the preferred direction while
 832 R_{ND} is the average of the max response to light and dark edges in the null direction. Finally, we
 833 computed selectivity index for the model as a whole by taking the mean of the absolute values of
 834 the selectivity indices of the individual units.

835 To summarize the static edge activation as a scalar value for each model, we stimulated the
 836 model units with static edges of both polarities centered on the central receptor and found the
 837 steady state response. We report the model response as the average of all unit responses to both
 838 edges.

844 In order to measure opponent suppression, we generated a moving sinusoidal grating dataset with
845 PD, ND, and PD+ND stimuli, as described above. We then calculated the space- and time-
846 averaged responses of the individual units our models to these three stimuli. We defined an
847 opponency index of these units as $OI = \frac{R_{PD} - R_{CP}}{R_{PD} + R_{CP}}$ where R_{PD} and R_{CP} are the time-averaged unit

848 response to the preferred direction sinusoid grating and the response to the counterphase grating
849 respectively. We then defined the model's opponency index as the average of the opponency
850 indices of its units.

851

852 Finally, we evaluated the sparsity of the coactivation of the model units in response to the test
853 set, naturalistic stimuli, with no noise added. Coactivation between units m and n was defined as

854
$$C_{nm} = \frac{1}{T} \sum_{t=1}^T \frac{u_{n,t}}{\sqrt{\frac{1}{T} \sum_{t=1}^T u_{n,t}^2}} \frac{u_{m,t}}{\sqrt{\frac{1}{T} \sum_{t=1}^T u_{m,t}^2}}$$
, where $u_{n,t}$ is the response trace of unit n at time t and

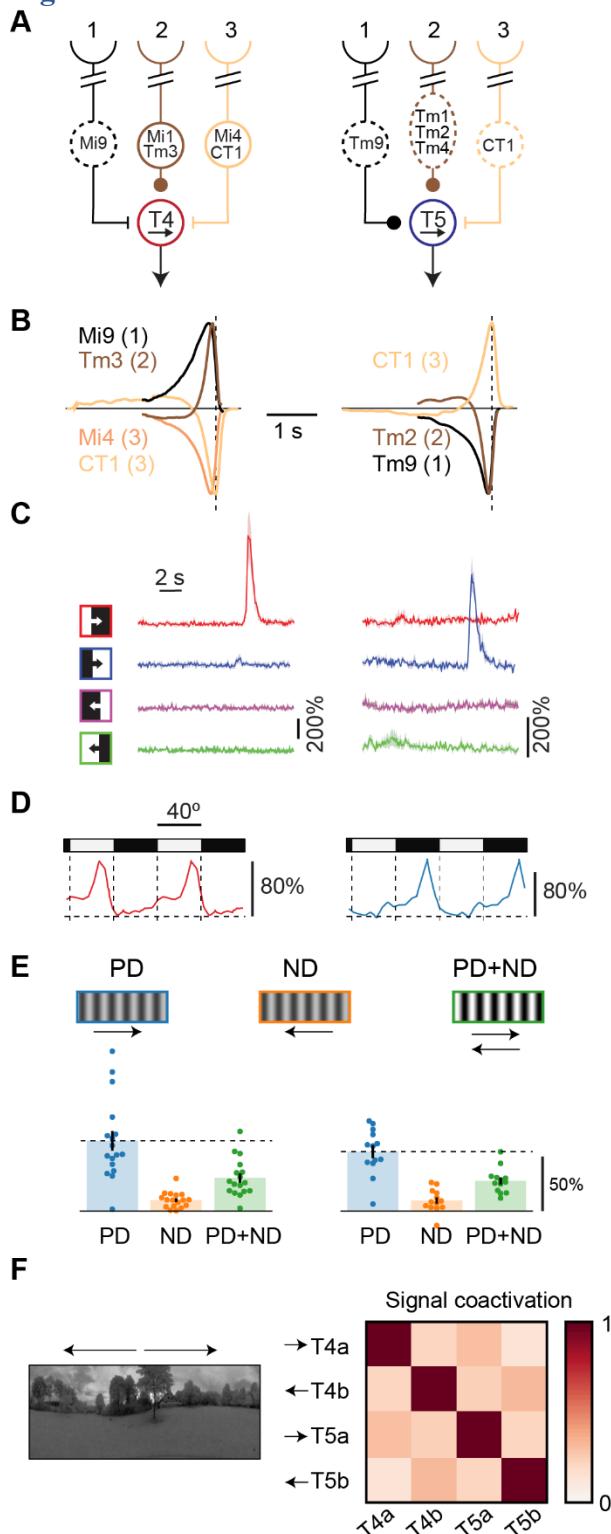
855 $u_{m,t}$ is defined similarly; T is the length of the trace in time. Averages were taken over the entire
856 test dataset. We defined a sparsity index as the root mean square difference between the
857 coactivation matrix of the model units and the identity matrix and then rescaled it so that a
858 sparsity index of 1 corresponds to the identity matrix and a sparsity of 0 corresponds to all units
859 being 100% coactive.

860

861

862

863

Figures

864

865

Figure 1. Non-canonical measured properties of primary motion detecting neurons in *Drosophila*.

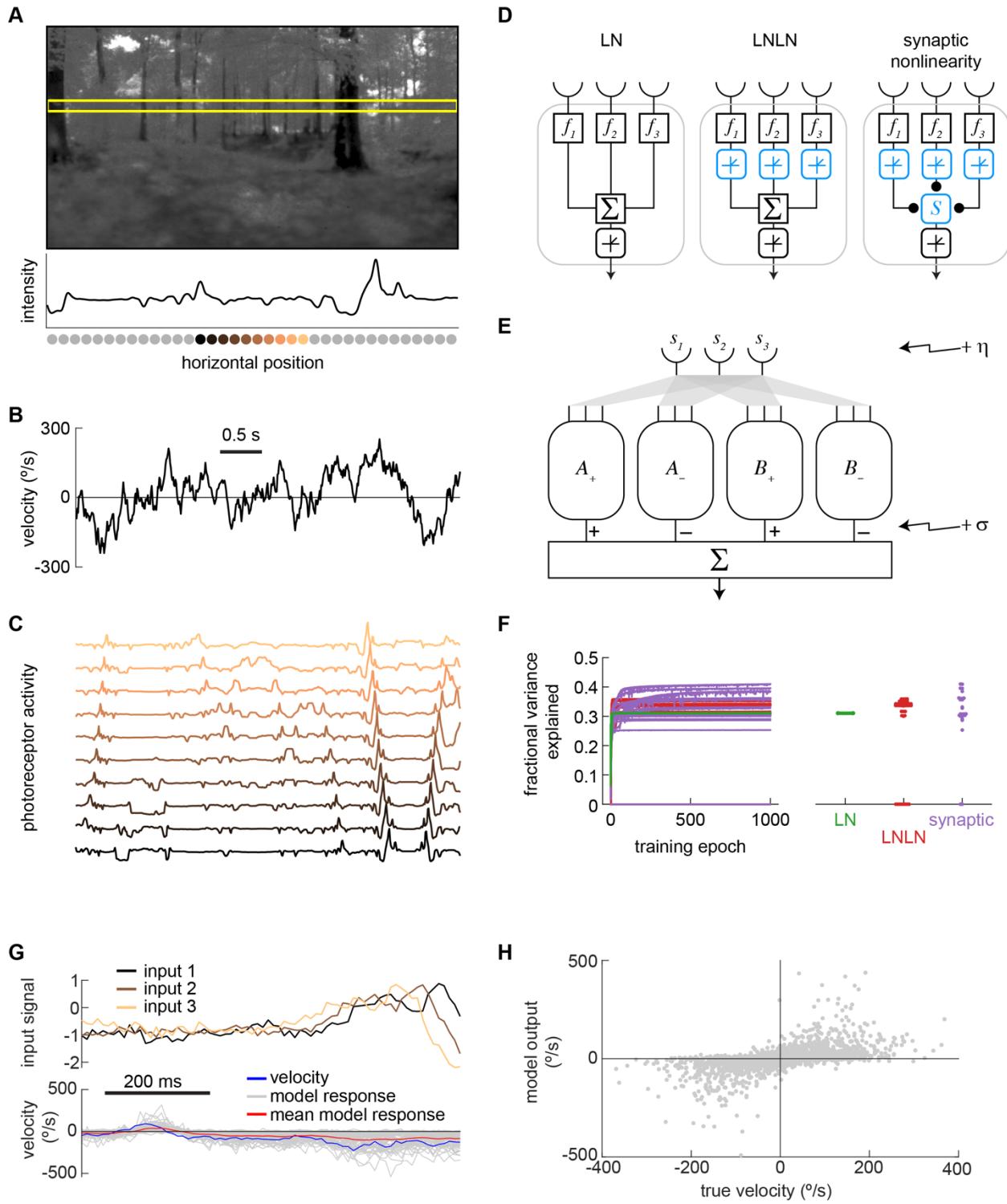
866

867

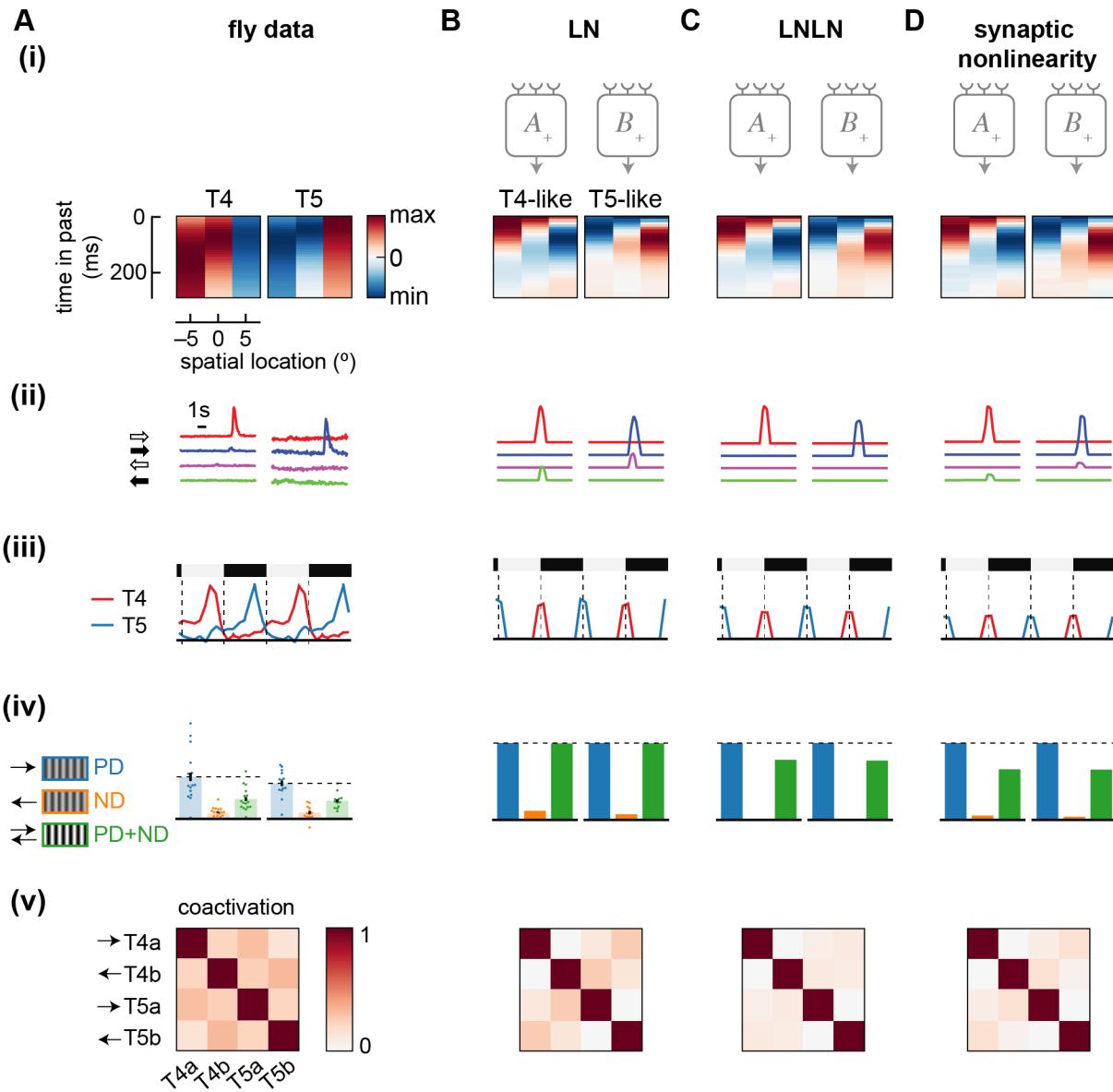
868

A) Connectivity schematic of the three spatially separated inputs to T4 and T5 neurons, two parallel, primary motion detectors in *Drosophila*'s visual system. Dashed lines indicate

- 869 that a cell is in the OFF pathway. Round synapses indicate excitatory connections, while
870 bars indicate inhibitory synapses.
- 871 B) For each cell immediately upstream of T4 and T5, we plot the linear model prediction of
872 the calcium response to an impulse of light signed by their input to T4 and T5. Neurons
873 in position 2 show fast dynamics compared to the neurons in flanking positions. Inputs
874 from position 3 have the opposite influence on T4 and T5 from neurons in positions 1 and
875 2. Data from ^{24, 37}.
- 876 C) Traces of T4 and T5 calcium responses to light and dark edges moving in the preferred
877 (rightward) and null (leftward) directions. Data from ³⁰.
- 878 D) Mean calcium responses of T4 and T5 neurons to a stationary square wave stimulus as a
879 function of position, showing preferential responses at edges of specific polarity. Data
880 from ³⁰.
- 881 E) Mean calcium responses of T4 and T5 neurons to preferred direction (PD) and null
882 direction (ND) drifting sinusoid gratings, as well as to their sum (PD+ND). The addition
883 of null direction motion suppresses calcium responses in T4 and T5, a form of opponent
884 suppression in primary motion detectors. Data from ²⁹.
- 885 F) T4 and T5 calcium signals in response to naturalistic stimuli tend to be non-coactive.
886 Arrows indicate the direction selectivity of the different neuron classes. Data from ²⁸.
- 887



- 895 C) Scenes were translated at the assigned velocities in order to generate a trace of inputs that
896 mirrored the ommatidial inputs of a fly (see Methods). Each trace represents the activity
897 of a photoreceptor located at the position of the photoreceptor in (A) with matching color.
898 D) Three different shallow network unit types were tested: a linear-nonlinear unit (LN), an
899 LN LN unit, and a unit combining inputs using a biophysical nonlinearity (see Methods).
900 E) In the models, two units were each paired with a mirror symmetric version of themselves
901 (A_+ with A_- , B_+ with B_-), and signals from the units were subtracted. A and B units had
902 the same architecture but were trained with independent weights. The model output was
903 the sum of these differences. Noise was added at the front-end of the model (η) and at the
904 back end (σ , see Methods).
905 F) Models containing the three different unit types were trained to predict the scene velocity
906 from ommatidial signal traces. The training converged (*left*) and the fully-trained models
907 predicted 30-40% of the variance in the velocity (*right*). These traces show results for
908 training with $\eta = \sigma = 1/8$.
909 G) Example traces of inputs and outputs of an LN model trained as in (F), as compared to
910 the true input velocity (*blue*). Different model outputs (*gray*) are for different spatial
911 locations in images, with the same velocity trace. The mean value of the model responses
912 is plotted in red.
913 H) Scatter plot of individual instantaneous model outputs against the true velocity.
914



915
916 **Figure 3. Models trained to predict naturalistic velocities possess many properties of the**
917 **biological circuit.** Data shown includes: (i) Spatiotemporal receptive fields composed of time
918 traces of the filters of the 3 spatially separated inputs to T4 and T5 or to T4- and T5-like units.
919 Each input filter is normalized. (ii) Responses to light and dark edges moving left and right.
920 (iii) Responses to stationary square waves. For model responses, the full vertical extent of the dashed
921 lines is the amplitude of responses to the preferred moving edge in (ii). (iv) Relative responses to
922 preferred and null direction sinusoids, and their sum. (v) Coactivation of units in response to
923 naturalistic stimuli.

- 924 A) Data from the fly, as in Figure 1.
925 B) As in (A), but for a trained LN model.
926 C) As in (A), but for a trained LNLN model.
927 D) As in (A), but for a trained synaptic nonlinearity model. All three models were trained
928 with noise values of $\eta = \sigma = 1$.

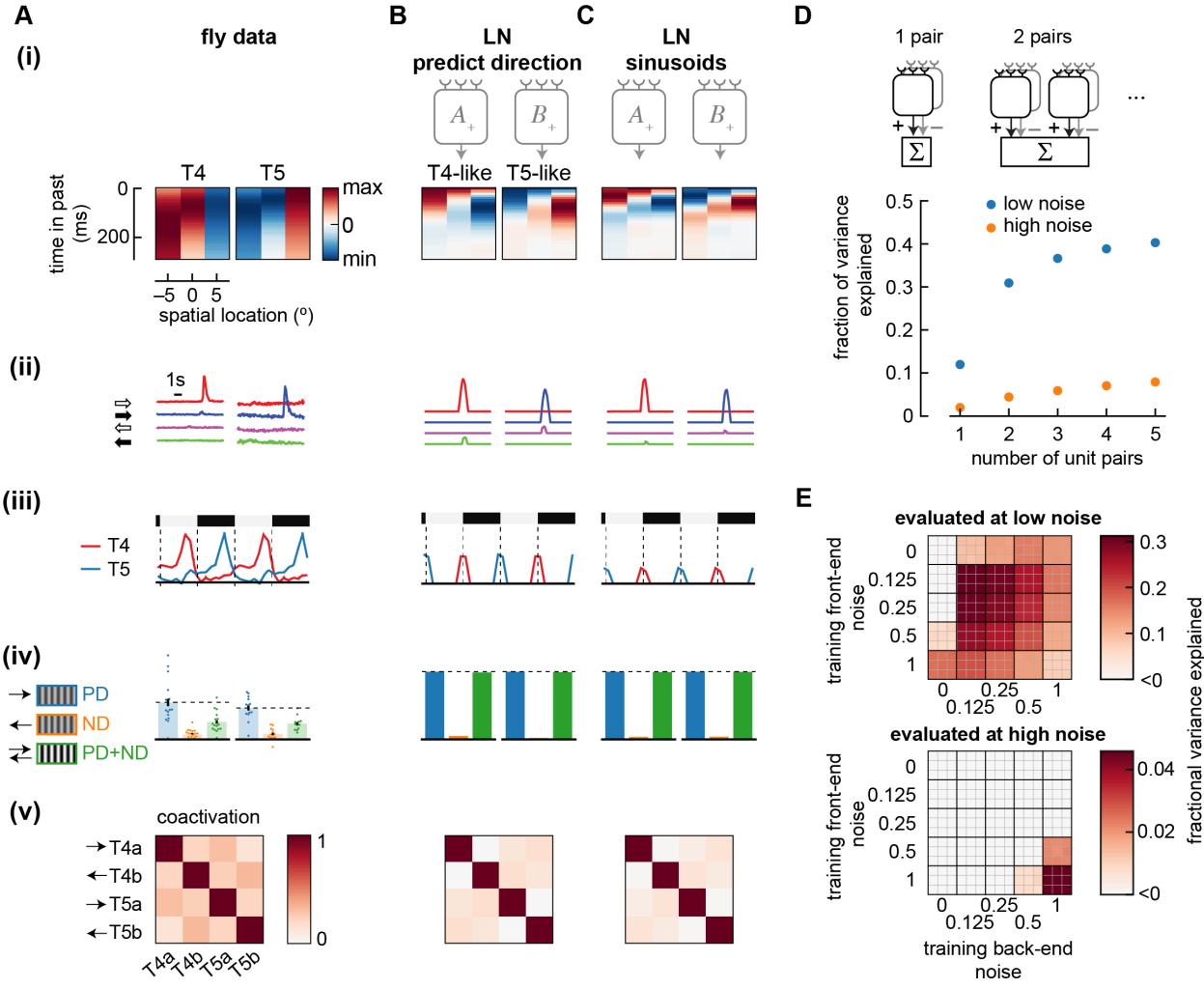


Figure 4. Effects of model loss function, training, architecture, and noise.

- A) Summary of properties measured in T4 and T5 (from **Figure 1**). Data shows false color time traces of 3 spatially separated input filters (i), responses to light and dark edges moving left and right (ii), responses to stationary square waves (iii), responses to preferred and null direction sinusoids, and their sum (iv), and coactivation of units in response to naturalistic stimuli (v).
- B) As in (A), but showing the results of an LN model with an alternate loss function, in which it was trained to predict *direction* of motion rather than predict *velocity* of motion. Compare with **Fig. 3B**. Model was trained with noise of $\eta = \sigma = 1$.
- C) As in (A), but showing the results of an LN model trained on sinusoidal gratings instead of natural scenes. Compare with **Fig. 3B**. Model was trained with noise of $\eta = \sigma = 1$.
- D) The number of mirror-symmetric, subtracted unit pairs was swept from one to five (*top*), while measuring the fraction of variance explained for LN models trained and evaluated in high and low noise conditions. All unit pairs received inputs from the same 3 spatial locations. Throughout the rest of this study, two pairs were used.
- E) Fraction of variance explained by models trained at a variety of front- and back-end noise levels, then tested at low noise (*top*) and high noise (*bottom*). The top 9 models are shown as a 3x3 grid at the coordinate of a specific parameter set. Low noise evaluation used parameters $\eta = \sigma = 0.125$; high noise evaluation used parameters $\eta = \sigma = 1$.

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

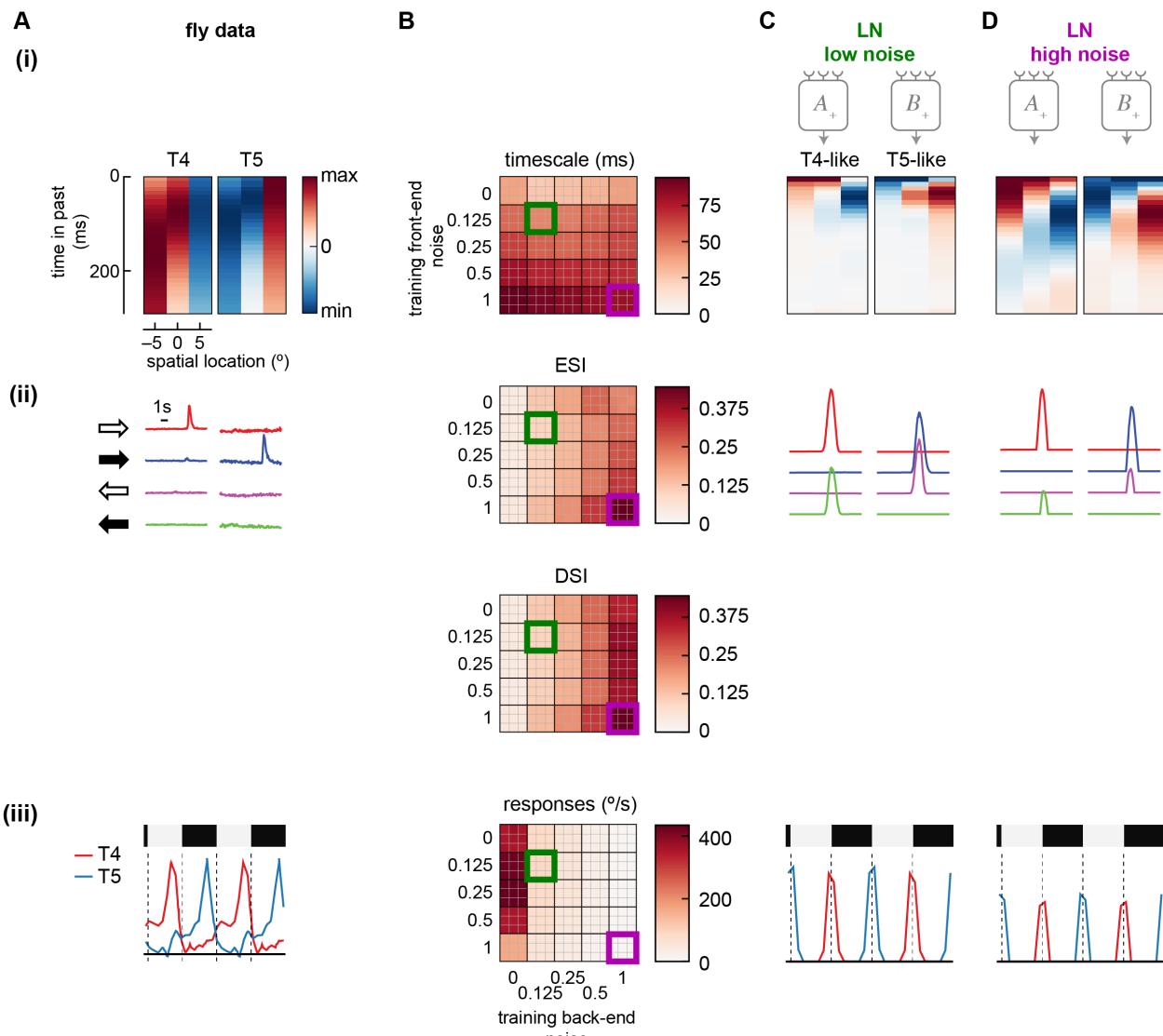


Figure 5. High training noise yields slower filter dynamics and stronger selectivity to moving edges.

- A) Summary of properties measured in T4 and T5 (from **Fig. 1**). Data shows false color time traces of 3 spatially separated input filters (i), responses to light and dark edges moving left and right (ii), and responses to stationary square waves (iii).
 - B) Summary responses of models trained with different levels of front-end and back-end noise. Top 9 performing models of 50 trained are shown for each condition, measuring the center-of-mass of the filters (i), the ESI and DSI of the light and dark moving edge responses of each unit (ii, *top* and *bottom*), and the responses to stationary square waves of the units (iii).
 - C) Example traces of a low-noise trained model (green square in (B)). Shown are filters for each unit (i), traces of responses to left and right moving light and dark edges (ii), and responses to stationary square wave stimuli (iii).
 - D) As in (C) but with the high-noise trained model (purple square in (B)).

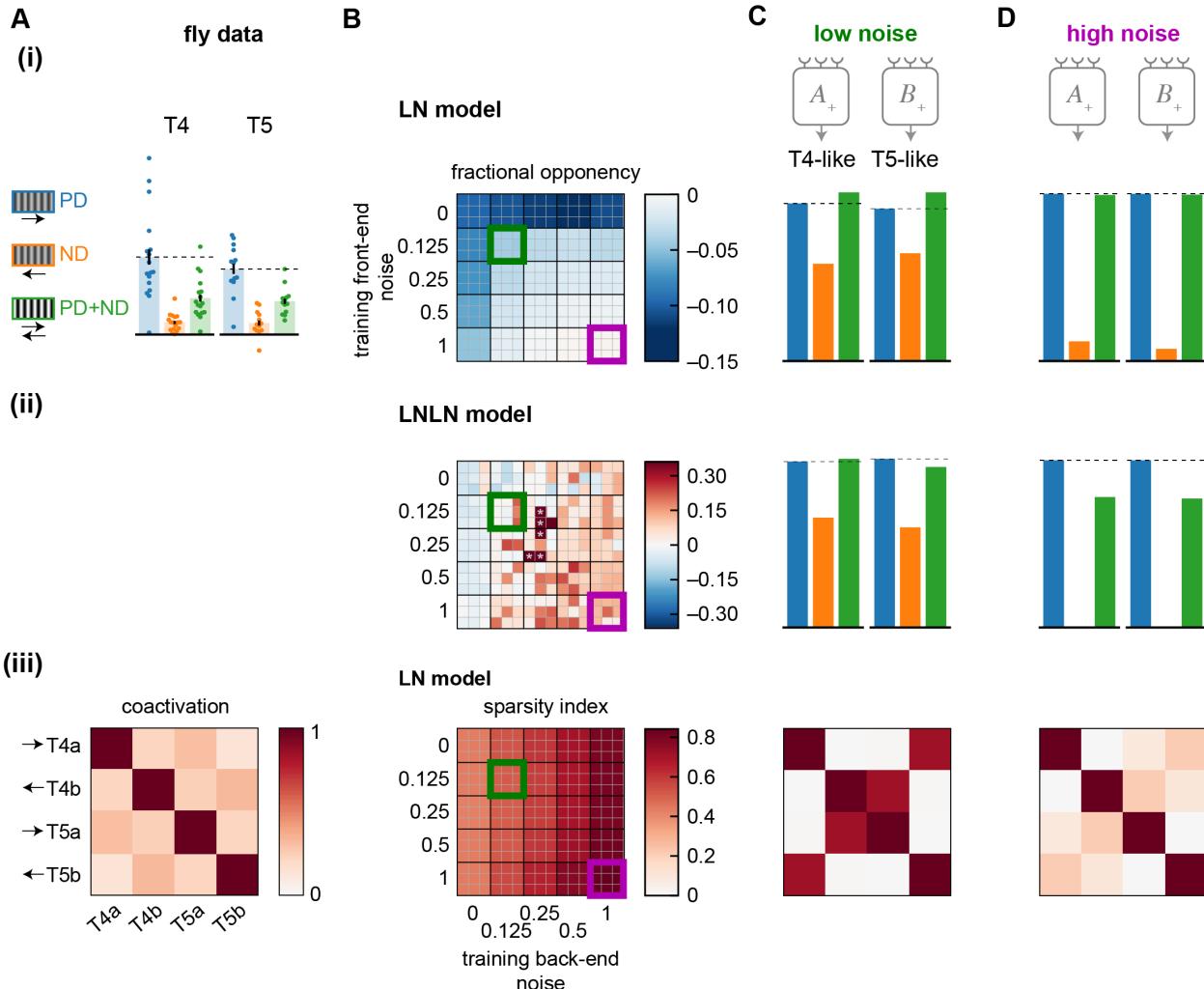


Figure 6. High training noise yields strong opponency and channel decorrelation.

- A) Summary of properties measured in T4 and T5 (from Figure 1). Data shows responses to preferred and null direction sinusoids (PD, ND) and their sum (PD+ND) (i), and coactivation of units in response to naturalistic stimuli (iii).
- B) Summary responses of models trained with different levels of front-end and back-end noise. The top 9 performing models of 50 trained are shown for each condition. Data shown is the opponency of LN models (i) and LN LN models (ii), where asterisks denote models with opponency near 1, out of the false color range. The sparsity index is shown for the LN model units in response to naturalistic stimuli (iii). The sparsity index is 1 when the coactivation matrix is the identity matrix and is 0 when all elements in the matrix are 1.
- C) Example responses from a low-noise training protocol (green box in (B)). Opponency is shown for the LN model (i) and LN LN model (ii), while a coactivation matrix is shown for an LN model responding to naturalistic stimuli (iii).
- D) As in (C) but for a high-noise training protocol (purple box in (B)).

982 **Citations**

- 983
- 984 1. Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., and DiCarlo, J.J.
985 (2014). Performance-optimized hierarchical models predict neural responses in higher
986 visual cortex. *Proc. Natl. Acad. Sci. USA* *111*, 8619-8624.
- 987 2. Haesemeyer, M., Schier, A.F., and Engert, F. (2019). Convergent temperature
988 representations in artificial and biological neural networks. *Neuron* *103*, 1123-1134.
989 e1126.
- 990 3. Yamins, D.L., and DiCarlo, J.J. (2016). Using goal-driven deep learning models to
991 understand sensory cortex. *Nat. Neurosci.* *19*, 356-365.
- 992 4. Yamins, D. (2020). An Optimization-Based Approach to Understanding Sensory
993 Systems. *The Cognitive Neurosciences* *4*, 381.
- 994 5. Hasson, U., Nastase, S.A., and Goldstein, A. (2020). Direct fit to nature: An evolutionary
995 perspective on biological and artificial neural networks. *Neuron* *105*, 416-434.
- 996 6. Schnell, B., Raghu, S.V., Nern, A., and Borst, A. (2012). Columnar cells necessary for
997 motion responses of wide-field visual interneurons in *Drosophila*. *J. Comp. Physiol. A*
998 *198*, 389-395.
- 999 7. Maisak, M.S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., Schilling, T.,
1000 Bahl, A., Rubin, G.M., Nern, A., et al. (2013). A directional tuning map of *Drosophila*
1001 elementary motion detectors. *Nature* *500*, 212-216.
- 1002 8. Schilling, T., and Borst, A. (2015). Local motion detectors are required for the
1003 computation of expansion flow-fields. *Biology open*, bio. 012690.
- 1004 9. Creamer, M.S., Mano, O., and Clark, D.A. (2018). Visual Control of Walking Speed in
1005 *Drosophila*. *Neuron* *100*, 1460-1473.
- 1006 10. Shinomiya, K., Huang, G., Lu, Z., Parag, T., Xu, C.S., Aniceto, R., Ansari, N.,
1007 Cheatham, N., Lauchie, S., Neace, E., et al. (2019). Comparisons between the ON-and
1008 OFF-edge motion pathways in the *Drosophila* brain. *eLife* *8*, e40025.
- 1009 11. Takemura, S.-y., Nern, A., Chklovskii, D.B., Scheffer, L.K., Rubin, G.M., and
1010 Meinertzhagen, I.A. (2017). The comprehensive connectome of a neural substrate for
1011 'ON' motion detection in *Drosophila*. *Elife* *6*.
- 1012 12. Meinertzhagen, I., and O'Neil, S. (1991). Synaptic organization of columnar elements in
1013 the lamina of the wild type in *Drosophila melanogaster*. *The Journal of comparative
1014 neurology* *305*, 232-263.
- 1015 13. Takemura, S.-y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K., Katz,
1016 W.T., Olbris, D.J., Plaza, S.M., Winston, P., et al. (2013). A visual motion detection
1017 circuit suggested by *Drosophila* connectomics. *Nature* *500*, 175-181.
- 1018 14. Fisher, Y.E., Leong, J.C., Sporar, K., Ketkar, M.D., Gohl, D.M., Clandinin, T.R., and
1019 Silies, M. (2015). A class of visual neurons with wide-field properties is required for
1020 local motion detection. *Curr. Biol.* *25*, 3178-3189.
- 1021 15. Yang, H.H., St-Pierre, F., Sun, X., Ding, X., Lin, M.Z., and Clandinin, T.R. (2016).
1022 Subcellular imaging of voltage and calcium signals reveals neural processing *in vivo*.
1023 *Cell* *166*, 245-257.
- 1024 16. Leong, J.C.S., Esch, J.J., Poole, B., Ganguli, S., and Clandinin, T.R. (2016). Direction
1025 selectivity in *Drosophila* emerges from preferred-direction enhancement and null-
1026 direction suppression. *J. Neurosci.* *36*, 8078-8092.

- 1027 17. Wienecke, C.F., Leong, J.C., and Clandinin, T.R. (2018). Linear Summation Underlies
1028 Direction Selectivity in *Drosophila*. *Neuron*.
- 1029 18. Strother, J.A., Wu, S.-T., Wong, A.M., Nern, A., Rogers, E.M., Le, J.Q., Rubin, G.M.,
1030 and Reiser, M.B. (2017). The emergence of directional selectivity in the visual motion
1031 pathway of *Drosophila*. *Neuron* *94*, 168-182. e110.
- 1032 19. Gruntman, E., Romani, S., and Reiser, M.B. (2018). Simple integration of fast excitation
1033 and offset, delayed inhibition computes directional selectivity in *Drosophila*. *Nat.*
1034 *Neurosci.*, 1.
- 1035 20. Strother, J.A., Wu, S.-T., Rogers, E.M., Eliason, J.L., Wong, A.M., Nern, A., and Reiser,
1036 M.B. (2018). Behavioral state modulates the ON visual motion pathway of *Drosophila*.
1037 *Proc. Natl. Acad. Sci. USA* *115*, E102-E111.
- 1038 21. Gruntman, E., Romani, S., and Reiser, M.B. (2019). The computation of directional
1039 selectivity in the *Drosophila* OFF motion pathway. *eLife* *8*.
- 1040 22. Serbe, E., Meier, M., Leonhardt, A., and Borst, A. (2016). Comprehensive
1041 characterization of the major presynaptic elements to the *Drosophila* OFF motion
1042 detector. *Neuron* *89*, 829-841.
- 1043 23. Haag, J., Arenz, A., Serbe, E., Gabbiani, F., and Borst, A. (2016). Complementary
1044 mechanisms create direction selectivity in the fly. *Elife* *5*.
- 1045 24. Arenz, A., Drews, M.S., Richter, F.G., Ammer, G., and Borst, A. (2017). The temporal
1046 tuning of the *Drosophila* motion detectors is determined by the dynamics of their input
1047 elements. *Curr. Biol.* *27*, 929-944.
- 1048 25. Haag, J., Mishra, A., and Borst, A. (2017). A common directional tuning mechanism of
1049 *Drosophila* motion-sensing neurons in the ON and in the OFF pathway. *Elife* *6*, e29044.
- 1050 26. Clark, D.A., Burszty, L., Horowitz, M.A., Schnitzer, M.J., and Clandinin, T.R. (2011).
1051 Defining the computational structure of the motion detector in *Drosophila*. *Neuron* *70*,
1052 1165-1177.
- 1053 27. Salazar-Gatzimas, E., Chen, J., Creamer, M.S., Mano, O., Mandel, H.B., Matulis, C.A.,
1054 Pottackal, J., and Clark, D.A. (2016). Direct measurement of correlation responses in
1055 *Drosophila* elementary motion detectors reveals fast timescale tuning. *Neuron* *92*, 227-
1056 239.
- 1057 28. Salazar-Gatzimas, E., Agrochao, M., Fitzgerald, J.E., and Clark, D.A. (2018). The
1058 Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel
1059 Motion Pathways. *Curr. Biol.* *28*, 3748-3762. e3748.
- 1060 29. Badwan, B.A., Creamer, M.S., Zavatone-Veth, J.A., and Clark, D.A. (2019). Dynamic
1061 nonlinearities enable direction opponency in *Drosophila* elementary motion detectors.
1062 *Nat. Neurosci.* *22*, 1318-1326.
- 1063 30. Agrochao, M., Tanaka, R., Salazar-Gatzimas, E., and Clark, D.A. (2020). Mechanism for
1064 analogous illusory motion perception in flies and humans. *Proc. Natl. Acad. Sci.* *117*,
1065 23044-23053.
- 1066 31. Joesch, M., Schnell, B., Raghu, S., Reiff, D., and Borst, A. (2010). ON and OFF
1067 pathways in *Drosophila* motion vision. *Nature* *468*, 300-304.
- 1068 32. Hassenstein, B., and Reichardt, W. (1956). Systemtheoretische Analyse der Zeit-,
1069 Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers
1070 *Chlorophanus*. *Zeits. Naturforsch.* *11*, 513-524.
- 1071 33. Adelson, E., and Bergen, J. (1985). Spatiotemporal energy models for the perception of
1072 motion. *JOSA A* *2*, 284-299.

- 1073 34. Potters, M., and Bialek, W. (1994). Statistical mechanics and visual signal processing. *J. Physique 4*, 1755-1775.
- 1074 35. Fitzgerald, J.E., Katsov, A.Y., Clandinin, T.R., and Schnitzer, M.J. (2011). Symmetries in stimulus statistics shape the form of visual motion estimators. *Proc. Natl. Acad. Sci. USA 108*, 12909-12914.
- 1078 36. Borst, A., and Egelhaaf, M. (1989). Principles of visual motion detection. *Trends Neurosci. 12*, 297-306.
- 1079 37. Meier, M., and Borst, A. (2019). Extreme Compartmentalization in a Drosophila Amacrine Cell. *Curr. Biol. 29*, 1545-1550. e1542.
- 1080 38. Fitzgerald, J.E., and Clark, D.A. (2015). Nonlinear circuits for naturalistic visual motion estimation. *eLife*, e09123.
- 1084 39. Meyer, H.G., Schwegmann, A., Lindemann, J.P., and Egelhaaf, M. (2014). Panoramic high dynamic range images in diverse environments. B. University, ed.
- 1085 40. Götz, K. (1964). Optomotorische untersuchung des visuellen systems einiger augenmutanten der fruchtfliege Drosophila. *Biol. Cybern. 2*, 77-92.
- 1086 41. Götz, K., and Wenking, H. (1973). Visual control of locomotion in the walking fruitfly Drosophila. *J. Comp. Physiol. A 85*, 235-266.
- 1088 42. Cafaro, J., Zylberberg, J., and Field, G.D. (2020). Global motion processing by populations of direction-selective retinal ganglion cells. *J. Neurosci. 40*, 5807-5819.
- 1090 43. Chen, J., Mandel, H.B., Fitzgerald, J.E., and Clark, D.A. (2019). Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes. *eLife 8*, e47579.
- 1092 44. Leonhardt, A., Ammer, G., Meier, M., Serbe, E., Bahl, A., and Borst, A. (2016). Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. *Nat. Neurosci. 19*, 706-715.
- 1094 45. Shoemaker, P.A., O'Carroll, D.C., and Straw, A.D. (2005). Velocity constancy and models for wide-field visual motion detection in insects. *Biol. Cybern. 93*, 275-287.
- 1096 46. Straw, A.D., Rainsford, T., and O'Carroll, D.C. (2008). Contrast sensitivity of insect motion detectors to natural images. *J. Vis. 8*, 32-32.
- 1098 47. Dror, R.O., O'Carroll, D.C., and Laughlin, S.B. (2001). Accuracy of velocity estimation by Reichardt correlators. *JOSA A 18*, 241-252.
- 1100 48. DeAngelis, B.D., Zavatone-Veth, J.A., and Clark, D.A. (2019). The manifold structure of limb coordination in walking Drosophila. *eLife 8*, e46409.
- 1102 49. Katsov, A.Y., Freifeld, L., Horowitz, M.A., Kuehn, S., and Clandinin, T.R. (2017). Dynamic structure of locomotor behavior in walking fruit flies. *eLife 6*, e26410.
- 1104 50. Behnia, R., Clark, D.A., Carter, A.G., Clandinin, T.R., and Desplan, C. (2014). Processing properties of ON and OFF pathways for Drosophila motion detection. *Nature 512*, 427-430.
- 1106 51. Stavenga, D. (2003). Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. *Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 189*, 189-202.
- 1108 52. Fransen, J.W., and Borghuis, B.G. (2017). Temporally Diverse Excitation Generates Direction-Selective Responses in ON-and OFF-Type Retinal Starburst Amacrine Cells. *Cell Rep. 18*, 1356-1365.

- 1118 53. Kim, J.S., Greene, M.J., Zlateski, A., Lee, K., Richardson, M., Turaga, S.C., Purcaro, M.,
1119 Balkam, M., Robinson, A., and Behabadi, B.F. (2014). Space-time wiring specificity
1120 supports direction selectivity in the retina. *Nature* *509*, 331-336.
- 1121 54. Jagadeesh, B., Wheat, H.S., and Ferster, D. (1993). Linearity of summation of synaptic
1122 potentials underlying direction selectivity in simple cells of the cat visual cortex. *Science*
1123 *262*, 1901-1904.
- 1124 55. Rust, N.C., Schwartz, O., Movshon, J.A., and Simoncelli, E.P. (2005). Spatiotemporal
1125 elements of macaque v1 receptive fields. *Neuron* *46*, 945-956.
- 1126 56. Niell, C.M., and Stryker, M.P. (2008). Highly selective receptive fields in mouse visual
1127 cortex. *J. Neurosci.* *28*, 7520-7536.
- 1128 57. Heeger, D.J. (1992). Half-squaring in responses of cat striate cells. *Vis. Neurosci.* *9*, 427-
1129 443.
- 1130 58. Strother, J.A., Nern, A., and Reiser, M.B. (2014). Direct observation of ON and OFF
1131 pathways in the *Drosophila* visual system. *Curr. Biol.* *24*, 976-983.
- 1132 59. Zavatone-Veth, J.A., Badwan, B., and Clark, D.A. (2020). A minimal synaptic model for
1133 direction selective neurons in *Drosophila*. *J. Vis.* *20*.
- 1134 60. Borst, A. (2018). A biophysical mechanism for preferred direction enhancement in fly
1135 motion vision. *PLoS Comp. Biol.* *14*, e1006240.
- 1136 61. Borst, A., Egelhaaf, M., and Haag, J. (1995). Mechanisms of dendritic integration
1137 underlying gain control in fly motion-sensitive interneurons. *J. Comput. Neurosci.* *2*, 5-
1138 18.
- 1139 62. Mauss, A.S., Pankova, K., Arenz, A., Nern, A., Rubin, G.M., and Borst, A. (2015).
1140 Neural circuit to integrate opposing motions in the visual field. *Cell* *162*, 351-362.
- 1141 63. Joesch, M., Plett, J., Borst, A., and Reiff, D. (2008). Response properties of motion-
1142 sensitive visual interneurons in the lobula plate of *Drosophila melanogaster*. *Curr. Biol.*
1143 *18*, 368-374.
- 1144 64. Srinivasan, M., Laughlin, S., and Dubs, A. (1982). Predictive coding: a fresh view of
1145 inhibition in the retina. *Proc. R. Soc. Lond., Ser. B: Biol. Sci.* *216*, 427.
- 1146 65. Van Hateren, J. (1992). Theoretical predictions of spatiotemporal receptive fields of fly
1147 LMCs, and experimental validation. *J. Comp. Physiol. A* *171*, 157-170.
- 1148 66. Matulis, C.A., Chen, J., Gonzalez-Suarez, A., Behnia, R., and Clark, D.A. (2020).
1149 Heterogeneous temporal contrast adaptation in *Drosophila* direction-selective circuits.
1150 *Curr. Biol.*
- 1151 67. Drews, M.S., Leonhardt, A., Pirogova, N., Richter, F.G., Schuetzenberger, A., Braun, L.,
1152 Serbe, E., and Borst, A. (2020). Dynamic Signal Compression for Robust Motion Vision
1153 in Flies. *Curr. Biol.*
- 1154 68. Juusola, M., Uusitalo, R., and Weckström, M. (1995). Transfer of graded potentials at the
1155 photoreceptor-interneuron synapse. *J. Gen. Physiol.* *105*, 117.
- 1156 69. Juusola, M., and Hardie, R.C. (2001). Light Adaptation in *Drosophila* Photoreceptors I.
1157 Response Dynamics and Signaling Efficiency at 25° C. *J. Gen. Physiol.* *117*, 3-25.
- 1158 70. Faisal, A.A., Selen, L.P., and Wolpert, D.M. (2008). Noise in the nervous system. *Nat.*
1159 *Rev. Neurosci.* *9*, 292-303.
- 1160 71. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
1161 Irving, G., and Isard, M. (2016). Tensorflow: A system for large-scale machine learning.
1162 In 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16). pp. 265-283.

- 1164 72. Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter,
1165 E.R., Kerr, R.A., Orger, M.B., and Jayaraman, V. (2013). Ultrasensitive fluorescent
1166 proteins for imaging neuronal activity. *Nature* *499*, 295-300.
- 1167 73. Schnell, B., Joesch, M., Forstner, F., Raghu, S.V., Otsuna, H., Ito, K., Borst, A., and
1168 Reiff, D.F. (2010). Processing of horizontal optic flow in three visual interneurons of the
1169 Drosophila brain. *J. Neurophysiol.* *103*, 1646-1657.
- 1170 74. Maddess, T., and Laughlin, S.B. (1985). Adaptation of the motion-sensitive neuron H1 is
1171 generated locally and governed by contrast frequency. *Proceedings of the Royal society*
1172 *of London. Series B. Biological sciences* *225*, 251-275.
- 1173 75. Haag, J., Denk, W., and Borst, A. (2004). Fly motion vision is based on Reichardt
1174 detectors regardless of the signal-to-noise ratio. *Proc. Natl. Acad. Sci. USA* *101*, 16333.
- 1175 76. Clark, D.A., Fitzgerald, J.E., Ales, J.M., Gohl, D.M., Silies, M., Norcia, A.M., and
1176 Clandinin, T.R. (2014). Flies and humans share a motion estimation strategy that exploits
1177 natural scene statistics. *Nat. Neurosci.* *17*, 296-303.
- 1178 77. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M., Kram, R., and Lehman, S. (2000).
1179 How animals move: an integrative view. *Science* *288*, 100-106.
- 1180 78. Lindemann, J.P., Kern, R., Van Hateren, J., Ritter, H., and Egelhaaf, M. (2005). On the
1181 computations analyzing natural optic flow: quantitative model analysis of the blowfly
1182 motion vision pathway. *J. Neurosci.* *25*, 6435-6448.
- 1183 79. Kikuchi, A., Ohashi, S., Fuse, N., Ohta, T., Suzuki, M., Suzuki, Y., Fujita, T., Miyamoto,
1184 T., Aonishi, T., and Miyakawa, H. (2012). Experience-dependent plasticity of the
1185 optomotor response in *Drosophila melanogaster*. *Dev. Neurosci.* *34*, 533-542.
- 1186 80. Du, S.S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent provably optimizes
1187 over-parameterized neural networks. *arXiv preprint arXiv:1810.02054*.
- 1188 81. Stanley, K.O., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing neural
1189 networks through neuroevolution. *Nature Machine Intelligence* *1*, 24-35.
- 1190 82. Olshausen, B.A., and Field, D.J. (2004). Sparse coding of sensory inputs. *Curr. Opin.*
1191 *Neurobiol.* *14*, 481-487.
- 1192 83. Wager, S., Wang, S., and Liang, P.S. (2013). Dropout training as adaptive regularization.
1193 In *Advances in neural information processing systems*. pp. 351-359.
- 1194 84. Juusola, M., and Hardie, R.C. (2001). Light Adaptation in *Drosophila* Photoreceptors II.
1195 Rising Temperature Increases the Bandwidth of Reliable Signaling. *J. Gen. Physiol.* *117*,
1196 27-42.
- 1197 85. Jones, P.W., and Gabbiani, F. (2012). Impact of neural noise on a sensory-motor pathway
1198 signaling impending collision. *J. Neurophysiol.* *107*, 1067-1079.
- 1199 86. Laughlin, S.B., van Steveninck, R.R.d.R., and Anderson, J.C. (1998). The metabolic cost
1200 of neural information. *Nat. Neurosci.* *1*, 36-41.
- 1201 87. Mo, C.-H., and Koch, C. (2003). Modeling reverse-phi motion-selective neurons in
1202 cortex: double synaptic-veto mechanism. *Neural Comput.* *15*, 735-759.
- 1203 88. Bahroun, Y., Chklovskii, D., and Sengupta, A. (2019). A Similarity-preserving Network
1204 Trained on Transformed Images Recapitulates Salient Features of the Fly Motion
1205 Detection Circuit. In *Advances in Neural Information Processing Systems*. pp. 14201-
1206 14212.
- 1207 89. Klapoetke, N.C., Nern, A., Peek, M.Y., Rogers, E.M., Breads, P., Rubin, G.M., Reiser,
1208 M.B., and Card, G.M. (2017). Ultra-selective looming detection from radial motion
1209 opponency. *Nature* *551*, 237.

- 1210 90. Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.-y., Hayworth, K.J.,
1211 Huang, G.B., Shinomiya, K., Maitlin-Shepard, J., and Berg, S. (2020). A connectome and
1212 analysis of the adult *Drosophila* central brain. *Elife* 9, e57443.
- 1213 91. Clark, D.A., and Demb, J.B. (2016). Parallel computations in insect and mammalian
1214 visual motion processing. *Curr. Biol.* 26, R1062-R1072.
- 1215 92. Borst, A., and Helmstaedter, M. (2015). Common circuit design in fly and mammalian
1216 motion vision. *Nat. Neurosci.* 18, 1067-1076.
- 1217 93. Euler, T., Detwiler, P.B., and Denk, W. (2002). Directionally selective calcium signals in
1218 dendrites of starburst amacrine cells. *Nature* 418, 845-852.
- 1219 94. Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina:
1220 symmetry and asymmetry in structure and function. *Nat. Rev. Neurosci.* 13, 194-208.
- 1221 95. Moulden, B., and Begg, H. (1986). Some tests of the Marr-Ullman model of movement
1222 detection. *Perception* 15, 139.
- 1223 96. Hu, Q., and Victor, J.D. (2010). A set of high-order spatiotemporal stimuli that elicit
1224 motion and reverse-phi percepts. *J. Vis.* 10.
- 1225 97. Schiller, P.H., Finlay, B.L., and Volman, S.F. (1976). Quantitative studies of single-cell
1226 properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. *J.*
1227 *Neurophysiol.* 39, 1288.
- 1228 98. Mather, G., Moulden, B., and O'Halloran, A. (1991). Polarity specific adaptation to
1229 motion in the human visual system. *Vision Res.* 31, 1013-1019.
- 1230 99. Yildizoglu, T., Riegler, C., Fitzgerald, J.E., and Portugues, R. (2020). A Neural
1231 Representation of Naturalistic Motion-Guided Behavior in the Zebrafish Brain. *Curr.*
1232 *Biol.*
- 1233 100. Gjorgjieva, J., Sompolinsky, H., and Meister, M. (2014). Benefits of Pathway Splitting in
1234 Sensory Coding. *J. Neurosci.* 34, 12127-12144.
- 1235 101. Gjorgjieva, J., Meister, M., and Sompolinsky, H. (2019). Functional diversity among
1236 sensory neurons from efficient coding principles. *PLoS Comp. Biol.* 15, e1007476.
- 1237 102. Fisher, Y.E., Silies, M., and Clandinin, T.R. (2015). Orientation selectivity sharpens
1238 motion detection in *Drosophila*. *Neuron* 88, 390-402.
- 1239 103. Molina-Obando, S., Vargas-Fique, J.F., Henning, M., Gür, B., Schladt, T.M., Akhtar, J.,
1240 Berger, T.K., and Silies, M. (2019). ON selectivity in *Drosophila* vision is a
1241 multisynaptic process involving both glutamatergic and GABAergic inhibition. *eLife* 8,
1242 e49373.
- 1243 104. Freifeld, L., Clark, D.A., Schnitzer, M.J., Horowitz, M.A., and Clandinin, T.R. (2013).
1244 GABAergic lateral interactions tune the early stages of visual processing in *Drosophila*.
1245 *Neuron* 78, 1075-1089.
- 1246 105. Zheng, L., de Polavieja, G.G., Wolfram, V., Asyali, M.H., Hardie, R.C., and Juusola, M.
1247 (2006). Feedback network controls photoreceptor output at the layer of first visual
1248 synapses in *Drosophila*. *J. Gen. Physiol.* 127, 495-510.
- 1249 106. Zheng, L., Nikolaev, A., Wardill, T.J., O'Kane, C.J., de Polavieja, G.G., and Juusola, M.
1250 (2009). Network adaptation improves temporal representation of naturalistic stimuli in
1251 *Drosophila* eye: I dynamics. *PLoS One* 4, e4307.
- 1252 107. Fairhall, A.L., Lewen, G.D., Bialek, W., and van Steveninck, R.R.d.R. (2001). Efficiency
1253 and ambiguity in an adaptive neural code. *Nature* 412, 787.
- 1254 108. Eichner, H., Joesch, M., Schnell, B., Reiff, D.F., and Borst, A. (2011). Internal structure
1255 of the fly elementary motion detector. *Neuron* 70, 1155-1164.

- 1256 109. McIntosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S., and Baccus, S. (2016).
1257 Deep learning models of the retinal response to natural scenes. In Advances in neural
1258 information processing systems. pp. 1369-1377.
- 1259 110. Maheswaranathan, N., McIntosh, L., Kastner, D.B., Melander, J., Brezovec, L., Nayebi,
1260 A., Wang, J., Ganguli, S., and Baccus, S.A. (2018). Deep learning models reveal internal
1261 structure and diverse computations in the retina under natural scenes. *bioRxiv*, 340943.
- 1262 111. Tschopp, F.D., Reiser, M.B., and Turaga, S.C. (2018). A connectome based hexagonal
1263 lattice convolutional network model of the *Drosophila* visual system. *arXiv preprint*
1264 *arXiv:1806.04793*.
- 1265 112. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau,
1266 D., Wieser, E., Taylor, J., Berg, S., and Smith, N.J. (2020). Array programming with
1267 NumPy. *Nature* *585*, 357-362.
- 1268 113. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
1269 Burovski, E., Peterson, P., Weckesser, W., and Bright, J. (2020). SciPy 1.0: fundamental
1270 algorithms for scientific computing in Python. *Nat. Methods* *17*, 261-272.
- 1271 114. Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. *IEEE Annals of the History*
1272 *of Computing* *9*, 90-95.
- 1273 115. Torre, V., and Poggio, T. (1978). A synaptic mechanism possibly underlying directional
1274 selectivity to motion. *Proc. R. Soc. Lond. B* *202*, 409-416.
- 1275 116. Glorot, X., and Bengio, Y. (2010). Understanding the difficulty of training deep
1276 feedforward neural networks. In *Proceedings of the thirteenth international conference on*
1277 *artificial intelligence and statistics*. (JMLR Workshop and Conference Proceedings), pp.
1278 249-256.
- 1279 117. Chichilnisky, E. (2001). A simple white noise analysis of neuronal light responses.
1280 *Network: Comput. Neural Syst.* *12*, 199-213.
- 1281
- 1282