PolyFrame: A Retargetable Query-based Approach
to Scaling Dataframes

Phanwadee Sinthong
University of California, Irvine
psinthon@uci.edu

ABSTRACT

In the last few years, the field of data science has been growing
rapidly as various businesses have adopted statistical and machine
learning techniques to empower their decision-making and appli-
cations. Scaling data analyses to large volumes of data requires
the utilization of distributed frameworks. This can lead to serious
technical challenges for data analysts and reduce their productivity.
AFrame, a data analytics library, is implemented as a layer on top
of Apache AsterixDB, addressing these issues by providing the data
scientists’ familiar interface, Pandas Dataframe, and transparently
scaling out the evaluation of analytical operations through a Big
Data management system. While AFrame is able to leverage data
management facilities (e.g., indexes and query optimization) and
allows users to interact with a large volume of data, the initial
version only generated SQL++ queries and only operated against
AsterixDB. In this work, we describe a new design that retargets
AFrame’s incremental query formation to other query-based data-
base systems, making it more flexible for deployment against other
data management systems with composable query languages.

PVLDB Reference Format:

Phanwadee Sinthong and Michael J. Carey. PolyFrame: A Retargetable
Query-based Approach to Scaling Dataframes. PVLDB, 14(11): 2296 - 2304,
2021.

doi:10.14778/3476249.3476281

1 INTRODUCTION

Extracting valuable trends and intelligence for enhanced decision-
making is becoming a common necessity for many organizations in
this age of big data. The growing interest in interpreting large vol-
umes of user-generated content on social media sites for purposes
ranging from business advantages to societal insights motivates the
development of data analytic tools. The requirements that large-
scale modern data analysis imposes on these tools are not met by
a single system. Data scientists are thus required to integrate and
maintain multiple separate platforms, such as HDFS [33], Spark [2],
and TensorFlow [16], which demands systems expertise from ana-
lysts who should instead be focused on data modeling, selection of
machine learning techniques, and data exploration.

AFrame [34] is a data exploration library that provides a Pandas-
like DataFrame experience on top of Apache AsterixDB [17]. AFrame
leverages AsterixDB’s distributed data storage and management in

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476281

2296

Michael]J. Carey
University of California, Irvine
mjcarey@ics.uci.edu

order to accommodate the rapid rate and volume at which modern
data arrives. Storing such massive data in a traditional file system
is no longer an ideal solution because its analysis then requires
complete file scans to retrieve even a modest subset of the data.
Database management systems are able to store, manage, and uti-
lize indexes and query optimization to efficiently retrieve subsets
of the data, enabling much more interactive data manipulation.

Depending on the nature of the analysis, large amounts of data
can be stored in different types of databases (e.g., document, time-
series, or graph). AFrame, however, is language-dependent. It relies
on specific features of AsterixDB and it is tightly-coupled with
SQL++, limiting its adoption and usage. Instead of requiring data to
be in a specific database system, PolyFrame enables users to retar-
get their data manipulation operations to their existing data stores.
PolyFrame makes AFrame language-independent by creating a
retargetable mapping between dataframe operations and compos-
able database queries. The language-independence of PolyFrame is
achieved by abstracting AFrame’s language translation layer and
retargeting its incremental query formation mechanism to oper-
ate against other database systems. We establish a set of rewrite
rules to provide an extensible template for supporting other query
languages, thus allowing AFrame to operate against other query-
based database systems. As a proof-of-concept, we have applied our
language rewrite framework to four different query languages,
namely SQL++ [20], SQL [22], MongoDB Query Language [9],
and Cypher [24], to retarget AFrame against AsterixDB [1], Post-
greSQL [12], MongoDB [8], and Neo4;j [10, 30] respectively.

In this paper we describe how we have re-architected AFrame
to make it retargetable to other query-based database systems to
allow their users to accomplish large-scale data analysis. The con-
tributions of the resulting PolyFrame system are the following:

(1) We enable large-scale data analysis using a Pandas-like syn-
tax on a variety of query-based database systems of choice.

(2) We identify common mapping rules between dataframe op-
erations and database queries. This allows the system to
reuse any combinations of the rules to construct queries that
represent the supported dataframe operations.

(3) We extract and separate generic and language-specific rules
to make it easy to introduce a new language, as the query
composition mechanism is separated from the query syntax.

(4) We decompose complex Pandas dataframe operations (e.g.,
get_dummies, describe) into a sequence of simple opera-
tions via generic rewrite rules allows PolyFrame to utilize
subqueries, which provides a simple localized model for
language-specific mappings.

The rest of this paper is organized as follow: Section2 discusses

background and related work. Section 3 provides an overview of
our retargetable query-based design along with examples. Section

https://doi.org/10.14778/3476249.3476281
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476281

4 describes a set of performance experiments and results from
running PolyFrame against different backend database systems. We
conclude and describe open research problems in Section 5.

2 BACKGROUND AND RELATED WORK

We are rearchitecting AFrame (to create PolyFrame) by making it
platform-independent, via flexible language rewrite rules, to create
a framework that can support large-scale data analysis against a
variety of backend databases. Here we review the basics of Pandas,
AFrame, its current backend (AsterixDB), and related work.

2.1 Pandas

Pandas [11] is a Python data analytics framework that reads data
from various file formats and creates an object, a DataFrame, with
rows and columns similar to Excel. Pandas works with Python
machine learning libraries such as Scikit-Learn [31]. The rich set
of features that are available in Pandas makes it one of the most
preferred and widely used tools in data exploration. However, its
limitation lies in its lack of scalability. In addition, Pandas’ internal
data representation is inefficient as Wes McKinney (Pandas’ creator)
stated in [15] that a "rule of thumb for Pandas is that you should
have 5 to 10 times as much RAM as the size of your dataset".

2.2 Apache AsterixDB

Apache AsterixDB is an open source Big Data Management System
(BDMS) [17]. It provides distributed data management for large-
scale, semi-structured data using the AsterixDB Data Model (ADM),
which is a superset of JSON. In AsterixDB, data records are stored
in datasets. Each dataset has a datatype that describes the stored
data. ADM datatypes are open so that users can provide a minimal
description even when the stored data can have additional contents.

2.3 AFrame

AFrame [34, 35] is a library that provides a Pandas DataFrame [27]
based syntax to interact with data in Apache AsterixDB. AFrame tar-

gets data scientists who are already familiar with Pandas DataFrames.

It works on distributed data by connecting to AsterixDB using its
RESTful APL Inspired in part by Spark, AFrame leverages lazy eval-
uation to take advantage of AsterixDB’s query optimizer. AFrame
operations are incrementally translated into SQL++ queries that
are sent to AsterixDB only when final results are called for.

2.4 Related Work

There are currently several scalable Pandas-like dataframe imple-
mentations. Here we compare PolyFrame with some of the better-
known scalable dataframe libraries, polystore systems, and recent
efforts that provide a dataframe interface on top of databases.
Spark: Apache Spark [37] is a general-purpose cluster-based
computing framework. Spark also provides DataFrames [18], an
API built on top of Spark SQL [19] for distributed structured data
manipulation. However, Spark’s DataFrame syntax is different from
Pandas’ in several respects. As a result, Koalas [6], a new open
source project, was established to allow for easier transitioning
from Pandas to Spark. Koalas provides a Pandas-like Dataframe
API and uses Spark for evaluation. Koalas implements an inter-
mediate data representation in order to support Pandas features

2297

such as row ordering in the Spark environment, which can result
in performance trade-offs. Spark does not provide its own data stor-
age, indexing, or data management. Spark can, however, load data
from sources including databases via its Data Sources API [13] to
create DataFrames. Users supply Spark with a database driver that
implements support for read and write operations; the API allows
filter and projection pushdown for performance optimization.
Modin: Modin [7] is another attempt to scale Pandas DataFrames
by supporting the Pandas syntax and distributing the data and op-
erations using a shared memory framework called Ray [28]. Modin
supports Dask as its alternative backend. By running on Ray and
Dask [4], Modin automatically utilizes all the available cores on a
machine to execute Pandas operations in parallel. However, Modin
does not provide data storage and it uses Pandas internally.
Polystores: Polystore systems provide integrated access to mul-
tiple data stores with heterogeneous storage engines through a
common language. In [29], polystores are described as systems that
typically share a common mediator-wrapper architecture in which
a mediator process accepts input queries, interacts with data stores
to obtain and merge the results. The differences between polystore
systems and PolyFrame are their interactions and intended usages.
PolyFrame provides a common language of DataFrame operations
for users to interact with a query-based database system. PolyFrame
does not communicate or orchestrate queries between data stores.
Scaling dataframes with databases: Efforts to scale dataframes
have started gaining traction in the database community. Recently,
Jindal et. al introduced Magpie [26], a system that provides a Pandas-
like API and automatically determines an optimal backend for
query execution. Magpie in turn is built on top of Ibis [5], a Python
polystore-like engine that provides its own proprietary API and is
capable of interacting either eagerly or lazily with backends includ-
ing Spark, Pandas, and RDBMSs. A concurrent effort, Grizzly [23],
introduced by Hagedorn et. al, translates the Pandas API into nested
SQL queries with additional feature support for lambda expressions
as UDFs and external file ingestion. In contrast, PolyFrame focuses
on incrementally building queries by utilizing an identified set of
mappings between dataframe operations and database queries that
can be applied to a wide variety of composable query languages.

3 POLYFRAME SYSTEM OVERVIEW

In this section, we briefly describe PolyFrame’s architecture, its
incremental query formation process, and the new language rewrite
component which is an architectural extension to make AFrame
extensible for deployment against different widely used query-
based database systems.

3.1 PolyFrame Overview

AFrame provides a Pandas-like DataFrame experience while scaling
out the evaluation of its operations over a large cluster. The cur-
rent implementation of AFrame does this by operating against
Apache AsterixDB [17] and incrementally constructing nested
SQL++ queries in order to mimic Pandas’ (eager) evaluation char-
acteristics while enabling lazy execution of the resulting queries.
In order to make AFrame language-independent, PolyFrame sep-
arates its query language rewriting component from the original
incremental query formation process.

Figure 1 outlines the new AFrame architecture (PolyFrame). An
AFrame runtime object is created using a set of language-specific
rewrite rules by selecting from those that we provide (e.g., SQL++,
SQL, Cypher, MongoDB) or providing a set of custom rules. Inspired
by Spark, each operation in AFrame can be categorized as either a
transformation or an action. Transformations are operations that
transform data. These operations are functions that take an under-
lying query (Qi) from an AFrame object and produce a new AFrame
object with a new query (Qi+1). Transformatios will not trigger
query evaluation, hence AFrame does not produce any intermediate
results. Actions are operations that trigger query evaluation. This is
done through a database connector that sends the underlying query
(Qn) of an AFrame object to a database. The database connector
is an abstract class in AFrame that makes connections to database
engines. It also performs AFrame initialization, pre-processing of
queries before sending them to the database, and post processing of
queries’ results from the database. A new database connector can
be added by providing an implementation of these three required
methods. Query’s results are returned as a Pandas Dataframe.

Create
AFrame _ - - _____ .

i

l DB
Language
Rewrite | 4=
Rules AFrame Pandas
Qi

DataFrame

TQuery
Qy » | Database
i Connector

3 =

Figure 1: AFrame’s New Architecture (PolyFrame)

3.2 Incremental Query Formation

PolyFrame incrementally constructs queries in order to mimic Pan-
das’ eager evaluation characteristics and record the order of op-
erations. However, it utilizes lazy evaluation to take advantage of
databases’ query optimization. Figure 2 shows an AsterixDB exam-
ple of six SQL++ queries generated as a result of Pandas DataFrame
operations. The Dataframe operations are listed on top of each
PolyFrame object (the numbered rectangles). The corresponding
SQL++ queries are listed below the objects. The first PolyFrame
object (marked 1) is created by passing in the dataverse and dataset
name of an existing dataset in AsterixDB. Notice how each subse-
quent SQL++ query is composed from the query resulting from the
previous operation. Operations 1 to 5 are transformations. For these
types of operations, PolyFrame does not load any data into memory
nor execute any query. Operation 6 (which is asking for a sample
of 10 records) is an action that triggers the actual query evaluation.
For this operation, PolyFrame appends a ‘LIMIT 10’ clause to the
underlying query and uses a connection to a database (AsterixDB
in this case) to send the underlying query and retrieve its results.

3.3 OQuery Rewrite

In order to separate the language syntax from the query forma-
tion process, we re-architected AFrame and established two sets of

2298

af = AFrame(‘test’, ‘Users’)
—

af[lang’] af[lang’] == ‘en’

—

SELECT VALUE t
FROM test.Users t;

SELECTVALUE tlang SELECTVALUEt=‘en’
FROM (@) t; FROM ([2]) t;

affaf['lang’] == ‘en’] afaf[lang’] == ‘en’]
[['name’, ‘friendsCount]] [[‘name’, ‘friendsCount]).head(10)

aflaf[lang’] == ‘en’]

SELECT VALUE t
FROM ([A]) t
WHERE[8] ;

SELECTt.name,
t.friendsCount

FROM (E) t LIMIT 10

Figure 2: Incremental Query Formation

rewrite rules that govern how each query is constructed for a par-
ticular dataframe operation. Figure 3 shows the sequence of steps
in PolyFrame’s query rewriting process. In PolyFrame, a language
configuration file contains query mappings that the system uses
during the query formation process. Each PolyFrame object has an
underlying query (Qi). When an operation is called on a PolyFrame
object, the underlying query is passed into the rewriting process.
A dataframe operation is inspected, and if possible, decomposed
into multiple simple dataframe operations. Variables from each
dataframe operation will also be extracted. The system uses generic
rewrite rules (described in Section 3.4.1) to map each operation to
one or multiple language-specific rules (described in Section 3.4.2).
Query rewriting is then performed on each identified language-
specific rule using string pattern matching to replace each token
with the extracted common variables. The result is a new database
query (Qi+1) encapsulated in a new PolyFrame object.

Operation Translator

DF Operationy

Language C Variabl
Configuration ——— Om]rzn::l:ac[zrrld ¢ DF Generic Rewrite Rules
File

Rewrite Rule Selector

Query Rewriter];

Database (juery (Qi+l)

Figure 3: Flowchart of a query rewrite

>| Language-specific Rules

Originally in AFrame, a SQL++ query was hard-coded in each
dataframe operation body, while in PolyFrame, we use two levels
of rewrite rules to create the operations’ queries. Figure 4 shows
two operation implementations (attribute projection and null value
detection) in AFrame in comparison to PolyFrame. In PolyFrame,
each operation uses the attribute-projection rule with three rewrite
variables (‘attribute’, ‘alias’, ‘subquery’) that are overwritten at
runtime. The ‘isna’ operation uses the null-operator rewrite rule in
addition to the attribute-projection rule to construct its query. The
separation of the target query language from the query construction
allows PolyFrame to be easily extensible. The two-level approach
also helps reduce the number of rewrite mappings required since

the system can combine and reuse the rules to construct its queries.

AFrame

def __getitem__(self, key):
query = ‘SELECT $attribute AS $alias\
‘FROM ($subquery)’

I

attribute_projection

S$attribute

def isna(self, key):
query = ‘SELECT $attribute IS NULL AS $alias™
‘FROM ($subquery)’

PolyFrame l

$attribute $alias $subquery

\
null comparison
SELECT Sattribute AS $alias FROM ($subquery) t |
S$attribute 1S NULL

$alias $subquery

|:| = Rewrite rule

SELECT attribute IS NULL AS $alias FROM ($subquery) t

Figure 4: AFrame vs. PolyFrame query construction

3.4 Per-Language Rewrite Rules

In order to preserve AFrame’s incremental query formation and
subquery characteristics, we target query languages that are com-
posable. Another important requirement that any of PolyFrame’s
target database systems must satisfy is having an efficient query op-
timizer. Executing subqueries without optimization could result in
unnecessary data scans that would affect performance. Fortunately,
good query optimization is an important feature of databases.

Currently, we support rewrites of many relational algebra opera-
tions in Pandas dataframes such as selection, projection, join, group
by, aggregation, and sorting. Operations that require access to rows
by indices are not supported because row ordering is not widely
enforced in database systems. A challenge in generating common
rewrite rules for PolyFrame has been distinguishing between config-
urable and general components across various languages. We have
established two main types of rewrite rules. One type is generic
rules and the other rule type is language-specific rules.

3.4.1 Generic rules. Generic rules are rewrite rules that are not
explicitly defined in a system-specific PolyFrame language con-
figuration file. The purpose of our generic rules is to identify
language-specific rule(s) for each dataframe operation. For simple
dataframe operations (e.g., projection, unique), generic rules can
map an operation directly to a language-specific rule. For complex
dataframe operations, generic rules decompose these operations
into a sequence of simple operations that can be translated via
the existing language-specific rewrite rules. For example, the func-
tion ‘describe()’ in Pandas displays statistics for each attribute in a
Dataframe. In PolyFrame, we construct this function by combining
operations 1-7 in Figure 6 together to form a query that asks for
aggregate values of specified attributes. Thus, instead of creating a
rule for every function of Pandas Dataframe, these generic rules
allow PolyFrame to efficiently utilize common components to form
more complex queries that perform the desired function.

34.2 Language-specific rules. These rules are the rewrite rules
for translating dataframe operations into (sub) queries that have to
be defined in a language configuration file due to the syntax differ-
ences across various languages. We supply users with a language
configuration template file to allow adding a new query language

2299

or a similar query language with semantic variants. A sketch of
PolyFrame’s template file is displayed in Figure 5. The template file
contains rewrite variables that can be rearranged or omitted to rep-
resent the required query behavior. Its pre-defined variables will be
rewritten at runtime when a user interacts with PolyFrame objects.
These rules are defined in such a way that they can be combined
to create complex queries. In addition to the general dataframe
operations that we support, we also require rules for translating
arithmetic operations (addition, subtraction, multiplication, divi-
sion, etc.), aggregation (e.g., sum, average, count, min, and max),
comparison statements (equal, not equal, greater than, less than,
etc.), logical operations (and, or, and not), and attribute aliases. A
challenge in establishing a set of language-specific rewrite rules was
identifying the granularity of the rules while maintaining efficiency.
Defining the granularity too fine would yield rules that cannot be
reused or combined to compose other methods and would require
too much effort to maintain. The rules need to be generalized across
different languages and not rely exclusively on system-specific op-
timizations. Our goal was to identify the common components that
are shared across query languages.

[QUERIES]

collection_scan: __$namespace__$collection__
attribute_projection: __$subquery__$attribute__$alias__
attribute_aggregate: __$subquery__$alias__$function__

[AGGREGATE FUNCTIONS] [ARITHMETIC FUNCTIONS]

min = __$attribute__ add = __$left__$right__
max = __$attribute__ sub = __$left__$right__
avg = __Sattribute__ mul = __$left__$right__
Figure 5: Configuration Template Overview
[ID{Operation SQL++ MongoDB Cypher
Return all ISELECT VALUE t
1 [FROM { "$match": {} } MATCH(t: $collection)
records .
[Bnamespace.$collection t
($subquery
Return an e o gn s qn. [Bsubquery
2| attribute SELECT $func AS $alias { $gr0u33 ’{. ’l,,d A [WITH { $alias : $func}
aggregate [FROM ($subquery) t Salias": {$func}}}, AS ¢
£8 {"$project": {"_id":0 }}
3 | Minimum MIN($attribute) "$min": "$$attribute" min(t.$attribute)
4 [Maximum MAX($attribute) "$max": "S$attribute" max (t.$attribute)
5| Average AVG($attribute) "$avg": "$$attribute" avg(t.$attribute)
6| Count COUNT ($attribute) "$count": "$$attribute" count(t.$attribute)
Standard | oy Sanribute) '$stdDevPop”: "S$attribute’| stDevP(t Sattribute)
deviation attribute stdDevPop": "$$attribute"| stDevP(t.$attribute

Figure 6: Sample Rewrite Rules

Figure 6 shows a few implementation examples of the language-
specific rewrite rules from Figure 5 in three query languages. The
rules for all languages including handling of joins can be found
in [36]. For these particular examples, SQL happens to share the
same syntax as SQL++ for all operations except operation 1, so due
to space limitations we only show SQL++, MongoDB, and Cypher
here. Operation 2, for example, requires the language to return the
aggregate value of an attribute. There are three rewrite variables

Table 1: PolyFrame’s Incremental Query Formation

AFrame
Operation

SQL++

SOL

MongoDB

Cypher

1 | af = AFrame(‘Test’, Users’)

SELECT VALUE t
FROM Test.Users t

SELECT *
FROM Test.Users

“$match": {} }

MATCH(t: Users)

2 | af[lang’]

SELECT t. lang

SELECT t. lang

1

{
{5

1

WHERE t.lang = "en"

WHERE t. lang = "en"

{"$match": { "$expr": { "$eq": ["lang ", "en"] }}}

FROM (1) t FROM (1) t $project": { “lang": 1}} WITH t{ lang ': t. lang }
SELECT VALUE SELECT 2 2

3 | afflang’] =="en ;}i{gﬁ (:2) ten" ;}iaonl\%[(:2) ten" {“$project": {"is_eq": {*$eq": [“lang ", “en" J}}} |WITH t{'is_eq": t.lang = "en"}
SELECT VALUE t SELECT t* 1 1

4 | af[af[lang’] == ‘en’] FROM (1) t FROM (1) t >

WITH t WHERE t. lang = "en"

SELECT t. name,

SELECT t. name,

5 affafllang’] == ‘en’] t. address t. address 4 2
[[‘name’, ‘address’]] FROM (4) t FROM (4) t {"$project": { "name ": 1, " address ": 1} } WITH t{ name ":t.name, " address ":t. address }
5, 5
affaf[‘lang’] == ‘en’] 5 5 P C o pe e
6 <) > X X { “$project": {“_id": 0}}, RETURN t
[[‘name’, ‘address’]].head(10) | LIMIT 10; LIMIT 10; {“$limit" : 10} LIMIT 10

(italicized), ‘$subquery’, ‘$alias’, and ‘$func’. A previous operation’s
underlying query will replace the variable ‘$subquery’ and one
of the aggregate functions (e.g., operations 3-7) will replace the
variables ‘$func’ and ‘$alias’. As also indicated in Figure 6, aggregate
functions require a rewrite for a variable labeled ‘$attribute’. This
is the name of an attribute. For example, to get the minimum value
of ‘age’ from a dataset named ‘Users’ in a database named “Test’,
PolyFrame will combine the results of operations 1, 2, and 3. First it
will rewrite the variable ‘$namespace’ of operation 1 as “Test’ and
the variable ‘$collection’ as ‘Users’. The result of operation 1 will
replace the variable ‘$subquery of operation 2’. It will then rewrite
the variable ‘$attribute’ in operation 3 with the value ‘age’ and use
operation 3 to replace the variable ‘$func’ in operation 2.

3.5 PolyFrame Examples

To demonstrate the generality of our approach, we have imple-
mented a first prototype of PolyFrame that operates against Aster-
ixDB, PostgreSQL [12], MongoDB [8] and Neo4;j [10] by translating
Dataframe operations into SQL++, nested SQL queries, MongoDB
aggregation pipeline stages, and Cypher queries using ‘WITH’ state-
ments. Table 1 displays query rewrites for SQL++, regular SQL, Mon-
goDB, and Cypher that correspond to the PolyFrame operations
from Figure 2. The highlighted parts of each query are generated by
PolyFrame’s query translation process, while the non-highlighted
parts come directly from the provided language-specific rewrite
rules. The bold italicized numbers are operation IDs. These IDs
refer to query results from the indicated operation. We can see
that SQL++ has much in common with SQL, but some differences
exist due to the different data models of the two languages. The
MongoDB and Cypher rewrites are very different, but the passed-
in operation parameters are the same across all four languages.
The full finished products of operation 6 rewritten in each of the
languages are displayed in Listings 1-4.

Listing 1: SQL++ translation of operation 6

Listing 2: SQL translation of operation 6

SELECT t.name, t.address
FROM (SELECT =
FROM (SELECT =*
FROM Test.Users t) t
WHERE t.lang = 'en') t
LIMIT 10;

Listing 3: MongoDB translation of operation 6

Test.Users.aggregate ([
{ "$match": {3} 3,
{ "$match": {"$expr": {"$eq":["$lang", "en"13}}},
{ "$project": { "name": 1, "address": 1 } },
{ "$project": { "_id": @ } 3,
{ "$limit" : 10 }
n

Listing 4: Cypher translation of operation 6

MATCH(t: Users)

WITH t WHERE t.lang = "en"

WITH t{ name :t.name, ~address :t.address}
RETURN t

LIMIT 10

SELECT t.name, t.address
FROM (SELECT VALUE t
FROM (SELECT VALUE t
FROM Test.Users t) t
WHERE t.lang = 'en') t
LIMIT 10;

2300

For MongoDB, PolyFrame uses its aggregation pipeline language
in order to obtain the incremental query formation leveraged for
AFrame. As a result, certain optimizations might be limited for
particular operations in a pipeline (as described in MongoDB’s doc-
umentation). Operation 1 in Table 1 for MongoDB does not have any
variable rewritten because our MongoDB rewrite rules are pipeline
stages and pipeline constructions are handled through its database
connector. Listing 3 displays a complete MongoDB aggregation
pipeline for operation 6 from Table 1. Notice here that we include
a {"$project":{"_id":0}}’ statement as part of the MongoDB’s rewrite
rule to exclude the MongoDB object identifier attribute ‘_id’ from
the final results. This attribute is the last attribute to be excluded in
the pipeline because its presence is needed to enable index usage.

4 EXPERIMENTS

In order to demonstrate the value of database-backed dataframes
and to empirically validate the generality of our language-rewrite
approach working against different database systems, we have
conducted two sets of experiments. One set illustrates the perfor-
mance differences between a distributed data processing framework
(Spark) that can consume data from databases vs. a framework

(PolyFrame) that instructs a database system to process the data.
This set of experiments is included for the benefit of readers who
may otherwise wonder why Spark plus its database connectivity are
not simply the ultimate scaling answer. The other set of experiments
illustrates our new architecture operating against different database
systems to compute results as compared to Pandas Dataframes. We
conducted our experiments using the Dataframe benchmark de-
tailed in [34]. That Dataframe benchmark was originally developed
to evaluate AFrame and to compare its performance with that of
other Dataframe libraries. Note that we use the benchmark here
as a demonstration of our new architecture (not to compare the
performance of the different database systems). Performance re-
sults for AFrame versus other distributed dataframe alternatives
are available in [34].

4.1 DataFrame Benchmark

To our knowledge, there is no standard benchmark for evaluat-
ing dataframe libraries. Therefore, when we first created AFrame
we also implemented our own Dataframe benchmark to evalu-
ate AFrame’s performance. We use the same benchmark here to
evaluate PolyFrame. The benchmark uses Wisconsin benchmark
data [21]. An important feature of the benchmark is that it presents
two separate timing comparisons. One is the total runtime, which
includes both the DataFrame creation and the expression runtimes,
and the other is the expression-only runtime. This is done to re-
flect the impact of the schema inferencing process. The benchmark
timing points for Pandas and PolyFrame are fully described in [36].

4.1.1 Benchmark Datasets. The DataFrame benchmark issues
its expressions against a synthetically generated Wisconsin bench-
mark dataset. This dataset allows us to precisely control the selectiv-
ity percentages, to generate data with uniform value distributions,
and to broadly represent data for general analysis use cases. A spec-
ification of the attributes in the Wisconsin benchmark’s dataset is
displayed in Table 2. For our use case, we modified the Wisconsin
dataset to include 10% missing values in its ‘tenPercent’ attribute.
The unique? attribute is a declared key and is ordered sequentially,
while the uniquel attribute has a set of unique values that are ran-
domly distributed. Other numerical attributes are used to provide
access to a known percentage of values in the dataset. The dataset
also contains three string attributes: stringul, stringu2, and string4.
We used a JSON data generator [25] to generate the datasets.

In order to simulate running PolyFrame in a production environ-
ment, we also obtained a real-world data from Criteo [3] to evaluate
PolyFrame’s performance in a cluster environment. This dataset
contains feature values and click feedback on display ads served by
Criteo. It has 40 string and numerical attributes.

4.1.2 Benchmark Expressions. Table 3 displays the complete
set of the DataFrame benchmark’s expressions (where expression
13 is an added expression since [34]). For the Criteo dataset, we
used the same operations but modified the attribute names prior to
running the experiment.

4.2 Experimental Setup

In order to present a reproducible evaluation environment, we
set up a benchmark cluster consisting of Amazon EC2 m4 large

2301

Table 2: Scalable Wisconsin benchmark: attributes [21]

Attribute name Attribute domain | Attribute value
uniquel 0O..(MAX-1) unique, random
unique2 O..(MAX-1) unique, sequential
two 0..1 uniquel mod 2

four 0.3 uniquel mod 4

ten 0..9 uniquel mod 10
twenty 0..19 uniquel mod 20
onePercent 0..99 uniquel mod 100
tenPercent 0..9 uniquel mod 10
twentyPercent 0.4 uniquel mod 5
fiftyPercent 0..1 uniquel mod 2
unique3 O..(MAX-1) uniquel
evenOnePercent | 0,2,4, ...,198 onePercent*2
oddOnePercent 1,3,5, ...,199 (onePercent *2)+ 1
stringul per template derived from uniquel
stringu2 per template derived from unique2
string4 per template cyclic: A, H, O,V

Table 3: Dataframe Benchmark Operations (df, df2 =
DataFrame objects, x,y,z = variables representing random
values within an attribute’s range)

ID | Operation DataFrame Expression
1 Total Count len(df)
2 Project df [['"two', 'four']].head()

Filter & Count

len(df[(df['ten'] == x)
& (df['twentyPercent'] == y)
& (df['two']l == z)1)

Group By & Max

df . groupby ('twenty')['four'].agg('max")

Sort

4 | Group By df . groupby ('oddOnePercent').agg('count"')
5 | Map Function df['stringul'].map(str.upper).head()

6 Max df['uniquel'].max()

7 Min df['uniquel'].min()

8

9

df .sort_values('uniquel',ascending=False).head()

10 | Selection df[(df['ten'] == x)J.head()

len(df[(df['onePercent'] >= x)

11 | Range Selection
& (df['onePercent'] <= y)1)

len(pd.merge(df, df2,
left_on="uniquel"',
right_on="'uniquel"',
how="inner',hint="index"'))

12 | Join & Count

13 | Count Missing Value | len (df[df['tenPercent'].isna()1)

machines. Each machine has 8 GB of memory, 100 GB of SSD, and
the Ubuntu Linux operating system.

We used the Wisconsin benchmark data generator to generate 1
GB and 10 GB of data in JSON file format.

4.2.1 Comparison with Spark (Single and Multi-Node). On
a single node, we used two different data access methods for PyS-
park dataframes reading from a MongoDB instance. We used the
MongoDB-Spark connector provided by MongoDB to read the data.
For the first data access method (labeled ‘Spark’), we used the con-
nector to directly read the data from MongoDB. For the second data
access method (labeled ‘Spark+MongoDB pipeline’), we directly
provided the connector with MongoDB aggregation pipelines. This
is an optimization that Spark supports to push down a query and
utilize database optimizations to lower the amount of data trans-
ferred back. The pipelines that we issued to Spark are the same
ones that PolyFrame generated, and both Spark and PolyFrame
were connected to the same MongoDB instance.

On a three-node cluster, we set up Vertica Community Edition
10.1.0 [14] with Spark workers co-located on the same nodes. For

this cluster experiment, we ingested a 100 GB of real-world data
subsetted from the Criteo dataset [3] into Vertica. The attributes
used for the benchmark queries were changed to work with the
underlying Criteo dataset. PolyFrame and Spark both connected to
the same Vertica cluster. However, unlike MongoDB, the Vertica-
Spark connector only supports projection and selection push-downs
to the database.

4.2.2 PolyFrame Heterogeneity (Single and Multi-Node). To
assess the benefits and feasibility of PolyFrame, we ran the DataFrame
benchmark on Pandas and on PolyFrame operating on the four dif-
ferent database systems detailed below:

o AsterixDB: v.0.9.5 with data compression enabled
e PostgreSQL: v.12

e MongoDB: v.4.2 Community edition

e Neodj: v.3.5.14 Community edition

4.3 Experimental Results

Here we present benchmark results for both the PolyFrame com-
parison with Spark and PolyFrame on different database systems.

4.3.1 Comparison with Spark (Single Node). For this exper-
iment, we ran the benchmark on 10 GB dataset (which exceeds
a single node memory capacity). Figure 7 shows the results for
PolyFrame and Spark for all of the dataframe benchmark’s expres-
sions. PolyFrame performed the best across all of the expressions.

Spark was significantly slower than PolyFrame, even when oper-
ating on the same MongoDB instance, partly due to the data transfer
time between MongoDB and Spark. PolyFrame sends queries to
MongoDB directly, without first loading any data into memory for
processing. This lets MongoDB process the operations and only
return the queries’ results. This design allows PolyFrame to take
advantage of MongoDB’s database optimizations (e.g., index) and
to avoid loading large amounts of data into memory.

Spark with MongoDB pipelines had better performance than
regular Spark because it reduces the amount of data needed to
be transferred from the database into the Spark environment for
processing. However, one can see that even with passed-down
pipelines, Spark was still slower than PolyFrame. This is because
the MongoDB pipelines that are passed through the connector are
applied to each data partition, and not to the whole dataset. The
number of data partitions is determined by MongoDB’s partitioner
in order to optimize data transfers to multiple Spark workers. Post-
processing is then done at the Spark level.

4.3.2 Comparison with Spark (Multi-Node). For the cluster
experiments, we ran the benchmark on 100GB of data from the
Criteo dataset residing on a three-node Vertica cluster. We used the
SQL language configuration file for operation-to-query translation.
The results in Figure 8 are consistent with the single node results for
MongoDB. However, unlike the MongoDB connector, the Vertica-
Spark connector (provided by Vertica) does not provide an option
for manual query pass-down. For Vertica, then, Spark can only
take advantage of the database API’s selection and projection push-
down to limit the amount of data transferred. As a result, Spark and
PolyFrame performance is similar on expressions 3 and 11, which
issue range and exact-match queries respectively.

2302

2,000

‘ mPolyFrame mSpark+MongoDB pipeline = Spark

200 o

U
%20 =0 Em o 0 mi il ulll
m 15
Sl
= 9 |

6 I

3L

0 il

3 4 5 6 7 8 9 10 11 12 13
EXPRESSION ID

Figure 7: Single-node Experiment with Spark on MongoDB

10,000

m PolyFrame
1000 ¢ | mSpark

S
S

MH I

TIME (SEC.)

5 6 7 8 9 10 11 12 13
EXPRESSION ID

Figure 8: Cluster Experiment with Spark on Vertica

4.3.3 PolyFrame Heterogeneity (Single and Multi-Node). An
important point to note here is that we began with a single node
evaluation primarily to compare PolyFrame’s database system-
based lazy evaluation with Pandas’ eager in-memory evaluation
approach. We first executed the benchmark on a small benchmark
dataset as a preliminary test before running it on the other big-
ger datasets. As mentioned, the DataFrame benchmark separately
presents the DataFrame creation time and the expression-only run-
time. Figure 9 presents the results for the single node evaluation. 9a
displays the total runtimes for expressions 1-13, and 9b displays
the expression-only runtimes for the expressions. The total eval-
uation times of Pandas were significantly higher than all variants
of PolyFrame because Pandas has to load the entire dataset into
memory to create its DataFrames. For the expression-only times,
Pandas was then the fastest to complete most of the operations
due to having the data already available in memory, except for
expressions 5 and 10 where Pandas suffered due to eagerly evalu-
ating sub-components of the expressions. In contrast, PolyFrame
operating on top of the four database systems did not incur any
DataFrame creation times. The four PolyFrame variants were all
able to execute all benchmark expressions. The runtime results
among these four database systems vary due to their each having
different optimizations. For example:

o PolyFrame operating on top of PostgreSQL was able to take
advantage of index-only query plans, backward index scans
to retrieve a subset of records sorted in descending order
(expression 9), and null value statistics using its indexes.

500 ¢

50 ¢

0.5

TIME (SEC.)
TIME (SEC.)

|
5

6 7 8
EXPRESSION ID
MongoDB

1
9

m Pandas AsterixDB Neo4;j m PostgreSQL

(a) Expression 1-13 total times

05
04
03
02 |
0.1 |
0.0

6 7

EXPRESSION ID
= Pandas AsterixDB MongoDB

Neo4j = PostgreSQL

(b) Expression 1-13 expression-only times

Figure 9: Results of Single Node Evaluation

e For Neo4j, it provides fast metadata lookup for count of
records (expression 1). We also found that its storage layout
and record structure, which separate string attributes from
numerical attributes, also contributed to its performance.

o For MongoDB, PolyFrame uses aggregation pipelines to fa-
cilitate incremental query formation and language rewriting
process. Similar to PostgreSQL, a backward index scan and
index searches are applied on the same set of expressions.

o AsterixDB offers a primary key index, which enables fast
computation for count of records (expression 1). Index-only
capabilities and index nested-loop joins significantly helped
with calculating the count of records on the join results.

We also conducted multi-node experiments to demonstrate the
scalability of PolyFrame on distributed database systems (Aster-
ixDB, MongoDB, and GreenPlum). An instance of each database
was installed on all of the machines in the 4-node cluster. The
speedup and scaleup results for PolyFrame were mostly consistent
with the single node results. Due to space limitations, we refer
interested readers to the discussion of our cluster results in [36].

4.4 Discussion of Experiments

We conducted the Spark experiments to show important differences
between utilizing database optimizations versus using an optimized
compute engine to read and then process the data. It is important to
note that passing queries down to a database can significantly lower
the amount of transfer data. However, in Spark, doing so requires
data scientists to be familiar with the database’s query language
in order to fully optimize Spark performance. Intuitively, if users
can generate the needed database queries and then execute them
directly on a database system, that yields the most optimal execution
results, as shown in our experiments. However, it significantly
reduces the benefits offered by the Dataframe abstraction.

Pandas performed competitively on all tasks when data fits in
memory. However, due to its eager evaluation approach, it needs
to accommodate intermediate computation results, which leads to
higher memory consumption. In addition, Pandas suffered from
resource under-utilization and has very limited scalability.

PolyFrame utilizes lazy evaluation, sending queries to an under-
lying database system only when actions are invoked. This allows
PolyFrame to take advantage of database systems’ optimizations.
We conducted our single node experiments to compare PolyFrame’s

2303

lazy evaluation approach with Pandas’ eager in-memory evaluation
approach (rather than comparing the performance of the different
database systems). We demonstrated that operating on top of a
database system indeed allows PolyFrame to take advantage not
only of optimizations such as indexes and query optimization, but
also of the data management capabilities that go beyond memory
limits. PolyFrame does not require the loading of data into memory
prior to computing expression results; this resulted in lower total
runtimes across all benchmark expressions.

By configuring PolyFrame to work against significantly different
database systems and query languages, we have demonstrated the
generality and feasibility of its language rewrite rules. The flexibility
of our rewrite rules allows PolyFrame to take advantage of each
database system’s optimizations while maintaining efficiency.

5 CONCLUSIONS AND FUTURE WORK

In this work, we have shown the practicality of retargeting AFrame’s
incremental query formation approach onto a variety of query-
based database systems in order to scale dataframe operations
without requiring users to have distributed or database systems
expertise. The flexibility of our language rewrite rules enables
database-specific optimizations and makes extending the Pandas
DataFrame API to custom languages and systems possible. We
evaluated PolyFrame versus Pandas DataFrames through a set of
analytical benchmark operations. As a result, we have also shown
that lazy evaluation, which takes advantage of database optimiza-
tions, is an efficient (and important) solution to big data analysis.
In its current stage, PolyFrame has already shown promising
results for enabling a scale-independent data analysis experience.
A recent paper [32] has given a formal definition to dataframe
operators. It may be worthwhile to incorporate their dataframe
algebra with our generic rewrite rules to provide an intermediate
abstraction for query language mapping. Another research problem
being explored in other similar dataframe libraries is how to support
Pandas’ notion of row labels efficiently in a distributed environment.
There is not yet an efficient solution to enable row-indexing on
unordered data (which is the data model used in most existing
database systems); currently, an order is required in the form of
either system-generated internal identifiers or sorted data to enable
such a capability in a distributed environment. This results in a
performance trade-off that we would like to eliminate if possible.

REFERENCES

[17]

[18]

[19

[20]
[21]
[22]

[23

2021. Apache AsterixDB. https://asterixdb.apache.org/.

2021. Apache Spark. http://spark.apache.org/.

2021. Criteo 1TB Click Logs dataset. https://ailab.criteo.com/download-criteo-
1tb-click-logs-dataset/.

2021. Dask. http://dask.org/.

2021. IBIS. https://ibis-project.org/.

2021. Koalas. http://koalas.readthedocs.io.

2021. Modin. https://modin.readthedocs.io/en/latest/.

2021. MongoDB. http://mongodb.com/.

2021. MongoDB Aggregation. https://docs.mongodb.com/manual/aggregation/.
2021. Neodj. http://neo4j.com/.

2021. Pandas. http://pandas.pydata.org/.

2021. PostgreSQL. http://www.postgresql.org/.

2021. Spark Data Sources. https://spark.apache.org/docs/latest/sql-data-sources.
html.

2021. Vertica. https://www.vertica.com.

2021. Wes McKinney. https://wesmckinney.com/blog/apache-arrow-pandas-
internals/.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). 265-283.

Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak
Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram
Faraaz, et al. 2014. AsterixDB: A scalable, open source BDMS. Proceedings of the
VLDB Endowment (PVLDB) 7, 14 (2014), 1905-1916.

Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh
Rosen, Ion Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. 2015. Scaling
Spark in the real world: Performance and usability. Proceedings of the VLDB
Endowment (PVLDB) 8, 12 (2015), 1840-1843.

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. 2015.
Spark SQL: Relational data processing in Spark. In ACM International Conference
on Management of Data (SIGMOD). 1383-1394.

D Chamberlin. 2018. SQL++ for SQL Users: A Tutorial. September 2018. Available
via Amazon.com (2018).

David J DeWitt. 1993. The Wisconsin benchmark: Past, present, and future. In
The Benchmark Handbook, J. Gray (Ed.). Morgan Kaufmann.

James R Groff, Paul N Weinberg, and Andrew J Oppel. 2002. SQL: the complete
reference. Vol. 2. McGraw-Hill/Osborne.

Stefan Hagedorn, Steffen Klabe, and Kai-Uwe Sattler. 2021. Putting pandas in a
box. In Conference on Innovative Data Systems Research (CIDR).

2304

[24

[25

[26

[27]

™~
&,

[29]

[30

(31

%
&,

[33

[34

[35

[36

[37

Florian Holzschuher and René Peinl. 2013. Performance of graph query languages:
comparison of cypher, gremlin and native access in Neo4;j. In Proceedings of the
Joint EDBT/ICDT 2013 Workshops. 195-204.

Shiva Jahangiri. 2020. shivajah/JSON-Wisconsin-Data-Generator. https://doi.org/
10.5281/zenodo.4315937

Alekh Jindal, K Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes,
Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo Curino, Andreas
Mueller, et al. 2021. Magpie: Python at speed and scale using cloud backends. In
Conference on Innovative Data Systems Research (CIDR).

Wes McKinney et al. 2010. Data structures for statistical computing in Python.
In Proceedings of the Python in Science Conference, Vol. 445. 51-56.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A Distributed Framework for Emerging Al Applications. In
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
561-577.

M. Tamer Ozsu and Patrick Valduriez. 2019. Principles of Distributed Database
Systems (4th ed.). Springer Publishing Company, Incorporated.

Jonas Partner, Aleksa Vukotic, and Nicki Watt. 2013. Neo4j in action. Manning
Publications Co.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: machine learning in Python. Journal
of Machine Learning Research 12, 10 (2011), 2825-2830.

Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi
Mo, Joseph E Gonzalez, Joseph M Hellerstein, Anthony D Joseph, and Aditya
Parameswaran. 2020. Towards Scalable Dataframe Systems. Proceedings of the
VLDB Endowment (PVLDB) 13, 12 (2020), 2033-2046.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop distributed file system. In IEEE Symposium on Mass Storage Systems
and Technologies (MSST). 1-10.

Phanwadee Sinthong and Michael J Carey. 2019. AFrame: Extending DataFrames
for Large-Scale Modern Data Analysis. In IEEE International Conference on Big

Data (Big Data). 359-371.
Phanwadee Sinthong and Michael J Carey. 2019. AFrame: Extending DataFrames

for large-scale modern data analysis (Extended Version). arXiv preprint
arXiv:1908.06719 (2019).

Phanwadee Sinthong and Michael J Carey. 2020. PolyFrame: A Query-based ap-
proach to scaling Dataframes (Extended Version). arXiv preprint arXiv:2010.05529
(2020).

Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache Spark: A unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56—65.

https://asterixdb.apache.org/
http://spark.apache.org/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
http://dask.org/
https://ibis-project.org/
http://koalas.readthedocs.io
https://modin.readthedocs.io/en/latest/
http://mongodb.com/
https://docs.mongodb.com/manual/aggregation/
http://neo4j.com/
http://pandas.pydata.org/
http://www.postgresql.org/
https://spark.apache.org/docs/latest/sql-data-sources.html
https://spark.apache.org/docs/latest/sql-data-sources.html
https://www.vertica.com
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://doi.org/10.5281/zenodo.4315937
https://doi.org/10.5281/zenodo.4315937

