
Unifying Clustered and Non-stationary Bandits

Chuanhao Li Qingyun Wu Hongning Wang

University of Virginia
cl5ev@virginia.edu

University of Virginia
qw2ky@virginia.edu

University of Virginia
hw5x@virginia.edu

Abstract

Non-stationary bandits and clustered bandits
lift the restrictive assumptions in contextual
bandits and provide solutions to many im-
portant real-world scenarios. Though they
have been studied independently so far, we
point out the essence in solving these two
problems overlaps considerably. In this work,
we connect these two strands of bandit re-
search under the notion of test of homogene-
ity, which seamlessly addresses change de-
tection for non-stationary bandit and cluster
identification for clustered bandit in a unified
solution framework. Rigorous regret analysis
and extensive empirical evaluations demon-
strate the value of our proposed solution, es-
pecially its flexibility in handling various en-
vironment assumptions, e.g., a clustered non-
stationary environment.

1 Introduction

Most existing contextual bandit algorithms impose
strong assumptions on the mapping between context
and reward (Abbasi-Yadkori et al., 2011; Chu et al.,
2011; Li et al., 2010): typically it is assumed that
the expected reward associated with a particular ac-
tion is determined by a time-invariant function of the
context vector. This overly simplified assumption re-
stricts the application of contextual bandits in many
important real-world scenarios, where a learner has
to serve a population of users with possible mutual
dependence and changing interest. This directly moti-
vates recent efforts that postulate more general reward
assumptions (Wu et al., 2016; Filippi et al., 2010; Mail-
lard and Mannor, 2014; Kleinberg et al., 2008); among
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them, non-stationary bandits (Wu et al., 2018; Slivkins
and Upfal, 2008; Cao et al., 2019; Besson and Kauf-
mann, 2019; Russac et al., 2019; Chen et al., 2019) and
clustered bandits (Gentile et al., 2014; Li et al., 2016;
Gentile et al., 2017; Li et al., 2019) received much at-
tention.

In non-stationary bandits, the reward mapping func-
tion becomes time-variant. A typical non-stationary
setting is the abruptly changing environment, a.k.a, a
piecewise stationary environment, in which the envi-
ronment undergoes abrupt changes at unknown time
points but remains stationary between two consecu-
tive change points (Yu and Mannor, 2009; Garivier
and Moulines, 2011). A working solution needs to ei-
ther properly discount historical observations (Hart-
land et al., 2006; Garivier and Moulines, 2011; Rus-
sac et al., 2019) or detect the change points and re-
set the model estimation accordingly (Yu and Man-
nor, 2009; Cao et al., 2019; Wu et al., 2018). In clus-
tered bandits, grouping structures of bandit models
are assumed, e.g., users in a group share the same
bandit model. But instead of assuming an explicit
dependency structure, e.g., leveraging existing social
network among users (Cesa-Bianchi et al., 2013; Wu
et al., 2016), clustered bandit algorithms aim to si-
multaneously cluster and estimate the bandit models
during the sequential interactions with users (Gentile
et al., 2014; Li et al., 2016; Gentile et al., 2017; Li et al.,
2019). Its essence is thus to measure the relatedness
between different bandit models. Typically, confidence
bound of model parameter estimation (Gentile et al.,
2014) or reward estimation (Gentile et al., 2017) is
used for this purpose.

So far these two problems have been studied in paral-
lel; but the key principles to solve them overlap con-
siderably. On the one hand, mainstream solutions
for piecewise stationary bandits detect change points
in the underlying reward distribution by comparing
the observed rewards (Cao et al., 2019) or the qual-
ity of estimated rewards (Yu and Mannor, 2009; Wu
et al., 2018) in a window of consecutive observations. If
change happens in the window, the designed statistics
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of interest would exceed a threshold with a high proba-
bility. This is essentially sequential hypothesis testing
of a model’s fitness (Siegmund, 2013). On the other
hand, existing solutions for clustered bandits evaluate
if two bandit models share the same set of parameters
(Gentile et al., 2014; Li et al., 2016) or the same reward
estimation on a particular arm (Gentile et al., 2017).
This can also be understood as a goodness-of-fit test
between models.

In this work, we take the first step to unify these two
parallel strands of bandit research under the notion
of test of homogeneity, and study non-stationarity in
linear bandit with time-varying arm set, which distin-
guishes us from most existing work. We address both
problems by testing whether the collection of obser-
vations in a bandit model follows the same distribu-
tion as that of new observations (i.e., change detec-
tion in non-stationary bandit algorithms) or of those
in another bandit model (i.e., cluster identification in
clustered bandit algorithms). Built upon our solution
framework, bandit models can operate on individual
users with much stronger flexibility, so that new ban-
dit learning problems can be created and addressed.
This enables us to study a new and challenging ban-
dit problem in a clustered non-stationary environment,
where the learner has to reset individual models when
a change of reward distribution is detected, and merge
them when they are determined as identical. This task
of doing change detection while clustering is novel and
important by itself (Mazhar et al., 2018), and has never
been considered in bandit problem where the observa-
tions are non-IID in nature. Since our solution auto-
matically detects changes and clustering structure, it
has a much weaker assumption about the environment
(e.g., it can be clustered, or non-stationary, or both).
Furthermore, our solution enables data sharing across
both users and time, when such structure exists in the
environment, thus greatly reducing sample complexity
in learning bandit models. Our rigorous regret anal-
ysis and extensive empirical evaluations demonstrate
the value of this unified solution, especially its advan-
tages in handling various environment assumptions.

2 Related work

Our work is closely related to the studies in non-
stationary bandits and clustered bandits. In this sec-
tion, we discuss the most representative solutions in
each direction and highlight their connections.

Non-stationary bandits. Instead of assuming
a time-invariant environment, the reward mapping
is allowed to change over time in this problem
setting. Commonly imposed assumptions include
slowly-varying environment (Besbes et al., 2019; Che-

ung et al., 2019) and abruptly-changing environment
(Moulines, 1985; Wu et al., 2018; Auer et al., 2019).
We focus on the latter setting, which is also known as a
piecewise stationary environment in literature (Yu and
Mannor, 2009; Garivier and Moulines, 2011). In a non-
stationary setting, the main focus is to eliminate the
distortion from out-dated observations, which follow
a different reward distribution than that of the cur-
rent environment. Popular solutions for the piecewise
stationary environment actively detect change points
and reset bandit models accordingly (Yu and Mannor,
2009; Cao et al., 2019; Besson and Kaufmann, 2019;
Wu et al., 2018; Hariri et al., 2015; Auer et al., 2019;
Chen et al., 2019). It should be noted that this pa-
per studies non-stationarity in linear bandit with time-
varying arm set (Wu et al., 2018; Cheung et al., 2019;
Russac et al., 2019; Zhao et al., 2020), which is differ-
ent from the solutions for non-stationary MAB prob-
lem (Yu and Mannor, 2009; Cao et al., 2019; Besson
and Kaufmann, 2019; Hariri et al., 2015; Auer et al.,
2019) or the non-stationary contextual MAB (Agar-
wal et al., 2014; Luo et al., 2018; Chen et al., 2019).
Therefore, their results do not apply to the setting con-
sidered in this paper. The closest work to our setting
is Wu et al. (2018), which maintains a pool of base lin-
ear bandit models and adaptively adds or selects from
them via a change detector, which monitors how well
each base bandit model predicts the new observations.
This in essence boils down to a likelihood-ratio test
for change in the bandit parameter. To the best of our
knowledge, all the other studies for non-stationary lin-
ear bandit assume a slowly-varying environment and
adopts strategies like sliding window (Cheung et al.,
2019), decaying weight (Russac et al., 2019) or peri-
odical restart (Zhao et al., 2020) to eliminate the dis-
tortion from out-dated observations.

Clustered bandits. When serving a population of
users, the vanilla linear bandit usually models the pref-
erence of each individual user in isolation, neglecting
the correlation between users. In order to improve
sample efficiency, such user correlation can be utilized
to enable collaboration among each individual ban-
dit models (Li, 2016; Gentile et al., 2014; Li et al.,
2016; Gentile et al., 2017; Cesa-Bianchi et al., 2013;
Wu et al., 2016). Besides leveraging explicit struc-
ture among users, such as social networks (Buccapat-
nam et al., 2013; Cesa-Bianchi et al., 2013; Wu et al.,
2016; Yang et al., 2020), recent efforts focus on online
clustering of bandits via the interactions with users
(Gentile et al., 2014; Li et al., 2016; Gentile et al.,
2017; Li et al., 2019). For example, Gentile et al.
(2014) assumed that observations from different users
in the same cluster share the same underlying bandit
parameter. Thus, they estimate the clustering struc-
ture among users based on the difference between their
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estimated bandit parameters. Li et al. (2016) used a
similar idea to cluster items (arms) as well. Gentile
et al. (2017) further studied arm-dependent cluster-
ing of users, by the projected difference between mod-
els on each arm. Li et al. (2019) proposed a phase-
based algorithm to relax the uniform user frequency
assumption in the analysis of Gentile et al. (2014).
Essentially, these algorithms measure the relatedness
between users by evaluating the homogeneity of ob-
servations associated with individual models, though
they have used various measures for this purpose.

3 Methodology

In this section, we first formulate the problem setup
studied in this paper. Then we describe two key com-
ponents pertaining to non-stationary bandits and clus-
tered bandits, and pinpoint the essential equivalence
between them under the notion of homogeneity test,
which becomes the cornerstone of our unified solution.
Based on our construction of homogeneity test, we ex-
plain the proposed solution, followed by our theoreti-
cal analysis of the resulting upper regret bound of the
proposed solution.

3.1 Problem formulation

To offer a unified approach that addresses the two tar-
get problems, we formulate a general bandit learning
setting that encompasses both non-stationarity in in-
dividual models and existence of clustering structure.

Consider a learner that interacts with a set of n users,
U = {1, ..., n}. At each time t = 1, 2, ..., T , the learner
receives an arbitrary user indexed by it ∈ U , together
with a set of available arms Ct = {xt,1,xt,2, . . . ,xt,K}
to choose from, where xt,j ∈ Rd denotes the context
vector associated with the arm indexed by j at time
t (assume ‖xt,j‖ ≤ 1 without loss of generality), and
K denotes the size of arm pool Ct. After the learner
chooses an arm xt, its reward yt ∈ R is fed back from
the user it. We follow the linear reward assumption
(Abbasi-Yadkori et al., 2011; Chu et al., 2011; Li et al.,
2010) and use θit,t to denote the parameter of the re-
ward mapping function in user it at time t (assume
‖θit,t‖ ≤ 1). Under this assumption, the reward at
time t is yt = x>t θit,t + ηt, where ηt is Gaussian noise
drawn from N(0, σ2). Interaction between the learner
and users repeats, and the learner’s goal is to maxi-
mize the accumulated reward it receives from all users
in U up to time T .

Denote the set of time steps when user i ∈ U is served
up to time T as Ni(T ) = {1 ≤ t ≤ T : it = i}. Among
time steps t ∈ Ni(T ), user i’s parameter θi,t changes
abruptly at arbitrary time steps {ci,1, ..., ci,Γi(T )−1},

but remain constant between any two consecutive
change points. Γi(T ) denotes the total number of sta-
tionary periods in Ni(T ). The set of unique parame-
ters that θi,t takes for any user at any time is denoted
as {φk}mk=1 and their frequency of occurrences in T is
{pk}mk=1. Note that we do not impose any assumption
on the distribution over the user, nor on the distri-
bution over the unique bandit parameter appearing in
each round. Also note that the ground-truth linear
parameters, the set of change points, the number and
frequencies of unique parameters are unknown to the
learner. Moreover, the number of users, i.e., n, and
the number of unique bandit parameters across users,
i.e., m, are finite but arbitrary.

Our problem setting defined above is general. The
non-stationary and clustering structure of an environ-
ment can be specified by different associations be-
tween {θi,t}ni=1 and {φk}mk=1 across users over time
t = 1, 2, ..., T . For instance, by setting n > m and
Γi(T ) = 1, ∀i ∈ U , the problem reduces to the clus-
tered bandits problem, which assumes sharing of ban-
dit models among users with stationary reward distri-
butions. By setting n = 1, m > 1 and Γi(T ) > 1, ∀i ∈
U , it reduces to the piecewise stationary bandits prob-
lem, which only concerns users with non-stationary
reward distributions in isolation.

To make our solution compatible with existing work in
non-stationary bandits and clustered bandits, we also
follow the three commonly made assumptions about
the environment.

Assumption 1 (Change detectability) For any
user i ∈ U and any change point c in user i, there
exists ∆ > 0 such that at least ρ portion of arms
satisfy: |x>θi,c−1 − x>θi,c| > ∆ (Wu et al., 2018).

Assumption 2 (Separateness among {φk}mk=1)
For any two different unique parameters φi 6= φj, we
have ‖φi − φj‖ ≥ γ > 0 (Gentile et al., 2014, 2017;
Li et al., 2019).

Assumption 3 (Context regularity) At each time
t, arm set Ct is generated i.i.d. from a sub-Gaussian
random vector X ∈ Rd, such that E[XX>] is full-rank
with minimum eigenvalue λ′ > 0; and the variance

ς2 of the random vector satisfies ς2 ≤ λ′2

8 ln 4K (Gentile
et al., 2014, 2017; Li et al., 2019).

The first assumption establishes the detectability of
change points in each individual bandit models over
time. The second assumption ensures separation
within the global unique parameter set shared by all
users, and the third assumption specifies the property
of context vectors. Based on these assumptions, we
establish the problem setup in this work and illustrate
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it on the left side of Figure 1.

3.2 Test statistic for homogeneity

As discussed in Section 2, the key problem in non-
stationary bandits is to detect changes in the underly-
ing reward distribution, and the key problem in clus-
tered bandits is to measure the relatedness between
different models. We view both problems as testing
homogeneity between two sets of observations to unify
these two seemingly distinct problems. For change
detection, we test homogeneity between recent and
past observations to evaluate whether there has been a
change in the underlying bandit parameters for these
two consecutive sets of observations. For cluster iden-
tification, we test homogeneity between observations
of two different users to verify whether they share the
same bandit parameter. On top of the test results, we
operate the bandit models accordingly for model se-
lection, model aggregation, arm selection, and model
update.

We use H1 = {(xi, yi)}t1i=1 and H2 = {(xj , yj)}t2j=1
to denote two sets of observations, where t1, t2 ≥ 1
are their cardinalities. (X1,y1) and (X2,y2) denote
design matrices and feedback vectors of H1 and H2

respectively, where each row of X is the context vector
of a selected arm and the corresponding element in
y is the observed reward for this arm. Under linear
reward assumption, ∀(xi, yi) ∈ H1, yi ∼ N(x>i θ1, σ

2),
and ∀(xj , yj) ∈ H2, yj ∼ N(x>j θ2, σ

2). The test of
homogeneity between H1 and H2 can thus be formally
defined as testing whether θ1 = θ2.

Because θ1 and θ2 are not observable, the test has to
be performed on their estimates, for which maximum
likelihood estimator (MLE) is a typical choice. De-
note MLE for θ on a dataset H as ϑ = (X>X)−X>y,
where (·)− stands for generalized matrix inverse. A
straightforward approach to test homogeneity between
H1 and H2 is to compare ‖ϑ1−ϑ2‖ against the estima-
tion confidence on ϑ1 and ϑ2. The clustering methods
by Gentile et al. (2014, 2017) essentially followed this
idea. However, theoretical guarantee on the false neg-
ative probability of this method only exists when the
minimum eigenvalues of X>1 X1 and X>2 X2 are lower
bounded by a predefined threshold. In other words,
when one does not have sufficient observations in ei-
ther H1 or H2 , this test will not be effective.

To address this limitation, we choose the test statistic
that has been proved to be uniformly most powerful
for this type of problems (Chow, 1960; Cantrell et al.,
1991; Wilson, 1978):

s(H1,H2)=
||X1(ϑ1 − ϑ1,2)||2+||X2(ϑ2 − ϑ1,2)||2

σ2
(1)

where ϑ1,2 denotes the estimator using data from both

H1 and H2. The knowledge about σ2 can be relaxed
by replacing it with empirical estimate, which leads to
Chow test that has an F-distribution (Chow, 1960).

When s(H1,H2) is above a threshold υ, it suggests the
pooled estimator deviates considerably from the indi-
vidual estimators on two datasets. Thus, we conclude
θ1 6= θ2; otherwise, we conclude H1 and H2 are homo-
geneous. The choice of υ is critical, as it determines
the type-I and type-II error probabilities of the test.
Upper bounds of these two error probabilities are given
below and their proofs are provided in the appendix.

Theorem 3.1 The test statistic s(H1,H2) follows a
non-central χ2 distribution s(H1,H2) ∼ χ2(df, ψ) ,
where the degree of freedom df = rank(X1)+rank(X2)−

rank(

[
X1

X2

]
) , and the non-centrality parameter ψ =X1θ1

X2θ2

>It1+t2
−

X1

X2

(X>1 X1+X>2 X2)−
[
X>1 X>2

]X1θ1
X2θ2


σ2 .

Lemma 3.2 When θ1 = θ2, ψ = 0; the type-I error
probability can be upper bounded by:

P
(
s(H1,H2) > υ|θ1 = θ2

)
≤ 1− F (υ; df, 0),

where F (υ; df, 0) denotes the cumulative density func-
tion of distribution χ2(df, 0) evaluated at υ.

This lemma states that given two datasets H1 and H2

(hence the degree-of-freedom df is determined), the
type-I error probability of this test only depends on
the specified threshold υ.

Lemma 3.3 When θ1 6= θ2, ψ ≥ 0; the type-II error
probability can be upper bounded by,

P
(
s(H1,H2) ≤ υ|θ1 6= θ2

)
≤

{
F
(
υ; d, ψ

)
, if X1 and X2 are full-rank.

F (υ; df, 0), otherwise.

where ψ = ||θ1−θ2||2/σ2

1/λmin(X>1 X1)+1/λmin(X>2 X2)
.

Compared with the type-I error probability, this
lemma shows that the type-II error probability also
depends on the ground-truth parameters (θ1, θ2) and
the variance of noise σ2.

These error probabilities are the key concerns in our
problem: in change detection, they correspond to the
early and late detection of change points (Wu et al.,
2018); and in cluster identification, they correspond
to missing a user model in the neighborhood and plac-
ing a wrong user model in the neighborhood (Gentile
et al., 2014). Given it is impossible to completely elim-
inate these two types of errors in a non-deterministic
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Figure 1: Online bandit learning in a non-stationary and clustered environment. The environment setting is
shown on the left side of the figure, where each user’s reward mapping function undergoes a piecewise stationary
process; and the reward mapping functions are globally shared across users. The proposed DyClu algorithm is
illustrated on the right side of the figure. The model has a two-level hierarchy: at the lower level, individual users’
bandit models are dynamically maintained; and at the upper level, a unified test of homogeneity is performed
for the purpose of change detection and cluster identification among the lower-level user models.

algorithm, the uniformly most powerful property of
the test defined in Eq (1) guarantees its sensitivity is
optimal at any level of specificity.

3.3 Algorithm

In the environment specified in Section 3.1, the user’s
reward mapping function is piecewise stationary (e.g.,
the line segments on each user’s interaction trace in
Figure 1), which calls for the learner to actively detect
changes and re-initialize the estimator to avoid dis-
tortion from outdated observations (Yu and Mannor,
2009; Cao et al., 2019; Besson and Kaufmann, 2019;
Wu et al., 2018). A limitation of these methods is that
they do not attempt to reuse outdated observations
because they implicitly assume each stationary period
has an unique parameter. Our setting relaxes this by
allowing existence of identical reward mappings across
users and time (e.g., the orange line segments in Figure
1), which urges the learner to take advantage of this
situation by identifying and aggregating observations
with the same parameter to obtain a more accurate
reward estimation.

Since neither the change points nor the grouping struc-
ture is known, in order to reuse past observations while
avoiding distortion, the learner needs to accurately de-
tect change points, stores observations in the inter-
val between two consecutive detections together, and
then correctly identify intervals with the same param-
eter as the current one. In this paper, we propose to
unify these two operations using the test in Section
3.2, which leads to our algorithm Dynamic Clustering
of Bandits, or DyClu in short. DyClu forms a two-level

hierarchy as shown in Figure 1: at the lower level, it
stores observations in each interval and their sufficient
statistics in a user model; at the upper level, it de-
tects change in user’s reward function to decide when
to create new user models and clusters individual user
models for arm selection. Detailed steps of DyClu are
explained in Algorithm 1.

The lower level of DyClu manages observations asso-
ciated with each user i ∈ U in user models, denoted by
Mi,t. Each user model Mi,t = (Ai,t,bi,t,Hi,t) stores:

1. Hi,t: a set of observations associated with user i
since the initialization of Mi,t up to time t, where
each element is a context vector and reward pair
(xk, yk).

2. Sufficient statistics: Ai,t =
∑

(xk,·)∈Hi,t xkx
>
k and

bi,t =
∑

(xk,yk)∈Hi,t xkyk.

Every time DyClu detects change in a user’s reward
mapping function, a new user model is created to re-
place the previous one (line 15 in Algorithm 1). We
refer to the replaced user models as outdated models
and the others up-to-date ones. We denote the set of
all outdated user models at time t as Ot and the up-
to-date ones as Ut. In Figure 1, the row of circles next
to M1,t−1 represents all the user models for user 1, red
ones denote outdated models and the blue one denotes
up-to-date model.

The upper level of DyClu is responsible for manag-
ing the user models via change detection and model
clustering. It replaces outdated models in each user
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Algorithm 1 Dynamic Clustering of Bandits (DyClu)

1: Input: sliding window size τ , δ, δe ∈ (0, 1), threshold
for change detection and neighbor identification υe and
υc, and regularization parameter λ

2: Initialization: for each user model Mi,0, ∀i ∈ U :
Ai,0 = 0 ∈ Rd×d, bi,0 = 0 ∈ Rd, Hi,0 = ∅, êi,0 = 0;
the set of outdated user models O0 = ∅, and up-to-date
user models U0 = {Mi,0}i∈U

3: for t = 1, 2, ..., T do
4: Observe user it ∈ U , and set of available arms Ct =

{xt,1, ..., xt,K}
5: Choose arm xt ∈ Ct by Eq 2:

arg max
x∈Ct

x>θ̂V̂it,t−1
+ CBV̂it,t−1

(x)

6: Observe reward yt from user it
7: Compute eit,t = 1

{
S(Hit,t−1, (x

>
t , yt)) > υe

}
8: Update êit,t =

∑
t̃it (τ)<j≤t:ij=it

eit,j

9: if êit,t ≤ 1− F (υe; 1, 0) +
√

log 1/δe
2τ

then

10: if eit,t = 0 then
11: Mit,t: Hit,t = Hit,t−1 ∪ (xt, yt), Ait,t =

Ait,t−1 + xtx
>
t , bit,t = bit,t−1 + xtyt

12: end if
13: else
14: Ot = Ot−1 ∪Mit,t−1, êit,t = 0
15: Replace Mit,t−1 with Mit,t =

(Ait,t = 0, bit,t = 0,Hi,t = ∅) in Ut
16: end if
17: Compute V̂it,t = {M ∈ Ut ∪Ot : S(Hit,t,H) ≤ υc}

and update V̂i,t for i 6= it accordingly.
18: end for

and aggregates models across users and time for arm
selection.

• Change detection. A one-sample homogene-
ity test is used to construct a test variable eit,t =
1 {s(Hit,t−1, {(xt, yt)}) > υe} to measure whether the
user model Mit,t−1 is ‘admissible’ to the new obser-
vation (xt, yt). υe is a chosen threshold for change
detection. To make more reliable change detection,
we use the empirical mean of eit,t in a sliding window
of size min(|Hit,t−1|, τ) as the test statistic, denoted
as êit,t = 1

min(|Hit,t−1|,τ)

∑
k eit,k. Lemma 3.4 specifies

the upper bound of early detection probability using
êi,t, which is used for selecting threshold for it.

Lemma 3.4 From Lemma 3.2, type-1 error probabil-
ity P (ei,t = 1) = 1 − F (υe; 1, 0), and thus E[ei,t] =
1− F (υe; 1, 0). Applying Hoeffding inequality gives,

P
(
êi,t > 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≤ δe

At any time step t, DyClu only updates Mit,t−1 when
eit,t = 0 (line 10-12 in Algorithm 1). This guarantees
that if the underlying reward distribution has changed,
with a high probability we have eit,t = 1, and thus the

user model Mit,t−1 will not be updated. This prevents
any distortion in Hit,t by observations from different
reward distributions.

When êit,t exceeds the threshold specified by Lemma
3.4, DyClu will inform the lower level to move
Mit,t−1 to the outdated model set Ot = Ot−1 ∪
{Mit,t−1}; and then create a new model Mit,t =
(Ait,t = 0, bit,t = 0,Hi,t = ∅) for user it as shown in
line 13-16 in Algorithm 1.

• Clustering of user models. In this step, Dy-
Clu finds the set of “neighborhood” user models
V̂it,t of current user model Mit , t, where V̂it,t−1 =
{M = (A,b,H) ∈ Ut ∪Ot : s(Hit,t,H) ≤ υc}. Basi-
cally, DyClu executes homogeneity test between Mit,t

and all other user models M ∈ Ut ∪Ot (both outdated
and up-to-date) with a given threshold υc (line 17 in
Algorithm 1). Lemma 3.2 and 3.3 again specify error
probabilities of each decision.

When selecting an arm for user it at time t, DyClu
aggregates the sufficient statistics of user models in
neighborhood V̂it,t−1. Then it adopts the popular
UCB strategy by Auer (2002); Li et al. (2010) to bal-
ance exploitation and exploration. Specifically, DyClu
selects arm xt that maximizes the UCB score com-
puted by aggregated sufficient statistics as follows (line
5 in Algorithm 1),

xt = arg max
x∈Ct

x>θ̂V̂it,t−1
+ CBV̂it,t−1

(x) (2)

In Eq (2), θ̂V̂it,t−1
= A−1

V̂it,t−1
bV̂it,t−1

is the ridge

regression estimator using aggregated statistics
AV̂it,t−1

= λId+
∑

(Aj ,bj ,Hj)∈V̂it,t−1
Aj and bV̂it,t−1

=∑
(Aj ,bj ,Hj)∈V̂it,t−1

bj ; the confidence bound of

reward estimation for arm x is CBV̂it,t−1
(x) =

αV̂it,t−1

√
x>A−1

V̂it,t−1
x, where αV̂it,t−1

=

σ

√
d log (1 +

∑
(Aj,bj,Hj)∈V̂it,t−1

|Hj |
dλ ) + 2 log 1

δ +
√
λ.

3.4 Regret analysis

Denote RT =
∑T
t=1 θ

>
it

x∗t − θ>itxt as the accumula-

tive regret, where x∗t = arg maxxt,j∈Ct θ
>
it

xt,j is the
optimal arm at time t. Our regret analysis relies on
the high probability results by Abbasi-Yadkori et al.
(2011) and decomposition of ”good” and ”bad” events
according to change detection and clustering results.
The full proof, along with ancillary results and discus-
sions, are given in the appendix.

Theorem 3.5 Under Assumptions 1, 2 and 3, the re-
gret of DyClu is upper bounded by:

RT = O
(
σd

√
T log2 T (

m∑
k=1

√
pk) +

∑
i∈U

Γi(T ) · C
)
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where C = 1
1−δe + σ2

γ2λ′2 log d
δ′

, with a probability at

least (1− δ)(1− δe
1−δe )(1− δ′).

Note that the first term matches the regret of the ideal
case that the learner knows the exact change points
and clustering structure of each user and time step,
while the second term corresponds to the additional
regret due to the interplay between errors in change
detection and clustering, which is unique to our prob-
lem. To better understand this result, we discuss in
the following paragraph how it compares with state-of-
the-art bandit solutions in settings like non-stationary
environment only or clustered environment only.

Case 1: Setting m = 1, n = 1 and Γ1(T ) = 1 re-
duces the problem to the basic linear bandit setting,
because the environment consists of only one user with
a stationary reward distribution for the entire time of
interaction. With only one user who has a stationary
reward distribution, we have

∑1
k=1

√
pk = 1 where pk

is frequency of occurrences of φk in T as defined in
Section 3.1. In addition, since there is only one sta-
tionary period, the added regret caused by late detec-
tion does not exist; and the added regret due to the
failure in clustering can be bounded by a constant,
which only depends on environment variables (see
Lemma D.2 in appendix for details). The upper re-

gret bound of DyClu then becomes O
(
σd
√
T log2 T

)
,

which achieves the same order of regret as that in Lin-
UCB (Abbasi-Yadkori et al., 2011). Case 2: Setting
Γi(T ) = 1, ∀i ∈ U reduces the problem to the clus-
tered bandit setting (Gentile et al., 2014), because
all users in the environment have a stationary re-
ward distribution of their own. Similar to Case 1,
the added regret caused by late detection becomes
zero and the added regret due to the failure in clus-
tering is bounded by a constant, which leads to the

upper regret bound of O
(
σd
√
T log2 T (

∑m
k=1

√
pk
)
.

DyClu achieves the same order of regret as that
in CLUB (Gentile et al., 2014). Case 3: Setting
n = 1 reduces the problem to a piecewise station-
ary bandit setting, because the environment consists
of only one user with piecewise stationary reward dis-
tributions. For the convenience of comparison, we
can rewrite the upper regret bound of DyClu in the
form of O

(∑
k∈[m]RLin(|Nφ

k (T )|) + Γ1(T )
)
, where

RLin(t) = O
(
d
√
t log2 t

)
(Abbasi-Yadkori et al.,

2011) and Nφ
k (T ) =

{
1 ≤ t′ ≤ T : θi

t
′ ,t
′ = φk

}
is the

set of time steps up to time T when the user being
served has the bandit parameter equal to φk. Detailed
derivation of this is given in appendix (Section D.1).
Note that the upper regret bound of dLinUCB (Wu
et al., 2018) for this setting is O

(
Γ1(T )RLin(Smax) +

Γ1(T )
)
, where Smax denotes the maximum length of

stationary periods. The regret of DyClu depends on
the number of unique bandit parameters in the envi-
ronment, instead of the number of stationary periods
as in dLinUCB, because DyClu can reuse observations
from previous stationary periods. This suggests Dy-
Clu has a tighter regret bound if different stationary
periods share the same unique bandit parameters; for
example, in situations where a future reward mapping
function switches back to a previous one.

4 Experiments

We investigate the empirical performance of DyClu by
comparing with a list of state-of-the-art baselines for
both non-stationary bandits and clustered bandits on
synthetic and real-world recommendation datasets.

4.1 Experiment setup and baselines

• Synthetic dataset. We create a set of unique
bandit parameters {φk}mk=1 and arm pool {xj}Kj=1

(K = 1000), where φk and xj are first sampled
from N(0d, Id) with d = 25 and then normalized so
that ∀k, j, ‖φk‖ = 1 and ‖xj‖ = 1. When sampling
{φk}mk=1, the separation margin γ is set to 0.9 and en-
forced via rejection sampling. n users are simulated.
In each user, we sample a series of time intervals from
(Smin, Smax) uniformly; and for each time interval,
we sample a unique parameter from {φk}mk=1 as the
ground-truth bandit parameter for this period. This
creates asynchronous changes and clustering structure
in users’ reward functions. The users are served in a
round-robin fashion. At time step t = 1, 2, . . . , T , a
subset of arms are randomly chosen and disclosed to
the learner. Reward of the selected arm is generated
by the linear function governed by the corresponding
bandit parameter and context vector, with additional
Gaussian noise sampled from N(0, σ2).

• LastFM dataset. The LastFM dataset is ex-
tracted from the music streaming service Last.fm
(Cesa-Bianchi et al., 2013), which contains 1892 users
and 17632 items (artists). “Listened artists” of each
user are treated as positive feedback. We followed Wu
et al. (2018) to preprocess the dataset and simulate
a clustered non-stationary environment by creating 20
“hybrid users”. We first discard users with less than
800 observations and then use PCA to reduce the di-
mension of TF-IDF feature vector to d = 25. We cre-
ate hybrid users by sampling three real users uniformly
and then concatenating their associated data points
together. Hence, data points of the same real user
would appear in different hybrid users, which is analo-
gous to stationary periods that share the same unique
bandit parameters across different users and time.
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Figure 2: Accumulated regret on synthetic datasets with three different environment settings. Environment 1:
n = 100 users share a global set of m = 5 unique bandit parameters, and each user remains stationary all the
time. Environment 2: n = 20 user with fixed stationary period length 500; each period sample a unique bandit
parameter. Environment 3: n = 100 users share a global set of m = 5 unique bandit parameters, and each user
changes in a asynchronous manner.

• Baselines. We compare DyClu with a set of state-
of-the-art bandit algorithms: linear bandit LinUCB
by Abbasi-Yadkori et al. (2011), non-stationary ban-
dit dLinUCB by Wu et al. (2018) and adTS by Slivkins
and Upfal (2008), as well as clustered bandit CLUB by
Gentile et al. (2014) and SCLUB by Li et al. (2019).
For experiments on synthetic dataset, we also include
oracle-LinUCB for comparison, which runs an instance
of LinUCB for each unique bandit parameter. Com-
paring with it helps us understand the added regret
due to errors in change detection and clustering.

• Hyper-parameters. We set the same regulariza-
tion parameter λ = 0.1 for all the algorithms, and set
the same sliding window size τ = 20 for both dLin-
UCB and DyClu on synthetic dataset and τ = 50 on
LastFM dataset. The thresholds υe and υc for Dy-
Clu are essentially the upper-tail critical values of chi-
square distributions χ2(1) and χ2(d), which directly
control the type-I error probability for change detec-
tion and clustering, i.e. 1 − F (υe; 1) and 1 − F (υc; d)
respectively. Their values affect the second term in the
regret upper bound given in Theorem 3.5 (see Lemma
D.1 and Lemma D.2 in appendix for details). In all
our experiments, υe and υc are selected such that the
corresponding significance level equals to 0.01, e.g., to
make F (υc; 25) = 0.01, we set υc = 44.314.

4.2 Experiment results

• Empirical comparisons on synthetic dataset.
We compare accumulated regret of all bandit algo-
rithms under three environment settings, and the re-
sults are reported in Figure 2. Environment 1 sim-
ulates the clustered bandit setting in Gentile et al.
(2014), where no change in the reward function is
introduced. DyClu outperformed other baselines, in-
cluding CLUB and SCLUB, demonstrating the qual-
ity of its identified clustering structure. Specifically,

compared with adTS that incurs high regret as a re-
sult of too many false detections, the change detec-
tion in DyClu has much less false positives, as there
is no change in each user’s reward distribution. En-
vironment 2 simulates the piecewise stationary bandit
setting in Wu et al. (2018). Algorithms designed for
stationary environment, e.g., CLUB, SCLUB, and Lin-
UCB suffer from a linear regret after the first change
point. DyClu achieved the best performance, with a
wide margin from the second best, dLinUCB, which
is designed for this environment. It shows the power
of our change detection method against dLinUCB’s.
Environment 3 combines previous two settings with
both non-stationarity and clustering structure. Dy-
Clu again outperformed others. It is worth noting that
regret of all algorithms increased compared with Envi-
ronment 1 due to the nonstationarity, but the increase
in DyClu is the smallest. And in all settings, DyClu’s
performance is closest to the oracle-LinUCB’s, which
shows that DyClu can correctly cluster and aggregate
observations from the dynamically changing users.

• Sensitivity to environment settings. According
to our regret analysis, the performance of DyClu de-
pends on environment parameters like the number of
unique bandit parameters m, the number of station-
ary periods Γi(T ) for i ∈ U , and variance of Gaussian
noise σ2. We investigate their influence on DyClu and
baselines, by varying these parameters while keeping
the others fixed. The accumulated regret under dif-
ferent settings are reported in Table 1. DyClu out-
performed other baselines in all 9 different settings,
and the changes of its regret align with our theoreti-
cal analysis. A larger number of unique parameters m
leads to higher regret of DyClu as shown in setting 1,
2 and 3, since observations are split into more clusters
with smaller size each. In addition, larger number of
stationary periods incurs more errors in change detec-
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Table 1: Comparison of accumulated regret under different environment settings.

n m Smin Smax T σ oracle. LinU. adTS dLinU. CLUB SCLUB DyClu

1 100 10 400 2500 2500 0.09 115 19954 9872 2432 20274 19989 853
2 100 50 400 2500 2500 0.09 489 20952 9563 2420 21205 21573 1363
3 100 100 400 2500 2500 0.09 873 21950 10961 2549 22280 22262 1958
4 100 10 200 400 2500 0.09 112 39249 36301 10831 39436 43836 3025
5 100 10 800 1000 2500 0.09 113 34385 13788 3265 34441 33514 1139
6 100 10 1200 1400 2500 0.09 112 24769 8124 2144 24980 23437 778
7 100 10 400 2500 2500 0.12 166 22453 10567 3301 22756 22683 1140
8 100 10 400 2500 2500 0.15 232 19082 10000 5872 19427 20664 1487
9 100 10 400 2500 2500 0.18 307 23918 11255 9848 24050 23677 1956

tion, leading to an increased regret. This is confirmed
by results in setting 4, 5 and 6. Lastly, as shown in set-
ting 7, 8 and 9, larger Gaussian noise leads to higher
regret, as it slows down convergence of reward estima-
tion and change detection.

• Empirical comparisons on LastFM. We report
normalized accumulative reward (ratio between base-
lines and uniformly random arm selection strategy
(Wu et al., 2019)) on LastFM in Figure 3. In this
environment, realizing both non-stationarity and clus-
tering structure is important for an online learning al-
gorithm to perform well. DyClu’s improvement over
other baselines confirms its quality in partitioning and
aggregating relevant data points across users. The ad-
vantage of DyClu is more apparent at the early stage
of learning, where each local user model has not col-
lected sufficient amount of observations for individual-
ized reward estimation; and thus change detection and
clustering are more difficult there.

Figure 3: Comparison of accumulated reward normal-
ized by a random policy on LastFM dataset.

5 Conclusion

In this work, we unify the efforts in non-stationary
bandits and clustered bandits via homogeneity test,
and also propose a new bandit problem setting that
generalizes both. Our solution adaptively detects
changes in the underlying reward distribution and
clusters bandit models for aggregated arm selection.
The resulting upper regret bound matches with the
ideal algorithm’s only up to a constant; and exten-
sive empirical evaluations validate its effectiveness in
a non-stationary and clustered environment.

There are still several directions left open in this re-
search: 1) Assumption 1 and 2 are mainly needed for
controlling the type-II error of change detection and
clustering, to ensure the estimator used for arm se-
lection have no heterogeneous observations (i.e., con-
tamination). These assumptions are arguably rigid,
considering if the difference in bandit parameters is
small or negligible, aggregating such heterogeneous ob-
servations may not be detrimental. To the best of
our knowledge, no existing work for linear bandit ad-
dressed this issue (Gentile et al., 2014; Li et al., 2019;
Wu et al., 2018). Pursuing this direction requires bal-
ancing the quantity vs. quality trade-off of contam-
inated observations. 2) Our current analysis for the
test statistic assumes Gaussian reward noise, and it
would be interesting to consider the more general sub-
Gaussian noise that is commonly assumed in bandit
literature. 3) Despite the existence of multiple users,
all computations are done in a centralized manner; to
make it more practical, asynchronous and distributed
model update is more desired.
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A Notations used in this paper

Here we list the notations used in this paper and their descriptions in Table 2.

Table 2: Notations used in this paper.

Notation Description

1 U the set of all users, with its cardinality denoted by n
2 Ct the set of available arms at time t, with its cardinality denoted by K
3 (xt, yt) context vector of the selected arm and its observed reward at time t
4 θi,t bandit parameter of user i at time t
5 d dimension of context vector and bandit parameter
6 {φk}mk=1 a set of m unique bandit parameters
7 ki,t index of unique bandit parameter associated with user i at time t
8 ηt Gaussian noise in the reward observed at time t
9 σ2 variance of the Gaussian noise in reward
10 Ni(T ) the set of time steps user i ∈ U is served up to time T
11 Γi(T ) the total number of stationary periods in Ni(T )
12 ci,j the time step when the j’th change point of user i occurs

13 Nφ
k (t) the set of time steps up to time t that φk occurs

14 pk frequency of total occurrences of φk
15 H a set of observations
16 X,y design matrix and feedback vector of H
17 ϑ MLE on dataset H
18 s(H1,H2) homogeneity test statistic between H1 and H2

19 χ2(df, ψ) noncentral χ2 distribution with degree-of-freedom df and noncentrality
parameter ψ

20 F (υ; df, ψ) the cumulative density function of χ2(df, ψ) evaluated at υ
21 λmin(·) function that returns minimum eigenvalue of a matrix
22 λ regularization parameter
23 A,b sufficient statistics of H
24 Mi,t user model of user i at time t

25 k̃i,t index of the unique bandit parameter associated with observations in
Mi,t

26 Ut,Ot sets of up-to-date and outdated user models at time t

27 V̂i,t estimated neighborhood of user i at time t

28 N̂φ

k̃i,t
(t) the set of time steps associated with observations in V̂i,t

29 eit,t indicator variable of the one-sample homogeneity test at time t
30 êi,t empirical mean of ei,t in a sliding window, with its size denoted by τ

31 θ̂V̂i,t ridge regression estimator by aggregating observations in V̂i,t

32 CBV̂i,t(x) confidence bound for reward estimation on x using θ̂V̂i,t
33 υe, υc thresholds for homogeneity test in change detection and cluster identi-

fication
34 RLin(·) high probability regret upper bound of standard LinUCB Abbasi-

Yadkori et al. (2011)

B Proof of lemmas for homogeneity test in Section 3.2

The statistical test introduced in Section 3.2 falls under the category of χ2 test of homogeneity. Specifically,
it is used to test whether the parameters of linear regression models associated with two datasets are the
same, assuming equal variance. The test statistic follows the noncentral χ2-distribution s(H1,H2) ∼ χ2(df, ψ),

where df = rank(X1) + rank(X2) − rank(

[
X1

X2

]
) denotes the degree of freedom, and non-centrality parameter



Chuanhao Li, Qingyun Wu, Hongning Wang

ψ = 1
σ2

[
X1θ1

X2θ2

]> [
It1+t2 −

[
X1

X2

] (
X>1 X1 + X>2 X2

)− [
X>1 X>2

]] [X1θ1

X2θ2

]
. Its proof is beyond the scope of this

paper. We refer the interested readers to statistics or econometrics literature like Chow (1960); Cantrell et al.
(1991).

Proof of Lemma 3.2.

When datasets H1 and H2 are homogeneous, which means θ1 = θ2, the non-centrality parameter becomes:

ψ =
1

σ2

[
X1θ1
X2θ1

]> [
It1+t2 −

[
X1

X2

](
X>1 X1 + X>2 X2

)− [
X>1 X>2

]] [X1θ1
X2θ1

]
=

1

σ2

[
X1θ1
X2θ1

]> [
X1θ1
X2θ1

]
− 1

σ2

[
X1θ1
X2θ1

]> [
X1

X2

](
X>1 X1 + X>2 X2

)− [
X>1 X>2

] [X1θ1
X2θ1

]
=

1

σ2

[
θ>1 (X>1 X1 + X>2 X2)θ1 − θ>1 (X>1 X1 + X>2 X2)(X>1 X1 + X>2 X2)−(X>1 X1 + X>2 X2)θ1

]
=

1

σ2

[
θ>1 (X>1 X1 + X>2 X2)θ1 − θ>1 (X>1 X1 + X>2 X2)θ1

]
= 0

Therefore, when θ1 = θ2, the test statistic s(H1,H2) ∼ χ2(df, 0). The type-I error probability can be upper
bounded by P (s(H1,H2) > υ|θ1 = θ2) ≤ 1− F (υ; df, 0), which concludes the proof of Lemma 3.2.

Proof of Lemma 3.3.

Similarly, using the cumulative density function of χ2(df, ψ), we can show that the type-II error probability
P
(
s(H1,H2)

)
≤ υ|θ1 6= θ2

)
≤ F (υ; df, ψ). As mentioned in Section 3.2, the value of ψ depends on the unknown

parameters θ1 and θ2. From the definition of ψ, we know that θ1 = θ2 is only a sufficient condition for ψ = 0. The

necessary and sufficient condition for ψ = 0 is that

[
X1θ1

X2θ2

]
is in the column space of

[
X1

X2

]
, e.g., there exists θ

such that

[
X1θ1

X2θ2

]
=

[
X1θ
X2θ

]
. Only when both X1 and X2 have a full column rank, θ1 = θ2 becomes the necessary

and sufficient condition for ψ = 0. This means when either X1 or X2 is rank-deficient, there always exists θ1

and θ2, and θ1 6= θ2, that make ψ = 0. For example, assuming X1 is rank-sufficient and X2 is rank-deficient,
then ψ = 0 as long as θ1 − θ2 is in the null space of X2.

To obtain a non-trivial upper bound of the type-II error probability, or equivalently a non-zero lower bound of
the non-centrality parameter ψ, both X1 and X2 need to be rank-sufficient. Under this assumption, we can
rewrite ψ in the following way to derive its lower bound.

Denote ε = θ2 − θ1. Then θ2 = θ1 + ε. We can decompose σ2ψ as:

σ2ψ =

[
X1θ1

X2(θ1 + ε)

]> [
It1+t2 −

[
X1

X2

](
X>1 X1 + X>2 X2

)−1 [
X>1 X>2

]] [ X1θ1
X2(θ1 + ε)

]
=

[
X1θ1
X2θ1

]> [
It1+t2 −

[
X1

X2

]([
X>1 X>2

] [X1

X2

])−1 [
X>1 X>2

]] [X1θ1
X2θ1

]

+

[
X1θ1
X2θ1

]> [
It1+t2 −

[
X1

X2

]([
X>1 X>2

] [X1

X2

])− [
X>1 X>2

]] [ 0
X2ε

]

+

[
0

X2ε

]> [
It1+t2 −

[
X1

X2

]([
X>1 X>2

] [X1

X2

])−1 [
X>1 X>2

]] [X1θ1
X2θ1

]

+

[
0

X2ε

]> [
It1+t2 −

[
X1

X2

]([
X>1 X>2

] [X1

X2

])−1 [
X>1 X>2

]] [ 0
X2ε

]

Since

[
X1θ1

X2θ1

]
is in the column space of

[
X1

X2

]
, the first term in the above result is zero. The second and third

terms can be shown equal to zero as well using the property that matrix product is distributive w.r.t. matrix
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addition, which leaves us only the last term. Therefore, by substituting ε = θ2 − θ1 back, we obtain:

ψ =
1

σ2
(θ1 − θ2)>X>2 X2(X>1 X1 + X>2 X2)−1X>1 X1(θ1 − θ2)

≥ 1

σ2
||θ1 − θ2||2λmin

(
X>2 X2(X>1 X1 + X>2 X2)−1X>1 X1

)
≥ ||θ1 − θ2||2/σ2

1

λmin(X>1 X1)
+ 1

λmin(X>2 X2)

The first inequality uses the Rayleigh-Ritz theorem, and the second inequality uses the relation Y(X+Y)−1X =
(X−1 + Y−1)−1, where X and Y are both invertible matrices. This relation can be derived by taking inverse on
both sides of the equation X−1(X + Y)Y−1 = X−1XY−1 + X−1YY−1 = Y−1 + X−1.

Discussions The results above show that given two datasets H1 and H2, the type-I error probability of the
homogeneity test only depends on the selection of threshold υ, while the type-II error probability also depends
on the ground-truth parameters (θ1, θ2) and the variance of noise σ2. If either X1 or X2 is rank-deficient, the
type-II error probability will be trivially upper bounded by F (υ; df, 0), which means for a smaller upper bound
of type-I error probability (i.e., 1 − F (υ; df, 0)), the upper bound of type-II error probability (i.e., F (υ; df, 0))
will be large. Intuitively, for a certain level of type-I error, to ensure a smaller type-II error probability in the

worst case, we at least need both X1 and X2 to be rank-sufficient and the value of ||θ1−θ2||2/σ2

1

λmin(X>1 X1)
+ 1

λmin(X>2 X2)

to be

large. Similar idea is also found in Wu et al. (2018); Gentile et al. (2014, 2017), where they require the confidence
bounds of the estimators (which is essentially equivalent to the condition on minimum eigenvalue λmin(X>1 X1)
and λmin(X>2 X2) in our analysis) to be small enough, w.r.t. ||θ1 − θ2||2, to ensure their change detection or
cluster identification is accurate. Here we unify the analysis of these two tasks with this homogeneity test.

C Proof of Lemma 3.4

Note that early detection corresponds to type-I error of the homogeneity test in Lemma 3.2, e.g., when change
has not happened (thus Hit,t−1 and (xt, yt) are homogeneous), but the test statistic exceeds the threshold υe:
eit,t = 1 {s(Hit,t−1, {(xt, yt)}) > υe} = 1. Therefore, we have E[eit,t] ≤ 1 − F (υe; 1, 0). Then we can use
Hoeffding inequality given in Lemma E.1 to upper bound the early detection probability using êit,t.

As the test variable eit,t ∈ {0, 1}, it is 1
2 -sub-Gaussian. By applying Hoeffding inequality, we have:

P
(
τ êit,t − τE[eit,t] ≥ h

)
≤ exp

(
− 2h2

τ

)
Then setting δe = exp (− 2h2

τ ) gives h =
√

τ log 1/δe
2 . Substituting this back and re-arrange the inequality gives

us:

P
(
êit,t < E[eit,t] +

√
log 1/δe

2τ

)
> 1− δe

Since E[eit,t] ≤ 1− F (υe; 1, 0), we have:

P
(
êit,t < 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
> 1− δe

when change has not happened.

D Proof of Theorem 3.5

In this section, we give the full proof of the upper regret bound in Theorem 3.5. We first define some additional
notations necessary for the analysis and arrange the proof into three parts: 1) proof of Eq (3); 2) proof of Lemma
D.1; and 3) proof of Lemma D.2. Specifically, Eq (3) provides an intermediate upper regret bound with three
terms, and Lemma D.1 and Lemma D.2 further bound the second and third terms to obtain the final result in
Theorem 3.5.
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Consider a learner that has access to the ground-truth change points and clustering structure, or equivalently,
the learner knows the index of the unique bandit parameter each observation is associated with (but it does not
know the value of the parameter). For example, when serving user it at some time step t, the index of user it’s
unique bandit parameter for the moment is kit,t, such that θit,t = φkit,t . Then since this learner knows ki

t
′ ,t
′

for t
′ ∈ [t], it can precisely group the observations associated with each unique bandit parameter φk for k ∈ [m].

Recall that we denote Nφ
k (t) =

{
1 ≤ t′ ≤ t : θi

t
′ ,t
′ = φk

}
as the set of time steps up to time t when the user

being served has the bandit parameter equal to φk, e.g., all the observations obtained at time steps in Nφ
k (t) have

the same unique bandit parameter φk. Then an ideal reference algorithm would be the one that aggregates these
observations to compute UCB score for each unique bandit parameter, and then select arm using the UCB score
associated with the true bandit parameter in each time step. The regret of this ideal reference algorithm can be

upper bounded by
∑m
k=1RLin(|Nφ

k (T )|) where RLin(|Nφ
k (T )|) = O

(
d
√
|Nφ

k (T )| log2 |Nφ
k (T )|

)
(Abbasi-Yadkori

et al., 2011).

However in our learning environment, such knowledge is not available to the learner; as a result, the learner
does not know Nφ

kit,t
(t − 1) when interacting with user it at time t; instead, it uses observations in the esti-

mated neighborhood V̂it,t−1 as shown in Algorithm 1 (line 17). Denote the set of time steps associated with

observations in V̂it,t−1 as N̂φ

k̃it,t−1
(t − 1), where k̃it,t−1 is the index of the unique parameter associated with

observations in Hit,t−1. N̂φ

k̃it,t−1
(t − 1) is essentially an estimate of Nφ

kit,t
(t − 1), obtained by running cluster

identification w.r.t. Hit,t−1 (whose true unique bandit parameter index is denoted by k̃it,t−1). We define a

‘good event’ as
{
N̂φ

k̃it,t−1
(t− 1) = Nφ

kit,t
(t− 1)

}
, which matches with the reference algorithm, and since there

is a non-zero probability of errors in both change detection and cluster identification, we also have ‘bad event’{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
, which incurs extra regret.

Recall the estimated neighborhood V̂it,t−1 = {M ∈ Ut−1 ∪Ot−1 : S(Hit,t−1,H) ≤ υc}. If kit,t 6= k̃it,t−1, it
means there is a mismatch between user model Mit,t−1 and the current ground-truth user parameter θit,t,
but the change detection module has failed to detect this. Then the obtained neighborhood is incorrect even
if the cluster identification model made no mistake. Therefore, the bad event can be further decomposed into({
k̃it,t−1 6= kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

})
∪
({
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

})
.

The first part is a subset of event
{
k̃it,t−1 6= kit,t

}
, which suggests late detection happens at time t. The second

part indicates incorrectly estimated cluster for user it at time t.

Discussions Before moving on, we would like to provide some explanations about the use of
{
k̃it,t−1 6= kit,t

}
to denote the event that the user’s underlying bandit parameter has changed, but the learner failed to detect it,
i.e., late detection. Recall that k̃it,t−1 is the index of the unique bandit parameter associated with observations
in Mit,t−1, i.e. Hit,t−1, while kit,t is the index of the unique parameter that governs observation (xt, yt) from
user it at time t. Our change detection mechanism in Algorithm 1 (line 9) is expected to replace model Mit,t−1 if

change has happened at time t, thus ensuring
{
k̃it,t = kit,t

}
again. However, when it fails to detect the change,

it will cause
{
k̃it,t 6= kit,t

}
, which means DyClu has failed to update the user model Mit,t to reflect the new

behavior or preference that user it has switched to at time t.

With detailed proof in Section D.1, following the decomposition discussed above, we can obtain:

RT ≤O
(
σd

∑
k∈[m]

√
|Nφ

k (T )| log2(|Nφ
k (T )|)

)
+ 2

∑
i∈U

∑
t∈Ni(T )

1
{
k̃it,t−1 6= kit,t

}
(3)

+ 2
T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
with a probability at least 1 − δ.

In this upper regret bound, the first term matches the regret of the reference algorithm that has access to the
exact change points and clustering structure of each user and time step. We can rewrite it using the frequency
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of unique model parameter φk as O
(
σd
√
T log2 T (

∑m
k=1

√
pk)
)

similar to Section A.4 in Gentile et al. (2014).
The second term is the added regret caused by the late detection of change points; and the third term is the
added regret caused by the incorrect cluster identification for arm selection. The latter two terms can be further
bounded by the following lemmas. Their proofs are later given in Section D.2 and Section D.3 respectively.

Lemma D.1 Under Assumption 1 and 3, by setting the sliding window size τ ≥
2 log 1/δe

{[1−F (υe;1,ψe)]ρ(1−δ′ )−1+F (υe;1,0)}2 , where ψe = ∆2/σ2

1+1/

[
λ
′

4 Smin−8
(

log
dSmin

δ
′ +

√
Smin log

dSmin

δ
′

)] , the second term in

Eq (3) can be upper bounded by:

2
∑
i∈U

∑
t∈Ni(T )

1
{
k̃it,t−1 6= kit

}
≤ 2

∑
i∈U

(
Γi(T )− 1

)
(τ +

2

1− δe
)

with a probability at least 1− δe
1−δe .

Lemma D.2 Define function g(ψ; d, υ) = F (υ;ψ, d), and g−1(·|d, υ) as its inverse function. Under Assumption
2 and 3, the third term in Eq (3) can be upper bounded by:

2
T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
≤ 2

∑
i∈U

Γi(T )O
(2ψcσ2

γ2λ′
2 log

d

δ′

)
with a probability at least 1− δ′ , where ψc = g−1

(p(1−F (υc;d,0))
1−p ; d, υc

)
is a constant.

Combining results in Eq (3), Lemma D.1 and Lemma D.2, we obtain the upper regret bound:

RT ≤ O
(
σd

√
T log2 T (

m∑
k=1

√
pk)
)

+ 2
∑
i∈U

(
Γi(T )− 1

)
(τ +

2

1− δe
) + 2

∑
i∈U

Γi(T )O
(2ψcσ2

γ2λ′2
log

d

δ′

)
= O

(
σd

√
T log2 T (

m∑
k=1

√
pk) +

∑
i∈U

Γi(T ) · C
)

where C = 1
1−δe + σ2

γ2λ′2
log d

δ′
, with a probability at least (1 − δ)(1− δe

1−δe )(1− δ′).

D.1 Proof of Eq (3)

Recall that we define a ‘good’ event as
{
N̂φ

k̃it,t−1
(t− 1) = Nφ

kit,t
(t− 1)

}
, which means at time t, DyClu selects

an arm using the UCB score computed with observations associated with φkit,t . And the ‘bad’ event is defined

as its complement:
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
, which can be decomposed and then contained as shown

below:{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
=
({
k̃it,t−1 6= kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

})
∪
({
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

})
⊆
{
k̃it,t−1 6= kit,t

}
∪
({
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

})

where the event
{
k̃it,t−1 6= kit,t

}
means at time step t there is a late detection, and the event

{
k̃it,t−1 = kit,t

}
∩{

N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
means there is no late detection, but the cluster identification fails to correctly

cluster user models associated with φkit,t together (for example, there might be models not belonging to this
cluster, or models failed to be put into this cluster).

Under the ‘good’ event, arm xt is selected using the UCB strategy by aggregating all existing observa-
tions associated with φkit,t , which is the unique bandit parameter for user it at time t. To simplify the
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notations, borrowing the notation used in Eq (2), we denote θ̂Nφkit,t
(t−1) = A−1

Nφkit,t
(t−1)

bNφkit,t
(t−1), where

ANφkit,t
(t−1) = λI +

∑
j∈Nφkit,t

(t−1) xjx
>
j and bNφkit,t

(t−1) =
∑
j∈Nφkit,t

(t−1) xjyj , as the ridge regression es-

timator constructed using these observations, and CBNφkit,t
(t−1)(x) = αNφkit,t

(t−1)

√
x>A−1

Nφkit,t
(t−1)

x, where

αNφkit,t
(t−1) = σ

√
d log (1 +

|Nφkit,t
(t−1)|

dλ ) + 2 log 1
δ +
√
λ is the corresponding reward estimation confidence bound

on x.

Then we can upper bound the instantaneous regret rt as follows,

rt = 〈θit,t,x∗t 〉 − 〈θit,t,xt〉 ≤ 〈θit,t,xt〉 − 〈θit,t,xt〉

= 〈θ̃it,t − θ̂V̂i,t−1
,xt〉+ 〈θ̂V̂i,t−1

− θit,t,xt〉

≤

2CBNφkit,t
(t−1)(xt), if

{
N̂φ

k̃it,t−1
(t− 1) = Nφ

kit,t
(t− 1)

}
.

2, otherwise.

The first inequality is because 〈θ̃it,t,xt〉 is optimistic, where xt ∈ Ct and θ̃it,t ∈{
θ ∈ Rd : ‖θ̂V̂i,t−1

− θ‖A−1

V̂i,t−1

≤ αNφkit,t (t−1)

}
. For the second inequality, we split it into two cases according to

the occurrence of the ‘good’ or ‘bad’ events. Recall that N̂φ

k̃it,t−1
(t− 1) denotes the set of time steps associated

with observations in V̂it,t−1. Then under the ‘good’ event
{
N̂φ

k̃it,t−1
(t− 1) = Nφ

kit,t
(t− 1)

}
, with probability at

least 1 − δ, we have 〈θ̃it,t − θ̂V̂i,t−1
,xt〉 ≤ CBNφkit,t

(t−1)(xt) and 〈θ̂V̂i,t−1
− θit,t,xt〉 ≤ CBNφkit,t

(t−1)(xt), so that

rt ≤ 2CBNφkit,t
(t−1)(xt). Under the ‘bad’ event when wrong cluster is used for arm selection, we simply bound

rt by 2 because ‖θit,t‖ ≤ 1 and ‖xt‖ ≤ 1.

Then the accumulated regret RT can be upper bounded by:

RT =

T∑
t=1

rt ≤ 2

T∑
t=1

1
{
N̂φ

k̃it,t−1
(t− 1) = Nφ

kit,t
(t− 1)

}
CB

N
φ
kit,t

(t−1)
(xt) + 2

T∑
t=1

1
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
≤

T∑
t=1

2CB
N
φ
kit,t

(t−1)
(xt) + 2

T∑
t=1

1
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
≤

T∑
t=1

2CB
N
φ
kit,t

(t−1)
(xt) + 2

T∑
t=1

1
{
k̃it,t−1 6= kit,t

}
+ 2

T∑
t=1

(
1
{
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

})
≤

T∑
t=1

2CB
N
φ
kit,t

(t−1)
(xt) + 2

∑
i∈U

∑
t∈Ni(T )

1
{
k̃i,t−1 6= ki,t

}

+ 2

T∑
t=1

(
1
{
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

})

The first term is essentially the upper regret bound of the reference algorithm mentioned earlier in this section,
which can be further upper bounded with probability at least 1 − δ by:

T∑
t=1

2CBNφkit,t
(t−1)(xt) =

∑
k∈[m]

∑
t∈Nφk (T )

2CBNφk (t−1)(xt) ≤
∑
k∈[m]

RLin(|Nφ
k (T )|)

where RLin(|Nφ
k (T )|) is the high probability upper regret bound in Abbasi-Yadkori et al. (2011) (Theorem 3),
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which is defined as:

RLin(|Nφ
k (T )|) = 4

√
d|Nφ

k (T )| log (λ+
|Nφ

k (T )|
d

)

σ
√

2 log
1

δ
+ d log (1 +

|Nφ
k (T )|
dλ

) + λ1/2


= O

σd√|Nφ
k (T )| log2 |Nφ

k (T )|+ σ

√
d|Nφ

k (T )| log
|Nφ

k (T )|
δ


D.2 Proof of Lemma D.1

Now we have proved the intermediate regret upper bound in Eq (3). In this section, we continue to upper bound

its second term 2
∑
i∈U

∑
t∈Ni(T ) 1

{
k̃i,t−1 6= ki,t

}
, which essentially counts the total number of late detections

in each user, e.g., there is a mismatch between Mit,t−1 and the current ground-truth bandit parameter θit,t,
but the learner fails to detect this. To prove this lemma, we need the following lemmas that upper bound the
probability of late detections.

As opposed to early detection in Lemma 3.4, late detection corresponds to type-II error of homogeneity test in
Lemma 3.3. Therefore we have the following lemma.

Lemma D.3 When change has happened (k̃it,t−1 6= kit,t), we have

P
(
eit,t = 1

)
≥ ρ(1− δ

′
)
[
1− F (υe; 1, ψe)

]
where ψe = ∆2/σ2

1+1/
(
λ
′

4 Smin−8
(

log
dSmin

δ
′ +

√
Smin log

dSmin

δ
′

)) .

Proof of Lemma D.3.

Combining Lemma 3.3, Assumption 1 and 3, we can lower bound the probability that eit,t = 1 when change has
happened as:

P
(
eit,t = 1

)
= P

(
s(Hit,t−1, {xt, yt}) > υe

)
≥ 1− F

(
υe; 1,

[x>t (θit,c − θit,c−1)]2/σ2

1 + x>t (
∑

(xk,yk)∈Hit,t−1
xkx>k )−1xt

)

≥ 1− F

υe; 1,
[x>t (θit,c − θit,c−1)]2/σ2

1 + ||xt||2
λmin(

∑
(xk,yk)∈Hit,t−1

xkx>k )


≥ ρ

1− F

υe; 1,
∆2/σ2

1 + 1
λmin(

∑
(xk,yk)∈Hit,t−1

xkx>k )


Since the minimum length of stationary period is Smin, by applying Lemma E.2, we can obtain the following
lower bound on minimum eigenvalue when change happens as:

λmin

 ∑
(xk,yk)∈Hit,t−1

xkx
>
k

 ≥ λ
′

4
Smin − 8

(
log

dSmin
δ′

+

√
Smin log

dSmin
δ′

)

with probability at least 1 − δ′ .

Denote ψe = ∆2/σ2

1+1/
(
λ
′

4 Smin−8
(

log
dSmin

δ
′ +

√
Smin log

dSmin

δ
′

)) . We obtain the following lower bound on the probability

of detection:
P
(
eit,t = 1

)
≥ ρ(1− δ

′
)
[
1− F (υe; 1, ψe)

]
when change has happened.
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Lemma D.4 When change has happened (k̃it,t−1 6= kit,t),

P

(
êit,t ≥ 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≥ 1− δe

if the size of sliding window τ ≥ 2 log 1/δe

{[1−F (υe;1,ψe)]ρ(1−δ′ )−1+F (υe;1,0)}2 .

Proof of Lemma D.4.

Similarly to the proof of Lemma 3.4, applying Hoeffding inequality given in Lemma E.1, we have:

P

(
êit,t ≤ E[ei,t]−

√
log 1/δe

2τ

)
≤ δe

P

(
êit,t ≥ E[ei,t]−

√
log 1/δe

2τ

)
≥ 1− δe

From Lemma D.3, when change has happened, E[eit,t] ≥ ρ(1 − δ′) [1− F (υe; 1, ψe)], with ψe being a variable
dependent on environment as defined in Lemma D.3. By substituting this into the above inequality, we have:

P

(
êi,t ≥ ρ(1− δ

′
) [1− F (υe; 1, ψe)]−

√
log 1/δe

2τ

)
≥ 1− δe

Then by rearranging terms above, we can find that if the sliding window size τ is selected to satisfy:

τ ≥ 2 log 1/δe{
[1− F (υe; 1, ψe)]ρ(1− δ′)− 1 + F (υe; 1, 0)

}2

we can obtain:

P

(
êit,t ≥ 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≥ 1− δe

P

(
êit,t ≤ 1− F (υe; 1, 0) +

√
log 1/δe

2τ

)
≤ δe

when change has happened (k̃it,t−1 6= kit,t).

Proof of Lemma D.1.

With results from Lemma D.4, our solution to further upper bound the number of late detections in each
stationary period is similar to Wu et al. (2018) (Theorem 3.2). We include the proof here for the sake of
completeness.

Denote the probability of detection when change has happened as pd = P
(
êit,t ≥ 1 − F (υe; 1, 0) +

√
log 1/δe

2τ

)
,

and from Lemma D.4, we have pd ≥ 1 − δe. The probability distribution over the number of late detections
when change has happened follows a geometric distribution: P (nlate = k) = (1 − pd)k−1pd. Then by applying

Chebyshev’s inequality, we have P
(
nlate ≤ 2

1−δe

)
≥ 1− δe

1−δe .

Now we can upper bound the number of late detections
∑
i∈U

∑
t∈Ni(T ) 1

{
k̃it,t−1 6= kit,t

}
in user i. In As-

sumption 1 we have assumed that the total number of change points of user i is Γi(T ) − 1. Therefore,∑
t∈Ni(T ) 1

{
k̃it,t−1 6= kit

}
≤
(
Γi(T ) − 1

)
(τ + 2

1−δe ) with probability at least 1 − δe
1−δe . Then we can upper

bound the second term in Eq (3) by:

2
∑
i∈U

∑
t∈Ni(T )

1
{
k̃it,t−1 6= kit,t

}
≤ 2

∑
i∈U

(
Γi(T )− 1

)
(τ +

2

1− δe
)
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D.3 Proof of Lemma D.2

The third term
∑T
t=1 1

{
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
counts the total number of times that

there is no late detection, but cluster identification module fails to correctly cluster user models. We upper
bound this using a similar idea as Gentile et al. (2017), but is based on the properties of homogeneity test. For
the proof of Lemma D.2, we need the following lemmas related to probability of errors of cluster identification.

Lemma D.5 When the underlying bandit parameters φk̃i,t−1
and φk̃j,t−1

of two observation history Hi,t−1 and

Hj,t−1 are the same, the probability that cluster identification fails to cluster them together corresponds to the
type-I error probability given in Lemma 3.2, and it can be upper bounded by:

P
(
S(Hi,t−1,Hj,t−1) > υc | φk̃i,t−1

= φk̃j,t−1

)
≤ 1− F (υc; df, 0)

where df = rank(X1) + rank(X2)− rank(

[
X1

X2

]
).

Corollary D.5.1 (Lower bound P
(
Nφ
kit,t

(t− 1) ⊆ N̂φ

k̃it,t−1
(t− 1)

)
) Since Nφ

kit,t
(t−1) denotes the set of time

indices associated with all observations whose underlying bandit parameter is φkit,t , and N̂φ

k̃i,t−1
(t − 1) denotes

those in the estimated neighborhood V̂it,t−1, when there is no late detection, i.e., we have k̃it,t−1 = kit,t. It
naturally follows Lemma D.5 that:

P
(
Nφ
kit

(t− 1) ⊆ N̂φ

k̃it,t−1
(t− 1)

)
≥ F (υc; df, 0)

Lemma D.6 When the underlying bandit parameters φk̃i,t−1
and φk̃j,t−1

of two observation sequence Hi,t−1 and

Hj,t−1 are not the same, the probability that cluster identification module clusters them together corresponds to
the type-II error probability given in Lemma 3.3, which can be upper bounded by:

P
(
S(Hi,t−1,Hj,t−1) ≤ υc|φk̃i,t−1

6= φk̃j,t−1

)
≤ F (υc; d, ψc)

under the condition that both λmin(
∑

(xk,yk)∈Hi,t−1
xkx

>
k ) and λmin(

∑
(xk,yk)∈Hj,t−1

xkx
>
k ) are at least 2ψcσ2

γ2 .

Proof of Lemma D.6.

Recall that type-II error probability of the homogeneity test can be upper bounded by P
(
S(Hi,t−1,Hj,t−1) ≤

υc|φk̃i,t−1
6= φk̃j,t−1

)
≤ F (υc; df, ψ) as discussed in Section 3.3. If either design matrix of the two datasets is

rank-deficient, the noncentrality parameter ψ is lower bounded by 0 (lower bound achieved when the difference
between two parameters lies in the null space of rank-deficient design matrix). Therefore, a nontrivial upper
bound of type-II error probability only exists when the design matrices of both datasets are rank-sufficient. In
this case, combining Lemma 3.3 and Assumption 2 gives:

P
(
S(Hi,t−1,Hj,t−1)

)
≤F

(
υc; d,

||φk̃i,t−1
− φk̃j,t−1

||2/σ2

1/λmin(
∑

(xk,yk)∈Hi,t−1
xkx>k ) + 1/λmin(

∑
(xk,yk)∈Hj,t−1

xkx>k )

)

≤F

(
υc; d,

γ2/σ2

1/λmin(
∑

(xk,yk)∈Hi,t−1
xkx>k ) + 1/λmin(

∑
(xk,yk)∈Hj,t−1

xkx>k )

)

Define ψc > 0; then by rearranging terms we obtain the conditions that, when both:

λmin

 ∑
(xk,yk)∈Hi,t−1

xkx
>
k

 ≥ 2ψcσ2

γ2
and λmin

 ∑
(xk,yk)∈Hj,t−1

xkx
>
k

 ≥ 2ψcσ2

γ2

we have
P
(
S(Hi,t−1,Hj,t−1) ≤ υc|φk̃i,t−1

6= φk̃j,t−1

)
≤ F (υc; d, ψc)
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Lemma D.7 If the cluster identification module clusters observation history Hi,t−1 and Hj,t−1 together,
the probability that they actually have the same underlying bandit parameters is denoted as P

(
φk̃i,t−1

=

φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
.

P
(
φk̃i,t−1

= φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ F (υc; df, 0)

under the condition that both λmin

(∑
(xk,yk)∈Hi,t−1

xkx
>
k

)
and λmin

(∑
(xk,yk)∈Hj,t−1

xkx
>
k

)
are at least 2ψcσ2

γ2 ,

where ψc = g−1
(p(1−F (υc;d,0))

1−p ; d, υc
)
.

Proof of Lemma D.7.

Discussions Compared with the type-I and type-II error probabilities given in Lemma D.5 and D.6, the
probability P (φk̃i,t−1

= φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc) also depends on the population being tested on. Two

extreme examples would be 1) testing on a population that all user models have the same bandit parameter, and 2)
every user model has an unique bandit parameter. Then in the former case P (φk̃i,t−1

= φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤

υc) = 1 and in the latter case P (φk̃i,t−1
= φk̃j,t−1

|S(Hi,t−1,Hj,t−1) ≤ υc) = 0.

Denote the events
{
φk̃i,t−1

6= φk̃j,t−1

}
∩
{
S(Hi,t−1,Hj,t−1) > υc

}
as True Positive (TP),

{
φk̃i,t−1

= φk̃j,t−1

}
∩{

S(Hi,t−1,Hj,t−1) ≤ υc
}

as True Negative (TN),
{
φk̃i,t−1

= φk̃j,t−1

}
∩
{
S(Hi,t−1,Hj,t−1) > υc

}
as False Pos-

itive (FP), and
{
φk̃i,t−1

6= φk̃j,t−1

}
∩
{
S(Hi,t−1,Hj,t−1) ≤ υc

}
as False Negative (FN) of cluster identification,

respectively. We can rewrite the probabilities in Lemma D.5, D.6 and D.7 as:

P
(
S(Hi,t−1,Hj,t−1) > υc|φk̃i,t−1

= φk̃j,t−1

)
=

FP

TN + FP
≤ 1− F (υc; df, 0)

P
(
S(Hi,t−1,Hj,t−1) ≤ υc|φk̃i,t−1

6= φk̃j,t−1

)
=

FN

FN + TP
≤ F (υc; df, ψc)

P
(
φk̃i,t−1

= φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
=

TN

TN + FN
=

1

1 + FN
TN

We can upper bound FN
TN by:

FN

TN
≤ TP + FN

TN + FP
· F (υc; df, ψc)

F (υc; df, 0)

where TP+FN
TN+FP denotes the ratio between the number of positive instances (φk̃i,t−1

6= φk̃j,t−1
) and negative instances

(φk̃i,t−1
= φk̃j,t−1

) in the population, which can be upper bounded by 1−p
p where p denotes the lower bound of

the portion that each unique bandit parameter occurs in all stationary periods, i.e. p = 1 means the same unique
bandit parameter occurs in all stationary periods.

It is worth noting that when either design matrix of Hi,t−1 or Hj,t−1 does not have full column rank, P
(
φk̃i,t−1

=

φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ 1/

(
1 + 1−p

p ·
F (υc;df,0)
F (υc;df,0)

)
≥ p, which is then trivially lower bounded by the

percentage of negative instances in the population.

Under the conditions given in Lemma D.6, we have:

P
(
φk̃i,t−1

= φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ 1/

(
1 +

1− p
p
· F (υc; d, ψc)

F (υc; d, 0)

)
Then by setting ψc = g−1

(p(1−F (υc;d,0))
1−p ; d, υc

)
, we have:

P
(
φk̃i,t−1

= φk̃j,t−1
|S(Hi,t−1,Hj,t−1) ≤ υc

)
≥ 1/

(
1 +

1− p
p
· F (υc; d, ψc)

F (υc; d, 0)

)
= F (υc; df, 0)

Corollary D.7.1 (Lower bound P
(
N̂φ

k̃it,t−1
(t− 1) ⊆ Nφ

kit,t
(t− 1)

)
) It naturally follows Lemma D.7 that:

P
(
N̂φ

k̃it,t−1
(t− 1) ⊆ Nφ

kit,t
(t− 1)

)
≥ F (υc; df, 0)

under the condition that both λmin(
∑

(xk,yk)∈Hi,t−1
xkx

>
k ) and λmin(

∑
(xk,yk)∈Hj,t−1

xkx
>
k ) are at least 2ψcσ2

γ2 ,

where ψc = g−1
(p(1−F (υc;d,0))

1−p ; d, υc
)
.
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Proof of Lemma D.2.

From Corollary D.5.1 and D.7.1, when both λmin(
∑

(xk,yk)∈Hi,t−1
xkx

>
k ) and λmin(

∑
(xk,yk)∈Hj,t−1

xkx
>
k )

are at least 2ψcσ2

γ2 , with probability at least F (υc; df, 0), we have event
{
k̃it,t−1 = kit,t

}
∩{

N̂φ

k̃it,t−1
(t− 1) = Nφ

kit,t
(t− 1)

}
. Therefore, the third term in Eq (3) is upper bounded by:

2

T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}

≤2

T∑
t=1

1

∃H ∈ Ut−1 ∪Ot−1 : λmin

( ∑
(xk,yk)∈H

xkx
>
k

)
<

2ψcσ2

γ2


≤2
∑
i∈U

∑
t∈Ni(T )

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
>
k

)
<

2ψcσ2

γ2


Essentially, it counts the number of time steps in total when minimum eigenvalue of a user model M’s correlation

matrix is smaller than 2ψcσ2

γ2 . We further decompose the summation by considering each stationary period of

each user.

2
∑
i∈U

∑
t∈Ni(T )

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
>
k

)
<

2ψcσ2

γ2


=2
∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

∑
t∈Si,s

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
>
k

)
<

2ψcσ2

γ2


where Si,s denotes the s’th stationary period of user i.

Borrowing the notation from Gentile et al. (2017), denote At as a correlation matrix constructed through a series
of rank-one updates using context vectors from {Ct}t∈S , where S denotes the set of time steps we performed
model update. Note that the choice of which context vector to select from Ct for t ∈ S can be arbitrary. Then
we denote the maximum number of updates it takes until λmin(At) is lower bounded by η as HD({Ct}t∈S , η) =

max {t ∈ S : ∃x1 ∈ C1, ...,xt ∈ Ct : λmin(At) ≤ η}, where At =
∑
u∈S:u≤t xux

>
u . Therefore, we obtain:

∑
i∈U

∑
t∈Ni(T )

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
>
k

)
<

2ψcσ2

γ2


=
∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

∑
t∈Si,s

1

λmin

( ∑
(xk,yk)∈Hi,t−1

xkx
>
k

)
<

2ψcσ2

γ2


≤
∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

HD
(
{Ct}t∈Si,s ,

2ψcσ2

γ2

)

Then similar to Gentile et al. (2017) (Lemma 1), by applying Lemma E.2 we can upper bound the third term in
Eq (3):

2
T∑
t=1

1
{
k̃it,t−1 = kit,t

}
∩
{
N̂φ

k̃it,t−1
(t− 1) 6= Nφ

kit,t
(t− 1)

}
≤2
∑
i∈U

∑
s∈[0,ci,1,..,ci,Γi(T )−1]

HD
(
{Ct}t∈Si,s ,

2ψcσ2

γ2

)
≤2
∑
i∈U

Γi(T )O
(2ψcσ2

γ2λ′
2 log

d

δ′

)
with probability at least 1 − δ′ .
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E Technical lemmas

Here are some of the technical lemmas needed for the proofs in this paper.

Lemma E.1 (Hoeffding inequality) Suppose that we have independent variables xi, i = 1, . . . , n, and xi has
mean µi and sub-Gaussian parameter σi. Then for all h ≥ 0, we have

P
( n∑
i=1

(xi − µi) ≥ h
)
≤ exp

(
− h2

2
∑n
i=1 σ

2
i

)
Lemma E.2 (Lemma 1 of Gentile et al. (2017)) Under Assumption 3 that, at each time t, arm set Ct is
generated i.i.d. from a sub-Gaussian random vector X ∈ Rd, such that E[XX>] is full-rank with minimum

eigenvalue λ′ > 0; and the variance ς2 of the random vector satisfies ς2 ≤ λ′2

8 ln 4K . Then we have the following
lower bound on minimum eigenvalue of the correlation matrix of observation history H:

λmin

( ∑
(xk,yk)∈H

xkx
>
k

)
≥ λ

′

4
|H| − 8

(
log

d|H|
δ′

+

√
|H| log

d|H|
δ′

)

with probability at least 1− δ′ .


