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The CP-violating quark chromoelectric dipole moment (qCEDM) operator, contributing to the electric
dipole moment (EDM), mixes under renormalization and—particularly on the lattice—with the
pseudoscalar density. The mixing coefficient is power-divergent with the inverse lattice spacing squared,
1/a?, regardless of the lattice action used. We use the gradient flow to define a multiplicatively
renormalized qCEDM operator and study its behavior at small flow time. We determine nonperturbatively
the linearly divergent coefficient with the flow time, 1/¢, up to subleading logarithmic corrections, and
compare it with the 1-loop perturbative expansion in the bare and renormalized strong coupling. We also

discuss the O(a) improvement of the qCEDM defined at positive flow time.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is
described by a Lagrangian density of dimension d = 4,
with fundamental fields associated with all the elementary
particles already experimentally observed. Physics beyond
the Standard Model (BSM) at the hadronic scale can be
described by higher dimensional (d > 4) operators, with
coefficients usually suppressed, up to logarithmic correc-
tions, by powers of the BSM energy scale 1/ Aggi,[.
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The baryon asymmetry in the universe can be determined
by comparing the abundances of the light elements (D, *He,
“He) determined experimentally with the prediction of
standard big bang nucleosynthesis [1,2]. A completely
independent determination of the baryon asymmetry can be
obtained from the cosmic microwave background (CMB)
[3,4] giving perfectly consistent results [5]. The amount of
CP-violation stemming from the CKM (Cabibbo-
Kobayashi-Maskawa) matrix [6—8] is impossible to recon-
cile with the amount of CP-violation needed to explain the
observed baryon asymmetry. This lead to the conclusion
that new sources of CP-violation are needed.

CP-violation can be investigated by studying the electric
dipole moment (EDM) of particles with nonzero spin. The
current bound on the neutron EDM (nEDM) [9] is several
orders of magnitude larger than the value of the nEDM that
would be induced by the CKM matrix in the weak sector
[10]. An experimental signal of a nonzero EDM would thus
provide strong evidence for BSM physics.
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To provide possible clues on the type of BSM physics it
is crucial to determine separately every CP-violating
contribution to a nonzero EDM. Using lattice QCD it is
possible, at least in principle, to determine the renormalized
matrix elements of the CP-violating operators. An impor-
tant contribution to the EDM comes from the CP-violating
chromoelectric quark operator

Og(x) = l/_/i(x)ySU;wFﬂb(x)Wj<x)’ (1)

where y; and ; are fermion fields with flavor
i=1,...Ng, and F,(x) = Fj,(x)T° is the gluon field
tensor with @ = 1,...,8. The operator is known as the
quark chromoelectric dipole moment (qCEDM) operator.

The determination of the renormalized qCEDM using
lattice QCD is particularly difficult because the O operator
mixes under renormalization with the lower-dimensional
pseudoscalar density and this poses a challenge in
extracting the physical matrix element. In this paper we
advocate the use of the gradient flow [11-14] to define the
quark chromo-EDM.

The qCEDM defined at nonvanishing flow time, f, is
multiplicatively renormalizable and to determine the physi-
cal matrix element one needs to study its behavior at small
flow time. The local operators contributing to the short flow
time expansion have the same symmetry transformation
properties of the qCEDM. Of particular importance is the
leading behavior at small flow time stemming from the
pseudoscalar density, which scales as 1/¢ and is thus
linearly divergent with the flow time.

Power divergences have been tackled in several ways, for
example by imposing renormalization conditions on had-
ronic matrix elements at finite lattice spacing (see, e.g.,
[15]). We use the gradient flow to probe the short distance
behavior of the quark chromoelectric dipole moment and
determine nonperturbatively the mixing coefficient of the
qCEDM operator with the lowest dimensional operator—in
this case the pseudoscalar density.

Here the application of the gradient flow is potentially
advantageous for several reasons. We can perform the
continuum limit at each stage of the calculation at finite
flow time ¢, thus the classification of the operators
contributing to the renormalization of the qCEDM can
be done using continuum symmetries. Additionally the
analysis of cutoff effects is simplified [13] and, by using
chiral symmetry transformation at finite flow time [16], we
can determine the leading dimension 6 operators contrib-
uting to the O(a) cutoff effects.

If the lattice QCD action breaks chiral symmetry, the
qCEDM mixes with lower dimensional operators with
different chiral transformation properties, such as the
topological charge density. The definition of the qCEDM
at nonzero flow time allows us to perform the continuum
limit at fixed flow time, thus forbidding the contribution of
such operators to the small flow time behavior. The taming

of induced power divergences at finite flow time ¢ is the
main advantage of the gradient flow and thus motivates our
use of it with regards to the O operator.

In this paper we determine the linearly divergent mixing
coefficient of the qCEDM with the pseudoscalar density as
function of the renormalized and bare strong coupling. We
note that the particular dependence on the bare coupling is
specific to the lattice action chosen in this paper, which is
the Iwasaki gauge action [17] with O(a) improved Wilson
fermions [18-20].

The paper is organized as follows: we introduce the main
definitions and discuss the power divergences in the context
of flowed fields in Sec. II. In Sec. III we define the lattice
correlation functions we analyze and discuss the O(a)
improvement of the qCEDM at finite flow time ¢. Our
analysis and the ensuing results are presented in Sec. IV in
terms of the renormalized coupling and in Sec. IV B in
terms of the bare coupling. In Sec. V we show results for
the specific O(a) contributions to the flowed correlation
functions. We finally recapitulate our findings and provide
an outlook on future calculations in Sec. VI. We defer to
Appendices A and B for more details of our numerical
analysis and in Appendix C we discuss the perturbative
calculation performed using the same scheme adopted in
this paper for the nonperturbative determination of the
mixing with the pseudoscalar density.

II. QUARK CHROMOELECTRIC DIPOLE
MOMENT AT SHORT FLOW TIME

In this section we discuss the definition of the qCEDM
with flowed fermion and gauge fields, its behavior at small
flow time ¢ and the definition of the lattice correlation
functions. We assume that the reader is familiar with the
gradient flow (GF) formalism for both for gauge and
fermion fields [11,12,14]. Otherwise, for detailed referen-
ces on the gradient flow and the use of the gradient flow to
determine CP-violating operators contributing to the EDM
we recommend the reader to consult [16,21-27], and the
recent review [28]. Our numerical implementation of the
GF for fermions using a 4th-order Runge-Kutta integration
scheme follows closely that of [11].

We denote the fermion and antifermion fields with flavor
i at nonzero flow time 7 as y;(x; ), and y;(x; 1), respectively,
and the gluon fields B,(x;7). We define the qCEDM
operator at nonzero flow time as

OL(x:1) = 71(x:1)756,,G (3 D (3 1), @)

where 6, = £[r,.7,] and G, (x; 1) is the gauge field tensor
with flowed field B, (x; 7).

At vanishing flow time, ¢t = 0, the renormalization of the
qCEDM is nontrivial, and it mixes divergently with several
operators of the same dimension and less, d < 5. The list of
operators that can mix with the qCEDM has been analyzed
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in Ref. [29] in the context of the RI-MOM renormalization
of the qCEDM and classified based on their engineering
dimension. The proliferation of local operators contributing
to the mixing motivates in large measure our use of the
gradient flow to define the nonperturbatively renormalized
qCEDM operator. We note that in Ref. [30] the qCEDM has
been renormalized in the MS scheme using a background
gauge to ensure that only gauge invariant divergences
contribute. Our method, described below in Sec. IT A, is
based on the short flow time expansion [14] and, as it will
become clear in the next section, is based on gauge
invariant correlation functions.

Taking into account gauge invariance the list of operators
reduces to

e(qi +q;)

Pij, 82Pij’
2

wirsouwFiy,  (3)
where FJ;)! is the electromagnetic field tensor and g; is the
quark i charge in units of the proton charge. Other
operators, proportional to the quark mass, can contribute
at small flow time, but we choose a massless scheme and
our results are extrapolated to zero quark mass.

In this work we focus only on the power divergence of
the qCEDM and the only contribution to the power
divergence comes from the pseudoscalar density

PU(x) = i(x)rsy;(x). (4)

If we perform our renormalization using the lattice as a
regulator, the mixing pattern will depend on the choice of
the lattice action and in particular whether the action
preserves (a remnant of) chiral symmetry or not.

The renormalization of the qCEDM presented in
Ref. [29] assumes that the lattice action breaks chiral
symmetry, thus the classification of operators includes
the ones with opposite chirality with respect to the
qCEDM, such as the topological charge density. For
example, if our calculation were to use the RI-MOM
scheme and nonperturbatively O(a) improved Wilson
fermions [18,20], operators of dimension d =4, with
opposite chirality with respect to the qCEDM operator,
would contribute to a linear power divergence in the lattice
spacing, ~1/a. These additional operators have been also
classified in Ref. [29].

As our strategy to study the power divergences is based
on the use of the GF, we can perform the continuum limit
before studying the short distance behavior of the qCEDM.
This allows to classify operators using the symmetries of
the continuum theory, such as chiral symmetry.

Operators with opposite chirality do contribute to O(a)
cutoff effects of the qCEDM correlation functions under the
GF, however. Such contributions can be analyzed using a
Symanzik effective theory at finite flow time [13] and
then using a generalization of chiral symmetry at finite flow

time [16]. We present our analysis of this effect relevant for
the qCEDM in Sec. V.

A. Short flow time expansion

To study the power divergent mixing of the qCEDM
operator with the pseudoscalar density P, we probe the
short distance behavior of the qCEDM with the GF and by
means of the short flow time expansion (SFTE). The SFTE,
as the name suggests, is an operator product expansion for
t — 0. Its application is valid for renormalized fields and
can be used to define renormalized operators via non-
perturbative subtraction at nonvanishing flow time [14]. We
first perform the SFTE in the continuum assuming that any
correlation function calculated on a lattice with spacing a
has been extrapolated to the continuum at a fixed physical
value of the flow time . We do not specify at the moment
the renormalization scheme we use to renormalize the
operators. The SFTE reads

[0 (x:1) =0 ecp(t) P (%), (5)

where ccp ~ 1/t and we have neglected any additional
contribution coming from higher dimensional operators.
The final goal is to determine nonperturbatively the
coefficient ccp so as to subtract the power divergence
and thus renormalize our qCEDM matrix element of
interest.

The expansion coefficient ccp = c&i & + O(g*) can be
also computed in perturbation theory and its value can
provide us with the behavior of ccp at small coupling. In
Ref. [23] we have calculated ccp at one-loop order in
perturbation theory in an off-shell scheme with two external
quarks obtaining

_ - m_ 1
cop = copd” + O(3"). Ccr =52, (6)
where g denotes the strong coupling renormalized at a scale
i = (8¢)~'/2. We have repeated the perturbative calculation
of ccp, using the same gauge invariant correlation functions
that we use in our nonperturbative lattice determination of
ccp described in Secs. (Il B, IV, and IV B). Details on the
perturbative calculation can be found in Appendix C. The
final result for the linear divergence is the same as the one
obtained in Ref. [23] given by Eq. (6). This result suggests
a form of universality for the leading order divergence. We
comment in more details on this result in Appendix C.

B. Lattice correlators

We have a certain amount of freedom when choosing
how to compute the expansion coefficient nonperturba-
tively of a given correlator. Being an operator relation, the
SFTE can be applied to different correlation functions, the
choice of which is only dictated by theoretical or numerical
convenience. The specific choice of the external state
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allows one to select, to a certain extent, which operators
that contribute to the SFTE we want to study. We use gauge
invariant correlation functions that are numerically unpro-
blematic and allows us to select the contribution coming
from the pseudoscalar density to the SFTE shown in
Eq. (5).!

We consider a four-dimensional, hypercubic Euclidean
lattice with spacing a and we define the two-point function

Cep(xast) = a3Z<Og(x4,x; 1)P/(0,0;0)), (7)

X

where the probe is represented by the pseudoscalar density
at t = 0. To define the lattice correlation function we need
to specify the form of the field tensor

Gult) = 515100 = 0]

where Q,,(x) is the “clover” term, i.e., the sum of the 4
plaquettes in the pv plane around the point x.

Inserting the SFTE (5) in Eq. (7) and thereby neglecting
higher dimensional operators, we obtain

[Cep(xas 1)z = cep[Tpp(x4)]rs )

where

Tpp(xy) =Tpp(xyst=0)
=a®y (PU(x;,x;1=0)P7(0,0)). (10)

is the usual pseudoscalar two-point function. The SFTE
suggests that the following dimensionless renormalized
ratio

[Cep(x4;1)|x

[Cpp(xs)]g (1

Rp(xs;1)|g =1

tends to 7-ccp for small enough values of z. Before
detailing the method, we want to comment on this
particular choice to determine ccp. We could have chosen
any interpolator with the quantum numbers of the qCEDM,
but we find the pseudoscalar density very convenient to
work with. Another important aspect is the choice to keep
Oc and P at nonzero physical distance x, > 0. This choice
is done to avoid possible spurious contact terms at x4 ~ 0.
We also notice that the denominator of Rp will have
additional contact terms if x, = 0.

In determining ccp it is advantageous to study the
correlation functions in Eq. (11) for large Euclidean times

'"The determination of ccp using a gauge invariant two-point
function is more problematic in perturbation theory though (see
Appendix C).

x4 > /8t. Performing a spectral decomposition of the 2
correlation functions (7) and (10) and retaining only the
contributions of the ground state we obtain

1 ij ij —M X,
Pep(asi 1) = 5. — OLOL O]zl PUI0)e™ %, (12)
1 iy .

Pop(x) = 5, O1PY|) (& PT0)e 5, (13)

where |7) is the pion state. The bare ratio Rp thus has a
spectral decomposition for large x4

Ol[Oc]# (1))

Rl =1 o1

(14)

The renormalization of the pseudoscalar density and any
flowed operators is well understood [11-13]

P{=2zpPU.  [OCJ§(1) =Z,0(1).  (15)

where Z}/ ® is the renormalization factor of the flowed

fermion field. If we make explicit the renormalization
constants in Eq. (9) we then obtain

Z,Vep(xast) = cepZpl'pp(xa). (16)

To determine ccp in the continuum limit we need an
independent determination of Zp and Z, (or the use of the
ringed fermion fields [25]). In this first study of the
qCEDM we calculate 2 different quantities. The first is
the non-perturbative renormalization that connects the
qCEDM at finite flow time with the pseudoscalar density,
also at finite flow time. This quantity, labeled A(g?) below
in Eq. (21), is finite and represents the leading dependence
of the coefficient of the linear divergence on the renor-
malized coupling. The second quantity we calculate is the
bare expansion coefficient of the linear divergence divided
by Z,, labeled c, below in Eq. (23).

To calculate the finite renormalization, instead of using
the ratio Rp(x4;¢) in Eq. (11), we consider the ratio

Cep(x4;1)]x (17)

[Rp(x450)]|g = [[FPP(X4; g’

where the denominator now contains a flowed pseudoscalar
density

FPP(x4;t) = 03Z<Pij(x4»X;Z)Pji(ovo»a (18)

X

where

PU(x;t) = zi(xs t)ysy(x:1). (19)
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TABLE I. Summary of the lattice bare parameters for the ensembles used. N is the number of gauge configurations and Zp is the
value of the renormalization constant determined in Ref. [31].

Designation p K, Ky L/a T/a Cow Ng a [fm] m, [MeV]  my [GeV] Zp
M, 1.90  0.13700  0.1364 32 64 1.715 399  0.0907(13) 699.0(3) 1.585(2) 0.49605
M, 1.90  0.13727  0.1364 32 64 1.715 400  0.0907(13) 567.6(3) 1.415(3) 0.49605
M; 1.90  0.13754  0.1364 32 64 1.715 450  0.0907(13) 409.7(7) 1.219(4) 0.49605
A4 1.83  0.13825  0.1371 16 32 1.761 800  0.1095(25) 710(1) 1.65(1) 0.44601
A, 1.90  0.13700  0.1364 20 40 1.715 790  0.0936(33) 676.3(7) 1.549(6) 0.49605
A 2.05 0.13560  0.1351 28 56 1.628 650  0.0684(41) 660.4(7) 1.492(5) 0.51155

The reason for this definition is that now we can perform
the continuum limit of Rp(x,; ¢) without any knowledge of
renormalization factors since the ratio in Eq. (17) is scheme
independent and free of renormalization ambiguities. To
determine the expansion coefficient ccp one still needs to
determine the expansion coefficient, cp, of the pseudoscalar
density, PV (x;1)

Pii(x;t) = cp(t)P(x) + O(1). (20)
We do this via the relation
cerlt) =, A@P)er() + O, 1)

where A(g?) is the nonperturbative finite renormalization
we determine in this work:

A@) = Rl g x> VBL  (22)
In this way we determine nonperturbatively the power-
divergent coefficient up to subleading logarithmic correc-
tions described by of the expansion coefficient of the
pseudoscalar density. Using the gradient flow shows that
we can determine the power-divergent coefficient in the
continuum limit, and once we determine the expansion
coefficient cp of the pseudoscalar density it is possible to
estimate also the subleading logarithmic contribution to the

power divergence. Operating with the RG operator y ﬁ on

the SFTE of the pseudoscalar density (20), it is possible to
determine the flow time dependence of the expansion
coefficient c¢p given the anomalous dimension of the
pseudoscalar density, of the flowed fermion field and the
beta function [14]. We leave the determination of cp for a
future work.

The second quantity we determine is the bare expansion
coefficient

(23)

and make use of the determination of Zp(g3) in Ref. [31]
(the values of Zp are also listed for completeness in
Table I). With this definition we can study the dependence

of ¢, on the bare coupling g, leaving for future calculations
the determination of Z, or the use of “ringed” fermion
fields [25]. Employing a Padé approximant in combination
with perturbation theory, we determine the dependence on
the bare coupling of ¢, for our choice of the lattice action.
In Sec. IV we present the numerical details for the
determination of A(g?), while in Sec. IV B we show results
for c,.

III. O(a) IMPROVEMENT OF THE
QUARK CHROMOELECTRIC DIPOLE
MOMENT OPERATOR

The theoretical analysis of cutoff effects in lattice field
theory follows the Symanzik description [19,20,32,33] in
terms of effective action and operators close to the con-
tinuum limit. To study the cutoff effects of correlation
functions involving fields at positive flow time ¢, it is better
to rely on the quantum theoretical description based on the
4 + 1 dimensional field theory [13,16,34]. The extra dimen-
sion is represented by the flow time ¢ and the GF equations
are imposed augmenting the theory with an additional
Grassmanian field A that acts as a Lagrange multiplier.
With this field theoretical description it is possible to write
the corresponding Symanzik effective action by adding
higher dimensional operators to the continuum theory.
We recall that the higher dimensional operators are con-
strained by the symmetries of the lattice theory.

We consider here nonperturbatively clover-improved
Wilson fermions and gauge invariant correlation functions
of fields, at nonzero physical distance with each other. With
this prescription we can use the equations of motion to reduce
the number of higher dimensional operators and thus avoid
spurious O(a) terms stemming from contact terms.

Following Ref. [13] the lattice action is improved by
adding the following d = 5 operators

010 = ;D T Fuyilx).  (24)
i=1
Ox(x) = Y _ Ai(x)ilx), (25)
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where A(x) is the Lagrange multiplier that, once integrated
over in the Functional Integral, enforces the fermion fields,
defined at positive flow time, to be solutions of the GF
equations. We discuss in Appendix A how we numerically
contract the Lagrange multiplier with the fermion fields.
Here we just recall the basic properties. The field A has
energy dimension % in d = 4 spacetime dimensions and the
chiral transformation properties of this field are described
in Ref. [16], as well as those of other higher dimensional
operators. The operator O, breaks chiral symmetry and is
present as an O(a) operator in the Symanzik effective
action. The O(a) operators are all evaluated at 7 = 0, i.e.,
they are boundary terms for the 4 4 1 dimensional theory.
This is a consequence of the invariance of the action under
chiral symmetry in the bulk of the 4 4+ 1 dimensional theory
[16]. While the term proportional to O, is the usual clover
term, with a tunable c, parameter in the lattice action, the
term proportional to O, has a tunable ¢y coefficient that
only contributes to contractions between fermion fields at
nonvanishing flow time [13]. In this work we will never
consider fermion contractions between two flowed fermion
fields, thus from now on we assume that ¢y is not needed
to remove O(a) effects from the lattice correlators we
compute.

The effective action is not sufficient to describe corre-
lation functions in the Symanzik effective theory. We also
need to consider O(a) terms from the local operators. The
list of higher dimensional operators, parametrizing O(a)
cutoff effects, for the fermion fields and the pseudoscalar
and scalar densities is given in Ref. [13]. Here we just list
for completeness the form of the renormalized O(a)
improved operators using the same notation as in [13].
For the fields at positive flow time the renormalization is
dictated always by the same field renormalization factor
Z)l/ *. Chiral symmetry implies that only O(am) contribu-
tions be present,

b b
ar(x, 1) =2)? <1 + a?)’mq + afTrM))((x, 1), (26)

Pl(x,1) = Z,(1 +ab,m

M, i; + ab, TrM) P (x, 1), (27)

where m, is the subtracted bare quark mass and m,;; is

4ij
the average of the subtracted quark masses, m,;; =
Y(my;+my;). To determine the subtracted quark mass

it is possible to use the PCAC mass,

o S (00A] (x4, X:0)P7(0; 0))
(P (xg, x5 0)PT(0;0))

(28)

The correlator on the right-hand side (rhs) of Eq. (28)
should be independent of x, up to cutoff effects.

With respect to the standard treatment of O(a) cutoff
effects, the fields at the boundary ¢t = 0 show additional

O(a) terms, if these are then contracted with fields at
positive flow time

(AT ()], = Al (x) + acsd,PU(x) + at,Al (x),  (29)
[P (x)]; = PU(x) + agpP(x). (30)

The two additional O(a) terms are proportional to
A (X) = 2i()rarsw; (x) + i (7,rsh;(x), - (31)
PU(x) = 4 (x)7,7sw;(x) + 3 (X)7,52;(x).  (32)

The presence of the Lagrange multipliers confirms that
these O(a) terms contribute only when contracted with
flowed local operators. According to Ref. [13] at tree level
perturbation theory we have

1
¢ = —Cjp =—Cp ==, b

5 = 1. (33)

To determine the O(a) terms for the qCEDM operator
we consider its chiral symmetry properties and construct
the higher dimensional operator following Ref. [16]. Any
operator of the form J,(#)I'(¢)y;(¢) at t > 0, where I'(¢) is
either constant or it contains, as in this case, the flowed
gauge field, renormalizes with Z, and shows only O(am)
cutoff effects

(08 (x. D) = Z,[0¢ (x. )],

[0&(x,1)], = (1 + ab,m

' Ma.ij + al_’xTrM) Og (x,1), (34)

where again this form is constrained by the chiral symmetry
at t > 0. In addition to the O(a) terms shown in (34), we
have to add an additional O(a) improvement term because
the pseudoscalar density is contracted with a field at
nonvanishing flow time, which introduces the term propor-
tional to PY. The final form of the renormalized and
improved correlation function is then

Cep(xast)|g = Z,Zp [Tep(x43 1)), (35)
[Cep(xa3 1))y = (14 abymg i; + ab, TrM)Tep(xy5 1)
+ azplep(xys1), (36)

where

Fep(xgs 1) = a®y (0L (x4, x;1)P71(0,0;0)).  (37)

X

To improve the denominator in the ratio of Eq. (17) we
define

Crp(x4:)|r = Z,Zp[Tpp(x431)];, (38)
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[Cop(xg3 1)} = (1 + abymy ;; + ab, TeM)Tpp(x431)
+ atplpp(x4 1), (39)

where

Cpp(xgit) = a®) (P (xs.x;1)P77(0,0;0)).  (40)

X

The renormalized and improved ratio Rp then reads

R (s 1)), = rhcr 0l
[RP(X4’ t)]R =t [FPP(X4; t)]] : (41)

We show in Sec. IV B (see Figs. 12 and 13) that the O(a)
terms proportional to T'cp(xy4;¢) and T'pp(xy; ) vanish for
x4 slightly larger than zero for any value of the flow time we
consider.

To improve the ratio in Eq. (11) we also need to improve
the denominator

[Cpp(x4)]; = (1 + abpmyg;; + abpTeM)Tpp(xy),  (42)

where the tree-level value is bg,()) = 1. All the coefficients
coming from sea quark effects on fermion correlation
functions, such as the parameters by = O(g*), are
neglected. The tree level value of bp coincides with the
value of b)(2 thereby simplifying the ratio (11). Thus we are
left with O(am) discretization errors of O(g?). The O(am)
terms of the pseudoscalar density probing the qCEDM in
Egs. (36) and (42) simplify once we determine the ratios in
Egs. (11) and (17).

In the next section we evaluate the correlation functions
in Egs. (37) and (40) and show that it contributes only at
short distances when x4 ~ V8t To conclude, at nonzero
physical distances x4 > /8¢, for all practical purposes the
ratio in Eq. (17) is renormalization group invariant and
automatically O(a) improved, after we improve the action,
while the ratio in Eq. (11) is O(a) improved, up to
O(amg?).

IV. NUMERICAL ANALYSIS

To determine the ratios Rp and Rp in Eqs. (11) and (17)
we need to calculate the two-point functions in Egs. (7),
(10), and (18). We use publicly available [35] lattice gauge
configurations generated with the Iwasaki gauge action
[17] and nonperturbatively clover-improved fermions
[18,20]. Details on the generation of these ensembles
can be found in Refs. [31,36]. The improvement coefficient
Cqw for this choice of lattice action has been determined in
Ref. [37]. The bare parameters of our ensembles are listed
in Table I together with some basic quantities and the

>The value of b,, to the best of our knowledge, is unknown
beyond tree level.

pseudoscalar renomalization constant Zp. In this work, as
illustration, we use the values of Zp determined using the
Schrodinger Functional scheme in Ref. [31] at some low-
energy scale. The exact value of the renormalization scale is
not relevant for the method we use to determine the linear
divergent term.

The computation of the fermion correlation functions
requires, beside the standard quark propagators, the cal-
culation of the quark fields contractions between fields at
zero and nonzero flow time ¢. The flow time dependence is
calculated taking the standard quark propagator as initial
condition of the GF equation. We always place the flowed
field at the “sink™: in this way we do not have to repeat the
inversion of the lattice Dirac operator for each value of the
flow time t.

Recall that in Sec. II we discussed 2 different strategies
to study the behavior at small flow time ¢ of the qCEDM
operator (2). The first strategy was based on the determi-
nation of the ratio Rp defined in Eq. (17), or in other words
the determination of the finite renormalization connecting
the qCEDM and the pseudoscalar density at finite flow
time. We now discuss this strategy in more detail.

A. Finite renormalization

To determine the ratio Rp in Eq. (17) we need to
calculate the two-point functions in Egs. (7) and (18).
The spectral decomposition of Eq. (17) is straightforward
and if we retain only the ground state contribution we
obtain

o olodii)
Rl = Pl

where we assume that x, > /8¢ in order to make sure that
the state propagating are pion states. It is easy to check
numerically if this condition is satisfied. In Fig. 1 we show
examples of the Euclidean time, x,, dependence of Rp(1)/1.
The quark propagators are determined using a pointlike
source. We have studied the influence of using smeared
sources and we found no obvious advantage in the
determination of the plateau in Eq. (43). We discuss the
impact of smeared sources in Sec. IV B.

In Fig. 2 we show the flow time dependence, in unit of
t/to, of Rp for all our ensembles in Table I. The data allow a
smooth interpolation with a cubic spline and we can
perform a robust chiral and continuum limit extrapolation
with a global fit at fixed values of the flow time.

To assess the uncertainty due to the continuum limit, we
have calculated the values of 7, for each ensemble,
removing tree-level cutoff effects, at different orders in
a® [38]. The value of ,/a” determined on a given lattice is
usually defined as the value of the flow time satisfying

(43)

13(E(t0))1a = 0.3, (44)
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FIG. 1. Rp(t)/t defined in Eq. (17) and determine on the ensemble A3 (see Table I) for values of the flow time t/a®> = 0.5, 2.0,

corresponding to a flow time radius ry = /8t = 2a, 4a.

where E = % G, G}, and the index “lat” reminds us that the
expectation value is evaluated on the lattice. The discre-
tization effects depend on the form of the discretization of 3
different aspects of the calculation: the lattice action, the
lattice GF equation and the lattice definition of the
observable which is the energy in this case. By evaluating
the energy lattice expectation value at tree-level it is
possible to remove tree-level cutoff effects. The tree-level
ratio

C(1) =1 (45)

between the lattice and the continuum expectation values is
1 in the continuum limit, and dimensionless. At tree-level
of perturbation theory, in a pure gauge calculation, the only
scale available, beside the lattice spacing a, is the flow time

0.6

0.5+

0.4 1

0.3+

Re(t)

0.2 1

0.1+

0.0{ ?
00 02 04 06 08 10 12 14
gt

FIG. 2. Flow time dependence of the ratio Rp for all our

ensembles. For the x-axis we choose the standard definition of

to/a%, ie., ty = t(()o) (see main text).

t, thus C = C(a?/t) and expanding in powers of a’/t one
has

Ct)=1+ mzi:l C, (“;) " (46)

The values of the coefficients C,,, for a wide selection of
different lattice actions, GF equations and energy defini-
tions, are given in Ref. [38]. Our choice corresponds to the
Iwasaki gauge action, a lattice GF equation using the
“plaquette” discretization for the field tensor, and an energy
defined using the so called “clover” definition [see Eq. (8)].
We can have different determinations of #,/a>

M2 g0y oL
(to )<E(t0 )>lat C(l(()M)) 0.3, (47)

depending on the order in a*/1 to which we evaluate C(1).
In Table II we list all the values of #,/a®> we have
determined for all the ensembles and in Fig. 3 we show
the ratio C(t) for given orders M and for our lattice setup.
The complete Symanzik analysis of the O(a?) for flowed
gauge observable can be found in Ref. [34].

We can now perform the chiral and continuum extrapo-
lation of the renormalized coupling defined as

7 = pe() (49

at fixed values of t/f, and using different definitions of
to/a*. We parametrize our data with

[g2]fit - Ag(t) + Bg(l‘)a2 + Cg(t)mq + Dg([)mé’ (49)

where X (1), X = A, B, C, D, are the fit parameters. We
keep the freedom to have both cutoff effects and the quark
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TABLE II. Here we present the téM)/ a® values with improvements in Ref. [38], where M is the order of the improvements in

C(az/t) =1+ Z%:l Cm(a_tz)m'

Designation t(()0> /a? t(()l)/ a® t82> /a? t((,3> /a? t(()4) /a?

M, 2.2586(12) 2.1344(12) 2.1723(12) 2.1655(12) 2.1680(12)
M, 2.3993(12) 2.2739(11) 2.3094(11) 2.3033(11) 2.3054(11)
M, 2.5371(15) 2.4088(15) 2.4435(15) 2.4379(15) 2.4397(15)
A 1.3627(15) 1.2397(15) 1.3028(14) 1.2849(15) 1.2951(14)
A, 2.2378(24) 2.1145(23) 2.1526(23) 2.1457(23) 2.1482(23)
As 4.9879(65) 4.8652(64) 4.8815(64) 4.8802(64) 4.8804(64)

mass term depending on the flow time, but we do not have
sufficient ensembles to be sensitive to mass dependent
cutoff effects. The quark mass is determined with the
PCAC relation (28).

In Fig. 4 we show the results of our global fits for the
coupling g at fixed values of ¢/t, = 0.4. In the left plot we

1.00 1 M=1
M=2
M=3
g -
2~ 0.981 M=4
e
g
UH
sIA T 0.96
g
+
—
I 0.94-
=
o~
)
O 0.921
0.90 - T - - - -
0.0 0.2 0.4 0.6 0.8 1.0
a2/t
FIG. 3. Tree-level lattice artifacts of the energy density defined

in Eq. (45) for different orders (<°).

t/t? = 0.4, x?/dof=0.07

10.5
—— chiral limit
T A;, mg=69.0107[MeV]
10.0 @ Ay mg=64.9401[MeV]
® As, mg=63.2101[MeV]
9.5 ® My, mg=66.6386[MeV]
. ® M, mg=44.8694[MeV]
M3, mq =23.4862[MeV]
T 9.01
8.5 1
8.0 1
<
7.5 T T v " " -
0.000 0.002 0.004 0.006 0.008 0.010 0.012
a?[fm?]

o~ N —_— = __
1> - e
8.0

show the continuum extrapolation for the standard defi-
nition of 7y, i.e., with C(z) = 1, while on the right plot we
show the chiral extrapolation. The variation of the results
obtained for different choices of t,/a’ represents our
estimate of the systematic uncertainty of the continuum
extrapolation. We can now repeat the same analysis for the
ratio Rp of Eq. (17). We parametrize our data with the
function

[Rpls = Ag(1) + Bg(1)a* 4+ Cg(t)m, + Dg(t)mg,  (50)

where Xg(t), X = A, B, C, D, are the fit parameters. In
Fig. 5 we show respectively the continuum limit (left plot)
and the chiral extrapolation (right plot) at fixed ¢/f, = 0.4
using the standard definition of #,/a*> with C(t) = 1.

Having determined both R () and g(7) in the continuum
limit, we can analyze the dependence of A(g?) as a function
of the renormalized coupling and compare it with pertur-
bation theory. We have calculated using continuum per-
turbation theory at order O(g*) the same A(g?). Details of
the calculation can be found in Appendix C. The final result
at O(g?), consistent with our previous determination [23],
is given by

t/tQ = 0.4, x?/dof=0.07
10.5

10.04

—— continuum limit

7.5] T Ay a=0.1095[fm] <
@ Ay a=0.0936[fm]
7.04 @ A; a=0.0684[fm]
@ My, 2a=0.0907[fm]
6.51 @ M, a=0.0907(fm]
Ms, a=0.0907(fm]
6.0 T y ¥ v v v v
0 10 20 30 40 50 60 70

MpcaclMeV]

FIG. 4. Simultaneous fit for chiral and continuum extrapolation of renormalized coupling g at t/f, = 0.4 choosing the standard
definition of 7, with M = 0. See main text for more details. The empty point at the coarser lattice spacing is excluded from the

continuum and chiral extrapolation.
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t/t" = 0.4, x¥/dof=1.01
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A1, a=0.1095[fm]
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As, a=0.0684[fm]
M;, a=0.0907[fm]
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Global fit of the ratio R for the definition of £, with M = 0. See main text for more details. The empty point at the coarser

lattice spacing is excluded from the continuum and chiral extrapolation.

AP = — 7, (51)

and is represented in Fig. 6 by a green straight line. In Fig. 6
we also show our raw data, obtained with the M =4
definition of #,/a”, and the continuum extrapolation. The
raw data show statistical uncertainties in both the y- and x-
directions, the latter coming from the uncertainty on the
determination of g?. The blue band represents the statistical
and systematic uncertainty in the continuum extrapolation
obtained considering the maximal variation of results
varying among all the values of M =0,...,4. The plot
shows the data and our continuum extrapolation for values
above the renormalized coupling 3> ~ 9. The reason for this
choice stems from our ability to control the continuum
limit, which for smaller values of §* become increasingly
difficult due to larger cutoff effects.

1.2
—— perturbation
chiral, continuum limit
1.0 A
A
o A;
0.8 1 oM
#H M,
—_ M3
© 0.6
3 M AR
0.4 1
0.2 1
0.0 T T T T
0 5 10 15 20 25

§2

FIG. 6. Blue band corresponds to chiral, continuum limit of
data. The error is obtained from the maximum difference between

téM>, M = 0,1, 2,3, 4. For plotting g* for data points are obtained

using t(()4>.

This behavior is expected at such short distances, but
perhaps surprisingly, as we can see from Fig. 6, we are still
able to match the perturbative results even at these
relatively large values of the renormalized coupling. We
then attempt to parametrize the dependence on the renor-
malized coupling of A(g?) over the whole range of
renormalized couplings with polynomials of the form

AFP)=> Algi  N=45 (52)

In Fig. 7 we show the results of these polynomial fits: for
N = 4 we compare the results leaving the leading O(7?)
coefficient as a free fit parameter (left plot), while in the
middle plot with constrain it to our perturbative results.
From the plots and the fit results in Table III we observe
that without constraining the fit parameter A()), we obtain
results consistent with one-loop perturbation theory if we
consider the uncertainties due to the continuum limit. We
also notice that the value for M = 2 is perfectly consistent
with the perturbative result. In the right plot of Fig. 7 we
show the same fit up to the order O(5'?). The blue bands
represent the uncertainty stemming from the uncertainty in
the continuum limit. The fit parameters and their uncer-
tainties are given in Table III. The results indicate a very
good description of the numerical data combined with the
perturbative results and demonstrate a rather fast conver-
gence of the polynomial. There is still some instabilities in
the fit parameters, especially when changing the order of
the polynomial (however the M = 2 case shows very stable
results). As our final result we quote the parametrization
with N = 4. This curve is universal and renormalization
group invariant. It can be applied to any determination of
the expansion coefficient of the pseudoscalar density and to
any corresponding hadronic matrix element.
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FIG. 7. Error bands are obtained from the fitting of the chiral, continuum limit data. The error band is obtained from the maximum
difference between the fitting results of extrapolated data using different t(()M), M=0,1,2,3,4.

B. Analysis in terms of the bare coupling

A second strategy to study the behavior of the qCEDM at
small flow time is to define an effective expansion
coefficient ¢, in Eq. (23) and determine its value in terms
of the bare coupling. To estimate c,, as discussed in Sec. I,
we want to determine the ratio Rp(z) in Eq. (43). The
calculation of the correlation functions in (7) and (10)
requires the same propagators used in the analysis pre-
sented in the previous section. The only difference is that
in the denominator of Rp we do not flow the quark
propagators.

In Fig. 8, we show the source-sink separation, xy,
dependence of Rp(x4;1)/t for several values of the flow
time 7/ a>=0,0.5,2.0, corresponding to values of the flow

time radius ryp = V8t = 0,2a,4a. We observe that the

asymptotic plateau value is reached with no particular
problem for every value of the flow time we adopt in this
work. In Fig. 8 we also show a comparison between a point
and a gauge-invariant Gaussian smeared source [39,40]
with 64 iterations of the smearing algorithm and, using the
definition of Ref. [39], a smearing parameter of a = 0.39.
The determination of the plateau is fairly straightforward so
we perform a simple constant fit, where the fit range is
determined in a standard way minimizing the correspond-
ing y°.

The result of the fit is the ratio Rp () of Eq. (43) and it is
shown, as a function of /1, in the left plot of Fig. 9. We
determine #,/a” in a standard way [11] and the values for
all our ensembles are given in Appendix B in Table IV. The
flow time dependence of Rp(¢) in Fig. 9 can be explained as

TABLE I Results for the polynomial fit A(g?) as a function of g*. The perturbative result is given by Al") = -1 = 0.05066.

A@) = AP + ADG + ABG + AW

M AW A® A®) AW 72/d.o.f. dof.
0 0.07255(71) —0.00279(17) 0.000027(11) 0.00000059(25) 0.003 785
1 0.08156(55) —0.00444(13) 0.0001289(85) —0.00000155(18) 0.0004 815
2 0.0491(10) 0.00191(23) —0.000286(16) 0.00000749(35) 0.13 874
3 0.07357(66) —0.00304(16) 0.000046(10) 0.00000012(22) 0.001 833
4 0.0409(11) 0.00376(27) —0.000420(19) 0.00001063(43) 0.45 888
A(gZ) _ #92 4 A(2)§4 + A(3)§6 + A(4)§8
M A2) AB) AY 272/d.of. d.o.f.
0 0.002321(44) —0.0003604(46) 0.00001016(14) 0.40 786
1 0.002611(46) —0.0003923(46) 0.00001097(14) 1.09 816
2 0.001551(38) —0.0002593 (44) 0.00000683(14) 0.13 875
3 0.002210(42) —0.0003444(43) 0.00000955(13) 0.59 834
4 0.001489(38) —0.0002493(45) 0.00000647(14) 0.57 889
A@z) :2%92_'_A(2)§4+A(3)§6+A(4)§8+A(5)§10
M A®) AB) A& AB) y*/d.of. d.o.f.
0 0.004075(68) —0.000765(14) 0.0000405(10) —0.000000743(22) 0.005 785
1 0.005016(62) —0.000934(12) 0.00005056(80) —0.000000941(18) 0.04 815
2 0.001565(86) —0.000262(20) 0.0000071(14) —0.000000005(30) 0.13 874
3 0.004007(63) —0.000751(13) 0.00003944(88) —0.000000714(19) 0.01 833
4 0.00095(10) —0.000126(22) —0.0000027(16) 0.000000221(36) 0.51 888

074516-11



KIM, LUU, RIZIK, and SHINDLER

PHYS. REV. D 104, 074516 (2021)

t/a?=0.0 t/a?=0.5 t/a’?=2.0
1.4] .z 0.25 5 ecoceces;
sl 0.05
: 0.20
1.29 . 0.041
21 . S R0 ¥ 0.031
@« 1.0 « 0.10 &= 0.02 1
0.9 . -
{ point source 0.057 - { point source 0.01 { point source
0.8 {  shell source {  shell source - - {  shell source -
. 0.001 3 0.001 + °
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Xala Xala Xala
FIG. 8. Theratio Rp/t defined in Egs. (11) and (43) and determine on the ensemble A5 (see Table I) for several values of the flow time

t/ a>=0,0.5, 2.0, corresponding to a flow time radius r; = V8t = 0,2a, 4a. Different colors correspond to different sources.
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FIG. 9. Ratio Rp in Egs. (11) and (43) as a function of #/¢,. In the right plot, error bands are reconstructed based on the final fitting
results and solid data points are belonged in the selected fitting ranges in Table IV.

follows: at short distances ry < 2a the ratio Rp is domi-
nated by cutoff effects, while at large flow times, aside from
the expansion coefficient we want to determine, Rp con-
tains contributions from higher dimensional operators
linear in z. For this reason we decided to perform a simple
fit using the fit function
to t
Ry (1) :B—17+Bo+315’ (53)

where B_; parametrizes O(a?/t) effects, while B, para-
metrizes collectively effects from higher dimensional

operators. A similar analysis has been done in
Refs. [41-43] to analyze finite temperature quantities
and renormalized 4-fermion operators. The fit coefficient
B provides the value of ¢, in Eq. (23) for each ensemble.

The efficacy of the method depends on the robustness of
the determination of B, with respect to the other contri-
butions. To include all possible systematic effects in the
determination of Bj, we scan many possible fit ranges in
t/t, determining both the > and the p-values.

All the details of the analysis are deferred to Appendix B.
The value of B, for each ensemble, is determined taking
into account the statistical uncertainty and the systematic

TABLE1V. t,/a® and fit ranges for each ensemble. In the 3rd and 4th column we show the complete fit ranges, (/%)) /max> While in
the 5th and 6th we show the fit ranges after analyzing the p-values of the fits (see main text in this Appendix).

Designation to/ a* range of (/o) in range of (1/%)) nax range of (/ty)%, range of (/1)
M, 2.2586(12) (0.1682, 0.7525) (0.1903, 0.9738) (0.1682, 0.2656) (0.1903, 0.4869)
M, 2.3993(12) (0.1624, 0.7500) (0.1833, 0.9583) (0.1624, 0.2500) (0.1833, 0.4167)
M 2.5371(15) (0.1576, 0.7881) (0.1773, 0.9851) (0.1576, 0.2758) (0.1773, 0.5123)
A 1.3627(15) (0.2348, 0.5870) (0.2715, 0.9539) (0.2348, 0.5870) (0.2715, 0.9539)
A, 2.2378(24) (0.1697, 0.7594) (0.1921, 0.9827) (0.1697, 0.2680) (0.1921, 0.4914)
As 4.9879(65) (0.1002, 0.8820) (0.2005, 0.9822) (0.1002, 0.8820) (0.2005, 0.9822)
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one stemming from the choice of the fitting range in /1,
(see Appendix B). In the right plot of Fig. 9 we show the
effective coefficient ¢, as a function of t/#, for all our
ensembles together with the fit functions, where with the
thick symbols we show the data included in the fit. We note
that the data are described well by the fit function (53). We
also note that closer to the continuum limit we are able to
describe the data at smaller values of /1. This is consistent
with the expectation that at smaller lattice spacing short
distance effects are milder.

In Fig. 10 we show an example of the study of the flow
time dependence of c,. In the left plot with the magenta
band we indicate a single fit using Eq. (53) with the
associated statistical uncertainty. With the orange band we
show only the contribution from the cutoff effects, propor-
tional to B_;, this time including the systematic uncertain-
ties stemming from varying the fit ranges. The green line is
the fit result obtained removing cutoff effects. The central
value this time represents the median of the distribution
obtained varying the fit ranges and satisfying our p-value
condition (see Appendix B). The width of the band
represents the associated statistical uncertainty. The red
data point has a central value representing B, obtained as
the median of the distribution of values of B, varying the fit
ranges and the error represents the sum in quadrature of the
statistical and systematic uncertainties. We observe that
cutoff effects become important at ¢/f, < 0.1 while the fit
function describes the data over a large range of flow times,
0.1 < t/ty < 0.3. The analysis described in Appendix B
also shows that more fit ranges are statistical acceptable and

0.5
é A
. B0 +Bo+Bt
0.44 - B'rjned_‘_B{ned%
- BLY
0.3 § Bp~
~ — H—o_._._._._._._.
S I ® ® 0 0 o
0.24
0.11
O-O‘ﬁ

010 015 020 025 0.30 035 0.40

t/to

0.00 0.05

our final error budget include the systematic error induced
by varying the fit ranges. A similar behavior is observed for
the other ensembles with different fit ranges.

In the right plot of Fig. 10 we show the data for ¢, after
subtracting the contributions from cutoff effects and higher
dimensional operators

S (f) = ¢ (54)

The red band now represents our estimate of ¢, including
systematic uncertainties and clearly covers any possible
ambiguity coming from the choice of the fit range and it
coincides with the red point in the left plot. The systematic
uncertainties we associate to B, come from the different
choices of fit ranges. Again details are given in
Appendix B. While for the coefficient By, it is not possible
to perform the continuum limit because the value of Z, is
not known, we can nevertheless parametrize the depend-
ence of ¢, on the bare coupling g, with a Padé approximant.

To make sure that the behavior at small coupling is
reproduced, we have calculated in perturbation theory the
same ratio Rp in Eq. (11). The result of the calculation is
described in Appendix C. At one loop in perturbation
theory there is no contribution to the expansion coefficient
ccp coming from the renormalization of the flowed fermion
field or the pseudoscalar density. For completeness we
quote here the result

0.5

= B,
® data-B.P-Bif
0.4

0.34

sub
X

C

0.2 1

0.1

0.0 T T T -
0.0 0.1 0.2 0.3 0.4 0.5

t/to

FIG. 10. Left plot: flow-time dependence of ¢, for the ensemble A;. The different colored lines show the following contributions.
Magenta: example of a single fit satisfying the p-value condition. The magenta band represents the statistical uncertainty for the
particular fit range chosen. Orange: the contribution of the cutoff effect, parametrized by B_j, to the single fit chosen in the plot. The
orange band represents the associated statistical and systematic uncertainties stemming from the variation of the fit ranges. Green: the fit
result obtained removing cutoff effects. The central value this time represents the median of the distribution obtained varying the fit
ranges and satisfying our p-value condition (see Appendix B). The width of the band represents the associated statistical uncertainty.
Red data point: the central value is B, obtained as the median of the distribution of values of B varying the fit ranges and the error
represents the sum in quadrature of the statistical and systematic uncertainties on B. Right plot: the blue data points represent the raw
data after subtracting the cutoff effects and the higher dimensional operator contributions, linear in #/t,, determined from the fit. The red
band represents our estimate of ¢, including the statistical and systematic uncertainties added in quadrature.
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FIG. 11.  Nonperturbative dependence of c, as a function of the

bare coupling gy. The blue band represents the Padé approximant
in Eq. (56). The width of the band represents the statistical and
systematic uncertainties added in quadrature.

¢, =+ 0(gY, (55)

=2

In Fig. 11 the data points represent the nonperturbative
determination of ¢, with error bars including statistical and
systematic uncertainties. We have parametrized the depend-
ence on the bare coupling of ¢, with a Padé approximant

1 2 4
_ 2% Tt 29

where we have constrained the leading order in g3 to be
consistent with perturbation theory. The green straight line
in Fig. 11 represents the perturbative result described in
Appendix C, consistent with the result of Ref. [23]. The
blue curve represents the Padé approximant obtained from
fitting to data we obtained all our ensembles. We note that
in some ensembles, for example M5, the data became
bimodal in distribution and because of this we restricted our
fitting to a smaller range in #/¢,. Otherwise we use the full
possible fitting range, when possible, consistent with the
p-values chosen. See Appendix B for details. Our final
result is summarized by Eq. (56) with the values
c, = —0.01115(63), cy = —0.2690(61). (57)
The parametrization of Eq. (56) with the fit parameters in
Eq. (57) provides the coefficient of the power divergence
for each value of the bare coupling for the particular choice
of the lattice action in this paper. With a different lattice
action cl(g%) changes, but this paper provides a general
method that can be adapted to any lattice action.

V. O(a) IMPROVEMENT AT FINITE
FLOW TIME

In Sec. IIl we concluded that to nonperturbatively
remove O(a) cutoff effects in the flowed correlation
functions we use, beside improving the action and the

¢, () - (56)  local operators, we need to add nonstandard O(a) terms
X . ~ ~ .
1+ cagp like I'pp(x4; ) and Up(xy; 1) defined in Egs. (40) and (37).
t/a’>=0.5 t/a’?=2.0 t/a’>=6.0
0.0301 ~ I A 0.00064 ° I A 0.00004 . T A
00251 0.0005 1 0.00003 -
< 0.0201 < 0.0004 . ) -
3 i '$ 0.00002 .
X 0.0151 X 0.0003{ X
& & &
= 0.010 1= 0.0002 %= 0.00001 -
000s] . 0.0001{ - . "
. 0.00000 - S
00001 0.0000+ - e
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Xgla Xgla Xgla
FIG. 12. Euclidean time, x4, dependence of fpp(x4; t) for the ensemble A; at 3 values of the flow time.
t/a’=0.5 t/a?=2.0 t/a’?=6.0
0.0025 0.0000020
oA 0.000025{ * oA r P oA
0.0020 0.000020 0.00000157 *
0.0000151 = 0.0000010
o 0.0015 = = i
3 3 0.000010 ‘s 0.0000005
X X - x ~
“E_) 0.0010 “_E-J 0.000005 . “E-J 0.0000000 . .
- 0.000000 - . .
0.0005 . ~0.0000005
~0.000005 e
0.0000{ * . ~0.000010 . ~0.0000010 T=
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FIG. 13. Euclidean time, x,, dependence of I'cp(x4; ) for the ensemble Ay at 3 values of the flow time.
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The numerical determination of these types of correlation
functions requires, in addition to the calculation of flowed
propagators, the calculation of “kernel” lines, where the
Lagrange multipliers A and A are contracted with flowed
fermion fields. Details on how to determine “kernel” lines
are given in Appendix A.

In Figs. 12 and 13 we show the Euclidean time
dependence, x4, respectively of T'pp(x4;¢) and Tep(xy;1)
for the ensemble A; and 3 values of the flow time
t/ a?> =0.5,2.0, 6.0. It is clear that any nonzero contribu-
tion is localized in the region x4 < /8t while for X4 > /8t
the correlation functions vanish. We conclude that as far as
x4 > /8t our determination is nonperturbatively O(a)
improved up to small O(amg?) terms. This result, obtained
with minimal numerical effort, is one of the great advan-
tages of using the gradient flow to renormalize higher
dimensional operators.

VI. SUMMARY AND OUTLOOK

When a CP-violating signal is measured in electric
dipole moment experiments in the future, it will be
imperative that theory provides guidance on the origins
of this measured violation. As the sources themselves can
come from various BSM scenarios, it is important to
understand the systematics of each source and its ensuing
impact on observables.

To that end we have analyzed the quark chromo-EDM
operator, for the first time using the gradient flow method to
provide control on the power divergences that occur due to
mixing during renormalization when using a discrete
spacetime regulator. In essence, our gradient flow analysis
trades induced power divergences with cutoff dependen-
cies, the latter being much more amenable to a continuum
limit extrapolation.

Our most important result is shown in Fig. 7 and the
corresponding description in Egs. (52). In the plots we
show the nonperturbative determination of the finite
renormalization connecting, for a wide range of renormal-
ized coupling values, the qCEDM operator with the
pseudoscalar density at finite flow time. The calculation
of this finite renormalization reduces the power divergence
problem to the determination of the nonperturbative evo-
lution of the pseudoscalar density at finite flow time. Once
a nonperturbative determination of the expansion coeffi-
cient of the pseudoscalar density is available, it is possible
to determine, nonperturbatively and in the continuum,
not only of the leading power divergences but also the
subleading logarithmic corrections to the power divergen-
ces. In view of the increased precision of lattice data it
becomes critical to control also this subleading corrections
and work in this direction is in progress.

The scheme defined in this work, even if technically
difficult, can also be used in perturbation theory allowing a
matching at high-energy and in Appendix C we show the

detail of the calculation. For completeness we also perform
an analysis in terms of the bare coupling, where the
dependence of the power divergence coefficient is recon-
structed using a Padé approximant. We emphasize that the
analysis in terms of the bare coupling, and the correspond-
ing Padé approximant, depends on the lattice action used.

We have also discussed the O(a) improvement of the
qCEDM and the appropriate modifications at finite flow
time. We conclude that the improvement is greatly sim-
plified using the gradient flow definition of the qCEDM.

We consider this work as a first nonperturbative solution
of the problem of the power divergences for the qCEDM.
The method we develop in this paper can be adopted for
any local operator mixing with lower dimensional operators
and with any lattice action.
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APPENDIX A: FLOWING FERMION FIELDS

Here we elaborate on the fermion and Lagrange multi-
plier fields we use in our work. The standard lattice QCD
quark propagator

() ()]F = S(x. y), (A1)

074516-15



KIM, LUU, RIZIK, and SHINDLER

PHYS. REV. D 104, 074516 (2021)

where [-] > denotes a fermionic field contractions, represents
the usual inverse of the lattice QCD action with a given
source 7(x). The propagators are flowed as described, for
example, in [11]:

(s ()] = a*y_K(x.£:0.0)S(v.y),  (A2)
w(0z(v:s)]p = a*)_S(r.0)K(y.5:0.0)".  (A3)
where the kernel K is the solution of the equation
(0, = DiD/)K(x,t;y,5) =0,
K(x,yit,1) = %%. (A4)

The flowed propagators are used to determine the corre-
lators in Eqgs. (7) and (18).

Lep(xgst) = a32(03(x4, x; 1)P7(0,0;0))

X

In order to compute the correlation functions in Eqs. (37)
and (40), parametrizing specific O(a) terms for flowed
correlation functions, we need to flow the Lagrange fields
A(x; 1) in the following manner,

[ (x; /_1 Z“ (v,8;y,¢€), (A5)

A(x;0)p

p=at
aEKvsxe oy

(A6)

where 0, is a Kronecker delta in spacetime, color, and spin
indices. The numerical calculation proceeds similarly as in
the case of flowed propagators, with a point source as initial
condition of the flow equation.

As an example we show explicitly the contractions for
the correlation function in Eq. (37)

:a3z<[)((x4,x 1)750 G (x4, X5 1)1 (x0. X 1) (4(0, 0; 0)y57(0, 05 0) + (0. 0 0)54(0, 05 0))])

(0,0;0)

= —a3ZTr

= Tr[[A(0. 0; 0)(x4. X; )] 5756, G (x4, X3 1) [ (x4, X; 1)7(0, 05 0) s .

where with [-], we denote a fermionic contraction.

APPENDIX B: DETAILS ON DATA ANALYSIS

In this Appendix we discuss in more details the analysis
presented in Sec. IV B. The data in Fig. 9 and the fit
functional form in Eq. (53) suggest to restrict the fit ranges
using 1/t, larger than the value corresponding to the
maximum value of Rp/t. We then fit in all ranges between
(t/10)min @0d (7/10)max given in Table IV, keeping always a
minimum number of 5 data points.

To select the acceptable fit ranges and the corresponding
values of the fit parameters we scan the y* and the p-values
for each fit, using central values and statistical errors
obtained by a standard bootstrap analysis of the raw data.
The analysis shows 2 typical behaviors for the fit param-
eters, that can be exemplified plotting a heat map of the p-
values for different fit ranges in the 2 representative
ensembles A; and M5 (see Fig. 14). While for As, the
lattice spacing closer to the continuum limit, we observe a
stable values for the fit parameters for a wide choice of fit
ranges, for the ensemble M3 we observe 2 well separated
regions where the null hypothesis is not rejected: a fit range
region at small flow time (blue box) and one at larger flow
time (red box).

) (X4, %5 0)] 5756, G (X4, X5 1) [y (204, X5 1)2(0, 05 0)] 5]

(A7)

To analyze the distributions of the fit parameters
obtained, we first generate Nz = 1000 bootstrap samples
of the raw data and perform Njp fits for each fit range
selected by the p-value condition. In this way we have the
values of B, _;; with the corresponding bootstrap uncer-
tainties for each fit range. We then take each value of the fit
parameters and plot a histogram with the distribution
obtained changing the fit ranges. This is equivalent to
generating Nz = 1000 slightly different histograms, show-
ing the distribution of the fit parameters with varying fit
ranges. We then take each bin of each histogram and
perform a standard bootstrap analysis obtaining for each
bin a central value with a statistical fluctuation. These
histograms are shown in Figs. 15 for the ensembles A5 (left
plot) and M; (right plot). They are a summary of the
statistical and systematic uncertainties giving a visual
representation of the systematic uncertainty stemming from
the choice of the fit ranges, and for each bin the statistical
uncertainty.

We then proceed to determine the median of each
histogram obtained for each bootstrap sample. This gives
us Np bootstrap values for the median: a standard statistical
analysis gives us the central value and the associate
statistical error. To determine the systematic uncertainty
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FIG. 14. p-values obtained from the y*/d.o.f. The darker regions correspond to the acceptable fit ranges. In the right plot, the blue and
red rectangles correspond to blue and red peak in Fig. 15. See main text in this Appendix.
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FIG. 15.

we take the median of the summary histograms, like the
ones in Figs. 15, and determine symmetrically around the
median the region with 68% of the area of the normalized
distribution. The statistical and systematic errors are then
summed in quadrature and are shown on top of the
histograms in Fig. 15.

We notice that in the right plot of Fig. 15 we have clearly
a two-peak structure. A deeper investigation of the origin of
the 2 peaks is revealed when we separate 2 very distinct
regions in the flow time dependence of c¢,. This is trans-
parent when we analyze the heat map in the right plot of
Fig. 14. We clearly notice that the p-value prefers 2 very
distinct regions in the fit ranges. It turns out that the 2
distinct regions clearly correspond to the 2 peaks in the
right plot of Fig. 15. For the ensemble M3, right plots, we
draw in blue and red the values of the B, obtained in the
region isolated with the heat maps, i.e., red for fit ranges at
“large” values of /1, and blue for fit ranges at “small”

(b) M3 ensemble

Distribution of the fit parameter B, for all the fit ranges satisfying p > 0.05.

values of 7/t,. Instead for the ensemble A3 we observe that
all fit ranges, satisfying the p-value condition, give values
of B all within a seemingly well defined distribution (see
left plot of Fig. 15).

The values of ¢, we plot in Fig. 11 correspond to the fit
ranges selected by the p-values condition, and the selection
of small flow time fit ranges explained above. For the
ensembles A; and A; we take every fit range selected by the
p-value condition. While choosing the same fit ranges for
all the ensembles will give us a smaller total uncertainties in
the fit parameters, we consider for the ensemble A; and A5,
that do not show a double peak structure, the larger range of
fit intervals providing us with a more conservative estimate
of the total uncertainty.

The results for By, are used to estimate c, of Fig. 11. For
the other 2 fit parameters in Fig. 16, we plot the lattice
spacing dependence of the fit parameter B_; and B;. It is
reassuring to notice that B_; practically vanishes at a lattice

074516-17



KIM, LUU, RIZIK, and SHINDLER

PHYS. REV. D 104, 074516 (2021)

0.010
A
A2
Az
My
M;
M3

0.005 1

o 1o e o e

0.000 4

—0.005 - E E

-1

—0.010 4

—0.015 -

— —0.150 1 Ms
1]

0.0 0.1 0.2 03 0.4 05 06 07
a?/ty

(a) Fit parameter B_;

Ay
Az
Az
My
M;

~0.075 1 [
~0.100

—0.1254

o o o o oo

—0.1754
~0.200 1 l
~0.2251
02 03 0.4 05 06 07
a/ty

(b) Fit parameter B

FIG. 16. These results are #,/a> dependence of each fitting parameters B_,, B,. With the exception of the A, and A; ensembles, the
data points for each ensemble were computed from the fitting ranges from peak and splitting positions given in Table IV.

spacing of a~0.65 fm, indicating small discretization
errors. We also find that the contributions of the higher
dimensional operators, proportional to B;, are not negli-
gible, and will be the focus of forthcoming publications.

APPENDIX C: PERTURBATIVE
CALCULATION OF ccp

In this Appendix we detail the perturbative calculation of
the power divergent coefficient in perturbation theory. We
refer to [23] for the details of the short flow time expansion
(SFTE) of the qCEDM with 2 external quarks. For now, we
simply summarize the relevant results. Near the =0
boundary, we may reconstruct the flowed qCEDM in a
basis A of gauge-invariant, CP-violating local operators
with a modified operator-product expansion:

Of(x;1) 2" "ecilt) OF (x; 0), (1)
A

where all of the flow time dependence of the expanded
operator is encoded strictly by the Wilson coefficients c;.
For the qCEDM, for which [O¢] = d + 1, the leading order
contribution comes from the pseudoscalar density,

Op(x;1) = P(x; 1) = y(x )ysy(x:), (C2)

which has canonical dimension [Op] =d — 1. s (In what
follows, note that with respect to [23] we have fixed the
normalization of the pseudoscalar density and qCEDM
operators such that kp = 1 and k- = —i.) Consequently, we
expect a linear divergence in the flow time. We may then
write

O (x;t) = ccp(t)PR(x;0) + -+, (C3)
where the ellipsis signifies contributions from higher-
dimensional operators. The leading contribution to the

mixing coefficient appears at one-loop order and is easily
extracted by studying the correlation function G(x, y; 1) =

Joera (W (x)Oc(z: )y (y)) at O(g*). We quote our previous
result [23]:

C,(F)1
(4m)% 1

(M

cep(t) =6 (C4)

We may, however, extract the same coefficient by studying
Eq. (11) in perturbation theory, where the nature of the
SFTE demands that the coupling be arbitrarily small:

ceplt) = lim [Ro(xii ). (cs)
where
Ry (s 1)} = 1ocp Dl (c6)

[Cpp(x4)]g

where we adopt for continuum correlation functions the
same notation as for the lattice ones [cf. Egs. (7), (10)].

This is a manifestly gauge-invariant scheme, and the
separation of the two operators in Euclidean time ensures
that the correlation function is ground-state dominated.
Thus it is naturally more amenable to a lattice implemen-
tation. We work in dimensionally regularized Euclidean
space at leading order. The denominator of Eq. (C6)
generates a single one-loop diagram (Fig. 17), which is
easily evaluated directly

dim(F)

0
') (x,;0) = —4 i)’

(€7)

| =

The spacing x, provides an ultraviolet cutoff, so that the
above correlator converges as d — 4% (hence x; — xy).
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FIG. 17. The only contribution to I'pp(x4; 1) at tree level.

Turning our attention to the numerator, we study
Jera-1{Oc(x,x451)P(0;0)), where the pseudoscalar den-
sity is fixed at the origin as allowed by translational
symmetry. The leading contributions in this case are three
two-loop “vacuum bubbles,” pictured in Fig. 18. Since the
Euclidean time coordinate is not integrated, it is tempting to
proceed directly in position space for that component,
transforming only the spatial coordinates to momentum
space. Instead, we have found that the simplest method is to
inject some momentum ¢ into both operators, proceed as
usual in momentum space, and pass back to real space only
at the end, projecting the spatial momentum q to zero.
Summarily:

1 .
T (i) = lim

o dd_lxe_i”x/ei"xl:gl))(q; 1), (C8)
q

where I'¢p(g; 1) is the Fourier transform of T'ep(x; 7). As it
turns out, the relevant integrals in this case all converge in

where

flz)= 2{§E1 <§> —zE,(2) +¥(€‘Z/2 - e‘Z)} (C10)

is a common function in flowed perturbation theory, and
E,(z) is the generalized exponential integral. Then, closing
the gauge-invariant vacuum diagram around a pseudoscalar
density operator at the origin, we have

Rt/ e~(p=a)’t

=(1 7 =01
Fipasn =2-Tr [ L6 222,
p

+O(g). (C11)

Using standard techniques, we arrive at

0 C,(F) dim(F) _
Fenlgsn) = —lzwg(qzt» (C12)
where
1 .
9(z) = 3 {(322 +12z7=3)e™* = (622 + 30z — 12)e3

+ (322 + 182 =9)e™ — (323 + 1522 + 162)E| (2)

+ (323 42122 + 122) E (g)

four dimensions, so we implicitly take the d — 4 limit in z
what follows. The middle and right diagrams in Fig. 18 — (22 + 922 + 62)E, <§> } (C13)
trivially and identically vanish. For the left diagram in
Fig. 18, we insert the one-loop result of the analogous ] ) '
calculation with two external quarks (Eq. (34a) from [23]), ~ Finally, we Fourier transform this result to find
which we denote here with G(Cl)( p; t). Without expanding
i i C,(F) dim(F
in ¢t we obtain F(Cl})(x4; £ =—12 2((4) )f:;( ) ) t—l/Zg([—l/2x4)’ (C14)
7
() GE)T 2 5
Ge'(pit) =3 —- f(p*0)ys. (€9)
¢ (42)* t where
|
1 1 2
gle) = s {( 6 —de* + 206 — 48)erf (E e) — (4€® — 8e* + 28¢? — 48)erf <§ €>
€
3 2 12
+ (3¢ — 4e* + 12¢* — 16)erf <§ €> + 7 [e7 (€% — 66> + 24¢)
— V2e7HV20 (265 — 663 + 24¢€) + V3tV (65 — 263 + 86)]}. (C15)
[
For large argument, the function g goes as and we find that
My
. r (X 5 t) Cz (F) 1
0 2 cm(t) = cerb 6 -, (C17)
(e) F =5 (C16) cp Xy—00 Fﬁ)}(m) (4r)? t

6\.
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FIG. 18.

as desired. Indeed, for N, = 3, we have

My
CCP(t> - 27[2t (Clg)
as in Eq. (6). For completeness, we remark that the same
leading-order result may be obtained with the ratio

I ot
AG) = lim rLerte?)

, C19
=00 Dpp(xy51) (€19)

f=constant

in which now one of the pseudoscalar density operators in
the denominator is fixed at ¢, and the renormalized coupling
g is taken to be an implicit function of . Since the self-
mixing of the flowed pseudoscalar density is unity at
leading order, we may for now safely ignore the logt
corrections, which are suppressed by the coupling. We
find that

ihrsn) = -2 G- (), (20
where
12f(e)=1"1/2 -61—3{(64+4)erf <§> —(e*+2)erf (\/i§>
—%[(63 —2¢)(V2e7+V2? —2e—%<€>2)]} (C21)

is the inverse Fourier transform of Eq. (C10). Again, we
have

Leading-order contributions to T¢p(x4;1).

>0 2

£€) 5, (c22)
so that
1
A(l — 1i tF(CIZ(xébt)
oo Fg)l)) (X4; l) t=constant
F) .. gle) Cy(F)n.—3 1

62 =6 —  (C23
SR A T P

(47)? 2

as in Eq. (51).

It is clear from the calculation described above that the
leading-order contribution to the power divergence is
universal whether we probe the local operator with external
quarks (cf. Eq. (6) and Ref. [23]) or with a pseudoscalar
density. This should be expected, since the SFTE is an
operator-level relation, and fluctuations are neglected at
leading order. Moreover, this confirms cg))(t) =14+ 0(1),
which follows trivially from the perturbative solution to the
fermionic flow equations. The universality property, how-
ever, strongly depends on the condition that x, is much
larger than /8. This is somehow expected as well, because
no additional contact terms are present when both r — 0
and x; — 0 with this kinematical choice; viz, the qCEDM
and the pseudoscalar density do not form a local operator
product so long as the physical separation is well larger
than the smearing radius. We have indeed repeated the
calculation presented in this appendix integrating Eq. (C8)
over the whole spacetime volume, thus including also the
region at x4 ~ 0, obtaining a different result.
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