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Abstract— We investigate competitive online algorithms for
online convex optimization (OCQO) problems with linear in-stage
costs, switching costs and ramp constraints. While OCO problems
have been extensively studied in the literature, there are limited
results on the corresponding online solutions that can attain small
competitive ratios. We first develop a powerful computational
framework that can compute an optimized competitive ratio
based on the class of affine policies. Our computational frame-
work can handle a fairly general class of costs and constraints.
Compared with other competitive results in the literature, a key
feature of our proposed approach is that it can handle scenarios
where infeasibility may arise due to hard feasibility constraints.
Second, we design a robustification procedure to produce an
online algorithm that can attain good performance for both
average-case and worst-case inputs. We conduct a case study
on Network Functions Virtualization (NFV) orchestration and
scaling to demonstrate the effectiveness of our proposed methods.

Index Terms— Competitive online algorithms, network func-
tions virtualization (NFV), online convex optimization, ramp
constraints, robustification, switching costs.

I. INTRODUCTION

E STUDY online convex optimization (OCO) with
Wswitching costs and ramp constraints, which has
become an important tool for modeling many classes of
practical decision problems with uncertainty, including cloud
or edge computing [2]-[6], computer networks [1], [7]-[9],
cyber-physical systems [10], [11], wireless systems [12], [13]
and machine learning [14]-[17]. In the type of OCO problem
that we are interested in, at each time ¢, the environment
(or adversary) reveals the input ff(t) The decision maker
then must choose the decision X (t) from a convex set and
incurs a linear cost Cy (X (t), A(t)). Additionally, there is a
switching cost that penalizes the change |X(t) — X (¢ — 1)
for each time ¢ and/or a ramp constraint on the magnitude
of the change X(t) — X (¢t — 1). The goal is to minimize
the overall cost, which is non-linear (and convex) due to the
switching cost. Further, since future inputs, i.e., A(t + 1),
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Alt+2),..., A(T), are not revealed at time ¢, this problem
becomes an online decision problem. Clearly, this formulation
is general and can model many important online decision
problems. For example, in the Network Functions Virtual-
ization (NFV) orchestration and scaling problem [18]-[20],
a data-center operator must decide where to instantiate Virtu-
alized Network Functions (VNFs) as virtual machines (VMs)
or containers (such as Docker [21]) running on physical servers
in order to process incoming traffic. Here, /Y(t) represents
the traffic load, which can be uncertain before time t; X (£)
represents the mapping from VNFs to VMs or containers;
the linear cost Cy(X (t), A(t)) represents VM/container cost
and/or distance cost (e.g., latency) [22]. Moreover, the switch-
ing cost captures the overhead for migrating demand/state
among different VNF instances and the cost of instantiating
and tearing down VNF instances. Finally, since the routing of
the traffic is stateful, there could be a ramp constraint on the
rate with which traffic can be rerouted. As another example,
in the real-time dispatch problem in power systems [10],
[11], [23], the system operator needs to decide how to adjust
the power level of the generators to balance the electricity
demand. Here, /Y(t) represents the uncertain demand and
renewable supply revealed on different buses at time ¢; X (t)
represents the dispatch decisions of the generators; the linear
cost Cy(X(t), A(t)) represents the generation cost of the
dispatch decisions. Finally, generators have ramp constraints
so that their power output level can at most change by a given
value each time.

In this paper, we aim to develop online algorithms with
low competitive ratios for this type of OCO problem. Here,
the competitive ratio is the maximum ratio of the cost of an
online algorithm to that of the optimal offline solution (the lat-
ter assuming that all inputs are known in advance), taken over
all possible input sequences. For settings with switching costs
but no ramp constraints, there has been a considerable body of
work on competitive online convex optimization (OCO). For
some restrictive settings, e.g., when there is only 1 decision
variable subject to switching costs, it is possible to construct
online algorithms with low and constant competitive ratios [7],
[10], [24]. In contrast, the competitive ratios for general OCO
problems (e.g., by using the regularization method [25]) are
usually much larger when there are no constraints on the future
inputs. Thus, a series of work has studied how to utilize partial
future information to improve the competitive performance
of online algorithms for general OCO problems. Specifically,
references [7] and [8] assume that there is a perfect look-ahead
window where the future inputs are precisely known, which
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can be unrealistic when short-term predictions also incur
errors. The work in [5], [6] uses imperfect predictions of
future inputs. However, they only show that the competitive
differences of their proposed algorithms are upper-bounded.
Thus, the competitive ratios may still be fairly large. Further,
[5]-[8] do not consider ramp constraints. Finally, refer-
ence [26] studies OCO with ramp constraints, but it does not
consider demand-supply balance constraints. As we will dis-
cuss shortly, when both ramp constraints and demand-supply
constraints are imposed (which we refer to as “hard feasibil-
ity constraints”), the algorithms in [5]-[8], [26] could incur
infeasibility issues. To the best of our knowledge, there is no
systematic framework to optimize the competitive ratios of
online algorithms under imprecise future information for the
type of OCO problems that this paper studies.

To address this open question, our first contribution
(in Sec. III) is to develop a general and tractable framework
that allow us to find online algorithms that can utilize partial
future information to optimize competitive ratios for OCO
problems with both switching costs and ramp constraints.
Capitalizing on the ideas from robust optimization [27],
we consider the case where the future uncertain inputs,
A(1),A(2),..., A(T), are from an uncertainty set /. In prac-
tice, such an uncertainty set / can be obtained from imprecise
forecasts and historical data [23], [27]-[29]. Yet, searching
among all possible online decisions appears to be intractable.
Instead, in order to obtain simpler policies with reasonably
good performance, we focus on affine policies, where the
decision X (t) at time ¢ is an affine function of the input
A(t), ie., X(t) = 7j(t)+ H(t)A(t). Thus, designing an online
algorithm boils down to designing the parameters 7j(¢) and
H (t) (which depends only on the uncertainty set &/ but not
the actual inputs). Through this restriction to affine policies,
we can formulate the problem of optimizing the competitive
ratio as a minimax optimization problem. We call the resulting
online algorithm the Robust Affine Policy (RAP). Since this
optimization problem is still non-convex, we propose approx-
imations that effectively convexify the problem and make it
tractable. In this way, our proposed computational framework
can be used to design online algorithms with optimized
competitive ratios for OCO problems with fairly complex
structures and constraints. We note that the idea of affine
policies has been used in adjustable robust optimization [29] to
minimize the worst-case cost. In contrast, our approach applies
affine policies to minimize the competitive ratio. This approach
has not been studied before and gives rise to new technical
difficulties as we discuss in Sec. III.

A key feature of our proposed approach is that it can
gracefully handle situations where infeasibility may arise due
to hard feasibility constraints in the OCO problems. By “hard
feasibility constraints,” we refer to the situation where there
exist both ramp constraints and demand-supply balance con-
straints. In this situation, if the past decisions were not properly
chosen, there may not exist feasible decision for the future.
This infeasibility problem may persist even in the case with
look-ahead [5]-[8], [26]. For example, in a look-ahead window
from time ¢ to t+ K —1, if the demands are low, the algorithms

in [5]-[8], [26] may keep a low decision for )Z'(t) Then,
when the demand at time ¢ + K is too high, there may
not exist any X (t + K) that can meet the demand, because
the ramp constraint limits the increase of X (t + K). Such
an infeasibility problem can occur in many online decision
problems, such as Network Functions Virtualization and power
systems. Unfortunately, the studies in [5]-[8], [26] do not
consider such hard feasibility constraints because they do not
simultaneously enforce ramp constraints and demand-supply
balance constraints. As a result, their competitive guarantees
would not hold when there were hard feasibility constraints.
To the best of our knowledge, our proposed approach is the
first to give online algorithms with optimized competitive
ratios with or without such constraints.

Our second key contribution (in Sec. IV) is to resolve
a dilemma between the worst-case and average-case
performance. Note that while our proposed Robust Affine
Policy (RAP) in Sec. III is optimized for the worst-case
competitive ratio, it may be too conservative and thus incur
high costs for average-case inputs. Other heuristic algorithms,
such as Receding Horizon Control (RHC) [6], [30], [31]
(discussed in Sec. VI), may perform well for the average
case, but produce inferior competitive ratios for worst-case
scenarios. Thus, an open question is whether one can get the
best of both worlds. We address this dilemma by providing
a “robustification” procedure. Given any online algorithm g
that is perceived to have good average-case performance,
we intelligently combine my with RAP to produce a new
online algorithm with the same worst-case competitive ratio
as RAP while still attaining comparable average-case perfor-
mance to my. We note that this “robustification” idea was
first introduced in our earlier work [28]. However, our OCO
problem formulation is much more general, requiring a new
robustification procedure to be developed. We use Network
Functions Virtualization (NFV) [18], [20] as a case study
and simulate the robustified version of RHC. Our simulation
results in Sec. VI show that the robustified-RHC algorithm
performs close to RHC when the uncertainty is low. When the
uncertainty is high, the robustified-RHC algorithm performs
significantly better than RHC, especially for worst-case inputs.

As discussed above, our work is related to robust opti-
mization [27], [29], but differs in that we focus on a dif-
ferent objective of competitive ratios rather than worst-case
costs. Our NFV case study is also related to the literature
of NFV orchestration and scaling. However, most existing
studies either assume a static model [22], [32]-[34], or provide
heuristic online algorithms without any performance guaran-
tees [35], [36]. Although [19] and [37] study online NFV
orchestration and scaling, they do not consider the distance
cost (e.g., latency), which is an important cost component,
especially when optimizing over multiple data centers [20],
[22]. Further, the setting in [37] is special in that the decision
variables for different types of Virtual Machines (VMSs) can
be decoupled in such a way that they are independent of each
other, and thus each of the subproblems can be simplified to
a 1-dimensional problem. In contrast, the decision variables
in the more general OCO setting in this paper are always
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coupled through the constraints. More recently, reference [20]
uses the regularization method to develop online algorithms
for NFV orchestration and scaling over multiple data centers.
Compared with [19], [20], [37], one of the key differences
of our work is that we utilize partial future knowledge,
i.e., in the form of an uncertainty set I/, to obtain potentially
smaller competitive ratios. In contrast, it is unclear how
to generalize the approaches in [19], [20], [37] to utilize
such partial future knowledge. Moreover, in deriving their
competitive ratios, the studies in [19], [20], [37] do not
consider constraints on the number of servers available or the
ramp constraints on the rerouting decisions, and thus cannot
handle the hard feasibility constraints described above. NFV
orchestration and scaling is also related to the facility location
(FL) [38] and generalized assignment problem (GAP) [39],
for which competitive online algorithms have been developed.
However, in NFV, the demand fluctuates (both increases and
decreases) over time in both the online and offline settings.
In contrast, online FL. and GAP problems usually assume that
new demand is sequentially added over time towards a final
offline setting where all demand is present. Further, the cost
constraints of OCO problems are usually more general,
e.g., involving switching costs and ramp constraints. Thus,
it is unclear how to apply the competitive results from this
literature to OCO and online NFV orchestration and scaling
problems.

II. PROBLEM FORMULATION

We now present our model for online convex optimiza-
tion (OCO) problems with linear in-stage costs, switching
costs and ramp constraints.

A. OCO With Switching Costs and Ramp Constraints

In the OCO problem that we consider, there are 7 rounds
of decisions, t = 1,2,...,7. There is a cost-function
C’t()?(t),ff(t)) for each time ¢, which is a function of the
input A(t) = [am(t),m = 1,..., M|T € RM*1 (e.g., traffic
load) revealed by the environment at time ¢, and the action
X(t) = [zn(t),n=1,...,N]T € RNV*! taken by the decision
maker (e.g., system administrator) at time ¢ ([-]T denotes
the transpose of a vector or matrix). Throughout this paper,
we assume that Cy(-,-) is a linear function of (X (t), A(t)).
Further, there is a switching cost GT|X(t) — X (¢ — 1)| that
penalizes the change of decisions at time ¢, where 5 is a
fixed vector in RV*!, In addition, the action X (¢) must be
chosen to satisfy certain constraints. We assume that one set
of constraints X, (A(t)), which may depend on the input A(t),
can be written as a linear inequality in (X (t), A(t)), i.e.,

By X (t) + By A(t) < 0, for all time ¢, (1)

where B; is an R x N matrix and Bz is an R x M matrix.
Further, there may be ramp constraints,

|X(t) — X(t —1)] < AX, for all time ¢. )

As we will illustrate with a case study in Sec. II-D, this
construction can model several types of costs and constraints.
Let A(t : t2) denote the input sequence A(t) from ¢ = ¢; to
to. Define X (t1 : to) similarly.
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At each time ¢, the environment reveals A(f) first.
Then the decision maker picks the action X (t) and incurs
the in-stage cost Cy(X(t), A(t)) and the switching cost
AT X (t) — X(t — 1)|. Note that although Cy(-,-) is linear,
the switching cost still makes the whole problem convex.
Further, this problem is an online problem because the deci-
sion maker does not know the future values of f_f(t + 1),
A(t+2),...,A(T) when she makes the decision X (t).

As we discussed in the introduction, the combination of
the linear constraint (1) and the ramp constraint (2) may lead
to infeasibility. If X (t — 1) is not properly chosen, the ramp
constraint limits how far X (¢) can deviate from X (¢ — 1).
Then, there may not exist a feasible point that simultaneously
satisfies (1) and (2). For example, this infeasibility can occur
when the demand increases suddenly and the traffic cannot
be rerouted as quickly to serve the demand. Thus, a key
contribution of our work is to be able to deal with cases with
or without such “hard infeasibility constraints.”

B. Uncertainty Set

Recall that the input A(t) is unknown to the online algo-
rithm until time ¢. Intuitively, if A(¢) can vary in arbitrary
ways, one may have to take the most conservative decisions
to avoid future infeasibility. Thus, in order to make the online
decision problem practically more interesting, we introduce
an uncertainty set to model the set of uncertain inputs that
we care about. Specifically, we assume that the trajectory
A(1), A(2),..., A(T) chosen by the environment must be
from an uncertainty set /. We expect that this uncertainty set
U can be constructed from prediction and historical data [23],
[27]-[29]. Next, we describe three ways (that can be used in
combination) to formulate the uncertainty set U/.

(i) Day-ahead prediction: Let APAP(1:7) denote a pre-
dicted trajectory of A(1:7 ). We may assume that the real
trajectory ff(l:T) must be within a neighborhood around
APAP(1:7),

Aover(p) < A(t) < AWPr(¢), for all time t,  (3)

where, for all time ¢, each entry of the upper bound A"PPer(¢) =

[am? (t),m = 1,...,M]T € RM>*! and lower bound
Aer(t) = a2 (t),m = 1,..., M]" € RM*! is given by
aumpper(t) _ (1 + €m (t)) QBLAP(t), for all m,
al®" (1) = max{0, (1 — e, (t)) a®P(¢)}, for all m,

and ¢,,(t) is the uncertainty level for time ¢.

(ii)) Demand changing speed: Often, demand (e.g., traffic
or renewable energy) may not change arbitrarily fast. We can
model such knowledge by imposing

|A(t) — A(t —1)| < A4, for all time ¢. ()

(iii) The different elements of A(t) may not hit the upper
or lower bounds in (3) simultaneously. Thus, we can impose
the following constraint (known as the “budget” constraint in
the robust optimization literature [27, p. 47]),

|am (t) — apt®(t)| :
mz::l e () - aDAP(D) < T, for all time . 5)
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Clearly, if I' = 0, the uncertainty set only contains the
day-ahead prediction APAP(1:7). Thus, the model becomes
deterministic. As I' increases, more uncertainty will be
considered.

The uncertainty set ¢/ that we use in this paper is specified
by a combination of the above constraints. We note that
the constraint (4) introduces temporal coupling of the inputs,
which can be used to refine the near-term future uncertainty.
Specifically, at any time ¢, A (1:t) has already been revealed to
the online algorithm. Thus, the future uncertainty remaining
in the interval from time ¢ + 1 to time 7 can be written as

U i = {A’(t +1:7)|3A(1: T) € U, such that,
Aty =A(1:t), At +1:T) =A@t +1: T)}, )

where the subscript “|A(1 : ¢)” emphasizes that the corre-
sponding uncertainty set is conditioned on A(1 : t).

C. The Performance Metric

As we discussed earlier, the total cost incurred by the
decision maker is given by

C(X(0), X(1:T), A(1:T))
T
=Y {cu X Awy + 7| Xw - K-} @

For an online algorithm 7, at each time ¢ the decision X (t)
can only be based on the already-known inputs A(1:t) and
knowledge about the future uncertainty L{‘ A1) given by (6).

—

Let C™(A(1:7)) be the total cost of algorithm 7. We compare
it with an offline solution that is assumed to know the entire
input A(1:7) ahead of time. We denote the cost of the optimal
offline solution as COPT(A(1:7)), which is the optimal value
of the following optimization problem,

~ omin C(X(0), X(1:7), A(1:T)). (8)
{X(0:7):(1),(2)}
Then, the competitive ratio of algorithm 7, given by
C™(A(L:T

{A(?}T)eu} COPT(A(1:T))’
is the worst-case ratio between the online cost and the optimal
offline cost, over all possible inputs from the uncertainty
set.

We are thus interested in online solutions to OCO with
small competitive ratios. Although the notions of uncertainty
sets, as well as the affine policies that will be introduced
later, are from the robust optimization literature [27], our
objective in (9) is quite different. In the robust optimization
literature, the objective is usually to minimize the worst-case
(absolute) cost, i.e., max C™(A(1:T)). Our objective

{A(T)euy

of the competitive ratio, which is commonly used in the
CS literature, instead focuses on a relative ratio comparing
with the optimal offline solution. This difference leads to new
technical difficulties in the optimization problem. In some way,
competitive ratios can be viewed as less conservative than
robust optimization because we do not only care about the
worst-case cost.

TABLE I
NOTATIONS FOR NFV NETWORK
ve{l?2..V} server v
fed{1,2,..,F} VNF f
le{l,2,..,.L} traffic flow 1
5] source of the traffic flow [
d; destination of the traffic flow [
SC? ordered service chain of the traffic flow [
[SCT| length of the service chain SC'
a;(t) the incoming rate of the traffic flow [

D. A Case Study

As a concrete example, we now use the Network Func-
tions Virtualization (NFV) orchestration and scaling problem
[18]—[20] to illustrate how our model can be used to study
practical costs and constraints. We will also use it in our
numerical evaluation in Sec. VI. Our model may appear
somewhat complicated as we model service chaining and
traffic resizing. Nonetheless, it demonstrates the power of the
proposed OCO framework for handling complex and practical
problems.

The NFV system is modeled as an undirected graph
G(V,E). Bach vertex v € V = {1,...,V}, where Virtual
Machines (VMs) can be placed to deploy the Virtualized
Network Functions (VNFs). We assume that there are F
types of VNFs. Each type f = 1,...,F of VNFs could
be firewalls, proxies, network address translators (NATs) and
intrusion detection systems (IDSs).

Several types of VNFs may need to be “chained” together
into a service chain to process traffic flows. We assume that
there are L traffic flows. Each traffic flow [ = 1,2,..., L
enters at its source location s; € V' and leaves at the destination
d € V. Denote S = {s1,...,s,} and D £ {dy,....d}.
We define a distance cost d, , between two server v' and v,
which may represent, e.g., the number of hops between them
or the bandwidth cost. Each traffic flow [ requires a service
chain SC': fl — fl — ... — Jlsci ) where |SC'| is the length
of the service chain SC', and f! € {1,2,...,F} represents
the VNF required. Further, we let next(f|SC') denote the next
VNF on SC!, and let prev(f|SC') denote the previous VNF
on SC!. For convenience, we extend the service chain sc!
to include the source node f} = s; and the destination node
f\lscl\+1 = d,;. Correspondingly, we let next(fllSClMSCl) =d,
prev(d;|SC!) = f\lscl\’ next(s;|SC') = f*, and prev(f}|SC!) =
s;. All the notations are listed in Table 1.

(i) Input and service chain routing: The input to our online
optimization problem at time ¢ is the incoming rate a;(¢) of
each traffic flow [. We need to set up VNFs according to the
service chain SC' to process the traffic. Suppose VNF flis
deployed at server v and VNF next(f!|SC') is deployed at
server v', We USe y 1y nex(st|sct),o (t) t0 denote the amount
of traffic of flow [ that is routed from VNF f! in server v
to VNF next(f!|SC') in server v’. Denote the total amount
of incoming traffic of flow [ processed by VNF f! at node
v as T f}’v(t). Note that some VNFs (e.g., VPN, firewalls
and intrusion detection systems) may change the rate of the
data flow due to processing [40], [41]. We model this traffic
resizing by wj ;, which is the ratio between the outgoing rate
and the incoming rate of flow [ at VNF f!. We then have the
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TABLE II
DECISION VARIABLES, COST FUNCTIONS AND COEFFICIENTS
Yfo(t) size of VNF f deployed in server v
at time ¢
ml,ff,u,next(fﬂscl),v'(t) egress rate of flow { from VNF f]
in server v to VNF next(f}|SC?)
in server v’
fl,f},v(t) ingress rate of flow [ to VNF f] in server v
cro(t) cost of hosting 1 unit of VNF f in server v
dyr o distance cost of routing a unit of
traffic load from a vertex v’
to another vertex v
B1,f,v switching-cost coefficient for the
overhead in instantiating and
tearing-down VNF instances that
processing VNF f in server v
Ba, 7 v, f,v switching-cost coefficient for state
migration in rerouting the flow from
going to VNF f” in server v’ to
going to VNF f in server v
bs .y processing capacity of one copy of
VNF instance that processing VNF f
in server v
Zf0 amount of resources that each unit-size
function f needs in server v
Ly total amount of resources available
in server v
AfX’,v’, fo ramp-constraint parameter for rerouting
the traffics
A}/’ ramp-constraint parameter for migrating
VNF instances

following flow-balance relationship,

fl,ff,v(t) = Z xl,prev(f}\SCl),v’,ff,v(t) (103)
v #v
Z ‘(I"l,f},v,next(f}\SCl),v’ (t) = wlﬂ'fl,f},'u(t)' (IOb)

v’ #v
Finally, at the source s; of each flow [, the demand-supply
balance constraint below must be satisfied,

Ty, 13,5 (1) = (1) (11)

All decision variables, cost coefficients and parameters are
listed in Table II.

(ii) VNF instances, resource and ramp constraints: Let
Y¢,0(t) denote the size of VNF f at server v. Assume that
the processing capacity of one unit-size of VNF f at server
v is by ,. Then, ys,(¢) must be able to meet the processing
requirement at server v for VNF f, i.e.,

Z lef’v

1=1 i fl=

< ygo(t)byso, for all f,vandt. (12)

Further, resources (e.g., CPU, memory, cache) in each server
v must be able to support all VNFs placed there [42]. Assume
that each unit-size function f needs z;, amount of resources
in server v. Then, we have that

F
Z Yro(t)zpe < Z,, for all servers v and time ¢, (13)
=1

where Z, is the total amount of resources available in server

v. Finally, we may impose ramp constraints (2) on the changes
in routing decisions. Specifically, when we migrate one VNF

®(X(1:7),
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from a server to another, or reroute traffic from one VNF
instance to another, there is additional overhead in migrating
the “state” of the VNF [19], [26]. If a limited amount of net-
work bandwidth is reserved for state migration, such migration
(which corresponds to changes in zj f ., ¢/ (t) and yy.,(t))
cannot occur too fast. Such constraints can be written as

‘xl Fhvnext(f1SCH) v’ (t) - ml,f},U,next(f“SC’),v/(t - 1)

< A for all 1,4, v, v, t, (14a)

v next(fHSCH) v

‘yfﬂ) t _yfo(t_l) <Af'u7 for all favat- (14’b)

(iii) Costs: There are two types of costs. First, there are
costs for resource consumption of running VNFs, and distance
costs for routing the traffic flow among VNFs in different
servers, i.e.,

—

(1:7))

v F
DD craltyro(®)

1v=1f=1
T L %
+2.2.2.0
1¢/'=1v=1

t=1 =
v’ #v

I
M=

o~
Il

%

isc!|
d“'ﬂ)xl,f{ v next(fHSCH) v’ (t) (15)
0

i=

where ¢y, (t) is the unit cost of hosting one unit of VNF f
in server v at time ¢, d, , is the unit distance (e.g., latency)
cost of routing a unit of traffic load from vertex v’ to another
vertex v. This is the in-stage cost C¢(+) as in the OCO model
we discussed in Sec. II-A. Second, there is overhead for
changes in instantiation and state migration, i.e.,

w(X(0), X(1:7), ¥/(0), Y (1:7))
7 Vv F
=) Zﬁlf, o) = yro(t — 1)

Vsl

T L
+ Z Z Z Z Z Pa, 1t v me( 15t 01

t=1 I=1 ¢/=1 v=1 i=0
v #v

"xl,fl.’,U,next(f“SCl),v’ (t) - ml,f},v,next(f}|SC’),’U’ (t - 1) >
(16)

where (31 s, is the switching-cost coefficient for the over-
head in instantiating and tearing-down VNF instances, and
B2, fr.0, 1,0 1s the switching-cost coefficients for state migra-
tion in rerouting. This corresponds to the switching cost
AT X (t) — X(t — 1)| as in the OCO model we discussed in
Sec. II-A.

Hence, the network function placement and traffic routing
in NFV can be formulated as following,

min {CD(X'(O:T), Y (0:7)) + U (X(0:7), ?(0:7))}
{X(0:7),
Y (0:7)}

sub. to: (10), (11), (12), (13), (14),

X(t)>0,Y(t) >0,Y(t) € Z, for all time . (17)

In summary, we can see that the NFV orchestration and
scaling problem can be effectively formulated by the OCO
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model we studied. The in-stage cost C; (X (¢), A(t)) can model
the costs in (15). The switching cost 37| X (¢) — X (¢t — 1)
can model the costs in (16). The demand-supply balance
constraint (1) can model the constraints (10)-(13). The ramp
constraint (2) can model the constraints (14a)-(14b). Further-
more, the possible incoming rates a;(t) of the traffic flows
can be modeled by an uncertainty set I/ that is formulated
by constraints (3)-(5). In the next section, we will show how
to obtain online algorithms that can utilize the uncertainty set
U to optimize the competitive ratios for this type of OCO
problems.

III. A COMPUTATIONALLY TRACTABLE FRAMEWORK

In this section, we introduce a computationally tractable
framework to attain small competitive ratios for general
OCO problems with linear in-stage costs, switching costs
and ramp constraints. We note that this type of multi-stage
online decision problem in general can be intractable. Indeed,
each decision X (t) can be an arbitrary function of the past
inputs /T(l : t), and searching over such a large functional
space incurs high complexity when the problem size is large
[27, p. 364], [29]. Moreover, none of the existing approaches
can handle switching costs, demand-supply balance constraints
and ramp constraints simultaneously. Thus, to make progress,
in the following we restrict our attention to the set of affine
policies [27, p. 364], [29].

Specifically, in our proposed Robust Affine Policy (RAP),
we restrict X (¢) to be an affine function of A(%), i.e.,

—

X(t) = ij(t) + H(t)A(t), for all time ¢, (18)

where 7j(t) € R¥*! and H(t) € R¥*M are determined
before hand. Note that once 7j(¢t) and H (t) are determined,
the online decision (18) becomes extremely simple. Instead,
the complexity moves to the pre-calculation of 7j(¢) and H (t)
based on the knowledge of the uncertainty set /.

Although affine policies can be restrictive, we believe that
this approach is useful for three reasons. First, based on
affine policies, the online decision at each time ¢ can be
adjusted according to the new input /Y(t) that is just revealed.
Thus, they can be more efficient than classical robust opti-
mization where all decisions must be made ahead of time
[27, p. 353], [29]. Second, affine policies can be viewed as
linear approximations of more general policies. Intuitively,
we can think of the “best” decision as a general function of
the input. When the uncertain set is small, the uncertain input
is within a neighborhood of the predicted input. In that case,
a linear approximation of this general function could provide
reasonable results. Thus, we expect that the affine policies
would be a reasonable choice when the uncertainty set is
not large. Third, the computational complexity is significantly
reduced. Indeed, if we made the decision rule a little bit richer,
e.g., a quadratic policy, the optimization problem would have
been intractable (see the discussion at the end of step-3 in this
section).

Given 7j(t) and H (t), the cost of the online decisions can
be readily calculated, which we denote by

CRP(A(LT)|X(0), 7. H) = C(X(0), X (1:T), A(1:T)),

where X (1:7) is given by (18). However, the online decisions
must still satisfy both (1) and (2). In other words, we need that

(1), (2) hold for all A(1:T) € U, given (18).  (19)

Note that once we assume the affine policy of the form (18),
then (19) is a requirement for any affine policy to satisfy
the hard feasibility constraints (1) and (2). In other words,
(19) requires that 7j(¢) and H (t) in the affine policy must be
chosen such that infeasibility will never occur. If (19) cannot
be satisfied by any 7(¢) and H (), then there does not exist
affine policy in the form of (18) that can satisfy the hard
feasibility constraints. We can thus formulate the optimization
problem for minimizing the competitive ratio as

CRAP(A(1:T)|X(0), 7, H)
COPT(A(1:T))

Note that we will optimize the competitive ratio only within
those 77(t) and H (t) that satisfy (19).

Although affine policies have been used in [27, p. 364]
and [29], using a similar approach as in the optimization
problem (20) introduces new technical difficulties. Note that

101 . CAQT)|X(0).7.H)
for each A(1:7) € U, the ratio oM (A(1T)) is convex

in 77, H and X (0). Thus, the inner maximization produces
a convex objective in 7, H, X (0) for outer minimization.
However, it is unclear how to solve the inner maximization
problem itself because it involves a ratio of convex functions.
Next, we will show step-by-step how to optimize an upper
bound of (20) via a tractable convex optimization problem.
Step-1: Even without considering the ratio, the numer-
ator CRAP(A(1:7)|X(0),7, H) in (20) is convex in
/_1’(1:7'). Maximizing a convex function is in general
intractable. We resolve this issue by introducing a lin-
ear upper bound on CRAP(A(1:7)|X(0),7, H) (see also
[31, p. 228]). Specifically, note that the only non-linearity
in QRAP(E£1:7)|X(O),ﬁ, H) is from the switching cost
GTIX (1)~ X (t—1)| = BTli(6) + H () A(t) —if(t— 1) — H(t—
1)A(t — 1)]. We now introduce a new variable p(t) € R that
upper-bounds this switching cost for all A(1:7) € U, i.e.,

ult) = GTIi() + H () A() — it - 1)
T for all

—H({t—-1)A(t—1)|, forallt > 1

min
{X(0),7,H:(19)} A(1:T)euU

. (20)

21

A(1:T)eu.
u(1) = GTIii(t) + H(H)A(t) - X(0)
Let CRAP(A(LT)|, H,p) = Y, {Cu(X (1), A(t)) +
u(t)y, where X(t) is given by (I18). Then,

CRAP(A(LT)|X(0),7, H) < CRP(A(LT)|i, H, p),

for all A(1:7) € U. Hence, we can obtain an upper bound

of (20) by solving the following optimization problem instead
CRAP(A(1:T) 7, H, )

min max = . (22)
{X(0),7,H ,u:(19),(21)} A(1:T)eU COPT(A(1:7))

Note that the numerator is now a linear function in A(1:7).

Step-2: The ratio in the inner maximization problem in (22)
is usually not a concave function of /T(l:T). Thus, it is still
not obvious how to maximize the ratio. Using the following
lemma from our earlier work [43], we now show that this
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inner maximization problem can be converted to an equivalent
convex problem. (Please see [43] for the proof of the lemma.)

Lemma 1: For fixed B € RM*N ¢ RMx1 z¢g RIXN
and o € R, suppose that the following conditions are simul-
taneously satisfied:

(a) f(X q) is a convex function of X € RNX1;

(b) f(X)>0in the constrained region of BX < b;

(c) There exists X satisfying BX <band X +a > 0.
Then, sup {CX;“ y=f(X),BX <b} = sup {eX' +
X} {X"u}

au:l>uf(X ), BX' < bu,u > 0}.

Note that the second supremum is a convex problem
because u f () is a convex function whenever f (X X) is convex
[44, p. 89]. The result of this lemma is somewhat similar
to the convex transformation of linear-fractional program
[44, p. 89]. However, here the denominator is non-linear, and
thus Lemma 1 is more general.

We now verify that the conditions of Lemma 1 hold
for (22). For condition (a), we note that COPT( (1 7)) is
the minimum of a convex function C'(X (0 ), X (1:7T), A(L:T))
over X (0:7) in a convex set. Thus, COPT(A(1:7)) is a convex
function of A(l.T) [44, p. 87]. For conditions (b) and (c),
COPT(A(1:T)) and CRAP(A(1:T)|7, H, ;1) are both positive,
so these conditions trivially hold. Hence, based on Lemma 1,
we can convert the inner maximization of (22) to an equivalent
convex optimization problem. We note that although this
transformation has been used in [28], step-1 from (20) to (22)
is also crucial because otherwise the numerator of (20) is not
linear and thus Lemma 1 cannot be applied.

Step-3: Note that the inner maximization of (22) can be
converted to a convex program, we can then focus on the
outer minimization. As we discussed earlier, the objective of
the outer minimization is convex in 77, H and X (0). It remains
to check its constraints. These constraints are of the form that
some inequalities must hold for all A(1:7) € Y. It turns out
that these constraints are also convex in 7, H and X (0), and
can be converted to linear constraints (See [29] for related
techniques). We take one part of the constraint (19) as an
example. Note that by (19), the linear inequality (1) must hold
for all A(1:7) € U. For any 7, H, inequality (1) for each ¢
becomes

By[ij(t) + H(t)A(t)] + B2 A(t) <0, for all A(1:T) e U

(23a)

& max {Bq[ij(t) + H(t)A(t)] + B2 A(t)} <0 (23b)
A(1:T)eu

& max {[BiH(t) + Ba]A(t)} < —Buif(t).

A(1:T)eu

(23c¢)

Note that A(1:7) € U can be written as a set of linear
constraints,! thus the left-hand-side of (23) is of the form
max cA, subject to BA < b, where A corresponds to
A(1:7), and 77 and H enter into the matrix ¢. By standard
duality [p. 226] [44],

min bTA.
BT™A>cT

max cA =

BA<b (24)

Note that U may involve absolute values, but can still be converted to a
linear form. (Please see our technical report [45] for details.)
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Thus, (23) is equivalent to: there exists A such that,

b'A < —Buijlt), 25
B™ > (", (2)

which is a convex constraint in X, 7(¢) and ¢ (i.e., 7(1: 7),
H(1 : T)). (Please see our technical report [45] for further
details.) As readers can see, here it is critical that the control
decision is an affine function of the input as in (18). If we made
the decision rule a little bit richer, e.g., a quadratic policy,
constraints in the form of (23) will no longer be convex, which
makes the whole optimization problem not convex anymore.

In summary, through the above three steps, we have
obtained a convex problem (22), which can be effectively
solved to obtain the optimal 77* and H ™. (Please see Appen-
dix A for a summary of the computational complexity.) Let
CR be the optimal value of (22). Then, the competitive ratio
of RAP (18) based on the optimal 7* and H™ is no larger
than CR.

We acknowledge that the above-proposed approach does
not produce the optimal competitive ratio for (9) due to two
reasons. First, there is a gap due to our restriction to affine
policies. Second, there is another gap due to the approximation
in step-1. Intuitively, when the size of the uncertainty set is
smaller, affine policies may become a better approximation of
the “best” policy, and the relaxation in step-1 will also become
tighter. Thus, we expect that the resulting performance gap will
be smaller. This will be demonstrated in our simulation results
in Sec. VI (see Fig. 2).

Remark 1: Although the solution approach in this section
assumes continuous decision variables, it can be generalized
to deal with certain integer constraints.

For example, in the case of NFV orchestration and scaling
(as shown in Sec. II-D), yy ,(t) must be integer values. Our
basic idea is to round yy ,(t) to its ceiling [yy,.(t)]. However,
we need to control the change in the objective value and
constraints after this rounding. For the capacity constraint,
e.g., (13), we can replace it by Ele(yfw(t) +1)zp0 < Z,.
In this way, for any continuous value of yy ., that satisfies this
resource constraint, the rounded value will also satisfy the
original constraint (13). On the other hand, for the switching
cost 1, fu|yfo(t) — yro(t — 1), we can upper bound the
switching cost of the rounded decision by (1 5.(|ysu(t) —
Yro(t—1)|+1). These changes can be made in the numerator
of (22). However, the denominator of (22) can still take
continuous values of Y., (t) because such relaxation produces
a lower bound on the true optimal offline cost.

In summary, such changes still allow us to compute an
optimized competitive ratio even when yy ,,(t) is constrained to
be an integer. We believe that when the value of y ., (t) is large,
the loss due to the rounding will be small. This is particularly
relevant with the more recent container technology [46], when
the number of containers in each server can be large.

IV. ALGORITHM ROBUSTIFICATION

In Sec. III, we developed a tractable computational frame-
work to calculate an optimized competitive ratio CR among
the class of affine policies. Let the corresponding Robust
Affine Policy (RAP) be denoted by mg,p, Which will attain
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a competitive ratio no larger than CR. However, as is often
the case with competitive online algorithms in the literature,
the policy mz,p may be too conservative in nature. For exam-
ple, consider the scenario where the uncertainty set I/ is given
by a predicted input trajectory plus/minus possible errors.
In order for 7} ,p to attain the competitive ratio CR, it must
“defend” against the worst case where the input is far away
from the prediction. Specifically, it may have to over-provision
resources. As a result, if the input is actually very close to the
prediction (which usually corresponds to a larger probability
mass on average), g 4p May incur a higher cost than necessary.
In contrast, a popular method in the literature to deal with
sequential decisions under uncertainty is RHC (Receding
Horizon Control) [6]. At each time ¢, RHC assumes that the
future demand is exactly the same as the most-recent near-term
prediction, which is based on revealed demand, day-ahead
prediction and possible constraints, e.g., (3), (4), (5). Then,
RHC minimizes the cost over the entire future horizon and
commits to the first decision X (¢). Intuitively, if the input is
close to the prediction (which we refer to as the average case),
RHC may actually perform very well. The problem, of course,
is that RHC cannot guarantee as low a competitive ratio as
CR. In summary, we see a dilemma between worst-case and
average-case performance. In this section, we will address
this dilemma by significantly generalizing the “robustification”
procedure of our earlier work [28] to obtain good performance
for both worst-case and average-case inputs.

In our proposed robustification procedure, we begin with
an online algorithm my that is believed to achieve good
average-case performance (e.g., mg could be a variant of
RHC from [6]). We are also given the competitive ratio CR,
which is optimized among the class of affine policies as in
Sec. ITI. We aim to produce a new online policy 7 that attains
comparable average-case performance as my, but at the same
time the worst-case competitive ratio CR. Our basic idea for
this new policy 7 is to follow the decisions of 7y as much
as possible, unless doing so will violate the competitive ratio
CR. Our first step is thus to develop a way to check whether
the decision of 7o will violate the competitive ratio CR.

Toward this end, let us focus on a time ¢. Note that the
decisions of this algorithm 7 before time ¢ have already been
made. The algorithm 7y now produces a decision X (t) for
time ¢. In order to verify whether this new decision will still
attain CR, we need to check whether the following holds:

C™(A(1:T)) < CR - COPT(A(1:T)),

for all A(t+1:7) € Uz, (26)
where U, 5., is given in (6). Let C™(A(1 : t — 1)) denote
the past cost of the online algorithm 7 from time 1 to ¢t — 1,
excluding the switching cost from time ¢ — 1 to ¢. (Again,
this cost is known at time ¢, regardless of whether or not
7 has followed 7y before time ¢.) Based on the decision
X7 (t) of algorithm 7, let C™ (A(t)) = C,(X™(t), A(t)) +
AT X7 (t) — X™(t —1)|. Further, let C™(A(t+1: T)) denote
the future cost from time ¢ + 1 to time 7 (including the
switching cost from X™(t) to X7 (¢ + 1)). Then, because
we want to follow the decision X™(¢), (26) is equivalent to

checking that
C™(A(L: t = 1)+C™(A(1)+C™ (At +1: T))

—CR- COM(A(1:T)) <0, forall A(t+1:T) €U g,y
(27)

However, the difficulty of checking (27) is that not only the
future input has not been revealed yet, we do not even know
what decision the algorithm 7 will take on these future inputs!
To circumvent this difficulty, we estimate C™(A(t + 1 : 7))
based on affine policies. In this case, the affine policy can be
written as

Xt =qt")+ HE)AX), t' =t+1,t+2,....,T. (28)
Note that in general this pair of (77, H) may be different from
those calculated in the previous section. Let CRAP(A(t 4 1 :
T)|77, H) denote the future cost C™ (A(t+1 : T)) if 7 follows
the affine policy (28). We can then formulate the following
optimization problem:

/! A
Cl,t =

min max {C™(A(1:t—1))

{7_'7:,H:(19) restricted  A(¢+1:7")
to A(t+1:T)€U‘§(1:t)} EU\A(M)
+C™(A(t)) + CRP(A(t+1: T)|ij, H)
—CR - COPT(A(1:7))}. (29)
Similar to step-1 of Sec. III, (29) may be intractable because
the maximization part is a non-convex problem. Nonetheless,
we can use the technique in step-1 of Sec. III [see (21)]
to introduce a new set of variables y that upper-bounds the
switching costs in (29). In this way, we can obtain an upper
bound of CLt via a convex program, given by

max {CT(A(1:t—1))
A(t+1:T)

U\ 510

Ci,e £ min
{77, H,p:(19),(21)
(31) restricted to
X(t+1:7)€u‘g(1:t)}
+C™ (A1) + G (At +1: T) |7, H, )
—CR - COPT(A(1:T))}, (30)
where CRAP(A(t + 1T, H, )= Yp_,. {Co(X(t),
A(t") + p(t')}, X(¢') is given by (28), and the additional
constraint (31) is given below by

p(t+1) > GUit +1) + H(t + DAt +1) — X™(t)],
for all A(t+1) €U g5, (B

Thus, whenever ¢;; < 0, we must have CLt < Gy < 0.
In other words, (;,; < 0 guarantees that, by using 7 at time
t, there must exist an affine policy in the future such that
the resulting competitive ratio is less than or equal to CR.
Therefore, we can be assured that following the decision of
the algorithm 7 at time ¢ will retain the competitive ratio CR.

We still need to determine what to do if ¢, > 0. In that
case, we no longer follow the decision of algorithm m, at
time ¢. Instead, we find X (t) as well as a different affine policy
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based on the following optimization problem,

Cot = min max {C™(A(1:t—1))
{X(t) 7, H,p:(19), A(f+1 7)
(21) restricted to EU‘A(I o
A+1T)EU, 51,0}
+ O (0, Al0) + 51X () - X7 1)
+ CRP(A(t + 1:T)|i7, H, ) — CR - COPT(A(1:T))}.
(32)

Note that as long as (»; < 0, by using the decision X(t)
from the optimization problem (32) at time ¢, we can be
assured that following the resulting affine policy from (32) will
attain the competitive ratio CR. Thus, at time ¢, if Gt >0,
our new algorithm 7 will follow X (t) from the optimization
problem (32). The detailed robustification procedure is shown
in Algorithm 1.

Algorithm 1 Robustification Procedure

Input: CR, I/, and Algorithm 7
Output: 7: Robustified version of 7
FORt=1:T
Update U, 5,5y, C™(A(1 : £ — 1)), X™0(t) and C™(A(1)).
Solve (30) to get (i
if (1, <0 then
X™(t) — X™(t)

else
Solve (32) to get a new optimal X ()
(1) — £(1)

end if

END

Intuitively, if we can show that for all time ¢,

either ;¢ < 0or¢ay <0 (33)

must hold, then Algorithm 1 will always attain the same com-
petitive ratio CR. (33) can be shown by induction. Specifically,
if ¢1,441 < 0 at the next time ¢ + 1, (33) holds trivially for
time ¢ + 1. On the other hand, if ;441 > 0, we can show
C2,t+1 < 0 from the hypothesis (33) at time ¢. In summary,
(33) also holds at time ¢t + 1. We then obtain the following
main result.

Theorem 2: Algorithm w from the above mbusnﬁcatlon
procedure is CR—competitive. That is, for all A(l T)el,

C™(A(1:T)) <CR-CT(A(1:T)). (34)

Please see Appendix B for the complete proof of Theorem 2.
Theorem 2 shows that the algorithm 7 from the robustification
procedure attains the optimized competitive ratio CR. Our
hope is that it will also attain good average-case performance
for the following reason. Note that for a reasonable prediction,
the “average case” corresponds to the actual input being
close to the prediction, while the “worst case” corresponds
to the actual input being far from the prediction. We expect
that, when the input is close to prediction, the algorithm
mo will likely do well, and it would also be easier for the
online algorithm to beat the “worst case” competitive ratio.
Thus, we expect that the robustified algorithm 7 will likely
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follow my. Only when the input is far from the prediction
(i.e., the worst case), the robustified algorithm will invoke
different decisions. In this way, we hope that the result-
ing algorithm will perform well for both average-case and
worst-case inputs. This behavior will be further demonstrated
using simulation results in Sec. VI (see Fig. 3).

V. RAP AND ROBUSTIFICATION WITH MEMORY

In (18), the decision X (t) of the Robust Affine Pol-
icy (RAP) is only an affine function of the current input A (t).
We can extend this idea to the case when X (t) can be based on
past inputs within a certain memory range. Specifically, for the
Robust Affine Policy with memory (RAP-mem), we restrict
X(t) to be an affine function of A(s) from a past time
$ =1 — tmem to the current time s = ¢, i.e.,

t

X(t)=7(t)+ Y Hy(s)A(s), for all timet, (35)

where tpem is the memory size, 7(t) € RY*! and H,(s) €
RNV*M are determined before hand. Then, all the techniques
from step-1 to step-3 can still be applied. Therefore, we can
transfer the optimization problem (20) using the new affine
policy (35) to a convex optimization problem. Intuitively,
as the memory size tyen increases, the performance of
RAP-mem should be better. (Please see Fig. 4b in Sec. VI for
the numerical results.) However, the computational complexity
also increases linearly in ¢y,en. (Please see Appendix A for the
computational complexity.)

Finally, it is also easy to extend the robustification procedure
to the case with memory. We only need to apply the new
affine policy (35) to (31) and when calculating the cost of
RAP in (29), (30) and (32).

VI. EVALUATION

In this section, we first conduct simulations to evaluate the
competitiveness of our proposed Robust Affine Policy (RAP).
Then, under both average and worst cases, we compare the per-
formance of RAP, RHC (which is an existing algorithm with
good average-case performance), and its robustified version
(by applying our proposed robustification procedure). At last,
we illustrate the impact of the switching costs on the optimized
competitive ratio.

A. Simulation Setup

We use the NFV orchestration and scaling problem in
Sec. II-D as a case study to evaluate the performance of our
proposed competitive online algorithm RAP and the robusti-
fication procedure. Since there is little public data on NFV
topologies and traces, we borrow the topology of the physical
network of Cogent [47] to create the NFV network. There
are 50 servers () = 50) distributed in multiple data centers.
The distance costs d,s, among the servers are proportional
to the geographical distances (given in [47]) and scaled by a
random value in the interval [0.5, 1.5], so that we can evaluate
how the performance of the algorithms changes with different
problem parameters. Moreover, there are 30 different (£ = 30)
traffic flows. The service chain that each flow requires is an
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TABLE III
SIMULATION PARAMETERS
Time horizon T 50
Resources needed for a unit-size Zf 0 Ul0,1]
VNF f on server s
Resources available on server v Zy 5000
Processing capacity of a unit-size b U1, 2]
VNF f on server v
Cost of hosting resources consumed | cy U710, 20]
by a unit-size VNF f on server v
: X
Ramp constraint A ol f Ul5,10]
Changing speed of demand Af‘ 50
Budget constraint r 15

ordered subset of 5 VNFs (F = 5). Other parameters’ are
listed in Table III. Ula, b] denotes the uniform distribution in
the interval [a, b].

In order to evaluate the online algorithms, we first use
a scaled version of the traffic load trajectory from the HP
trace [48] to generate the day-ahead prediction APAP(1 : 7).
(See Fig. 1.) We then define the uncertainty set ¢/ around the
day-ahead prediction APAP(1 : 7)) based on the model in (3)-
(5), where the parameters Af‘ and I" are given in Table III,
and the parameter ¢;(¢) will be varied in our simulation
later. In order to evaluate the algorithms with online input,
we generate the real demand A™¥ (1:7) around APAP(1:7)
by adding i.i.d white Gaussian noise with variance [o;(t)]?> =
[e(t) - aPAP(t) - p]?, where we call p the “variability” of the
demand sequence. Note that when p is large, the demand
sequence fluctuates more significantly in time and may even
exceed the range defined by the uncertainty set /. When that
happens, we further change A™¥ (1:7) to the closest value
Aral(1 : T) that satisfies the constraints of . Specifically,
we find A™I(1 : 7) with the minimal /5-distance from
Areal’ (1 : 7) that satisfies the constraints of the uncertainty set.
We then use A™(£) as the online input to test our algorithms.

We compare our proposed competitive online algorithm
with both the optimal offline solution and Receding Horizon
Control (RHC). Receding Horizon Control, also known as
Model Predictive Control (MPC), is a popular framework in
the literature to make sequential control decisions based on
imperfect prediction [5], [8], [26], [30], [31]. Specifically,
at each time ¢, RHC optimizes the total costs in a look-ahead
window of size K based on the predicted inputs, and then
only commits to the first decision X (¢). As shown in [6],
RHC is often found to exhibit good average-case performance.
Thus, we can use it as the online algorithm 7y, which we will
robustify through the robustification procedure. Furthermore,
note that the optimal offline solution is assumed to know
A}eal(lz’]') in advance. In contrast, at each time ¢, our proposed
policies and RHC only know the real demand up to time ¢,
as well as the predicted demand in Ul A1) As we mentioned
in Sec. I, RHC may lead to infeasibility due to the hard
feasibility constraints. Here, whenever RHC finds no feasible
solution at time ¢, we allow it to violate the ramp constraint (2)
by paying another high penalty of 102 for each unit of violation

2Note that with container technology (such as Docker [21]), the granularity
of VNF resource allocation is much finer than with VMs. Hence, we use a
large value of 5000 for the server capacity.
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Fig. 1. Day-ahead prediction of the amount of the traffic flow.
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Fig. 2. The competitive ratio CR, vs. the uncertain level e.

of the ramp constraint. Note that our proposed algorithms
never pay this penalty because they always respect the ramp
constraints.

B. Simulation Results

In Fig. 2, we report the competitive ratio CR of our
proposed robust affine policy mg,p. The switching-cost coef-
ficients [ are uniformly chosen from [0, 10]. As we vary the
uncertainty level e of U/, the competitive ratio increases almost
linearly. Note that even when € = 0.6, i.e., the real demand
may vary 60% from the predicted value, the competitive ratio
is around 2.898, which is relatively small.

The value of CR reported above is the theoretical upper
bound of the competitive ratio over all inputs. We also col-
lect the empirical competitive ratio (ECR) under the random
demand trajectory that we generated, which is the ratio of the
total cost of an online algorithm 7 to that of the optimal offline
solution for each generated trajectory.

We plot in Fig. 3 the empirical CDF (Cumulative Distri-
bution Function) of the value of ECR over 20 trials, where
ECRRrap, ECRruc and ECRRopustified-RHC COI’I’eSpOIld to the
ECRs of RAP, RHC and the robustified version of RHC,
respectively. We first observe that at all values of variability
p, the ECR of our proposed robustified-RHC algorithm never
exceeds the value of CR (which is 1.632 when ¢ = 0.2).
In contrast, the ECR of RHC increases as p increases, and it
exceeds CR for a significant fraction of trials when p = 1
and p = 20. Clearly, RHC fails to control the worst-case
competitive ratio when the future demand is highly variable.
Specifically, due to the ramp constraint, such high variability
may lead to infeasibility for RHC, which produces the high
online costs. On the other hand, mg,p incurs much higher
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ECR than both robustified-RHC and RHC when p = 5. This
suggests that RAP is too conservative when the prediction
turns out to be quite accurate. In comparison to both RHC
and RAP, what is particularly appealing for our proposed
robustified-RHC policy is that it not only attains much smaller
ECR than RHC when p is large, but also attains almost the
same performance as RHC when p is small.

In Fig. 4, we plot how CR varies with the magnitude
of the switching costs. Intuitively, when the switching-cost
coefficient ( is large, the online decisions become more
difficult, and thus the competitive ratio will increase. This
is shown in Fig. 4. For example, when 3 = 10, Fig. 4a
shows that the total amount of switching cost (16) is almost
twice the in-stage cost (15). From Fig. 4b, the corresponding
competitive ratio increases to about 1.885. However, when 3
further increases, the switching cost dominates (See Fig. 4a),
and our competitive ratio further increases. We note that
for certain online problems (e.g., [10]), constant competitive
ratios may be obtained even when the switching cost is
arbitrarily high. This suggests that there may be room to
improve our online algorithms, e.g., by integrating ideas from
ski-rental problems [7], [10], to obtain even better competitive
ratios.

Recall from Sec. V that the idea of RAP can be extended
from (18) to allow for memory. In Fig. 4, we also compare the
CR of the memoryless RAP and that of RAP with different
memory Size tmem. From Fig. 4b, we can see that as the
memory size increases, CR will decrease, especially when
the switching-cost coefficient ( is large. In particular, when
6 = 100, the CR of RAP with a memory size tmem = 10
is only a half of the CR of memoryless RAP. Moreover,

(b) The competitive ratio CR vs. the switching-cost coefficient 3.

in Fig. 4a, we can see that RAP with memory also pays lower
switching costs.

VII. CONCLUSION

We study competitive online algorithms for OCO problems
with linear in-stage costs, switching costs and ramp con-
straints. First, we present a powerful computational framework
to obtain an optimized competitive ratio given an uncertainty
set. Second, we provide a robustification procedure to obtain
robustified online algorithms with both good average-case
performance and an optimized competitive ratio. We demon-
strate the power of our proposed approach through a case
study for NFV. The robustified version of a popular heuristic
algorithm RHC is shown to attain good performance for both
average-case and worst-case inputs. For future work, we plan
to study matching lower bounds for the optimal competitive
ratio and compare that with ours.

APPENDIX A
COMPUTATIONAL COMPLEXITY

In Sec. III, we have shown that the optimization prob-
lem (20) can be converted to a convex optimization prob-
lem (22). We can then use the Interior Point Method (IPM) [44,
p- 561] to solve this convex problem. To calculate the subgra-
dients that IPM needs to use in each loop of the problem,
we apply two standard techniques from convex optimiza-
tion [44, p. 249]. (Please see our technical report [45] for
more details of solving (22).)

In this appendix, we estimate the complexity of our
computational procedure to solve the problem (22). The
solution to this convex problem (22) involves three loops, one
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for solving the offline optimization problem to get COFT(.),
one for solving the inner maximization problem over the
input variables E(l : 7), and one for solving the eventual
outer minimization problem over the affine decision variables
77(1 : 7) and H(1 : 7) as well as the auxiliary variables
w(l:7).

For the purpose of estimating the complexity, assume that
we use K1, K5 and K3 to denote the number of iterations to
solve COPT(.), the inner maximization problem and the outer
minimization problem, respectively. In each iteration of solv-
ing COPT(.), it takes O(NT) elementary operations to update
the variables X (1 : 7), where N is the dimension of X (¢) at
each time ¢ and 7 is the total time length. In each iteration
of solving the inner maximization problem, it takes O(M7T)
elementary operations to update the variables ff(l : T) and
u, where M is the dimension of A(t) at each time ¢. In each
iteration of solving the outer minimization problem, it takes
O(NT) elementary operations to update the variables 7j(1 :
T), H(1:T) and p(1: 7). Hence, the overall complexity of
our computational procedure to solve the convex optimization
problem (22) is O(((NT K1+ MT)Ks + NT)K3).

Finally, when applying the affine policy with memory,
i.e., (35), in each iteration of solving the outer minimization
problem, it takes O(N7 tyem) more elementary operations to
update the new variables in (35). Then, the overall complexity
of our computational procedure to solve the obtained convex
optimization problem becomes O(((NTK; + MT)K, +
NTtmem)K3). Hence, the computational complexity increases
linearly in tyem-

APPENDIX B
PROOF OF THEOREM 2

We start from two lemmas that capture the significance of
having (1 <0 and (2 < 0.

Lemma 3: For any t, let 1j; ,, H7 ; and i , be the optimal
solution to (30) at time t. If (1 < 0, we must have that
CT(A(1:t = 1) +C (A() + O™ (A(t + L:T)|ify o H )

< CR-COPT(A(1:T)), for all A(t+1: T)EUlA(l:t).

(36)

Further, the RAP using i, and H7 , meets constraints (19)
and(2])f0rallA(t—|—1 7) EUA (1:t)"

Lemma 3 implies that, as long as ¢y < 0, we can be
assured that following the decision of the algorithm 7 at time
t will retain the competitive ratio CR.

Proof: Since (1,4 < 0, at the optimal solution 77 ;,, H7 ,
and ,q}t, the maximum for the inner loop of (30) must be no

greater than 0. Hence, for all /T(H— 1: 7)€ U|A“(1:t)’ we must
have that
cr(Al:t-1))+C ( A(t))
CRAP( ( +1 )|77* H; f7MT,t)

< CR- CO"M(A(1 - ))

Since CRAP( (t +1: T)|771 faHT oML e) 2 CRAP(A (t +1:
T)|if; 4, Hy ;) for all At+1:7T) ¢ U 511y (36) then holds.
The last part of the lemma follows from the formulation of
the constraints of (30).
O

Following the same idea as we shown in the proof of
Lemma 3 above, we can obtain Lemma 4 below.

Lemma 4: For any t, let Xg‘f(t) s H 4 and pi5 , be the
optimal solution to (32) at time t. If (o.y < 0, we must have

CT™(A(1:t — 1)) + Ci(X3,(t), A(t))
+ 371 X5,,(t) - X”(t 1)]
+CRP (AL +1:T)\ii5 ., H,)
< CR-COPT(A(1 : )) Jorall A(t+1:T) €U 5,
(37)

Further, the RAP using XQt( t), 75, and Hj, meets con-

straints (19) and (21) for all A(t +1:7)¢€ U‘A (1:1)"

Lemma 4 implies that, as long as (2; < 0, by using the
decision X (¢) from the optimization problem (32) at time ¢,
we can be assured that following the resulting affine policy
from (32) will attain the competitive ratio CR.

The next lemma is crucial for the overall proof.

Lemma 5: For any t, (14 > (2t > (2,441

The significance of Lemma 5 is that it allows us to use
induction to prove Lemma 6 below.

Proof: (i) To prove (i, > (2., note that the difference
between (¢ and (2 is the term for the current cost. If we
use X (t) = X™(¢) in (32), the objective value of (32) would
be equal to (;,. Since (32) further minimizes over X (t),
the objective value can only be lower. Hence, (1 > (2.

(ii) To prove (a2.+ > (2,441, note that the difference between
CQ ¢+ and (2 41 is the term for the cost at time ¢ + 1. If we use
X(t4+1) = ¢ (t+ 1)+H2’t(t+1)A(t+1) where 775 , (t41)
and H3 (¢t + 1) are the optimal solutions to (32) at time ¢,
the objeétive value of (32) at time ¢t + 1 would be equal to
(2, Since at time ¢+ 1, (32) further minimizes over X (t+1),
the objective value can only be lower. Hence, (24 > (2 ¢41.

O

Lemma 6: Either (14 < 0 or (o4 < 0 must hold for all
timet=1,2,...,7.

Lemma 6 implies that, following the robustification proce-
dure (i.e., Algorithm 1), there always exists a robust affine
policy in the future, such that the optimized competitive ratio
CR is guaranteed.

Proof: ~ We will prove Lemma 6 by mathematical
induction.

a. Base case: ¢ = 1. We divide into two sub-cases.

(a-1) If (1,1 <0, the statement of the lemma holds trivially
for time ¢t = 1.

(a-ii) If ¢1,1 > 0, Algorithm 1 will set X7(1) = X3 (1),
where )2511(1) is the optimal solution to (32) at time ¢t = 1.
Next, we show that there exists a robust affine policy in the
future, such that (3; < 0. Note that if we let 7*(1 : 7),
H*(1: 7T) and p*(1 : 7) be the optimal solution to (22).
Then, at time ¢ = 1, by letting X (1) = 77*(1) + H*(1)A(1),
ii(t") = (1), H(t') = H*(t') and pu(t') = p*(t') for " =
2,...,7, we obtain a feasible solution to (32) at time t = 1.
The objective of (32) at this feasible solution must be no
greater than O because the objective value of (22) is equal
to CR at 7*(1 : 7), H*(1 : 7) and p*(1 : 7). Since (32)
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further minimizes its objective value, we have (2 1 < 0 at time
t=1.

Thus, the statement of the lemma holds at time ¢ = 1.

b. Induction step: Suppose that the statement of the lemma
holds for time ¢ = tg. We wish to show that it also holds for
time ¢t = to + 1. We divide into two sub-cases.

(b-i) If Cio+1 < 0, the statement of the lemma holds
trivially for time ¢t = t9 + 1.

(b-ii) If (1,441 > O, then by the induction hypothesis and
Lemma 5, we must have (5,411 < 0.

Therefore, the statement of the lemma holds for time ¢t =
to + 1.

O

Finally, we can state the proof of Theorem 2.

Proof: (Proof of Theorem 2)

Letting ¢ = 7 in Lemma 6, we have that (57 < 0.
Then, from Lemma 4, we have that by following Algorithm 1,
C™(A(1:T)) < CR-COPT(A(1: T)) for all A(1:7T) €U.
The result of the theorem then follows.

[l
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