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ABSTRACT

One fundamental problem in causal inference is to learn the in-
dividual treatment effects (ITE) — assessing the causal effects of
a certain treatment (e.g., prescription of medicine) on an impor-
tant outcome (e.g., cure of a disease) for each data instance, but
the effectiveness of most existing methods is often limited due to
the existence of hidden confounders. Recent studies have shown
that the auxiliary relational information among data can be uti-
lized to mitigate the confounding bias. However, these works as-
sume that the observational data and the relations among them
are static, while in reality, both of them will continuously evolve
over time and we refer such data as time-evolving networked ob-
servational data. In this paper, we make an initial investigation of
ITE estimation on such data. The problem remains difficult due
to the following challenges: (1) modeling the evolution patterns
of time-evolving networked observational data; (2) controlling the
hidden confounders with current data and historical information;
(3) alleviating the discrepancy between the control group and the
treated group. To tackle these challenges, we propose a novel ITE
estimation framework Dynamic Networked Observational Data De-
confounder (DNDC) which aims to learn representations of hidden
confounders over time by leveraging both current networked ob-
servational data and historical information. Additionally, a novel
adversarial learning based representation balancing method is in-
corporated toward unbiased ITE estimation. Extensive experiments
validate the superiority of our framework when measured against
state-of-the-art baselines. The implementation can be accessed in
https://github.com/jma712/DNDC.
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1 INTRODUCTION

The increasing prevalence of observational data provides a rich
source for estimating individual treatment effect (ITE) — assessing
the causal effects of a certain treatment on an outcome for each
data instance. ITE estimation has significant implications in many
high-impact domains such as health care [1], education [11], and
targeted advertising [32]. For example, to provide personalized rec-
ommendations for users, service providers need to decide whether
the recommendation of a product (treatment assignment) will mo-
tivate a user to make a purchase (outcome) based on her profile.
Most of existing works on ITE estimation [7, 13, 31, 36] ignore the
influence of hidden confounders — the unobserved variables that
causally affect both the treatment assignment and the outcome. For
example, a user’s purchasing preferences can be regarded as hidden
confounders that causally impact the items recommended to her
and her purchasing patterns [3, 30]. In other words, most existing
works heavily rely on the strong ignorability assumption [27] that
there does not exist any hidden confounders. However, without
controlling the influence of hidden confounders, these methods
may result in biased estimation of ITE [19].

To mitigate the bias induced by hidden confounders, recent stud-
ies [8-10] leverage auxiliary relational information (e.g., social
connections, patient similarity) beyond the traditional i.i.d observa-
tional data for more accurate ITE estimation. Despite their empirical
success, these works overwhelmingly assume that the observational
data and the relations among them are static. In fact, both of them
are naturally dynamic in many real-world scenarios [18]. For exam-
ple, the purchasing preferences of users and their social connections
are both evolving over time. We refer such data as time-evolving
networked observational data. The prevalence of such data in a wide
spectrum of domains brings about new opportunities to unravel the
patterns of hidden confounders towards unbiased ITE estimation.

In this paper, we investigate a novel research problem of decon-
founding with networked observational data in a dynamic environ-
ment. The causal graph of the problem setting is illustrated in Fig. 1,
where the hidden confounders at a particular time stamp not only
have causal relations to the observed variables at the same time
stamp but also be causally affected by both the hidden confounders
and the treatment assignment from previous time stamps [2], e.g.,
user purchasing preferences change over time, and are deeply influ-
enced by their previous preferences and previously recommended
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Figure 1: Causal graph for the studied problem. At time ¢, we
use X!, A, Z!, Ct, Y! to denote the features of observational
data, relations among observational data, representations of
hidden confounders, treatment assignment, and outcomes,
respectively. The hidden confounders Z‘*! at t + 1 causally
affect the treatment assignment C’*! and the outcome Y**!
at that time. To infer Z**!, we can leverage the networked
observational data X’*! and A**! at t + 1, previous hidden
counfounders Z’, and treatment assignment C’. The black
lines indicate the causal relations.

products to them, and the current user purchasing preferences
would also influence the current profiles and social connections.
In this work, we do not assume that the previous outcomes can
causally affect the variables in the current time stamp, because in
real world, it is a more common setting that the previous outcomes
do not have causal relationship on the variables in the current time
stamp, even if they might be correlated.

However, the problem remains difficult because of the following
multifaceted challenges: (1) Most of the existing causal inference
frameworks focus on static observational data. In dynamic environ-
ment, both modalities of networked observational data are evolving,
how to systematically model the evolution patterns of different data
modalities for unbiased ITE estimation requires deep investigation.
(2) Previous studies have shown that hidden confounders can be
approximated by the representations learnt from networked obser-
vational data [8, 9]. Since the hidden confounders at the current
time stamp can be controlled by two sources of information - (i)
the current networked observational data; and (ii) previous hidden
confounders and treatment assignments, it is of vital importance
to jointly model these two different sources. (3) Representation
balancing has been widely adopted to control confounding bias for
unbiased causal effect estimation [9, 14, 31], where confounding bias
exists when the correlation between the treatment and the outcome
is distorted by the existence of confounders. This problem becomes
more important in our setting as uncontrolled confounding bias
can accumulate over time, and degrade the precision of estimated
causal effects in later time stamps. Thus, a more principled balanc-
ing method is often desired in dynamic environment.

To address the aforementioned challenges, we propose a novel
causal inference framework Dynamic Networked Observational Data
Deconfounder (DNDC), which learns dynamic representations of hid-
den confounders over time by mapping the current observational
data and historical information into the same representation space.
Additionally, we propose a novel method based on adversarial learn-
ing to balance the representations of hidden confounders from the
treated group and the control group. The main contributions of this
work can be summarized as: 1) Problem Formulation: We formu-
late a new task of ITE estimation with networked observational data

Table 1: Notations.

Notation Definition

() variables at time stamp ¢~
()=% (-)=! historical variables before time stamp ¢
(not including/ including t)

Xt x;:' features of all instances/the i-th instance

ct, Ct true/predicted treatment assignment

ct treatment assignment for the i-th instance

y? observed outcome

Y/, i/'lt true/predicted potential outcome when get treated

Yyl 0L, true/predicted potential outcome for the i-th instance
when ¢! =1

Y, YO’ true/predicted potential outcome when not get treated
(controlled)

yé’ i gé’ i true/predicted potential outcome for the i-th instance
when ¢! =

tt, ¢t true/predicted ITE

o, &} true/predicted ITE of the i-th instance

A network structure among data

zt hidden confounders

zf hidden confounders of the i-th instance

H historical data {X <%, A<*, C<!} before time stamp ¢

H! representation of historical information

H! hidden state of GRU

Yro Yop,;  factual(observed)/counterfactual outcome for i-th instance

U Ucp,;  predicted factual/counterfactual outcome

dp,d, dimension of the representation of historical
information and hidden confounders

T # of time stamps

nt # of instances at time stamp #

in dynamic environment and analyze its fundamental importance
and challenges. 2) Algorithm Design: We propose a novel causal
inference framework DNDC to tackle the challenges of the studied
problem. DNDC leverages the evolving data of both observational
variables and network structure, and learns dynamic representa-
tions of hidden confounders. A novel adversarial learning based
representation balancing method is also incorporated toward unbi-
ased ITE estimation. 3) Experimental Evaluation: Experimental
results on real-world time-evolving networked observational data
show that DNDC outperforms state-of-the-art methods.

2 PROBLEM DEFINITION

The time-evolving networked observational data is denoted as
{xt, Al Ct, Yt}tT:1 across T different time stamps. Let X* be the
attributes (features) of observational data at time stamp ¢, such
that X! = {xi, ...,x;, }, where xf represents the i-th instance (e.g.,
profile of each user), nt denotes the number of instances, and
A! represents the adjacency matrix of the auxiliary network in-
formation among different data instances (e.g., user social con-
nections). For simplicity, we assume the network is undirected
and unweighted, but it can be naturally extended to directed and
weighted networks. At time stamp f, the treatment assignment
for these n! instances is denoted by Cct = {ci, cfl,}, where cf
is either 0 or 1 (e.g., if a user receives the recommendation of a
specific item or not). The observed outcome of all instances at
time stamp ¢ is denoted by Y? = {yi, y;,} (e.g., if user buys
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the item or not). Z* = {zi, z;t} stands for the hidden con-
founders (e.g., users’ purchasing preferences). We use the super-
script "< t" to denote the historical data before time stamp t,
e.g., the instance features before time stamp ¢ is referred to as
X<t = {X',X?, .., X1}, and C<!, A<! are defined similarly. Ad-
ditionally, we use HE = {X<t A<!,C<!} to denote all the historical
data before time ¢. A detailed description of notations can be re-
ferred to Table 1. In this paper, we build our framework upon the
well-adopted potential outcome framework [22, 28]. The potential
outcome of the i-th instance under treatment c at time stamp ¢ is
denoted by yé,i € R, which is the value of outcome that would
be realized if instance i receives treatment c at time t. We rep-
resent the potential outcome of all instances at time stamp ¢ by
Y] = {yil, yin,} and Y} = {y(t)’l, y(t)’n,}, Then we define the
individual treatment effect (ITE) on time-evolving networked obser-
vational data as: rl.t = rt(xl.t,‘Ht, Al = E[yii - y(’;’i|xf,7{t, Afll

With ITE defined, the average treatment effect (ATE) is defined
as TZTE = % Z;’:tl Tl.t . With the above definitions, we can formally
define the studied problem of learning individual treatment effect
with time-evolving networked observational data as follows:

DEFINITION 1. (Learning ITE on Time-Evolving Networked Ob-
servational Data). Given the time-evolving networked observational
data {X*, At C¢, Yl‘}tT:1 across T different time stamps, the goal is to
learn the ITE 7} for each instance i at each time stamp t.

It is worth noting that our work is different from the existing set-
tings of spillover effect [26] or treatment entanglement [33], where
the treatment on an instance may causally influence the outcomes
of its neighbor units. In our setting, the network structures are
exploited for controlling confounding bias. In particular, we assume
that conditioning on the latent confounders, the treatment assign-
ment and the outcome of an instance would not causally influence
the treatment assignment or the outcome of other instances.

Most existing works [13, 31, 36] rely on the strong ignorability
assumption [27], assuming that observed features are enough to
eliminate the confounding bias, i.e., no hidden confounders exist.

DEFINITION 2. (Strong Ignorability Assumption). Given an in-
stance’s observed features, the potential outcome of this instance is
independent of its treatment assignment: yi .,y . 1L ci|xt.

However, this assumption is often untenable due to the existence
of hidden confounders in real-world scenarios [24]. Our method
relaxes this assumption as there exist hidden confounders Z! at
each time stamp ¢ which causally influence the treatment C? and the
potential outcome (Ylt and Yot ). Conditioning on Z?, the treatment
assignment is randomized, i.e., yii, yé’i A cf |zf. We aim to learn the
representations of hidden confounders for bias elimination based
on following assumption:

AssuMPTION 1. (Existence of Hidden Confounders) (i) The hidden
confounders may not be accessible, but we assume that the instance
features and network structures are both correlated with the hidden
confounders, and can be considered as proxy variables. (ii) Hidden
confounders at each time stamp are also influenced by the hidden
confounders and treatment assignment from previous time stamps.

In this work, we follow [31] to define ITE in the form of the Conditional Average
Treatment Effect (CATE).
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Based on the above assumption and some common assumptions
in causal inference described in Section 4, we now show the identifi-
cation result of our framework. For simplicity, we drop the instance
index i for notations 2!, x?, y?, c!:

TuroreM 2.1. (Identification of ITE) If we recover p(z*|x!, H®, AY)
and p(y*|z?, c?), then the proposed DNDC can recover the ITE under
the causal graph in Fig. 1.

3 THE PROPOSED FRAMEWORK

We propose a framework DNDC for ITE estimation in time-evolving
networked observational data. The overall framework, as illustrated
by Fig. 2, consists of three essential components: confounder repre-
sentation learning, potential outcome and treatment prediction, and
representation balancing. Firstly, DNDC learns representations of
hidden confounders over time by mapping the current networked
observational data and historical information into the same repre-
sentation space. Later on, the learnt representations are leveraged
for the potential outcome prediction and the treatment prediction.
Additionally, to balance the representations of hidden confounders
from the treated group and the control group, we develop a novel ad-
versarial learning based balancing method. Next, we will elaborate
on these components in the following subsections.

3.1 Confounder Representation Learning

As mentioned previously, the hidden confounders can be causally
related to the current features of data instances and the relations
among them, as well as the previous hidden confounders and treat-
ment assignment. Therefore, the proposed DNDC first aims to learn
the representations of hidden confounders by taking advantage of
the aforementioned information. As the confounders can be related
to the relations among observational data in addition to the fea-
ture information, we propose to use graph convolutional networks
(GCNs) [15] to capture the influence of these two different data
modalities in learning the representations of hidden confounders:

zb = g(([X", H'""));, A) = A'ReLU((A’[ X", H'"])iUp)Us, (1)

where g(-) denotes the transformation function parameterized by
GCNs. Here, we stack two GCN layers to capture the non-linear
dependency between the current hidden confounders and the input.
Uy, U; denote the parameters of two GCN layers. A1 e R Xdn
denotes the historical information before time stamp ¢, which com-
presses previous hidden confounders and treatment assignment.
zf € R% denotes the representation of hidden confounders for
instance i at time ¢. Also, [.,.] denotes the concatenation operation
and (-); represents the i-th row of the matrix. The matrix Al is the
normalized adjacency matrix computed from A? beforehand with
the renormalization trick [15].

To characterize the evolution patterns of time-evolving net-
worked observational data, we make use of a Gated Recurrent
Unit (GRU) [5] based memory unit to catch the temporal depen-
dency between the current information and the historical infor-
mation, in both of which the hidden confounders and treatment
assignment are encoded. Specifically, in the GRU, the current in-
formation (Z¢, X*, C*) and previous hidden state H!~! are first
compressed into a new hidden state H' € R Xdh by the GRU
layer: H! = GRU(H!"!, [Z!, X!, C!]). It should be noted that the
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Figure 2: An illustration of the proposed framework DNDC.

confounders’ representation Z! does not take the treatment as-
signment C! at time stamp ¢ as its input because it stands for the
pre-treatment status of an instance. At the same time, C? is a part
of the hidden state H’ of the GRU and will contribute to learning
the historical information H?.

To weigh the importance of the historical information from dif-
ferent time stamps, attention mechanism [20, 34] is applied among
different hidden states of GRU. The attention weight ;s that mod-
els the importance of the hidden states of GRU from time stamp
s on those of time stamp ¢ (s < t) can be calculated with different
attention score functions on h? and k%, e.g., the widely used bilinear
[20] function or the scaled dot product [34] function. At each time
stamp, the attention weights are normalized by softmax function:
o; = softmax([az1, a2, ...a,,—1]). With these attention weights,
we can obtain a context vector o’ at each time stamp ¢, which will
capture the historical dependency by a linear combination of previ-
ous hidden states of GRU: v’ = 2;% ag,sh®. In order to incorporate
the current and historical information, we concatenate h! and v*
and feed it into a MLP layer to generate the representation for
the historical information till time stamp ¢ as: h! = MLP([h!,0']),
where h € R% is the compressed vector of historical information
for an instance at time stamp ¢. For all instances, they form a matrix
H!. As shown in Fig. 2, at the next time stamp, we will feed H*
as input to the confounding representation phase to capture the
evolution of confounders over time.

3.2 Prediction with Hidden Confounders

Potential outcome prediction. The proposed DNDC infers the
potential outcome with two functions fi, fo : R% — R, corre-
sponding to the two cases when treatment is taken or not, i.e.,
i, = fzhel = 1) = fizh), 3h; = f(zlcl = 0) = fo(z)). Here,
we use two MLPs to model f; and fj. In this way, for each in-
stance, both of its factual outcome y;)i (observed outcome) and
counterfactual outcome yéF’i (unobserved outcome with the con-
trary treatment) are estimated. The loss function of the potential

outcome inference module is defined using the mean squared error:
ot t N2

jy :Ete[T],ie[nf][(yF,i —yp,i) ]. (2)

Treatment prediction. The proposed DNDC also contains a treat-

ment predictor, which takes Z ! as the input, and the actual treat-

ment assignment C! as the target. This treatment predictor is im-

plemented by a MLP with softmax operation as the last layer. The
loss function of the treatment predictor is:

Ze = ~Brer)ic[n) [(cf log(§) + (1= c) log(1 =31, (3)

where §l.t is the output of the softmax layer, which can be con-
sidered as the predicted propensity score for instance i at time
stamp ¢. Specifically, the propensity score of an instance i refers
to its probability to be treated (in the treated group) such that
P(ct = 1|x!, AY, H"), and in our setting we approximate it with
§! = softmax(MLP(Z})).

3.3 Representation Balancing

Recent studies [31] theoretically show that balancing the repre-
sentations of treated and control groups would help mitigate the
confounding bias and minimize the upper bound of the outcome
inference error. Motivated by this, in our work, we study the prob-
lem of learning a balanced representation for ITE estimation from
time-evolving networked observational data and develop a novel
adversarial learning based balancing method.

Adversarial Learning based Balancing. We propose to use a
gradient reversal layer [6] to solve the representation balancing
problem. Specifically, the gradient reversal layer does not change
the input during the forward-propagation phase, but when back-
propagation happens, the gradient reversal layer reverses the gra-
dient by multiplying it by a negative scalar. Intuitively, during
back-propagation, the gradient reversal layer enables us to (1) train
the treatment predictor by minimizing the treatment prediction
loss .Z¢; and (2) achieve representation balancing via maximizing
% w.rt. the model parameters of the confounder representation
learning. In particular, we add the gradient reversal layer before
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the treatment predictor to ensure the confounder representation
distribution of the treated and that of the controlled are similar at
the group level. At the same time, we still utilize the observed treat-
ment assignment as a supervision signal to learn the confounder
representation of each instance. In this way, balanced representa-
tions are learned for potential outcome prediction and treatment
prediction. As the model will minimize the loss of the treatment
prediction, the adversarial learning process will benefit from both
the treatment predictor and the distribution balancing.

3.4 Loss Function for the Proposed DNDC

By putting all the aforementioned components together, we obtain
the final loss function of the proposed DNDC framework:
Lyl 3 AN =2+ pZe 4yl

i ©
where f, y are the hyperparameters to control the effect of different
parts, 6 is the set of parameters in this model and y||0||? is included
to prevent overfitting. To show how the proposed adversarial learn-
ing based balancing method works in the training process, we write

the gradient updates that happen while minimizing Eq. (4) as:

afy pLe
—u(—— - 2
0, — 0, — u( 26, @ 06, +2y6;),
pZ,
0. — 0. - (L2 1 y0,) ©)
20,

0, — 0 (a"% 2y0y)
y & Uy —pl—= +2y0y),
20,

where 6, 0., and 6 are the model parameters of the hidden con-
founder representation learning, the treatment prediction, and the
potential outcome prediction, respectively. When updating 6, the
gradient backpropagated from the treatment predictor is reversed
by multiplying with a negative constant —«. The positive real scalar
1 stands for the learning rate of the optimization process.

4 THEORY

Before the formal proof of Theorem 1, as there are some common
assumptions used in most works as well as ours for ITE estimation,
we first present them under our setting:

AssuMPTION 2. (Consistency). If the treatment history is C=1,
then the observed outcome Y =! equals to the potential outcome under
treatment C=!.

AssumpTION 3. (Positivity). If the probability p(z') # 0, then the
probability of any treatment assignment ¢* at time stamp t is in the
range of (0,1), i.e, 0 < p(ct|z?) < 1.

AssUMPTION 4. (SUTVA). The potential outcomes for any instance
are not influenced by the treatment assignment of other instances,
and, for each instance, there are no different forms or versions of each
treatment level, which lead to different potential outcomes.

In most existing works, the identification of ITE is based on above
three assumptions, along with the strong ignorability assumption.
In this paper, we relax the strong ignorability assumption and allow
the existence of the hidden confounders which could be captured
from the time-evolving networked observational data. Based on
above premise, we study on the identification of ITE in such data:

Theorem 1. (Identification of ITE) If we recover p(z’|x?, H?, A?),
p(yt|2%, ¢?), then the proposed DNDC can recover the ITE under
the causal graph in Fig. 1.
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Table 2: Detailed statistics of the datasets.

Dataset Flickr BlogCatalog ~ PeerRead
# of instances 7,575 5,196 6,867 ~ 7,601
# of links 236,582 170, 626 11,819
~ 240,374 ~ 173,524 ~ 13,684
# of features 12,047 8,189 1,087
# of time stamps 25 20 17
ratio (%) of treated  48.72 + 1.42 46.52 + 1.58 56.52 + 3.36
Avg ATE + STD 14.35+21.10  20.45+16.63  60.12 + 83.57

Proor. Under these above assumptions, we can prove the iden-
tification of ITE:

o U By [y - yhlt 1, A') ©
W B, [y 4] - it 2 H A A A "
O BBy [y - il 11, 1, AT] ®
© BBy [yl ¢ = 1] - Bylyple' ¢ = 0]l 1!, AT (9)

(g)

Ez[Eylyple', of = 1] - Eylyple', f = 0]|x", H*, A*], (10)

t = ¥ (x?, H!, A?), we drop the instance index i for sim-

plification. The equation (i) is the definition of ITE in our setting,
equation (ii) is a straightforward expectation over p(z’|x!, H?, A?),
equation (iii) can be inferred from the structure of the causal graph
shown in Fig. 1, and the SUTVA assumption is implicitly used in the
causal graph, equation (iv) is based on the assumption that z? con-
tains all the hidden confounders, as well as the positivity assump-
tion, and equation (v) can be inferred from the consistency assump-
tion. Thus, if our framework can correctly model p(z!|x!, H?, A?)
and p(y’|2%, ¢?), then the ITEs can be identified under the causal
graph in Fig. 1. O

where 7

5 EVALUATION

In this section, we conduct extensive experiments to validate the
effectiveness of the proposed framework DNDC. Considering that
the counterfactual outcome and hidden confounders are often un-
available in most real-world scenarios, it is notoriously hard to
collect the ground-truth ITEs on real-world observational datasets.
Thus, we follow existing literature [8, 9] to create semi-synthetic
datasets under different settings.

5.1 Datasets and Simulation

5.1.1 Datasets. The datasets used in the experiments are based
on three real-world attributed networks, Flickr, BlogCatalog, and
PeerRead. The key statistics of these datasets are shown in Table 2,
including the number of instances, links, features, and time stamps,
as well as the ratio of the treated instances, and the average ATE
and its standard deviation over 10 experiments.

Flickr. Flickr? is an image and video based social network, where
each node represents a user and each edge stands for the friendship
between two users. At each time stamp, we randomly inject/remove
0.1 ~ 1.0% edges, and perturb 0.1% node features (based on the
noises sampled from N(0,0.012)), yielding a dynamic network
across 25 time stamps. The features are a list of tags showing users’

https://www.flickr.com/
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interest. We train a 50-topic LDA model [25] on the features and
select the top-25 most frequent words from each topic to create
hidden confounding. We create a semi-synthetic dataset with the
following assumptions: (1) Treatment. A user has more viewers
from either mobile devices (treated) or desktops (controlled). (2)
Outcome. A user receives some reviews from the viewers of her
posts. (2) Confounders. Viewers of a user have their preferences
of devices which are influenced by the topics of the user’s posts.
These topics of users causally influence both the devices chosen by
their viewers and the reviews they get. (4) Historical influence. The
topics of a user’s posts can be influenced by her previously observed
treatment (more viewers from mobile devices or desktops) and the
social network, e.g., if a user finds more viewers of her posts are
from mobile devices, then she may consider to post more about the
topics (e.g., sports) that are preferred by users on mobile devices.
To study the ITE of peoples’ device preference on the reviews, we
simulate the confounders, treatment assignments, and outcome.
The detailed simulation process is described in Section 5.1.2.
BlogCatalog. BlogCatalog® is a social network website where blog-
gers can share their blogs, where each node represents a blogger
and each edge stands for a social relationship between two bloggers.
The node features are the bag-of-word representations of the blog-
ger’s blogs. As this dataset is also a static data, we follow the same
process as Flickr to generate a time-evolving attributed network
across 20 different time stamps. We further simulate the treatment
assignment, confounders, and outcome in the same way as Flickr.
PeerRead. PeerRead* is a dataset of computer scientific peer re-
views for papers, and has been used in previous research of causal
inference [35]. This dataset contains a real-world dynamic net-
work of coauthor relations over time. We select 17 time stamps
of dynamic network which contains 6867 ~ 7601 authors. In this
dataset, each node refers to an author, and each edge represents
their co-author relationship. The features are the bag-of-word rep-
resentations of their paper titles and abstracts. The confounders are
their research areas. The treatment is whether the authors’ papers
contain buzzy words in their titles and abtracts, which are words in
a preset dictionary {"deep", "neural", "network", "model"}.
The outcome denotes the citation numbers of authors. To study the
ITE of buzzy words on the authors’ citation, we use the real-world
treatment, and simulate the confounders and potential outcomes
in the same way as Flickr.

5.1.2  Data Simulation. We incorporate the effect of historical in-
fluence (as a p-order autoregressive term [21]) and network infor-
mation to simulate the confounders 25 at time stamp ¢ as:

A= (o)l 22 Y flal) +daf D)+l (1)
D M ueN (i)

1 P P
t t— t—
iz, E “r,jzi,jr"'E Prei" |,
p r=1 r=1

where zl? denotes the hidden confounders of instance i at time stamp

(12)

t. 1[1!? denotes the historical information. zf j and l//lt ; represents the
Jj-th dimension of zf and ¢l.t, respectively. N (i) denotes the neigh-
boring nodes of node i. The function f(-) maps the bag-of-words

3https://www.blogcatalog.com/
“https://github.com/allenai/PeerRead
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features of instances to their LDA topics [25]. Here, we train a
LDA model with 50 topics with the whole training corpus. The pa-
rameters A1, Ay and A3 control the impact of historical information,
current network structure, and current features on the confounders.
In the experiments, we set A1 = 0.3, A2 = 0.3, A3 = 0.3 by default.
€ ~ N(0,0.0012) is the random noise, arj ~ N1~ (r/p), (1/p)%)
controls the impact of historical information from the previous
p time stamps, where p is set to 3 by default, f, ~ N(0,0.022)
controls the impact of previous treatment assignment.

To synthesize observed treatment assignment, we select two
points rg and r; in the LDA topic space as the centroids for the
treated and controlled groups. We simulate the treatment as follows:

exp(p; ;)
cf ~ Bernoulli( n bl ), (13)
exp(p;q) +exp(p;,)
Pig = ré)Zf, Piy = rllz? (14)

Then we synthesize the potential outcomes as below by setting
c=1lorc=0:

Yei =SWPig+c-pi)+n' (15)
where S is a scaling factor, and is specified as S = 20. 5 ~ N(0,0.5%)
is a random noise term.

5.2 Evaluation Metrics

We adopt two widely used evaluation metrics — Rooted Precision in
Estimation of Heterogeneous Effect (PEHE) [13] and Mean Absolute
Error (ATE) [38] to measure the quality of the estimated individual
treatment effects at different time stamps:

1 N
t — t _ 1)\2
VEPEHE = 4| it E (G =72 (16)
i€[n?]
t = i £t i t 17
€ATE = |nt § Ti — % § 7; | (17)

ie[n?] ie[n?]

We take the average over all time stamps for evaluation.

5.3 Experiment Settings

Baselines. To investigate the effectiveness of our framework in
learning ITEs from time-evolving networked observational data,
we compare our framework with multiple state-of-the-art methods:

¢ Causal Forest (CF) [36]. Based on the strong ignorability
assumption [27], CF learns ITE as an extension of Breiman’s
random forest [4]. We set the number of trees as 100.

¢ Bayesian Additive Regression Trees (BART) [13]. BART
is a Bayesian regression tree based ensemble model that is
widely used in learning ITE. It is also based on the strong
ignorability assumption.

e Counterfactual Regression (CFR) [31]. CFR also learns
representation for the confounders based on the strong ignor-

ability assumption. Balancing techniques including Wasserstein-

1 distance and maximum mean discrepancy are adopted and
we refer these two variants as CFR-Wass and CFR-MMD.

e Causal Effect Variational Autoencoder (CEVAE) [19].
CEVAE is a deep latent-variable model for learning ITE,
which learns representation of confounders as Gaussian dis-
tributions through propagating information from original
features, observed treatments, and factual outcome.
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Figure 3: Performance comparison under different settings of historical information influence.
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Figure 4: Performance comparison under different settings of network structure influence.

Az

e Network Deconfounder (NetDeconf) [9]. NetDconf re-
laxes the strong ignorability assumption by assuming that
the hidden confounders of observational data can be con-
trolled with auxiliary relational information among data.

Setup. All the aforementioned baselines are designed for static data
and thus we run these algorithms at each time stamp independently.
On the other hand, only our proposed DNDC can well capture the
temporal dependency for ITE estimation. The data instances (nodes)
are randomly split into 60-20-20% of training/validation/test data.
We evaluate the average v/epggE and eorg over all the time stamps,
and all the results are averaged over 10-time repeated executions.
Unless otherwise specified, we set our learning rate as 5e—4, dj, = 64,
d, =64, f=1.0, y = 0.01, and we use Adam as our optimizer. For
all the baselines based on confounder representation learning such
as CEVAE and NetDeconf, we also set the dimension of the learnt
representation as d, same as our proposed method. As described in
the Section 5.1.2, in the experiments, we use three hyperparameters
A1, A2, and A3 to control the influence of the historical information,
current network structure, and current feature information on the
current confounders, respectively.

5.4 ITE Estimation by Varying the Influence of
Historical Information

Here we investigate how DNDC performs when the level of influ-
ence from historical information (including previous hidden con-
founders and treatment assignment) varies. We fix other parameters
A2 = 0.3 and A3 = 0.3, and modify A; in Eq. (11) (in Section 5.1.2) to
control the influence of the historical information on the hidden con-
founders at the current time stamp. We compare the performance of
ITE prediction of DNDC and other baselines. Due to the space limit,
we only show the results on Flickr and BlogCatalog in Fig. 3 as
we have similar observations on PeerRead. Generally speaking, we
observe that our proposed DNDC consistently outperforms all the
baselines with lower v/éepgE and ea7g. When A; = 0, the historical
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information will not affect the current hidden confounders. In this
case, our model and NetDeconf achieve the best performance by
utilizing the auxiliary relational information among data to approx-
imate the hidden confounders. When A; increases, the current ITE
inference relies more on the historical information, while other
baselines are not able to catch the historical influence on ITE at
the current time stamp. Thus their performance drops dramatically,
while the performance of our proposed DNDC is stably better as it
leverages the historical information. One-tail Student’s t-tests are
also conducted to confirm that our method performs significantly
better than other baselines with a significant level of 0.05.

5.5 ITE Estimation by Varying the Influence of
Network Structure

To verify the effectiveness of the proposed DNDC in utilizing the
relational information embedded in a network, we fix other param-
eters A; = 0.3 and A3 = 0.3, and compare DNDC with baselines by
varying the values of 1. Similarly, we only show the results on
Flickr and BlogCatalog to save space. As can be observed from the
comparison results shown in Fig. 4, when A3 = 0, the hidden con-
founders of each instance is independent of others’, thus NetDeconf
loses its superiority without using the relational information among
data. When A increases, its performance is much less jeopardized
compared to that of other baselines due to the increasing impact
from network structure on hidden confounders. Causal Forest also
achieves good performance because its hypothesis implicitly mod-
els the propagation mechanism on the network over time, which
to some degree leverages the neighbor features to catch the hid-
den confounders. Our DNDC achieves the best performance, we
attribute the improvement to two key factors: 1) when A, is small,
DNDC can achieve better ITE estimation by capturing the historical
influence on the hidden confounders at the current time stamp; 2)
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Table 3: Performance comparison with different representa-
tion balancing methods.

Dataset Wass MMD Gradient Reverse
Flick VEPERE 9.125+1.566 9.531+1.573  8.131+ 1.342
ickr
EATE 1.839 £ 0.368  1.952+0.433 1.413 £ 0.351

Vepege 16.115+2.857 17.035 +4.243 15.132 £ 2.542
€ATE 4.815+1.367 5250 +1.345 3.414+1.272
VEepEHE 49.062 +4.452 49.643 +4.834 47.716 +4.014
€ATE 5482+ 1.347 5.648+1.617 4.451+1.379

80 - treated 80
60 - control 60
40 ity ,» 40

20 20

0 % 0
20 ; -20
—40 -40
-60

-60

BlogCatalog

PeerRead

treated
control

—80-60-40-20 0 20 40 60 80 —80-60-40-20 0 20 40 60 80

(a) No balancing (b) With balancing

Figure 5: Representation distributions with or without gradi-
ent reverse layer.
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Figure 6: Ablation study for different variants of DNDC.

when A3 increases, the confounder representation learning com-
ponent captures the series of information hidden in the network
structure, which leads to a more accurate and stable ITE estimation.

5.6 The Impact of Representation Balancing

To evaluate the impact of the proposed adversarial learning based
representation balancing method, we compare the performance of
our balancing method with other two commonly used represen-
tation balancing methods: Wasserstein-1 (Wass) distance [29] and
maximum mean discrepancy (MMD) [31]. Table 3 shows the results
of ITE estimation performance with these different representation
balancing techniques and our method consistently outperforms
other baselines. Fig. 5 shows a specific example of the represen-
tation distributions with/without the gradient reverse layer. We
observe that with the gradient reverse layer, the representation
distributions of treated and control group become closer.

5.7 Ablation Study

To further investigate the impact of different components of DNDC,
we conduct ablation study by comparing DNDC against the follow-
ing variants: (1) No GRU: This variant omits the GRU and attention
layers, which means that no historical information is utilized in
learning the confounders. As this variant does not benefit from the
memory of previous time stamps, we denote it by DNDC-NM. (2) No
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(a) pand d,

(b) fandy

Figure 7: \/eprgr with different values of learning rate ;, em-
bedding size d;, f and y.

GCNs: In this variant, we replace the GCN layers with a simple MLP.
We denote this variant by DNDC-NG. (3) No balancing: This variant
does not use any representation balancing techniques and is de-
noted by DNDC-NB. Fig. 6 reports the ITE estimation performance
of different variants of our proposed framework. We can see that
DNDC-NM and DNDC-NG cannot render satisfactory performance
as they cannot leverage historical information or network structure
for learning representations of hidden confounders. The perfor-
mance of DNDC-NB is degraded by the imbalance of distributions
between the treated and the control group, while DNDC performs
better with balancing method because the distribution balancing
helps mitigate the confounding bias. In short, all three components
contribute to the superior performance of DNDC.

5.8 Hyperparameter Study

To investigate how the values of model hyperparameters affect the
performance of DNDC, we assess its performance under different
settings of the learning rate y € {10_5, 10741073, 10_2}, represen-
tation dimension d, € {16, 32, 64,128}, § € {0.5,1.0,1.5,2.0} and
y € {1074,1073,1072, 1071}, Leaving out all the similar observa-
tions, we only show the ITE estimation performance /eépggr with
different values of learning rates y, embedding size d;, f and y on
Flickr in Fig. 7, where we observe that, the model achieves the best
performance when y is around 1074, d, € [32,64], p = 1.0 and
y = 0.01. Similar observations can be observed on other datasets, as
well as eq7g. Generally speaking, our model is not very sensitive
to the model parameters in a wide range.

6 RELATED WORK

Treatment effect learning for static i.i.d data. Most observa-
tional studies [4, 13] focus on i.i.d data in the static setting. Specif-
ically, recent years witnessed a surge of research interests in es-
timating ITEs by representation learning [39]. Among them, [31]
shows that balancing the representation distribution of the treated
and control group can help upper bound the error of counterfactual
outcome estimation. However, these methods have two limitations:
1) they rely on the strong ignorability assumption and ignore the
influence of hidden confounders; 2) they fail to utilize the evolving
process of the observed variables and the relations among indi-
viduals. [19] relaxes the strong ignorability assumption by taking
observed features as proxy variables of hidden confounders using
variational inference, but still limited for static i.i.d data.

Treatment effect learning from networked data. Instead of
making the strong ignorability assumption, [17, 23] theoretically
show that observed proxy variables can be exploited to capture the
hidden confounders and estimate the treatment effect. Recently,
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[35] starts to utilize the network information as proxy variables to
mitigate the confounding bias, but this work has some limitations:
(1) it only considers network structure without leveraging features
of instances; (2) it relies on the doubly robust estimator which
can only estimate average treatment effect (ATE) over the whole
population. Recently, 8, 9] propose to unravel patterns of hidden
confounders from the network structure along with the observed
features by learning representations of hidden confounders, and use
the representation for potential outcome prediction. Nonetheless,
these works focus on a static setting and are unable to provide
accurate ITE estimation over time when the data is evolving.

7 CONCLUSION

In this paper, we study a problem of ITE estimation from networked
observational data in a dynamic environment and develop a novel
framework DNDC. We specify this framework by learning repre-
sentations of hidden confounders over time for potential outcome
prediction and treatment prediction. Additionally, we also incor-
porate a novel adversarial learning based balancing technique into
DNDC toward unbiased ITE estimation. The proposed framework
is evaluated on multiple semi-synthetic datasets extended from
real-world data of attributed networks. Extensive experimental
evaluations demonstrate the superiority of our framework over
existing ITE estimation frameworks. The future work may include
exploiting more available models [12, 16], as well as expanding the
framework to more general settings such as multiple treatments
[37] and heterogeneous data [40].
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