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ABSTRACT KEYWORDS

Social relations are often used to improve recommendation quality
when user-item interaction data is sparse in recommender systems.
Most existing social recommendation models exploit pairwise rela-
tions to mine potential user preferences. However, real-life inter-
actions among users are very complex and user relations can be
high-order. Hypergraph provides a natural way to model high-order
relations, while its potentials for improving social recommenda-
tion are under-explored. In this paper, we fill this gap and propose
a multi-channel hypergraph convolutional network to enhance
social recommendation by leveraging high-order user relations.
Technically, each channel in the network encodes a hypergraph
that depicts a common high-order user relation pattern via hyper-
graph convolution. By aggregating the embeddings learned through
multiple channels, we obtain comprehensive user representations
to generate recommendation results. However, the aggregation
operation might also obscure the inherent characteristics of differ-
ent types of high-order connectivity information. To compensate
for the aggregating loss, we innovatively integrate self-supervised
learning into the training of the hypergraph convolutional network
to regain the connectivity information with hierarchical mutual
information maximization. Extensive experiments on multiple real-
world datasets demonstrate the superiority of the proposed model
over the current SOTA methods, and the ablation study verifies
the effectiveness and rationale of the multi-channel setting and the
self-supervised task. The implementation of our model is available
via https://github.com/Coder-Yu/RecQ.
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Figure 1: The common types of high-order user relations in
social recommender systems.

1 INTRODUCTION

Over the past decade, the social media boom has dramatically
changed people’s ways of thinking and behaving. It has been re-
vealed that people may alter their attitudes and behaviors in re-
sponse to what they perceive their friends might do or think, which
is known as the social influence [7]. Meanwhile, there are also
studies [25] showing that people tend to build connections with
others who have similar preferences with them, which is called
the homophily. Based on these findings, social relations are often
integrated into recommender systems to mitigate the data spar-
sity issue [13, 33]. Generally, in a social recommender system, if
a user has few interactions with items, the system would rely on
her friends’ interactions to infer her preference and generate better
recommendations. Upon this paradigm, a large number of social
recommendation models have been developed [12, 21, 23, 55, 57, 61]
and have shown stronger performance compared with general rec-
ommendation models.

Recently, graph neural networks (GNNs) [43] have achieved
great success in a wide range of areas. Owing to their powerful
capability in modeling relational data, GNNs-based models also
have shown prominent performance in social recommendation
[9, 19, 40-42, 58]. However, a key limitation of these GNNs-based
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social recommendation models is that they only exploit the sim-
ple pairwise user relations and ignore the ubiquitous high-order
relations among users. Although the long-range dependencies of
relations (i.e. transitivity of friendship), which are also considered
high-order, can be captured by using k graph neural layers to in-
corporate features from k-hop social neighbors, these GNNs-based
models are unable to formulate and capture the complex high-order
user relation patterns (as shown in Fig. 1) beyond pairwise relations.
For example, it is natural to think that two users who are socially
connected and also purchased the same item have a stronger rela-
tionship than those who are only socially connected, whereas the
common purchase information in the former is often neglected in
previous social recommendation models.

Hypergraph [4], which generalizes the concept of edge to make
it connect more than two nodes, provides a natural way to model
complex high-order relations among users. Despite the great ad-
vantages over the simple graph in user modeling, the strengths of
hypergraph are under-explored in social recommendation. In this
paper, we fill this gap by investigating the potentials of fusing hy-
pergraph modeling and graph convolutional networks, and propose
a Multi-channel Hypergraph Convolutional Network (MHCN) to
enhance social recommendation by exploiting high-order user re-
lations. Technically, we construct hypergraphs by unifying nodes
that form specific triangular relations, which are instances of a set
of carefully designed triangular motifs with underlying semantics
(shown in Fig. 2). As we define multiple categories of motifs which
concretize different types of high-order relations such as ‘having a
mutual friend’, ‘friends purchasing the same item’, and ‘strangers
but purchasing the same item’ in social recommender systems, each
channel of the proposed hypergraph convolutional network under-
takes the task of encoding a different motif-induced hypergraph.
By aggregating multiple user embeddings learned through multiple
channels, we can obtain the comprehensive user representations
which are considered to contain multiple types of high-order rela-
tion information and have the great potentials to generate better
recommendation results with the item embeddings.

However, despite the benefits of the multi-channel setting, the ag-
gregation operation might also obscure the inherent characteristics
of different types of high-order connectivity information [54], as dif-
ferent channels would learn embeddings with varying distributions
on different hypergraphs. To address this issue and fully inherit the
rich information in the hypergraphs, we innovatively integrate a
self-supervised task [15, 37] into the training of the multi-channel
hypergraph convolutional network. Unlike existing studies which
enforce perturbations on graphs to augment the ground-truth [53],
we propose to construct self-supervision signals by exploiting the
hypergraph structures, with the intuition that the comprehensive
user representation should reflect the user node’s local and global
high-order connectivity patterns in different hypergraphs. Con-
cretely, we leverage the hierarchy in the hypergraph structures
and hierarchically maximizes the mutual information between rep-
resentations of the user, the user-centered sub-hypergraph, and
the global hypergraph. The mutual information here measures the
structural informativeness of the sub- and the whole hypergraph
towards inferring the user features through the reduction in local
and global structure uncertainty. Finally, we unify the recommenda-
tion task and the self-supervised task under a primary & auxiliary
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learning framework. By jointly optimizing the two tasks and lever-
aging the interplay of all the components, the performance of the
recommendation task achieves significant gains.

The major contributions of this paper are summarized as follows:

e We investigate the potentials of fusing hypergraph modeling and
graph neural networks in social recommendation by exploiting
multiple types of high-order user relations under a multi-channel
setting.

e We innovatively integrate self-supervised learning into the train-
ing of the hypergraph convolutional network and show that a
self-supervised auxiliary task can significantly improve the social
recommendation task.

o We conduct extensive experiments on multiple real-world datasets
to demonstrate the superiority of the proposed model and thor-
oughly ablate the model to investigate the effectiveness of each
component with an ablation study.

The rest of this paper is organized as follows. Section 2 introduces
the related work. Section 3 details the multi-channel hypergraph
convolutional network and elaborates on how self-supervised learn-
ing further improves the performance. The experimental results
and analysis are illustrated in Section 4. Finally, Section 5 concludes
this paper.

2 RELATED WORK
2.1 Social Recommendation

As suggested by the social science theories [7, 25], users’ prefer-
ences and decisions are often influenced by their friends. Based on
this fact, social relations are integrated into recommender systems
to alleviate the issue of data sparsity. Early exploration of social
recommender systems mostly focuses on matrix factorization (MF),
which has a nice probabilistic interpretation with Gaussian prior
and is the most used technique in social recommendation regime.
The extensive use of MF marks a new phase in the research of
recommender systems. A multitude of studies employ MF as their
basic model to exploit social relations since it is very flexible for MF
to incorporate prior knowledge. The common ideas of MF-based
social recommendation algorithms can be categorized into three
groups: co-factorization methods [22, 46], ensemble methods [20],
and regularization methods [23]. Besides, there are also studies
using socially-aware MF to model point-of-interest [48, 51, 52],
preference evolution [39], item ranking [55, 61], and relation gen-
eration [11, 57].

Over the recent years, the boom of deep learning has broadened
the ways to explore social recommendation. Many research efforts
demonstrate that deep neural models are more capable of capturing
high-level latent preferences [49, 50]. Specifically, graph neural net-
works (GNNs) [63] have achieved great success in this area, owing
to their strong capability to model graph data. GraphRec [9] is the
first to introduce GNNs to social recommendation by modeling the
user-item and user-user interactions as graph data. DiffNet [41] and
its extension DiffNet++ [40] model the recursive dynamic social
diffusion in social recommendation with a layer-wise propagation
structure. Wu et al. [42] propose a dual graph attention network
to collaboratively learn representations for two-fold social effects.
Song et al. develop DGRec [34] to model both users’ session-based
interests as well as dynamic social influences. Yu et al. [58] propose
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a deep adversarial framework based on GCNs to address the com-
mon issues in social recommendation. In summary, the common
idea of these works is to model the user-user and user-item inter-
actions as simple graphs with pairwise connections and then use
multiple graph neural layers to capture the node dependencies.

2.2 Hypergraph in Recommender Systems

Hypergraph [4] provides a natural way to model complex high-
order relations and has been extensively employed to tackle various
problems. With the development of deep learning, some studies
combine GNNs and hypergraphs to enhance representation learn-
ing. HGNN [10] is the first work that designs a hypergraph convolu-
tion operation to handle complex data correlation in representation
learning from a spectral perspective. Bai et al. [2] introduce hyper-
graph attention to hypergraph convolutional networks to improve
their capacity. However, despite the great capacity in modeling com-
plex data, the potentials of hypergraph for improving recommender
systems have been rarely explored. There are only several studies
focusing on the combination of these two topics. Bu et al. [5] intro-
duce hypergraph learning to music recommender systems, which
is the earliest attempt. The most recent combinations are HyperRec
[38] and DHCF [16], which borrow the strengths of hypergraph
neural networks to model the short-term user preference for next-
item recommendation and the high-order correlations among users
and items for general collaborative filtering, respectively. As for the
applications in social recommendation, HMF [62] uses hypergraph
topology to describe and analyze the interior relation of social
network in recommender systems, but it does not fully exploit
high-order social relations since HMF is a hybrid recommenda-
tion model. LBSN2Vec [47] is a social-aware POI recommendation
model that builds hyperedges by jointly sampling friendships and
check-ins with random walk, but it focuses on connecting different
types of entities instead of exploiting the high-order social network
structures.

2.3 Self-Supervised Learning

Self-supervised learning [15] is an emerging paradigm to learn with
the ground-truth samples obtained from the raw data. It was firstly
used in the image domain [1, 59] by rotating, cropping or coloriz-
ing the image to create auxiliary supervision signals. The latest
advances in this area have extended self-supervised learning to
graph representation learning [28, 29, 35, 37]. These studies mainly
develop self-supervision tasks from the perspective of investigating
graph structure. Node properties such as degree, proximity, and
attributes, which are seen as local structure information, are often
used as the ground truth to fully exploit the unlabeled data [17].
For example, InfoMotif [31] models attribute correlations in mo-
tif structures with mutual information maximization to regularize
graph neural networks. Meanwhile, global structure information
like node pair distance is also harnessed to facilitate representa-
tion learning [35]. Besides, contrasting congruent and incongruent
views of graphs with mutual information maximization [29, 37] is
another way to set up a self-supervised task, which has also shown
promising results.
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As the research of self-supervised learning is still in its infancy,
there are only several works combining it with recommender sys-
tems [24, 44, 45, 64]. These efforts either mine self-supervision
signals from future/surrounding sequential data [24, 45], or mask
attributes of items/users to learn correlations of the raw data [64].
However, these thoughts cannot be easily adopted to social rec-
ommendation where temporal factors and attributes may not be
available. The most relevant work to ours is GroupIM [32], which
maximizes mutual information between representations of groups
and group members to overcome the sparsity problem of group
interactions. As the group can be seen as a special social clique,
this work can be a corroboration of the effectiveness of social self-
supervision signals.

3 PROPOSED MODEL

3.1 Preliminaries

Let U = {uy,uy,...,um} denote the user set ([U| = m), and I =
{i1,i2, ..., in } denote the item set (|I| = n). 7 (u) is the set of user
consumption in which items consumed by user u are included. R €
R™*" g a binary matrix that stores user-item interactions. For each
pair (u, i), ry; = 1indicates that user u consumed item i while r;,; =
0 means that item i is unexposed to user u, or user u is not interested
in item i. In this paper, we focus on top-K recommendation, and 7y;
denotes the probability of item i to be recommended to user u. As for
the social relations, we use S € R™*™ to denote the relation matrix
which is asymmetric because we work on directed social networks.
In our model, we have multiple convolutional layers, and we use
(PO p@ ... p)y ¢ Rmxd and (O, Q@ ... o)} ¢ rrxd
to denote the user and item embeddings of size d learned at each
layer, respectively. In this paper, we use bold capital letters to denote
matrices and bold lowercase letters to denote vectors.

Definition 1: Let G = (V, E) denote a hypergraph, where V is
the vertex set containing N unique vertices and E is the edge set
containing M hyperedges. Each hyperedge € € E can contain any
number of vertices and is assigned a positive weight We¢, and all the
weights formulate a diagonal matrix W € RM*M The hypergraph
can be represented by an incidence matrix H € RN*M where H;¢ =
1 if the hyperedge € € E contains a vertex v; € V, otherwise 0. The
vertex and edge degree matrices are diagonal matrices denoted by
D and L, respectively, where D;; = 2?:1 WeeHie;Lee = Zﬁl Hie.
It should be noted that, in this paper, We, is uniformly assigned 1
and hence W is an identity matrix.

3.2 Multi-Channel Hypergraph Convolutional
Network for Social Recommendation

In this section, we present our model MHCN, which stands for
Multi-channel Hypergraph Convolutional Network. In Fig. 3, the
schematic overview of our model is illustrated.

3.2.1 Hypergraph Construction. To formulate the high-order infor-
mation among users, we first align the social network and user-item
interaction graph in social recommender systems and then build
hypergraphs over this heterogeneous network. Unlike prior models
which construct hyperedges by unifying given types of entities
[5, 47], our model constructs hyperedges according to the graph
structure. As the relations in social networks are often directed, the
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Figure 2: Triangle motifs used in our work. The green circles denote users and the yellow circles denote items.

connectivity of social networks can be of various types. In this pa-
per, we use a set of carefully designed motifs to depict the common
types of triangular structures in social networks, which guide the
hypergraph construction.

Motif, as the specific local structure involving multiple nodes, is
first introduced in [26]. It has been widely used to describe com-
plex structures in a wide range of networks. In this paper, we only
focus on triangular motifs because of the ubiquitous triadic closure
in social networks, but our model can be seamlessly extended to
handle on more complex motifs. Fig. 2 shows all the used trian-
gular motifs. It has been revealed that M; — My are crucial for
social computing [3], and we further design Mg — Mg to involve
user-item interactions to complement. Given motifs M; — My,
we categorize them into three groups according to the underlying
semantics. M; — My summarize all the possible triangular rela-
tions in explicit social networks and describe the high-order social
connectivity like ‘having a mutual friend’. We name this group
‘Social Motifs’. Mg — My represent the compound relation, that
is, ‘friends purchasing the same item’. This type of relation can
be seen as a signal of strengthened tie, and we name Mg — Mo
‘Joint Motifs’. Finally, we should also consider users who have no
explicit social connections. So, Mg is non-closed and defines the
implicit high-order social relation that users who are not socially
connected but purchased the same item. We name My ‘Purchase
Motif’. Under the regulation of these three types of motifs, we can
construct three hypergraphs that contain different high-order user
relation patterns. We use the incidence matrices H®, H/ and H?
to represent these three motif-induced hypergraphs, respectively,
where each column of these matrices denotes a hyperedge. For
example, in Fig. 3, {u1, u2, u3} is an instance of My, and we use e;
to denote this hyperedge. Then, according to definition 1, we have
H;1,€1 = Hliz,ﬁ = Hlsls,el =1
3.2.2  Multi-Channel Hypergraph Convolution. In this paper, we
use a three-channel setting, including ‘Social Channel (s)’, ‘Joint
Channel (j), and ‘Purchase Channel (p)’, in response to the three
types of triangular motifs, but the number of channels can be ad-
justed to adapt to more sophisticated situations. Each channel is
responsible for encoding one type of high-order user relation pat-
tern. As different patterns may show different importances to the
final recommendation performance, directly feeding the full base
user embeddings P to all the channels is unwise. To control the
information flow from the base user embeddings P to each chan-
nel, we design a pre-filter with self-gating units (SGUs), which is
defined as:

PO = £2,(PO) = PO 0 o(POW +bS), 8
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Table 1: Computation of motif-induced adjacency matrices.

Motif [ Matrix Computation [ Ay, =
M, | c=WU)oUT c+CT
M; | C=BU)oUT+WUBoUT+(UU)OB c+CT
Ms | C=(BB)oU +(BU)®B+(U -B)©B c+CT

My | C=(BB)OB c
Ms |C=UU)oU+WUNoU+UTU)oU | C+CT
Ms | C=(UBoU+BUNHoUT+WTU)OB | C
M; | c=UTB)oUT+BU)oU +(UUT)0B | C

Mg | C=(RRT)oB C
My | C=RRTYOU c+cCT
Mlo C = RRT C

where W¢ € RdXd,b; € RY are parameters to be learned, ¢ €
{s, J,p} represents the channel, © denotes the element-wise prod-
uct and o is the sigmoid nonlinearity. The self-gating mechanism
effectively serves as a multiplicative skip-connection [8] that learns
a nonlinear gate to modulate the base user embeddings at a feature-
wise granularity through dimension re-weighting, then we obtain

the channel-specific user embeddings PEO).
Referring to the spectral hypergraph convolution proposed in
[10], we define our hypergraph convolution as:

P = prtH L HT P, @)

The difference is that we follow the suggestion in [6, 14] to remove
the learnable matrix for linear transformation and the nonlinear
activation function (e.g. leaky ReLU). By replacing H, with any of
HS, H/ and H?, we can borrow the strengths of hypergraph convo-
lutional networks to learn user representations encoded high-order
information in the corresponding channel. As D and L. are diago-
nal matrices which only re-scale embeddings, we skip them in the
following discussion. The hypergraph convolution can be viewed
as a two-stage refinement performing ‘node-hyperedge-node’ fea-
ture transformation upon hypergraph structure. The multiplication

operation H] Pgl) defines the message passing from nodes to hy-
peredges and then premultiplying H, is viewed to aggregate infor-
mation from hyperedges to nodes. However, despite the benefits of
hypergraph convolution, there are a huge number of motif-induced
hyperedges (e.g. there are 19,385 social triangles in the used dataset,
LastFM), which would cause a high cost to build the incidence ma-
trix H¢. But as we only exploit triangular motifs, we show that this
problem can be solved in a flexible and efficient way by leveraging
the associative property of matrix multiplication.

Following [60], we let B = S©ST and U = S— B be the adjacency
matrices of the bidirectional and unidirectional social networks
respectively. We use Ay, to represent the motif-induced adjacency
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Figure 3: An overview of the proposed model (1-layer). Each triangle in the left graph is a hyperedge and also an instance of
defined motifs. G;, Gj and G, denote the three motif-induced hypergraphs constructed based on social, joint, and purchase mo-
tifs, respectively. s5, sj, and s, in the three dotted ellipses denote three ego-networks with u; as the center, which are subgraphs

of Gs, Gj and Gy, respectively.

matrix and (Apy, )i,j = 1 means that vertex i and vertex j appear
in one instance of M. As two vertices can appear in multiple
instances of My, (A, )i,j is computed by:

(A, )i,j = #(i,j occur in the same instance of My).  (3)
Table 1 shows how to calculate Ay, in the form of matrix multipli-
cation. As all the involved matrices in Table 1 are sparse matrices,
Ap, can be efficiently calculated. Specifically, the basic unit in Ta-
ble 1is in a general form of XY © Z, which means Ay, to Ay, may
be sparser than Z (i.e. B or U) or as sparse as Z. Ay, could be a little
denser, but we can filter out the popular items (we think consuming
popular items might not reflect the users’ personalized preferences)
when calculating Apy,, and remove the entries less than a threshold
(e.g. 5) in Apg,, to keep efficient calculation. For symmetric motifs,
Ay = C, and for the asymmetric ones Ay = C + cT. Obviously,
without considering self-connection, the summation of Ay, to Apy,
is equal to HS H®T, as each entry of HSHST € R™*™ also indicates
how many social triangles contain the node pair represented by the
row and column index of the entry. Analogously, the summation of
Ap, to Ay, is equal to H/HIT without self-connection and Amy,
is equal to H? HP™. Taking the calculation of Ay, as an example,
it is evident that UU constructs a unidirectional path connecting
three vertices, and the operation ©U makes the path into a loop,
which is an instance of Ayy,. As Apy,, also contains the triangles in
Ap, and Aypy,. So, we remove the redundancy from Ayy,, . Finally,
weuse As = X7 _ Apm, Aj = Ay, + Ay, and Ap = Ay, — A to
replace HSH®T, H/H/™, and HP? HPT in Eq. (2), respectively. Then
we have a transformed hypergraph convolution, defined as:

Pt = Dl AR, @)
where D, € R™*™ is the degree matrix of A.. Obviously, Eq (4)
is equivalent to Eq (2), and can be a simplified substitution of the
hypergraph convolution. Since we follow the design of Light GCN
which has subsumed the effect of self-connection, and thus skipping
self-connection in adjacency matrix does not matter too much. In
this way, we circumvent the individual hyperedge construction and
computation, and greatly reduce the computational cost.
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3.2.3 Learning Comprehensive User Representations. After propa-
gating the user embeddings through L layers, we average the embed-
dings obtained at each layer to form the final channel-specific user
representation: P} = ﬁ Z{‘ZO Pﬁl) to avoid the over-smoothing
problem [14]. Then we use the attention mechanism [36] to selec-
tively aggregate information from different channel-specific user
embeddings to form the comprehensive user embeddings. For each
user u, a triplet (a® N4 ) is learned to measure the different
contributions of the three channel-specific embeddings to the fi-
nal recommendation performance. The attention function fuy is
defined as:

" exp(a’ - Warp})
Qe = faft(pc) = T )
Zc’e{s,j,p} exp(a’ - WattPC/)

©)

where a € RY and Wair € R4 are trainable parameters, and the
comprehensive user representation p* = Y. (s, j, p} %cPe-

Note that, since the explicit social relations are noisy and isolated
relations are not a strong signal of close friendship [55, 56], we dis-
card those relations which are not part of any instance of defined
motifs. So, we do not have a convolution operation directly working
on the explicit social network S. Besides, in our setting, the hyper-
graph convolution cannot directly aggregate information from the
items (we do not incorporate the items into A; and Ay). To tackle
this problem, we additionally perform simple graph convolution on
the user-item interaction graph to encode the purchase information
and complement the multi-channel hypergraph convolution. The
simple graph convolution is defined as:

P£l+1) — D;lRQ(I), P,(_O) — fgrate(P(O))’

oU+D = Di—1RTP£rll)’ Py = Z
ce{s.j.p}

O]

1 6
Aepe’ + Epy), ( )

where Pﬁl)

is the gated user embeddings for simple graph convolu-
tion, Pﬁ,’) is the combination of the comprehensive user embeddings
and Pﬁl), and D, € R™*™ and D; € R™" are degree matrices of
R and RT, respectively. Finally, we obtain the final user and item

embeddings P and Q defined as:

S0 RN o
b _ b !
L+1 r> Q L+IZQ ’

1=0 =0

P=P"+ (7)
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where P(®) and Q0 are randomly initialized.

3.2.4 Model Optimization. To learn the parameters of MHCN, we
employ the Bayesian Personalized Ranking (BPR) loss [30], which
is a pairwise loss that promotes an observed entry to be ranked
higher than its unobserved counterparts:

L= Y —10go (Fui(®) = Fu (@) + A0l (8)
iel(u),j¢l(u)

where @ denotes the parameters of MHCN, 7, ; = p/ q; is the
predicted score of u on i, and o(-) here is the sigmoid function.
Each time a triplet including the current user u, the positive item i
purchased by u, and the randomly sampled negative item j which
is disliked by u or unknown to u, is fed to MHCN. The model is
optimized towards ranking i higher than j in the recommendation
list for u. In addition, Ly regularization with the hyper-parameter A
is imposed to reduce generalized errors.

3.3 Enhancing MHCN with Self-Supervised
Learning

Owing to the exploitation of high-order relations, MHCN shows
great performance (reported in Table 3 and 4). However, a shortcom-
ing of MHCN is that the aggregation operations (Eq. 5 and 6) might
lead to a loss of high-order information, as different channels would
learn embeddings with varying distributions on different hyper-
graphs [54]. Concatenating the embeddings from different channels
could be the alternative, but it uniformly weighs the contributions
of different types of high-order information in recommendation
generation, which is not in line with the reality and leads to inferior
performance in our trials. To address this issue and fully inherit
the rich information in the hypergraphs, we innovatively integrate
self-supervised learning into the training of MHCN.

In the scenarios of representation learning, self-supervised task
usually either serves as a pretraining strategy or an auxiliary task to
improve the primary task [17]. In this paper, we follow the primary
& auxiliary paradigm, and set up a self-supervised auxiliary task to
enhance the recommendation task (primary task). The recent work
Deep Graph Infomax (DGI) [37] is a general and popular approach
for learning node representations within graph-structured data in a
self-supervised manner. It relies on maximizing mutual information
(MI) between node representations and corresponding high-level
summaries of graphs. However, we consider that the graph-node MI
maximization stays at a coarse level and there is no guarantee that
the encoder in DGI can distill sufficient information from the input
data. Therefore, with the increase of the graph scale, the benefits
brought by MI maximization might diminish. For a better learning
method which fits our scenario more, we inherit the merits of DGI to
consider mutual information and further extend the graph-node MI
maximization to a fine-grained level by exploiting the hierarchical
structure in hypergraphs.

Recall that, for each channel of MHCN, we build the adjacency
matrix A, to capture the high-order connectivity information. Each
row in A, represents a subgraph of the corresponding hypergraph
centering around the user denoted by the row index. Then we can
induce a hierarchy: ‘user node «— user-centered sub-hypergraph «
hypergraph’ and create self-supervision signals from this structure.
Our intuition of the self-supervised task is that the comprehensive
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Figure 4: Hierarchical mutual information maximization on
hypergraphs.

user representation should reflect the user node’s local and global
high-order connectivity patterns in different hypergraphs, and this
goal can be achieved by hierarchically maximizing the mutual in-
formation between representations of the user, the user-centered
sub-hypergraph, and the hypergraph in each channel. The mutual
information measures the structural informativeness of the sub-
and the whole hypergraph towards inferring the user preference
through the reduction in local and global structure uncertainty.

To get the sub-hypergraph representation, instead of averaging
the embeddings of the users in the sub-hypergraph, we design
a readout function fout, : R¥*d _ R4 which is permutation-
invariant and formulated as:

P.af
Zﬁ =f0ut1(Pc,aZ)= U

©)

sum(a)’
where P, = fgcat (P) is to control the participated magnitude of P to
avoid overfitting and mitigate gradient conflict between the primary
and auxiliary tasks, af, is the row vector of A corresponding to the
center user u, and sum(a$,) denotes how many connections in the
sub-hypergraph. In this way, the weight (importance) of each user
in the sub-hypergraph is considered to form the sub-hypergraph
embedding z,. Analogously, we define the other readout function
Sout, : R™*4 _ R4, which is actually an average pooling to sum-
marize the obtained sub-hypergraph embeddings into a graph-level
representation:

h® = fout,(Zc) = AveragePooling(Z.). (10)

We follow DGI and use InfoNCE [27] as our learning objective
to maximize the hierarchical mutual information. But we find that,
compared with the binary cross-entropy loss, the pairwise ranking
loss, which has also been proved to be effective in mutual informa-
tion estimation [18], is more compatible with the recommendation
task. We then define the objective function of the self-supervised
task as follows:

Li=- 3 {2 loeo(folpt.z6) - folpt.26)

ce{s,j,p} ueU

+ 3 log ol fp(z6. h) = fo(z6. h)}.

uelU

(11)

fo() : R4 x R? — R is the discriminator function that takes two
vectors as the input and then scores the agreement between them.
We simply implement the discriminator as the dot product between
two representations. Since there is a bijective mapping between
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P, and Z_, they can be the ground truth of each other. We corrupt
Z: by both row-wise and column-wise shuffling to create negative
examples ZC. We consider that, the user should have a stronger
connection with the sub-hypergraph centered with her (local struc-
ture), so we directly maximize the mutual information between
their representations. By contrast, the user would not care all the
other users too much (global structure), so we indirectly maximize
the mutual information between the representations of the user
and the complete hypergraph by regarding the sub-hypergraph
as the mediator. Compared with DGI which only maximizes the
mutual information between node and graph representations, our
hierarchical design can preserve more structural information of the
hypergraph into the user representations (comparison is shown in
Section 4.3). Figure 4 illustrates the hierarchical mutual information
maximization.

Finally, we unify the objectives of the recommendation task (pri-
mary) and the task of maximizing hierarchical mutual information
(auxiliary) for joint learning. The overall objective is defined as:

L = -£r +ﬁ‘£$7 (12)

where f is a hyper-parameter used to control the effect of the auxil-
iary task and L can be seen as a regularizer leveraging hierarchical
structural information of the hypergraphs to enrich the user repre-
sentations in the recommendation task for a better performance.

3.4 Complexity Analysis

In this section, we discuss the complexity of our model.

Model size. The trainable parameters of our model consist of
three parts: user and item embeddings, gate parameters, and at-
tention parameters. For the first term, we only need to learn the
0" layer user embeddings P(Y) € R™*4 and item embeddings
0© e R"™ 4 _ A for the second term, we employ seven gates, four
for MHCN and three for the self-supervised task. Each of the gate
has parameters of size (d + 1) X d, while the attention parame-
ters are of the same size. To sum up, the model size approximates
(m + n + 8d)d in total. As min(m, n) > d, our model is fairly light.

Time complexity. The computational cost mainly derives from
four parts: hypergraph/graph convolution, attention, self-gating,
and mutual information maximization. For the multi-channel hyper-
graph convolution through L layers, the propagation consumption
is less than O(|A™|dL), where |A"| denotes the number of nonzero
elements in A, and here |A*| = max(|A{|, |A]+ [, |A; |). Analogously,
the time complexity of the graph convolution is O(|R"|dL). As
for the attention and self gating mechanism, they both contribute
O(md?) time complexity. The cost of mutual information maximiza-
tion is mainly from foy;,, which is O(JA™|d). Since we follow the
setting in [14] to remove the learnable matrix for linear transforma-
tion and the nonlinear activation function, the time complexity of
our model is much lower than that of previous GNNs-based social
recommendation models.
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Table 2: Dataset Statistics

Dataset ‘ #User #Item #Feedback #Relation Density

LastFM | 1,892 17,632 92,834 25,434 0.28%
Douban | 2,848 39,586 894,887 35,770 0.79%
Yelp 19,539 21,266 450,884 363,672 0.11%

4 EXPERIMENTS AND RESULTS

4.1 Experimental Settings

Datasets. Three real-world datasets: LastFM!, Douban?, and Yelp
[49] are used in our experiments. As our aim is to generate Top-K
recommendation, for Douban which is based on explicit ratings, we
leave out ratings less than 4 and assign 1 to the rest. The statistics of
the datasets is shown in Table 2. We perform 5-fold cross-validation
on the three datasets and report the average results.

Baselines. We compare MHCN with a set of strong and commonly-
used baselines including MF-based and GNN-based models:

e BPR [30] is a popular recommendation model based on Bayesian
personalized ranking. It models the order of candidate items by
a pairwise ranking loss.

e SBPR [61] is a MF based social recommendation model which ex-
tends BPR and leverages social connections to model the relative
order of candidate items.

e LightGCN [14] is an efficient GCN-based general recommenda-
tion model that leverages the user-item proximity to learn node
representations and generate recommendations.

e GraphRec [9] is the first GNN-based social recommendation
model that models both user-item and user-user interactions.

e DiffNet++ [40] is the latest GCN-based social recommendation
method that models the recursive dynamic social diffusion in
both the user and item spaces.

e DHCEF [16] is a recent hypergraph convolutional network-based
method that models the high-order correlations among users and
items for general recommendation.

Two versions of the proposed multi-channel hypergraph convolu-
tional network are investigated in the experiments. MHCN denotes
the vanilla version and $2-MHCN denotes the self-supervised ver-
sion.

Metrics. To evaluate the performance of all methods, two relevancy-
based metrics Precision@10 and Recall@10 and one ranking-based
metric NDCG@10 are used. We perform item ranking on all the
candidate items instead of the sampled item sets to calculate the
values of these three metrics, which guarantees that the evaluation
process is unbiased.

Settings. For a fair comparison, we refer to the best parameter
settings reported in the original papers of the baselines and then
use grid search to fine tune all the hyperparameters of the baselines
to ensure the best performance of them. For the general settings
of all the models, the dimension of latent factors (embeddings) is
empirically set to 50, the regularization coefficient A = 0.001, and
the batch size is set to 2000. We use Adam to optimize all these
models. Section 4.4 reports the influence of different parameters (i.e.

Uhttp://files.grouplens.org/datasets/hetrec2011/
2https://pan.baidu.com/s/1hrJPérq
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Table 3: General recommendation performance comparison.

Dataset Metric [ GraphRec BPR SBPR DiffNet++ DHCF LightGCN MHCN $2-MHCN Improv. | S 2-Improv.
P@10 17.385% 16.556% 16.893% 18.485% 16.877% 19.205% 19.625% 20.052% 4.410% 2.175%
LastFM  R@10 18.020% 16.803%  17.245% 18.737% 17.131% 19.480% 19.945% 20.375% 4.594% 2.155%
N@10 0.21173 0.19943  0.20516 0.22310 0.20744 0.23392 0.23834 0.24395 4.287% 2.156%
P@10 17.021% 15.673%  15.993% 17.532% 16.871% 17.780% 18.283% 18.506% 4.083% 1.220%
Douban R@10 5.916% 5.160% 5.322% 6.205% 5.755% 6.247% 6.556% 6.681% 6.947% 1.906%
N@10 0.19051 0.17476  0.17821 0.19701 0.18655 0.19881 0.20694 0.21038 5.819% 1.662%
P@10 2.323% 2.002% 2.192% 2.480% 2.298% 2.586% 2.751% 3.003% 16.125% 9.160%
Yelp R@10 6.075% 5.173% 5.468% 6.354% 5.986% 6.525% 6.862% 7.885% 17.247% 14.908%
N@10 0.04653 0.03840  0.04314 0.04833 0.04700 0.04998 0.05356 0.06061 21.268% 13.162%

Table 4: Cold-start recommendation performance comparison.

Dataset Metric | GraphRec BPR SBPR DiffNet++ DHCF LightGCN MHCN S2-MHCN | Improv. | $2-Improv.
P@10 4.662% 3.784% 4.573% 5.102% 3.974% 4.809% 5.466% 5.759% 12.877% 5.360%
LastftM  R@10 18.033% 15.240% 18.417% 21.365% 16.395% 20.361% 23.354% 24.431% 14.350% 4.611%
N@10 0.14675 0.12460  0.15141 0.16031 0.14285 0.15044 0.17218 0.19138 19.381% 11.151%
P@10 2.007% 1.722% 1.935% 2.230% 1.921% 2.134% 2.343% 2.393% 7.309% 2.133%
Douban R@10 8.215% 7.178% 8.084% 8.705% 7.977% 8.317% 9.646% 10.632% 22.136% 10.227%
N@10 0.05887 0.04784  0.05716 0.06767 0.05533 0.06037 0.06771 0.07113 5.113% 5.052%
P@10 1.355% 1.232% 1.286% 1.475% 1.314% 1.504% 1.545% 1.747% 14.108% 13.074%
Yelp R@10 5.901% 5.468% 5.720% 6.635% 5.876% 6.753% 6.838% 7.881% 12.264% 15.253%
N@10 0.03896 0.03448  0.03671 0.04237 0.03826 0.04273 0.04354 0.05143 15.703% 18.121%

p and the depth) of MHCN, and we use the best parameter settings
in Section 4.2, and 4.3.

4.2 Recommendation Performance

In this part, we validate if MHCN outperforms existing social rec-
ommendation baselines. Since the primary goal of social recommen-
dation is to mitigate data sparsity issue and improve the recommen-
dation performance for cold-start users. Therefore, we respectively
conduct experiments on the complete test set and the cold-start
test set in which only the cold-start users with less than 20 interac-
tions are contained. The experimental results are shown in Table
3 and Table 4. The improvement is calculated by subtracting the
best performance value of the baselines from that of S>-MHCN
and then using the difference to divide the former. Analogously,
S2-improvement is calculated by comparing the values of the per-
formance of MHCN and and S2-MHCN. According to the results,
we can draw the following conclusions:

o MHCN shows great performance in both the general and cold-
start recommendation tasks. Even without self-supervised learn-
ing, it beats all the baselines by a fair margin. Meanwhile, self-
supervised learning has great ability to further improve MHCN.
Compared with the vanilla version, the self-supervised version
shows decent improvements in all the cases. Particularly, in the
cold-start recommendation task, self-supervised learning brings
significant gains. On average, S>-MHCN achieves about 5.389%
improvement in the general recommendation task and 9.442%
improvement in the cold-start recommendation task compared
with MHCN. Besides, it seems that, the sparser the dataset, the
more improvements self-supervised learning brings.
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e GNN-based recommendation models significantly outperform
the MF-based recommendation models. Even the general rec-
ommendation models based on GNNs show much better perfor-
mance than MF-based social recommendation models. However,
when compared with the counterparts based on the same building
block (i.e. MF-based vs. MF-based, GNNs-based vs. GNNs-based),
social recommendation models are still competitive and by and
large outperform the corresponding general recommendation
models except LightGCN.
LightGCN is a very strong baseline. Without considering the two
variants of MHCN, LightGCN shows the best or the second best
performance in most cases. This can be owed to the removal
of the redundant operations including the nonlinear activation
function and transformation matrices. The other baselines such
as GraphRec might be limited by these useless operations, and
fail to outperform LightGCN, though the social information is
incorporated.

o Although DHCF is also based on hypergraph convolution, it does
not show any competence in all the cases. We are unable to repro-
duce its superiority reported in the original paper [16]. There are
two possible causes which might lead to its failure. Firstly, it only
exploits the user-item high-order relations. Secondly, the way to
construct hyperedges is very impractical in this model, which
leads to a very dense incidence matrix. The model would then
encounter the over-smoothing problem and suffer from heavy

computation.
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Figure 5: Contributions of each channel on different
datasets.
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Figure 6: The distributions of the attention weights on dif-
ferent datasets.

4.3 Ablation Study

In this section, we conduct an ablation study to investigate the
interplay of the components in S>-MHCN and validate if each
component positively contributes to the final recommendation
performance.

4.3.1 Investigation of Multi-Channel Setting. We first investigate
the multi-channel setting by removing any of the three channels
from S2-MHCN and leaving the other two to observe the changes
of performance. Each bar in the plots (except complete) represents
the case that the corresponding channel is removed, while complete
means no module has been removed. From Fig. 5, we can observe
that removing any channel would cause performance degradation.
But it is obvious that purchase channel contributes the most to the
final performance. Without this channel, S>-MHCN falls to the
level of LightGCN shown in Table 3. By contrast, removing Social
channel or Joint channel would not have such a large impact on the
final performance. Comparing Social channel with Joint channel, we
can observe that the former contributes slightly more on LastFM
and Yelp, while the latter, in terms of the performance contribution,
is more important on Douban.

To further investigate the contribution of each channel when
they are all employed, we visualize the attention scores learned
along with other model parameters, and draw a box plot to display
the distributions of the attention weights. According to Fig. 6, we
can observe that, for the large majority of users in LastFM, Social
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Figure 7: Investigation of Hierarchical Mutual Information
Maximization on different datasets.

channel has limited influence on the comprehensive user represen-
tations. In line with the conclusions from Fig. 5, Purchase channel
plays the most important role in shaping the comprehensive user
representations. The importance of Joint channel falls between the
other two. The possible reason could be that, social relations are
usually noisy and the users who are only socially connected might
not always share similar preferences.

4.3.2  Investigation of Self-supervised Task. To investigate the ef-
fectiveness of the hierarchical mutual information maximization
(MIM), we break this procedure into two parts: local MIM between
the user and user-centered sub-hypergraph, and global MIM be-
tween the user-centered sub-hypergraph and hypergraph. We then
run MHCN with either of these two to observe the performance
changes. We also compare hierarchical MIM with the node-graph
MIM used in DGI to validate the rationality of our design. We im-
plement DGI by referring to the original paper [37]. The results
are illustrated in Fig. 7, and we use Disabled to denote the vanilla
MHCN. Unlike the bars in Fig. 6, each bar in Fig. 7 represents the
case where only the corresponding module is used. As can be seen,
hierarchical MIM shows the best performance while local MIM
achieves the second best performance. By contrast, global MIM
contributes less but it still shows better performance on Douban
Yelp when compared with DGI. Actually, DGI almost rarely con-
tributes on the latter two datasets and we can hardly find a proper
parameter that can make it compatible with our task. On some
metrics, training MHCN with DGI even lowers the performance.
According to these results, we can draw a conclusion that the self-
supervised task is effective and our intuition for hierarchical mutual
information maximization is more reasonable compared with the
node-graph MIM in DGIL.

4.4 Parameter Sensitivity Analysis

In this section, we investigate the sensitivity of f and L.

As we adopt the primary & auxiliary paradigm, to avoid the neg-
ative interference from the auxiliary task in gradient propagating,
we can only choose small values for f. We search the proper value
in a small interval and empirically set it from 0.001 to 0.5. We then
start our attempts from 0.001, and proceed by gradually increasing
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Figure 9: Influence of the depth of MHCN.

the step size. Here we report the performance of S>-MHCN with
eight representative f values {0.001, 0.005, 0.01,0.02, 0.05,0.1,0.5}.
As can be seen in Fig. 8, with the increase of the value of f, the
performance of S>-MHCN on all the datasets rises. After reaching
the peak when f is 0.01 on all the datasets, it steadily declines. Ac-
cording to Fig. 8, we can draw a conclusion that even a very small
P can promote the recommendation task, while a larger f would
mislead it. The benefits brought by the self-supervised task could
be easily neutralized and the recommendation task is sensitive to
the magnitude of self-supervised task. So, choosing a small value is
more likely to facilitate the primary task when there is little prior
knowledge about the data distribution.

Finally, we investigate the influence of L to find the optimal depth
for $2-MHCN. We stack hypergraph convolutional layers from 1-
layer to 5-layer setting. According to Fig. 9, the best performance
of $2-MHCN is achieved when the depth of S>-MHCN is 2. With
the continuing increase of the number of layer, the performance
of S2-MHCN declines on all the datasets. Obviously, a shallow
structure fits S>-MHCN more. A possible reason is that $2-MHCN
aggregates high-order information from distant neighbors. As a
result, it is more prone to encounter the over-smoothing problem
with the increase of depth. This problem is also found in DHCF
[16], which is based on hypergraph modeling as well. Considering
the over-smoothed representations could be a pervasive problem
in hypergraph convolutional network based models, we will work
against it in the future.
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5 CONCLUSION

Recently, GNN-based recommendation models have achieved great
success in social recommendation. However, these methods sim-
ply model the user relations in social recommender systems as
pairwise interactions, and neglect that real-world user interactions
can be high-order. Hypergraph provides a natural way to model
high-order user relations, and its potential for social recommenda-
tion has not been fully exploited. In this paper,we fuse hypergraph
modeling and graph neural networks and then propose a multi-
channel hypergraph convolutional network (MHCN) which works
on multiple motif-induced hypergraphs to improve social recom-
mendation. To compensate for the aggregating loss in MHCN, we
innovatively integrate self-supervised learning into the training of
MHCN. The self-supervised task serves as the auxiliary task to im-
prove the recommendation task by maximizing hierarchical mutual
information between the user, user-centered sub-hypergraph, and
hypergraph representations. The extensive experiments conducted
on three public datasets verify the effectiveness of each component
of MHCN, and also demonstrate its state-of-the-art performance.
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